JP2008149210A - Vapor condenser in vacuum device - Google Patents

Vapor condenser in vacuum device Download PDF

Info

Publication number
JP2008149210A
JP2008149210A JP2006336865A JP2006336865A JP2008149210A JP 2008149210 A JP2008149210 A JP 2008149210A JP 2006336865 A JP2006336865 A JP 2006336865A JP 2006336865 A JP2006336865 A JP 2006336865A JP 2008149210 A JP2008149210 A JP 2008149210A
Authority
JP
Japan
Prior art keywords
heat transfer
passage
refrigerant
vacuum
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006336865A
Other languages
Japanese (ja)
Other versions
JP4717794B2 (en
Inventor
Hiroyuki Sawada
寛如 沢田
Ryoji Sama
良二 砂間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA SHINKU GIJUTSU
Kyowa Vacuum Engineering Co Ltd
Original Assignee
KYOWA SHINKU GIJUTSU
Kyowa Vacuum Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA SHINKU GIJUTSU, Kyowa Vacuum Engineering Co Ltd filed Critical KYOWA SHINKU GIJUTSU
Priority to JP2006336865A priority Critical patent/JP4717794B2/en
Publication of JP2008149210A publication Critical patent/JP2008149210A/en
Application granted granted Critical
Publication of JP4717794B2 publication Critical patent/JP4717794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the vapor condenser in a vacuum drying device capable of achieving the enhancement of a heat transfer capacity, the reduction of the transmission temperature difference loss of a cooling medium and the vacuum vapor of a condensing surface and an increase in the coefficient of the nucleate boiling heat transmission of a cooling evaporation round pipe and the coefficient of boundary film heat transmission of a circulating heating medium at the same time to develop a good heat transfer capacity and a highly efficient vapor condensing capacity. <P>SOLUTION: The cooling medium evaporation round pipe of the vapor condenser of a vacuum dryer is altered to an inner surface grooved round pipe from a smooth pipe to be subjected to deformation processing to be formed into a flat oval pipe. One or both of a pair of flat surfaces are brought to the close contact state with the inner wall surface of the passage of a heating medium liquid to be mounted into the passage, the close contact area of the cooling medium evaporation oval pipe with the inner wall surface of the heating medium liquid passage in a vapor condensing plate is increased, rods for forming turbulent flows at an equal interval are attached along the cooling medium evaporation oval pipe mounted in the liquid passage to disturb the laminar flow on the outer surface of the cooling medium evaporation oval pipe to accelerate the convection boundary film heat transfer of the heating medium liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、真空装置における蒸気凝結器のうちで、特に本件出願人が先に開発している特許第1177616号、特許第3644845号として提起している真空装置における蒸気凝結器についての改良に関する。   The present invention relates to an improvement in a steam condensing device in a vacuum apparatus, particularly a steam condensing device in a vacuum apparatus proposed as Japanese Patent No. 1177616 and Japanese Patent No. 3644845 previously developed by the present applicant.

真空装置の蒸気凝結器(トラップ)は、真空室中の被処理物から気化された水その他の溶媒の蒸気を、低温冷却面に凝結捕集し、もって、その真空室の真空圧力を所望の値に維持する目的で、真空凍結装置、真空乾燥装置、真空濃縮機、真空蒸溜機、真空冷却機、脱溶媒装置等の、真空装置に、それの要部を構成するように組込んで、広く用いられている。   The vapor condensing unit (trap) of the vacuum apparatus condenses and collects the vapor of water or other solvent vaporized from the object in the vacuum chamber on a low-temperature cooling surface, and thereby adjusts the vacuum pressure of the vacuum chamber to a desired value. For the purpose of maintaining the value, the vacuum freezing device, the vacuum drying device, the vacuum concentrator, the vacuum distiller, the vacuum cooler, the desolvation device, etc. are incorporated into the vacuum device so as to constitute the main part thereof, Widely used.

この真空装置におけるトラップ(蒸気凝結器)は、真空蒸気を凝結させる冷熱量が冷凍装置の低温冷媒から供給され、伝熱工学的見地から見れば、低温媒体(冷媒)と高温媒体(真空蒸気)との熱交換器である。換熱式の熱交換器では、高温流体と低温流体とは伝熱壁で仕切られて、熱通過によって熱交換が行われる。この形式のものには、直接式(高・低温流体直接の熱交換)の第1の手段のものと、間接式(高・低温流体の間に中間流体の循環を通す間接熱交換)の第2の手段のものと三重式(三媒体間の熱交換)の第3の手段のものとの三つの手段がある。   The trap (steam condensing unit) in this vacuum device is supplied with the amount of cold that condenses the vacuum steam from the low-temperature refrigerant of the refrigeration unit. From the viewpoint of heat transfer engineering, the low-temperature medium (refrigerant) and the high-temperature medium (vacuum vapor) And a heat exchanger. In a heat exchange type heat exchanger, a high temperature fluid and a low temperature fluid are partitioned by a heat transfer wall, and heat exchange is performed by passing heat. This type includes the first type of direct type (direct heat exchange of high and low temperature fluids) and the type of indirect type (indirect heat exchange through the circulation of intermediate fluid between high and low temperature fluids). There are three means: two means and a third means of triple (heat exchange between three media).

これら第一乃至第三の三つの形式の蒸気凝結器を、乾燥処理する被乾燥物を主として医薬品とした真空凍結乾燥装置に組込まれた形態において装置全体の基本構成と共に表した概要説明図により説明する。   These first to third types of vapor condensing units are explained with a schematic explanatory diagram represented together with the basic configuration of the entire apparatus in a form incorporated in a vacuum freeze-drying apparatus that mainly uses a material to be dried as a pharmaceutical product. To do.

図1はもっとも多く用いられる通常型で、蒸気凝結器(トラップ)101は冷媒直冷型の冷媒乾式蒸発器であり、図2は一部に用いられる型で、蒸気凝結器(トラップ)102は外部熱交換器7で冷媒により既に冷却された熱媒液循環による「間接熱媒型」である。そして図3の蒸気凝結器(トラップ)103は、冷媒、熱媒液が共に内部を循環する「三媒体間熱交換器」である。   FIG. 1 is a normal type that is most frequently used. A vapor condensing unit (trap) 101 is a refrigerant direct-cooling type refrigerant dry evaporator, and FIG. 2 is a type that is used partially, and a vapor condensing unit (trap) 102 is It is an “indirect heat medium type” by circulation of a heat medium liquid that has already been cooled by the refrigerant in the external heat exchanger 7. The vapor condensing unit (trap) 103 in FIG. 3 is a “three-medium heat exchanger” in which both the refrigerant and the heat transfer liquid circulate.

図1乃至図3において、真空乾燥室(兼凍結室)1、真空トラップ室2、これらを連結する主管3a、主弁3、真空排気系4等真空系(真空室の輪郭および機器と配管)は総て「細線」で示されている。   In FIG. 1 to FIG. 3, vacuum drying chamber (freezing chamber) 1, vacuum trap chamber 2, main pipe 3a connecting them, main valve 3, vacuum exhaust system 4 and other vacuum systems (contour of vacuum chamber and equipment and piping) Are all indicated by “thin lines”.

冷凍装置(圧縮機、油分離機、凝結器、二段圧縮の場合の中間冷却器などの一切を含む。二元冷凍の場合もある)11、副冷凍装置12、および熱交換器7の冷媒蒸発器7a、副熱交換器8の冷媒蒸発器8a、冷媒直冷型のトラップ101の冷媒蒸発器、および三媒体間熱交換器の蒸気凝結器(トラップ)103の冷媒蒸発器、そして冷媒系路、冷媒弁13、冷媒膨張弁14(三角形にて記す)などの冷凍冷媒循環系は総て「破線」で示されている。   Refrigerating apparatus (including a compressor, an oil separator, a condenser, an intercooler in the case of two-stage compression, etc., and may be a two-stage refrigeration) 11, a sub-refrigeration apparatus 12, and a heat exchanger 7 refrigerant The evaporator 7a, the refrigerant evaporator 8a of the auxiliary heat exchanger 8, the refrigerant evaporator of the refrigerant direct cooling type trap 101, the refrigerant evaporator of the steam condenser (trap) 103 of the three-medium heat exchanger, and the refrigerant system The refrigeration refrigerant circulation system such as the passage, the refrigerant valve 13 and the refrigerant expansion valve 14 (denoted by triangles) is indicated by “broken lines”.

熱板(被処理物体に乾燥に必要な潜熱を供給、図1乃至図3の例では被処理物体の予備凍結に必要な冷熱を供給するプレートを兼ねる)5、熱媒液加熱器6、前掲の熱交換器7の熱媒液系7b、副熱交換器8の熱媒液系8b、間接熱媒液型の蒸気凝結器(トラップ)102の熱媒液系路、および三媒体間熱交換器の蒸気凝結器(トラップ)103の熱媒液系路、および熱板用熱媒液体ポンプ9と蒸気凝結器(トラップ)用熱媒ポンプ10等の熱媒液系機器と系路は総て「太線」で示されている。   Hot plate (supplies latent heat necessary for drying to the object to be processed, and also serves as a plate for supplying cold heat necessary for preliminary freezing of the object to be processed in the examples of FIGS. 1 to 3), heating medium liquid heater 6, and the above. The heat transfer liquid system 7b of the heat exchanger 7, the heat transfer liquid system 8b of the auxiliary heat exchanger 8, the heat transfer liquid system path of the indirect heat transfer liquid condensing unit (trap) 102, and the heat exchange between the three mediums The heat condensate steam trap (trap) 103 heat medium liquid path, and the heat plate liquid heat pump 9 and the heat condensator (trap) heat medium pump 10 and the like. It is indicated by “thick line”.

また、図2および図3において、15は熱媒液の循環系に設けた仕切弁であるが、実際の各系の配管系路と各種弁および系路内の機器配列の順の実際は必ずしも図の通りではなく、図は先行技術として開示した特許第1177616号、及び先先行技術として開示した特許第3644845号の説明のために単純化されたものである。   In FIGS. 2 and 3, 15 is a gate valve provided in the circulation system of the heat transfer fluid, but the actual order of the piping system of each system, the various valves, and the device arrangement in the system is not necessarily shown. Rather than being as shown, the figures are simplified for the purpose of describing the prior art disclosed in US Pat. No. 1177616 and the prior art disclosed in US Pat. No. 3,644,845.

図4および図5は、前記図3に示す三媒体間熱交換器の真空凍結乾燥機の真空トラップ室2と蒸気凝結器(トラップ)103の縦断面(図5のA−A断面)と横断面(図4のC−C断面)で、図4の蒸気凝結プレートa内部の「細かい破線」が冷媒Rの流路[図6の符号26で示す冷媒管に当たる]で、「荒い破線」は蒸気凝結プレートa内の熱媒液の流路(通路w)を冷媒管26の軸方向と直交する方向に区画する境界[図6で冷媒管26と平行する符号27に示す仕切壁に当たる]で、図6はこの蒸気凝結プレートaの一部の断面図である。   4 and 5 are vertical cross-sections (cross-section AA in FIG. 5) and cross-sections of the vacuum trap chamber 2 and the steam condenser (trap) 103 of the vacuum freeze dryer of the three-medium heat exchanger shown in FIG. 4 (cross-section CC in FIG. 4), the “fine broken line” inside the vapor condensation plate a in FIG. 4 is the flow path of the refrigerant R [the refrigerant pipe indicated by reference numeral 26 in FIG. 6], and the “rough broken line” is At a boundary that divides the flow path (passage w) of the heat transfer liquid in the vapor condensing plate a in a direction orthogonal to the axial direction of the refrigerant pipe 26 (corresponds to a partition wall indicated by reference numeral 27 parallel to the refrigerant pipe 26 in FIG. 6). FIG. 6 is a sectional view of a part of the vapor condensation plate a.

三媒体間熱交換型(三重式)の気凝結器(トラップ)103の蒸気凝結プレートaは、図4に示す状態の他に、真空トラップ室2の内壁面を図7の如く円筒状に形成して、そこに取り付けるなど適宜に真空トラップ室2内に設けてよいが、いずれの場合も、冷媒管26は、三重式の蒸気凝結器(トラップ)103の蒸気凝結プレートに対し、熔接、圧着その他により密接状態にあり、この三重式の蒸気凝結器(トラップ)103の蒸気凝結プレートaは、冷媒Rの伝熱フインの役割を果たす。冷媒Rと熱媒液体Bは、冷媒管26の管壁およびフインプレートとしての蒸気凝結器(トラップ)103を介して熱交換し、熱媒液体Bと真空蒸気V(水蒸気)は、熱媒液壁である蒸気凝結器(トラップ)103の蒸気凝結プレートaを介して熱交換し、そして冷媒Rと真空蒸気Vとは、冷媒管26の伝熱フインである蒸気凝結器(トラップ)103の蒸気凝結プレートaを介して熱交換する。かくして三媒体(冷媒R、熱媒液B、真空蒸気V)のいずれの二媒体間の熱交換も境界金属壁ないし同フインプレートによって行われる。28は真空トラップ室2の外壁である。   In addition to the state shown in FIG. 4, the vapor condensing plate a of the three-medium heat exchange type (triple type) air condensing unit (trap) 103 forms the inner wall surface of the vacuum trap chamber 2 in a cylindrical shape as shown in FIG. However, in any case, the refrigerant pipe 26 is welded or pressure-bonded to the vapor condensing plate of the triple vapor condensing device (trap) 103. In addition, the vapor condensing plate a of the triple vapor condensing unit (trap) 103 plays a role of a heat transfer fin of the refrigerant R. The refrigerant R and the heat transfer liquid B exchange heat through the pipe wall of the refrigerant pipe 26 and a steam condenser (trap) 103 as a fin plate, and the heat transfer liquid B and the vacuum vapor V (water vapor) are converted into the heat transfer liquid. Heat is exchanged through the vapor condensing plate a of the vapor condensing unit (trap) 103 which is a wall, and the refrigerant R and the vacuum vapor V are vapors of the vapor condensing unit (trap) 103 which is a heat transfer fin of the refrigerant tube 26. Heat is exchanged through the condensation plate a. Thus, heat exchange between any two of the three media (refrigerant R, heat transfer fluid B, vacuum vapor V) is performed by the boundary metal wall or fin plate. Reference numeral 28 denotes an outer wall of the vacuum trap chamber 2.

この図1乃至図3にあるよう真空装置の蒸気凝結器(トラップ)は、従来にあっては、冷凍装置の冷媒蒸発器を、真空トラップ室に設け、これに図1の如く「冷媒直冷型蒸気凝結器101」を用いるか、図2の如く、冷媒蒸発器7aを冷却源とする熱交換器7(以下冷却器7と記す)およびトラップ系熱媒循環ポンプ10を含むトラップ系熱媒中間流体循環回路により、真空トラップ室2外の外部冷却器で冷却された熱媒液体を、真空トラップ室2内の「間接熱媒型蒸気凝結器102」に循環させるか、または、図3にあるよう冷媒と熱媒とが共に内部を循環する「三媒体間熱交換器」を用いるかしている。   As shown in FIG. 1 to FIG. 3, a vapor condensing unit (trap) of a vacuum apparatus has conventionally been provided with a refrigerant evaporator of a refrigeration apparatus in a vacuum trap chamber. Type steam condensing device 101 "or a trap heat medium including a heat exchanger 7 (hereinafter referred to as cooler 7) having a refrigerant evaporator 7a as a cooling source and a trap heat medium circulation pump 10 as shown in FIG. The intermediate fluid circulation circuit circulates the heat medium liquid cooled by the external cooler outside the vacuum trap chamber 2 to the “indirect heat medium type steam condenser 102” in the vacuum trap chamber 2, or as shown in FIG. It seems that there is a “three-medium heat exchanger” in which both the refrigerant and the heat medium circulate inside.

「冷媒直冷型」の蒸気凝結器(トラップ)101を用いる第一の形態のものは、運転の安定性に欠け、保守困難、かつ、温度制御困難であり、かつ、加熱系には、追加的に、副冷凍装置と副熱交換器を要する等の不利がある。「間接熱媒型」の蒸気凝結器(トラップ)102を用いる第二の形態のものにあっては、前述の第一の形態のものの不利を改善する反面に、冷却源冷媒とトラップ凝結面との直接熱交換がなく、中間流体熱媒からトラップ凝結面までの熱伝達が間接となるための第一の損失、および、外部熱交換器7における、冷媒蒸発器7aから熱媒液体への熱交換の向上、熱媒側の境膜熱伝達係数を増大するため、および、該外部熱交換器7で冷却された熱媒液体を間接熱媒液型の蒸気凝結器(トラップ)102に運ぶことから、その蒸気凝結器(トラップ)102の出入り温度差を小さく保つために大容量の熱媒循環ポンプ10を必要とするための第二の熱損失があり、さらに、真空トラップ室2の他に大型の熱交換器7、熱媒循環ポンプ10を含む外部熱媒体諸機器と仕切弁15などを具備さす配管を設けるための、外界から侵入熱のために装置の諸設備、占有面積、運転エネルギーの増大の不利をもつのであった。   The first type using the "coolant direct cooling type" vapor condensing unit (trap) 101 lacks operational stability, is difficult to maintain, is difficult to control temperature, and is added to the heating system. In particular, there is a disadvantage that a sub refrigeration apparatus and a sub heat exchanger are required. In the second embodiment using the “indirect heat medium type” steam condenser (trap) 102, the disadvantage of the first embodiment is improved, but the cooling source refrigerant and the trap condensation surface are provided. First heat loss due to indirect heat transfer from the intermediate fluid heat medium to the trap condensation surface, and heat from the refrigerant evaporator 7a to the heat medium liquid in the external heat exchanger 7 In order to improve the exchange, to increase the heat transfer coefficient on the heat medium side, and to transport the heat medium liquid cooled by the external heat exchanger 7 to the indirect heat medium liquid type vapor condensing unit (trap) 102 Therefore, there is a second heat loss for requiring a large capacity heat medium circulation pump 10 to keep the temperature difference between the entrance and exit of the steam condenser (trap) 102 small, and in addition to the vacuum trap chamber 2 Outside including large heat exchanger 7 and heat medium circulation pump 10 For providing a pipe means comprises a thermal medium of equipment and the partition valve 15, various equipment devices for heat intrusion from the outside, the occupied area was to have a disadvantage of increasing the driving energy.

「三媒体間熱交換器」である三重式の蒸気凝結器(トラップ)103を用いる第三の形態のものは、本出願人が先に開発した前述の特許第1177616号の発明(以下先先行発明という)および特許第3644845号の発明(以下先行発明という)であって、図3に示す如く、前述した第二の形態のものと同じく、トラップ系熱媒液体循環回路を設けることによって、前記の冷媒直冷型のトラップ101の不利を改善し、かつ、冷媒蒸発器と熱媒液体との熱交換器を真空トラップ室2内に設置して、これに水蒸気をいずれの側からも、相手方の媒体を経由せずに冷却される三重熱交換型蒸気凝結器(トラップ)103によって、第二の形態のものの「間接熱媒型」の蒸気凝結器(トラップ)の諸欠陥を改善したものであり、既に医薬品真空凍結乾燥装置に普及し、特に日本では、前述した在来の冷媒直冷型と間接熱媒型の二方式にかわる主流の位置を占めている。   A third embodiment using a triple steam condensing unit (trap) 103 which is a “three-medium heat exchanger” is the invention of the above-mentioned Japanese Patent No. 1177616 previously developed by the present applicant (hereinafter referred to as “preceding”). And the invention of Japanese Patent No. 3644845 (hereinafter referred to as the prior invention), as shown in FIG. 3, by providing a trap-type heat transfer medium liquid circulation circuit as in the second embodiment described above, The disadvantage of the direct-cooled refrigerant trap 101 is improved, and a heat exchanger for the refrigerant evaporator and the heat transfer liquid is installed in the vacuum trap chamber 2, and steam is supplied to the other party from either side. With the triple heat exchange steam condensing unit (trap) 103 that is cooled without passing through the medium, various defects of the “indirect heat medium type” steam condensing unit (trap) of the second type are improved. Yes, already true Freeze-drying apparatus to spread, especially in Japan, the mainstream of the position to replace the bimodal conventional refrigerant direct cooling type indirect heat medium type described above.

この第三の形態のものである先先行発明及び先行発明の三重式の蒸気凝結器(トラップ)103は、冷媒と熱媒液と真空蒸気(水蒸気)との三媒体中で、いずれの二媒体間にも、境界金属壁ないし境界金属壁と密接する金属板を介する直接の熱交換が存在する三媒体間熱交換器であるが、真空蒸気を凝結させる時、凝結の必要な冷熱量は、一部が冷媒蒸発円管(冷媒管26)から直接膨張により蒸気凝結器(トラップ)103の凝結面の真空蒸気と熱交換し、一部が冷媒から循環熱媒体を経由して蒸気凝結器(トラップ)の凝結面の真空蒸気へ伝わる。それで、蒸気凝結器(トラップ)の真空蒸気の凝結能力は、冷媒蒸発円管(冷媒管26)から直接に真空蒸気との伝熱量および循環熱媒体を経て真空蒸気との熱交換量に関与していて、かつ、その循環熱媒体を経由する伝熱量は、熱媒液の境膜熱伝達率に関係している。   The third type vapor condensing unit (trap) 103 of the prior invention and the prior invention, which is the third form, is one of the two media among the refrigerant, the heat transfer liquid, and the vacuum vapor (water vapor). It is a three-medium heat exchanger where there is direct heat exchange between the boundary metal wall or the metal plate in close contact with the boundary metal wall, but when condensing the vacuum vapor, the amount of cold heat necessary for condensation is A part of the refrigerant evaporates from the refrigerant evaporating pipe (refrigerant pipe 26) directly exchanges heat with the vacuum vapor on the condensation surface of the vapor condenser (trap) 103, and a part of the vapor condenser ( It is transmitted to the vacuum vapor on the condensation surface of the trap. Therefore, the condensation capacity of the vapor condenser (trap) of the vacuum vapor is directly related to the amount of heat exchange with the vacuum vapor through the circulating vapor and the amount of heat transfer with the vacuum vapor directly from the refrigerant evaporation pipe (refrigerant pipe 26). In addition, the amount of heat transfer through the circulating heat medium is related to the film heat transfer coefficient of the heat medium liquid.

しかし、この先先行発明の三重式の蒸気凝結器(トラップ)103の蒸気凝結プレートaは、冷媒蒸発器の冷媒管26と金属板である蒸気凝結プレートaとの密着面が過小で、冷媒Rの直膨蒸発により真空蒸気Vとの熱交換量は少なく、冷媒冷熱量の多量は循環する熱媒液体Bを経て蒸気凝結器(トラップ)103の蒸気凝結プレートaの凝結面の真空蒸気Vと伝熱する。   However, the vapor condensing plate a of the triple-type vapor condensing device (trap) 103 of the preceding prior invention has an excessively close contact surface between the refrigerant tube 26 of the refrigerant evaporator and the vapor condensing plate a which is a metal plate. The amount of heat exchange with the vacuum vapor V is small due to the direct expansion, and a large amount of refrigerant cooling heat is transferred to the vacuum vapor V on the condensation surface of the vapor condensation plate a of the vapor condenser (trap) 103 via the circulating heat medium liquid B. heat.

ところで、近年来、特に医薬品を被処理物とする真空凍結乾燥装置では、循環熱媒液体Bにはシリコーンオイルが用いられている。そのシリコーンオイルの熱媒液体Bは低温で粘度が高くなり、その熱媒液体Bの境膜熱伝達係数は低下している。そのため、蒸気凝結プレートaは、図8に示しているよう、熱媒液体Bの通路w内にその通路wを上下に区画するように冷媒管26と直交する方向の押さえ棒29を間隔をおいて配設しておき、それの上方と下方とにそれぞれ冷媒管26を各2本ずつ配位して、押さえ棒29により支承させ、合計倍量の4本の冷媒管26を用い、通路w内の熱媒液体Bとの熱交換面積の不足を補うようにしている。このことから、循環熱媒体を経由する熱交換は2回の境膜伝熱を経る温度差損失が増大する不利があり、かつ、冷凍装置の冷媒フロン規制強化に伴って、二段圧縮式の冷凍装置の冷凍最低蒸発温度は、高くなり、直接冷却の伝熱量の過小、循環する熱媒液体Bの境膜熱伝達率の低下と新規冷媒の制限のために、数℃伝熱温度差損失が生じ、真空凍結乾燥装置に特に要求される−70℃以下の低温トラップに対し、困難である。   By the way, in recent years, silicone oil is used as the circulating heat transfer liquid B in a vacuum freeze-drying apparatus that uses a drug as an object to be processed. The heat transfer fluid B of the silicone oil has a high viscosity at a low temperature, and the film heat transfer coefficient of the heat transfer fluid B is reduced. Therefore, as shown in FIG. 8, the vapor condensing plate a has a gap between the holding rods 29 in the direction perpendicular to the refrigerant pipe 26 so as to divide the passage w vertically in the passage w of the heat transfer liquid B. Two refrigerant pipes 26 are respectively arranged above and below each of the refrigerant pipes 26 and supported by the holding rods 29, and a total amount of four refrigerant pipes 26 are used. The shortage of the heat exchange area with the heat medium liquid B is compensated. Therefore, the heat exchange via the circulating heat medium has the disadvantage that the temperature difference loss through two boundary film heat transfer increases, and with the strengthening of refrigerant chlorofluorocarbon regulations of the refrigeration system, the two-stage compression type The minimum freezing temperature of the refrigeration system is high, heat transfer temperature difference loss of several degrees Celsius due to the low heat transfer amount of direct cooling, the decrease in the film heat transfer coefficient of the circulating heat transfer liquid B and the limitation of new refrigerant This is difficult for a low temperature trap of −70 ° C. or lower which is particularly required for a vacuum freeze-drying apparatus.

また、この三重式の蒸気凝結器(トラップ)103は、熱媒体循環回路に熱媒液体Bを循環させる推進力として循環ポンプ9を使用している。もちろんこの手段においては、必要な循環ポンプ9の容量は、従来の間接熱媒型蒸気凝結器(トラップ)102の必要な循環ポンプに比べて小型ではあるが、循環ポンプの発生熱による入熱損失もしていた。しかし、先先行発明で製作している三重式の蒸気凝結器(トラップ)103では、熱媒側の流路面積が過大で、必要な境膜熱伝達係数を確保するため、特にシリコーンを熱媒液体Bとして用いるものは、循環ポンプの容量の増大が必要となる。そのため、循環ポンプによる入熱損失により、冷媒の有効冷熱量が減少され、蒸気凝結器(トラップ)の凝結能力と到達温度に不利であった。   In addition, the triple steam condensing unit (trap) 103 uses a circulation pump 9 as a driving force for circulating the heat medium liquid B in the heat medium circuit. Of course, in this means, the required capacity of the circulation pump 9 is smaller than the required circulation pump of the conventional indirect heat medium type steam condenser (trap) 102, but the heat input loss due to the heat generated by the circulation pump. If there was. However, in the triple-type steam condenser (trap) 103 manufactured in the preceding invention, the flow path area on the heat medium side is excessive, and in order to secure a necessary film heat transfer coefficient, in particular, silicone is used as the heat medium. What is used as the liquid B needs to increase the capacity of the circulation pump. For this reason, the amount of effective cold heat of the refrigerant is reduced due to the heat input loss due to the circulation pump, which is disadvantageous for the condensation capacity and ultimate temperature of the steam condenser (trap).

先行発明は、先先行発明におけるトラップ103の冷媒管26の直接接触伝熱低下を改善して、金属材よりなる円筒チューブ状の冷媒管26を、凝結捕集面に対し楕円長軸が平行する形状の扁平な楕円管16に変形加工し、その変形加工により形成される一対の扁平面の一方または両方を、熱媒液体Bの通路wの内壁面の天井壁17または底壁18に密着する状態として前記通路w内に装入することより、この楕円管16とした冷媒管26と蒸気凝結プレートa内の熱媒液体Bの通路wの内壁面との密着面積を増大させ伝熱性能の向上、冷媒と凝結面の真空蒸気との伝達温度差損失の低減、同時に循環熱媒体の境膜伝熱係数の増大が達成できている。   The prior invention improves the direct contact heat transfer reduction of the refrigerant pipe 26 of the trap 103 in the prior invention, and the elliptical long axis of the cylindrical tubular refrigerant pipe 26 made of a metal material is parallel to the condensation collection surface. The flat elliptical pipe 16 having a shape is deformed, and one or both of the pair of flat surfaces formed by the deforming process are brought into close contact with the ceiling wall 17 or the bottom wall 18 of the inner wall surface of the passage w of the heat transfer liquid B. By charging into the passage w as a state, the contact area between the refrigerant pipe 26 that is the elliptical pipe 16 and the inner wall surface of the passage w of the heat transfer liquid B in the vapor condensing plate a is increased, thereby improving the heat transfer performance. Improvement, reduction of transmission temperature difference loss between the refrigerant and the vacuum vapor on the condensation surface, and at the same time increase of the film heat transfer coefficient of the circulating heat medium can be achieved.

しかし、この先行発明のトラップでは、冷媒管26は、軸方向視において、左右方向が長軸で上下方向が短軸となる扁平な楕円管16に成形しているが、周壁面が平滑な平滑管であり、その冷媒管26内で冷媒Rが蒸発した時、核沸騰の熱伝達が低下し、また、冷媒管26外の熱媒液体Bの通路w内に、循環熱媒体は楕円管16の外表面に沿って平行に流れ、流動状態は層流である。冷媒管26の表面に形成される熱媒液体Bの速度境界層と温度境界層は厚く、対流熱伝達係数は小さくなり、冷媒管26内の冷媒と冷媒管26外の熱媒液体Bとの総括熱伝達係数は減少し、熱交換性能は低下している。そのため、予備凍結時に棚冷却器として、冷却速度が遅く、伝熱温度差の増大により棚到達温度も高くなる。昇華時に蒸気凝結器として、熱媒温度は高く、トラップ凝結能力が低下し、到達温度も高くなっている問題が生じている。
特許第1177616号 特許第3644845号
However, in this prior invention trap, the refrigerant tube 26 is formed into a flat elliptic tube 16 having a major axis in the left-right direction and a minor axis in the vertical direction when viewed in the axial direction, but the peripheral wall surface is smooth and smooth. When the refrigerant R evaporates in the refrigerant pipe 26, the heat transfer of nucleate boiling decreases, and the circulating heat medium is an elliptical pipe 16 in the passage w of the heat transfer liquid B outside the refrigerant pipe 26. The fluid flows in a laminar flow along the outer surface. The velocity boundary layer and the temperature boundary layer of the heat transfer liquid B formed on the surface of the refrigerant pipe 26 are thick, the convective heat transfer coefficient is reduced, and the refrigerant in the refrigerant pipe 26 and the heat transfer liquid B outside the refrigerant pipe 26 are reduced. The overall heat transfer coefficient has decreased and the heat exchange performance has decreased. Therefore, as a shelf cooler at the time of preliminary freezing, the cooling rate is slow, and the shelf arrival temperature increases due to the increase in the heat transfer temperature difference. As a vapor condensing device during sublimation, there is a problem that the temperature of the heat medium is high, the trap condensing ability is lowered, and the ultimate temperature is also high.
Japanese Patent No. 1177616 Japanese Patent No. 3644845

本発明において解決しようとする問題点は、上述の冷媒管26内の冷媒と冷媒管26外の熱媒液体との総括熱伝達係数が減少し、熱交換性能が低下していて改善すべき点にあり、冷媒管26内の冷媒核沸騰の熱伝達も管外の熱媒液体の境膜熱伝達も大幅に増大させ、伝熱を促進する方法を探求する点にある。そして、このことから、トラップ103の蒸気凝結プレートaの製作を難しくしないように、先行発明におけるトラップ103の冷媒管26の冷媒核沸騰の熱伝達を倍増させ、冷媒管26外の熱媒液体Bの層流境界層を擾乱して乱流を起こし熱媒液体Bの対流熱伝達も倍増させ、伝熱性能の向上、冷媒と凝結面の真空蒸気との伝達温度差損失の低減、良い伝熱性能と高効率蒸気凝結能力を持つ真空乾燥装置における蒸気凝結器を提供することを目的とするものである。   The problem to be solved in the present invention is that the overall heat transfer coefficient between the refrigerant in the refrigerant pipe 26 and the heat medium liquid outside the refrigerant pipe 26 is reduced, and the heat exchange performance is lowered, which should be improved. Therefore, the heat transfer of the refrigerant nucleate boiling in the refrigerant pipe 26 and the boundary film heat transfer of the heat transfer medium liquid outside the pipe are greatly increased, and a method for accelerating the heat transfer is sought. From this, the heat transfer of the refrigerant nucleate boiling in the refrigerant pipe 26 of the trap 103 in the prior invention is doubled so that the production of the vapor condensation plate a of the trap 103 is not difficult, and the heat transfer liquid B outside the refrigerant pipe 26 Disturbs the laminar boundary layer of the fluid, causing turbulent flow and doubling the convective heat transfer of the heat transfer liquid B, improving the heat transfer performance, reducing the transfer temperature difference loss between the refrigerant and the vacuum vapor on the condensation surface, and good heat transfer The purpose of the present invention is to provide a steam condensing unit in a vacuum drying apparatus having high performance and high efficiency steam condensing ability.

本発明には、上述の問題を解決するための手段として、冷凍装置11から導く冷媒Rを蒸発させる金属材よりなる円筒チューブ状の冷媒管26を、金属材よりなる蒸気凝結プレートa内に形成した熱媒液体Bの通路w内に嵌通せしめて冷媒Rと熱媒液体Bとの間の熱交換を行わす熱交換器103を構成し、その熱交換器103を、真空室1の内部または内壁面に、該熱交換器103の真空空間側外表面の全部または一部が真空空間に面するように設けて、その真空空間側外表面が冷媒R・熱媒液体Bの何れの側からも、直接にあるいは直接の金属接触により冷却される構造とし、その熱交換器103の真空空間側外表面を真空蒸気Vの凝結捕集面として、冷媒Rと熱媒液体Bと真空蒸気Vとの三媒体のうちの、何れの二媒体の間にも境界金属壁乃至境界金属壁と密接する金属板を介しての直接の熱交換が存在する三媒体間熱交換器の形態とし、真空装置の蒸気凝結器において、冷媒管26を嵌通させる蒸気凝結プレートa内の通路wに、その通路w内を流れる熱媒液体Bに乱流を生ぜしめる乱流発生体zを、通路wを横切る桟状に形成して、通路wの長手方向に狭い間隔をおいて多数本並列させて通路wの左右または上下の隔壁間面に渡架装着したことを特徴とする真空装置における蒸気凝結器を提起するものである。   In the present invention, as means for solving the above-described problem, a cylindrical tube-shaped refrigerant pipe 26 made of a metal material for evaporating the refrigerant R led from the refrigeration apparatus 11 is formed in the vapor condensation plate a made of a metal material. The heat exchanger 103 is inserted into the passage w of the heat medium liquid B and performs heat exchange between the refrigerant R and the heat medium liquid B, and the heat exchanger 103 is disposed inside the vacuum chamber 1. Alternatively, on the inner wall surface, all or part of the outer surface on the vacuum space side of the heat exchanger 103 faces the vacuum space, and the outer surface on the vacuum space side is on either side of the refrigerant R or the heat transfer liquid B. Also, the structure is cooled directly or by direct metal contact, and the outer surface on the vacuum space side of the heat exchanger 103 is used as a condensation collecting surface of the vacuum vapor V, so that the refrigerant R, the heat transfer liquid B, and the vacuum vapor V are used. Boundary metal between any two of the three media Or in the form of a three-medium heat exchanger in which direct heat exchange exists through a metal plate in close contact with the boundary metal wall, and in the vapor condensing plate a in which the refrigerant pipe 26 is fitted in the vapor condensing unit of the vacuum apparatus A turbulent flow generator z that creates a turbulent flow in the heat transfer liquid B flowing in the passage w is formed in a cross-shape that crosses the passage w, with a narrow interval in the longitudinal direction of the passage w. The present invention proposes a vapor condensing unit in a vacuum apparatus characterized in that a large number of them are juxtaposed and mounted on the left and right or upper and lower partition walls of the passage w.

本発明は、蒸気凝結プレートa内の熱媒液体Bの境膜熱伝達係数を大きく増大して伝熱を促進するため、蒸気凝結プレートa内の通路w中に、その通路wを横切る桟状に形成した乱流発生体zを、通路wの長手方向に狭い間隔をおいて多数本並列させて設けておき、この乱流発生体zにより冷媒管26外の通路wを流れる熱媒液体の層流境界層を擾乱し、乱流を起こし熱媒液体Bの速度境界層と温度境界層の厚さを薄くして境膜熱伝達係数を増大させていることから、伝熱促進の効果が著しく向上する。この効果は、蒸気凝結プレートaの冷却性能試験と昇華時の水蒸気凝結性能試験から確認できた。   In the present invention, the film heat transfer coefficient of the heat transfer liquid B in the steam condensing plate a is greatly increased to promote heat transfer. Therefore, a cross-shaped traverse crossing the passage w in the steam condensing plate a. A large number of turbulent flow generators z formed in parallel are provided in parallel with a narrow interval in the longitudinal direction of the passage w, and the heat transfer liquid flowing through the passage w outside the refrigerant pipe 26 by the turbulent flow generators z is provided. Since the laminar boundary layer is disturbed, the turbulent flow is caused, and the velocity boundary layer and the temperature boundary layer of the heat transfer liquid B are reduced to increase the boundary film heat transfer coefficient. Remarkably improved. This effect was confirmed from the cooling performance test of the steam condensation plate a and the steam condensation performance test during sublimation.

本発明の冷媒管26の内周面に、軸方向視において多数の溝または多数のフィンが軸方向に連続する凹凸部yを形設した手段による蒸気凝結プレートaの伝熱促進の効果を評価するため、2m2 小型凍結乾燥機用の蒸気凝結プレートaを2枚試作して冷却性能を測定し、冷媒管26内の冷媒から冷媒管26外の通路内熱媒液体の総括熱伝達係数を求めて、内周面を平滑面とした冷媒管26を組込んだ先行発明の蒸気凝結プレートaの伝熱性能と比較した。同じ2m2 装置で同様な冷凍機で先行発明の蒸気凝結プレートaを3枚設置して冷媒管26の伝熱面積を6.1m2 としたものでも、内周面が平滑な冷媒管26内の冷媒核沸騰熱伝達の低下と管外の熱媒液境膜熱伝達の低下により総括熱伝達係数は小さくなり、冷却器として熱交換性能が低下したため、棚を20℃から−40℃まで冷却時間は約38minかかり、棚到達温度は−58℃となった。これに対して、本発明の内周面に凹凸部yを形設した冷媒管26を嵌通させた蒸気凝結プレートaは2枚として冷媒管26の伝熱面積を3.1m2 に減少させても、内面凹凸部y付き冷媒管26内の冷媒核沸騰熱伝達と冷媒管26外の熱媒液体境膜熱伝達が共に増大して熱交換の効率が向上したため、棚を20℃から−40℃まで冷却時間は28min、−50℃まで約49min、棚温は約−60℃に到達した。本発明手段の蒸気凝結プレートaと冷媒蒸発楕円管16の伝熱面積が先行発明のそれの半分で、熱媒と冷媒との温度差が同じとして、本発明の蒸気凝結プレートaの熱交換量は先行発明のトラップより多かったというこの実測結果から、本発明手段のトラップの総括熱伝達係数は先行発明の2倍以上となることを示した。また、本発明の蒸気凝結プレートa2枚で冷却性能の試験データから総括熱伝達係数を解析しても、冷媒側の核沸騰熱伝達と熱媒液体の対流境膜熱伝達係数ともに2倍以上増大した。 Evaluation of the effect of promoting heat transfer of the vapor condensing plate a by means of forming an uneven portion y in which a large number of grooves or a large number of fins continue in the axial direction when viewed in the axial direction on the inner peripheral surface of the refrigerant pipe 26 of the present invention. Therefore, two steam condensing plates a for a 2 m 2 small freeze dryer were prototyped and the cooling performance was measured, and the overall heat transfer coefficient of the heat transfer medium liquid in the passage outside the refrigerant pipe 26 from the refrigerant in the refrigerant pipe 26 was determined. Thus, it was compared with the heat transfer performance of the steam condensing plate a of the prior invention in which the refrigerant pipe 26 having a smooth inner peripheral surface was incorporated. Even if the same 2m 2 device is used with the same refrigerator and three steam condensing plates a of the prior invention are installed and the heat transfer area of the refrigerant pipe 26 is 6.1 m 2 , the inner peripheral surface of the refrigerant pipe 26 is smooth. The overall heat transfer coefficient is reduced due to the decrease in the refrigerant nucleate boiling heat transfer and the decrease in the heat transfer fluid film outside the tube, and the heat exchange performance is reduced as a cooler, so the shelf is cooled from 20 ° C to -40 ° C. The time was about 38 minutes and the shelf arrival temperature was -58 ° C. On the other hand, the steam condensing plate a in which the refrigerant pipe 26 having the uneven portion y formed on the inner peripheral surface of the present invention is inserted is reduced to two to reduce the heat transfer area of the refrigerant pipe 26 to 3.1 m 2. However, since both the refrigerant nucleate boiling heat transfer in the refrigerant pipe 26 with the inner surface unevenness part y and the heat transfer liquid boundary film heat transfer outside the refrigerant pipe 26 are increased, the efficiency of heat exchange is improved. The cooling time to 40 ° C. was 28 min, the temperature to −50 ° C. was about 49 min, and the shelf temperature reached about −60 ° C. Assuming that the heat transfer area of the vapor condensing plate a of the present invention and the refrigerant evaporating elliptic tube 16 is half that of the prior invention, and the temperature difference between the heat medium and the refrigerant is the same, the heat exchange amount of the vapor condensing plate a of the present invention. From this actual measurement result that there was more than the trap of the prior invention, it was shown that the overall heat transfer coefficient of the trap of the present invention means more than twice that of the prior invention. In addition, even if the overall heat transfer coefficient is analyzed from the cooling performance test data using the two steam condensing plates a of the present invention, both the nucleate boiling heat transfer on the refrigerant side and the convective boundary film heat transfer coefficient of the heat transfer liquid increase more than twice. did.

本発明手段は、真空装置が、乾燥処理する被処理物を医薬品とする真空凍結乾燥装置である場合にあっては、その装置の全体の構成は、図3にある従前の「三媒体間熱交換器」を蒸気凝結器(トラップ)103に用いる真空凍結乾燥装置Wと同様に構成してよい。   The present invention means that when the vacuum apparatus is a vacuum freeze-drying apparatus that uses an object to be dried as a pharmaceutical product, the entire structure of the apparatus is shown in FIG. The “exchanger” may be configured in the same manner as the vacuum freeze-drying apparatus W used for the steam condenser (trap) 103.

また、用いる蒸気凝結器(トラップ103)は、金属材によりプレート状の蒸気凝結プレートaを形成し、それの内部に形設する熱媒液体の通路w内に、冷媒管26を嵌通して、冷媒と熱媒液体と真空蒸気との三つの媒体の中のいずれの二媒体間にも、境界金属壁ないし境界金属壁と密接する金属板を介する直接の熱交換が存在する「三媒体間熱交換器型」に構成することについても、前述の図3にある従来手段における蒸気凝結器(トラップ)103と同様である。   Further, the vapor condensing unit (trap 103) to be used forms a plate-shaped vapor condensing plate a with a metal material, and the refrigerant pipe 26 is fitted into the passage w of the heat transfer medium liquid formed therein, There is direct heat exchange between any two of the three media of the refrigerant, the heat transfer medium, and the vacuum vapor through the boundary metal wall or the metal plate in close contact with the boundary metal wall. The configuration of the "exchanger type" is the same as that of the steam condensing unit (trap) 103 in the conventional means shown in FIG.

しかし、この蒸気凝結器(トラップ)103の主体を構成する金属材よりなる蒸気凝結プレートaの内部に形成せる熱媒液体の通路wの中に、その通路wに沿い嵌通するように配設する冷媒管26は、それを形成する金属材よりなるチューブ状の円筒管を、それの筒壁に対し垂直な方向に沿いプレス加工を行って、筒壁の一対に対向する壁面が扁平円筒管の軸心線と直交する扁平面となるように押し潰し、軸方向視において長軸側が短軸側に対し略1.5倍程度となる略楕円形をなす楕円管16に成形しておくことが望ましい。   However, it is arranged so as to be fitted along the passage w in the passage w of the heat transfer liquid formed inside the steam condensation plate a made of a metal material constituting the main body of the vapor condenser (trap) 103. The refrigerant pipe 26 is formed by pressing a cylindrical cylindrical pipe made of a metal material forming the pipe along a direction perpendicular to the cylindrical wall thereof, and the wall surfaces facing a pair of the cylindrical walls are flat cylindrical pipes. Crushing so as to be a flat plane perpendicular to the axis of the axis, and forming into an elliptical tube 16 having a substantially elliptical shape in which the major axis is approximately 1.5 times the minor axis when viewed in the axial direction. Is desirable.

そして、冷媒管26を、断面において扁平な楕円管16に形成したときは、その冷媒管26を、蒸気凝結プレートaの内部に形成した熱媒液体の通路w内に、扁平面が蒸気凝結プレートaの真空蒸気の凝結捕集面に対し平行ないし略平行する姿勢として嵌挿し、それの一対の扁平面の一方または両方を、通路wの内壁面の天井壁17・底壁18に密接状態に接合し、熔接または圧着により密着させる。   When the refrigerant pipe 26 is formed into an elliptical pipe 16 having a flat cross section, the refrigerant pipe 26 is placed in the passage w of the heat transfer liquid formed inside the vapor condensation plate a, and the flat plane is the vapor condensation plate. It is inserted so as to be parallel or substantially parallel to the vacuum vapor condensation collecting surface of a, and one or both of the pair of flat surfaces is brought into close contact with the ceiling wall 17 and the bottom wall 18 of the inner wall surface of the passage w. Join and adhere by welding or crimping.

このとき、蒸気凝結プレートa内に形成しておく熱媒液体Bの通路wは、図7にあるよう従前手段の蒸気凝結プレートa内に形設していた通路wと同様に、円管を圧縮した寸法に対応させて断面積を縮小させた寸法形状のものに形成しておいてもよい。   At this time, the passage w of the heat transfer liquid B formed in the steam condensing plate a is made of a circular pipe in the same manner as the passage w formed in the steam condensing plate a of the conventional means as shown in FIG. You may form in the dimension shape which reduced the cross-sectional area according to the compressed dimension.

通路wがそれの内に冷媒管26が巾方向にダブルに並列する形状に形成されて、4本の冷媒管26が装入される場合は、通路w内のその通路wの長手方向における中間の適宜の個所に、押さえ棒29を図8に示しているように通路wを上下に2分するように配設して、これにより通路w内に嵌通させた冷媒管26の軸方向の中間部位を支承させて、冷媒管26の通路w内壁面に対する密着度を高めることができる。また、通路wの断面積を圧縮し得るようになることからその通路w内に循環させる熱媒液体Bの流速を早くでき、それの循環用のポンプを容量の小さいものでも良いようになる。   When the passage w is formed in the shape in which the refrigerant pipes 26 are arranged in parallel in the width direction and four refrigerant pipes 26 are inserted, the middle of the passage w in the longitudinal direction of the passage w. As shown in FIG. 8, the presser bar 29 is disposed at an appropriate position in such a manner as to divide the passage w into two in the vertical direction, and thereby the axial direction of the refrigerant pipe 26 fitted in the passage w. By supporting the intermediate portion, the degree of adhesion of the refrigerant pipe 26 to the inner wall surface of the passage w can be increased. Further, since the cross-sectional area of the passage w can be compressed, the flow rate of the heat transfer liquid B circulated in the passage w can be increased, and the circulation pump having a small capacity can be used.

この蒸気凝結プレートaの内部に形成する通路w内には、乱流発生体zを配設する。この乱流発生体zは、通路w内を流れる熱媒液体Bに乱流を発生せしめて、その流れに撹乱を与えることにより通路w内における冷媒管26の外表面の熱媒液体Bの層流を撹乱することで、冷媒管26内の核沸騰熱伝達の低下と冷媒管26外の熱媒液体Bの境膜熱伝達の低下とを改善して伝熱性能を向上させるためのものであり、熱媒液体Bの流れの中に位置してそれに乱流を生ぜしめるようになれば良いもので、その形状は適宜に形成してよい。   A turbulent flow generator z is disposed in a passage w formed inside the vapor condensation plate a. The turbulent flow generator z generates a turbulent flow in the heat transfer medium B flowing in the passage w, and disturbs the flow to thereby form a layer of the heat transfer liquid B on the outer surface of the refrigerant pipe 26 in the passage w. By disturbing the flow, the heat transfer performance is improved by improving the decrease in nucleate boiling heat transfer in the refrigerant pipe 26 and the decrease in the boundary film heat transfer of the heat transfer liquid B outside the refrigerant pipe 26. Yes, as long as it is located in the flow of the heat medium liquid B and causes turbulent flow in the flow, the shape may be appropriately formed.

この通路wを流れる熱媒液体Bの流れに乱流を起こす乱流発生体zを並列させて設置するときの設置間隔は蒸気凝結プレートa内の熱媒液体Bの境膜熱伝達係数にも通路内の熱媒液体Bの流動圧力損失にも影響を与えている。間隔が大であると、熱媒液体Bの流動圧力損失が減少できるが、冷媒管26外の熱媒液体Bの流動の擾乱は低下し熱伝達促進の効果はあまり出ていない。間隔が小であると、熱媒液体Bの流動圧力損失が大きく増大し、熱媒ポンプ10による熱媒液体Bの循環流量が低減して熱媒液体Bの流速が小さくなり、冷媒管26外の熱媒液体Bの流動境界層を擾乱しても流速の低下により熱媒液体Bの熱伝達を促進しなくなって逆効果となる。適切な間隔で乱流発生体zを設置することが必要となる。本発明の蒸気凝結プレートaの伝熱促進の効果を評価する同時に熱媒液体Bの流動圧力損失と乱流発生体zの設置間隔との関係を、本発明手段の実施例の蒸気凝結プレートaの通路と同等な流路面積の熱媒液体の圧力損失測定用装置を製作して、圧力損失と熱媒液体Bの流量、乱流発生体zの設置間隔との関係を測定することでテストしたところ、その測定結果は、30℃で熱媒液体の粘度50csの場合に、棒間隔40mmの圧力損失は間隔80mmより約20%増大し、棒間隔120mmの圧力損失は間隔80mmより約30%減少し、棒間隔160mmの圧力損失は間隔120mmとほぼ同等となった。30℃で熱媒液体の粘度2csの場合に、棒間隔40mmの圧力損失は間隔80mmより約28%増大し、棒間隔120mmの圧力損失は間隔80mmより約20%減少し、棒間隔160mmの圧力損失は間隔80mm約40%減少した。このことから、熱媒液体の熱伝達の促進効果と流動圧力損失低減の両方を考えると、押さえ棒の適切な間隔は80mmを基準としてそれの前後に10mmの巾を設けた70mm〜90mmの範囲が適当である。   The installation interval when the turbulent flow generator z that causes turbulent flow is installed in parallel with the flow of the heat transfer liquid B flowing through the passage w is also the boundary film heat transfer coefficient of the heat transfer liquid B in the steam condensing plate a. It also affects the flow pressure loss of the heat transfer liquid B in the passage. When the interval is large, the flow pressure loss of the heat transfer liquid B can be reduced, but the disturbance of the flow of the heat transfer liquid B outside the refrigerant pipe 26 is reduced and the effect of promoting heat transfer is not so much. If the interval is small, the flow pressure loss of the heat medium liquid B greatly increases, the circulation flow rate of the heat medium liquid B by the heat medium pump 10 decreases, the flow rate of the heat medium liquid B decreases, and the outside of the refrigerant pipe 26 Even if the fluidized boundary layer of the heat transfer liquid B is disturbed, the heat transfer of the heat transfer liquid B is not promoted due to a decrease in the flow velocity, which has an adverse effect. It is necessary to install the turbulent flow generators z at appropriate intervals. The relationship between the flow pressure loss of the heat transfer liquid B and the installation interval of the turbulent flow generator z is evaluated simultaneously with the evaluation of the heat transfer enhancement effect of the steam condensing plate a of the present invention, and the steam condensing plate a of the embodiment of the present invention means. A device for measuring the pressure loss of the heat transfer fluid with the same flow area as the passage of the test was manufactured, and the relationship between the pressure loss, the flow rate of the heat transfer fluid B, and the installation interval of the turbulent flow generator z was tested. As a result, when the viscosity of the heat transfer liquid is 50 cs at 30 ° C., the pressure loss at the bar interval of 40 mm is increased by about 20% from the interval of 80 mm, and the pressure loss at the bar interval of 120 mm is about 30% from the interval of 80 mm. As a result, the pressure loss with the bar spacing of 160 mm became almost the same as the spacing of 120 mm. When the viscosity of the heat transfer liquid is 2 cs at 30 ° C., the pressure loss at the bar spacing of 40 mm is increased by about 28% from the spacing of 80 mm, and the pressure loss at the spacing of 120 mm is reduced by about 20% from the spacing of 80 mm. The loss was reduced by about 40% at 80 mm spacing. From this, when considering both the heat transfer promoting effect of the heat transfer liquid and the reduction of the flow pressure loss, the appropriate interval between the presser bars is in the range of 70 mm to 90 mm with a width of 10 mm before and after the 80 mm as a reference. Is appropriate.

このことから、この乱流発生体zは、熱媒液体Bの流れに対して大きな抵抗を生ぜしめない棒状に形成し、これを80mm程度の狭い間隔をおいて多数本、通路wの長手方向に並列させて、通路w内を横切る桟状に配設することが有効である。   From this, the turbulent flow generator z is formed in a rod shape that does not cause a large resistance to the flow of the heat transfer liquid B, and is formed in a number of lines at a narrow interval of about 80 mm, in the longitudinal direction of the passage w. It is effective to arrange them in parallel with each other in the shape of a crossing across the passage w.

このとき、並列させて配設する各乱流発生体zは、図13にあるように、蒸気凝結プレートa内の通路wの天井壁17と底壁18とに渡架するように取り付けてよく、また、蒸気凝結プレートaが、図12にあるように複数枚を多段に重ねた形態のものの場合にあっては、これらを上下に串通するように棒状の乱流発生体zを組付けるようにしてよい。   At this time, the turbulent flow generators z arranged in parallel may be attached so as to cross over the ceiling wall 17 and the bottom wall 18 of the passage w in the steam condensation plate a as shown in FIG. In addition, when the steam condensing plate a is in the form of a plurality of stacked layers as shown in FIG. 12, the rod-shaped turbulent flow generator z is assembled so as to pass through them vertically. You can do it.

また、この乱流発生体zは、それを棒状に形成して、蒸気凝結プレートa内の通路w中に、その通路wを上下に区画するよう左右方向に沿う姿勢に配設するときは、並列する多数の乱流発生体zのうちの、適宜に選択したものを、通路w内に嵌通させた冷媒管26に接触させて、それを支承する押さえ棒29を兼ねたものとすることが可能である。   Further, when the turbulent flow generator z is formed in a rod shape and disposed in a posture along the left-right direction so as to partition the passage w vertically in the passage w in the steam condensation plate a, Of the many parallel turbulent flow generators z, an appropriately selected one is brought into contact with the refrigerant pipe 26 fitted in the passage w and also serves as a pressing rod 29 for supporting it. Is possible.

さらに、蒸気凝結プレートa内の通路wに嵌通させる冷媒管26は、それの内周面の略全面に図15にあるように軸方向視において、多数の溝ないし多数のフィンよりなる凹凸部yが、軸方向に連続して形設された形状に形成しておくことが、冷媒蒸発楕円管16内における冷媒Rの核沸騰熱伝達の低下を改善する上において有効である。   Further, the refrigerant pipe 26 fitted into the passage w in the vapor condensing plate a has an uneven portion made up of a large number of grooves or a large number of fins in the axial direction as shown in FIG. Forming y in a shape continuously formed in the axial direction is effective in improving the decrease in nucleate boiling heat transfer of the refrigerant R in the refrigerant evaporation elliptic tube 16.

蒸気凝結プレートa内の通路w中に配設する乱流発生体zは、通路w内を流れる熱媒液体Bの流れに撹乱を与えて伝熱促進を図るためのものであるが、熱媒液体Bの流速の阻害となってその熱媒液体Bの対流熱媒液体伝達に対し逆効果を招くようになることから、抵抗の少ない丸棒状に形成して、多数本を狭い間隔において並列設置するようにする。その間隔は、80mm内外の70mm〜90mm程度に設定することが適切である。   The turbulent flow generator z disposed in the passage w in the steam condensing plate a is for disturbing the flow of the heat medium liquid B flowing in the passage w to promote heat transfer. Since the flow rate of the liquid B is hindered and the convection heat transfer liquid transfer of the heat transfer liquid B is adversely affected, it is formed into a round bar shape with low resistance and a large number of lines are installed in parallel at a narrow interval. To do. It is appropriate to set the interval to about 70 mm to 90 mm inside and outside 80 mm.

そして、この乱流発生体zは、通路w中の冷媒管26には接触しない近接位置に配位して、通路wの天井壁17と底壁18との間に渡架するように設け、冷媒管26の外周面に形成される熱媒液体Bの層流を乱して、対流熱媒液体伝達を向上させるようにすることが有効である。   And this turbulent flow generator z is arranged at a close position not contacting the refrigerant pipe 26 in the passage w, and is provided so as to be bridged between the ceiling wall 17 and the bottom wall 18 of the passage w, It is effective to disturb the laminar flow of the heat transfer liquid B formed on the outer peripheral surface of the refrigerant pipe 26 to improve the convection heat transfer liquid transfer.

また、この乱流発生体zは、それを棒状に成形して、図14にあるように通路w内にその通路wの内壁面の左右の壁面間に渡架するように設けるときは、通路w内に嵌通させる冷媒管26を支承する押さえ棒29の役割を兼ねさせることが可能になるので、狭い間隔をおいて並列させて設ける乱流発生体zの中から適宜選択したものを、通路w内の冷媒管26に接触させて支承させ、押さえ棒29は省略した形態としてよい。   Further, when the turbulent flow generator z is formed into a rod shape and is provided in the passage w so as to be bridged between the left and right wall surfaces of the inner wall surface of the passage w as shown in FIG. Since it is possible to serve also as a pressing rod 29 for supporting the refrigerant pipe 26 fitted in w, the one appropriately selected from the turbulent flow generators z provided in parallel with a narrow interval, The pressure bar 29 may be omitted in contact with the refrigerant pipe 26 in the passage w.

冷媒管26の内周面に設ける上述の凹凸部yは、冷媒管26内の冷媒Rの核沸騰熱伝達を向上させるためのもので、冷媒管26の内周面の略全面に、軸方向視において多数のV溝状の溝が周方向に並列し、それら溝が軸方向に連続する形態に形設するか、軸方向視において多数のフィンが周方向に並列し、それらフィンが軸方向に連続する形態に形成することが望ましい。   The above-described uneven portion y provided on the inner peripheral surface of the refrigerant pipe 26 is for improving the nucleate boiling heat transfer of the refrigerant R in the refrigerant pipe 26, and is axially provided on substantially the entire inner peripheral surface of the refrigerant pipe 26. A large number of V-grooves are arranged in parallel in the circumferential direction when viewed, or the grooves are formed in a form that is continuous in the axial direction, or a large number of fins are arranged in parallel in the circumferential direction when viewed in the axial direction. It is desirable to form in a continuous form.

次に実施例を図面に従い詳述する。なお、図面符号は、従前手段のものと同様の構成部材については同一の符号を用いるものとする。   Next, embodiments will be described in detail with reference to the drawings. In addition, the same code | symbol shall be used for a structural member similar to the thing of the conventional means for drawing.

図9は、先行発明を実施せる真空装置に設置した蒸気凝結器(トラップ)103の部分を構成している蒸気凝結プレートaの縦断面図で、同図において、aは金属材でプレート状に形成した蒸気凝結プレート、wはその蒸気凝結器プレートaの内部に形成した通路、Bはその通路w内に循環させる熱媒液体、26は通路w内に挿通して装着した冷媒管、Rはその冷媒管26内に循環させる冷媒を示す。なお、この冷媒管26は楕円管16に変形加工してあり、また、その内周面には、多数の溝またはフィンを設けた凹凸部y付きのものとしている。   FIG. 9 is a longitudinal sectional view of a steam condensing plate a constituting a portion of a steam condensing unit (trap) 103 installed in a vacuum apparatus for carrying out the prior invention. In the figure, a is a plate made of a metal material. The formed steam condensing plate, w is a passage formed inside the steam condensing plate a, B is a heat medium liquid circulated in the passage w, 26 is a refrigerant pipe inserted through the passage w, and R is The refrigerant to be circulated in the refrigerant pipe 26 is shown. The refrigerant pipe 26 is deformed into an elliptical pipe 16 and has an uneven portion y provided with a large number of grooves or fins on its inner peripheral surface.

この例における真空装置は、図3に示している主として医薬品の乾燥処理を対象とする真空凍結乾燥装置であり、これに組込む蒸気凝結器(トラップ)は、図3において符号103で示している「三媒体間熱交換器型」の蒸気凝結器(トラップ)であって、この真空装置および蒸気凝結器(トラップ)103の基本的な構成は、図3乃至図7にて説明した従前手段のものと変わりがない。   The vacuum apparatus in this example is a vacuum freeze-drying apparatus mainly for the drying process of pharmaceuticals shown in FIG. 3, and a vapor condensing device (trap) incorporated in the vacuum apparatus is indicated by reference numeral 103 in FIG. The three-medium heat exchanger type steam condenser (trap), and the basic configuration of the vacuum apparatus and the steam condenser (trap) 103 is that of the conventional means described in FIGS. And there is no change.

また、蒸気凝結プレートaの内部に形成せる熱媒体Bの通路wは、図6に示している従前の円筒管とした冷媒管26を2本挿通して装着するように形成された通路wよりも、円筒形の冷媒管26を楕円管16に圧縮した分だけ、略60〜70%断面積を圧縮して作られている。   Further, the passage w of the heat medium B formed inside the vapor condensing plate a is based on the passage w formed so as to be inserted through the two refrigerant pipes 26 as the conventional cylindrical pipe shown in FIG. The cylindrical refrigerant tube 26 is compressed by approximately 60 to 70% by the amount corresponding to the compression of the cylindrical refrigerant tube 26 into the elliptical tube 16.

この通路w内に挿通して装着せる冷媒管26は、従前手段に用いていた円筒形のチューブ状の冷媒管26をプレス加工により断面が扁平な楕円管16に成形したもので、長軸に対し短軸が略5分の3となるように成形してある。   The refrigerant pipe 26 inserted and installed in the passage w is formed by pressing the cylindrical tubular refrigerant pipe 26 used in the conventional means into an elliptical pipe 16 having a flat cross section by pressing, and has a long axis. On the other hand, it is molded so that the minor axis is approximately 3/5.

次に図10は別の実施例を示している。この例は、冷媒管26を楕円管16に変形加工して通路w内に嵌挿し、その通路w内に一定間隔で熱媒液体Bの伝熱促進と冷媒管26の支承を兼ねた乱流発生体zを装設し、それの上面側と下面側とにより2本ずつの内面に凹凸部y付きの冷媒管16を挿通した例であり、通路wは、従前手段の通路に対し上下の高さ(蒸気凝結プレートaの厚さ方向の寸法)は略5分の3に形成してある。   Next, FIG. 10 shows another embodiment. In this example, the refrigerant pipe 26 is deformed into an elliptical pipe 16 and is inserted into the passage w, and the turbulent flow is used to promote heat transfer of the heat transfer liquid B and support the refrigerant pipe 26 at regular intervals in the passage w. This is an example in which the generator z is installed, and the refrigerant pipe 16 with the concavo-convex portion y is inserted into the inner surface of each two on the upper surface side and the lower surface side thereof, and the passage w is located above and below the passage of the conventional means. The height (the dimension in the thickness direction of the steam condensing plate a) is formed to be approximately 3/5.

そして、これら通路wの区画内に挿通する内面凹凸部y付きの楕円管16とした冷媒管26…は、上位側の区画内に挿通するものにあっては、扁平面16aの一方を通路wの天井壁17に対し密着させ、下位側の区画内に挿通するものにあっては通路wの底壁18に一方の扁平面16aを密着させた状態としてある。   The refrigerant pipes 26, which are the elliptical pipes 16 with the inner surface irregularities y inserted into the compartments of these passages w, pass through one of the flat surfaces 16a in the passage w. In this case, the flat surface 16a is in close contact with the bottom wall 18 of the passage w.

次に図11は、上述の蒸気凝結プレートaが水蒸気を凝結する時の熱流の概念図である。その蒸気凝結プレートaの蒸気凝結面(氷層表面)からプレート幅Lを横切る熱流のうち、一部は直接伝導(接触抵抗経由)で冷媒管26へ流入する熱流Q1の幅L1、一部は蒸気凝結プレートaから通路wを循環する熱媒液体Bの境膜熱伝達を経て冷媒管26に達する熱流Q2の幅L、冷媒管26と蒸気凝結プレートaとの接触面幅をεとする。   Next, FIG. 11 is a conceptual diagram of the heat flow when the above-mentioned steam condensing plate a condenses water vapor. Of the heat flow crossing the plate width L from the vapor condensation surface (ice surface) of the vapor condensation plate a, part of the heat flow Q1 flows into the refrigerant pipe 26 by direct conduction (via contact resistance), part of which is the width L1. The width L of the heat flow Q2 reaching the refrigerant pipe 26 through the boundary film heat transfer of the heat transfer liquid B circulating through the passage w from the vapor condensation plate a, and the contact surface width between the refrigerant pipe 26 and the vapor condensation plate a are assumed to be ε.

一方、直接伝導で内面溝付き冷媒管26へ流入する熱流Q1は以下の熱抵抗に関与している。すなわち、凝結氷層の熱抵抗R13、蒸気凝結プレートaのプレート板厚を貫通して接触面幅εへの熱抵抗R12、接触熱抵抗R11、冷媒管26内の冷媒の伝熱抵抗R10である。その中で、接触熱抵抗R11は、冷媒管26と蒸気凝結プレートaとの接触面幅εおよび等価接触間隙δに大きく影響される。冷媒の伝熱抵抗R10は管内の核沸騰伝熱係数に関与している。   On the other hand, the heat flow Q1 flowing directly into the inner grooved refrigerant pipe 26 by direct conduction is involved in the following thermal resistance. That is, the thermal resistance R13 of the condensed ice layer, the thermal resistance R12 to the contact surface width ε through the plate thickness of the vapor condensation plate a, the contact thermal resistance R11, and the heat transfer resistance R10 of the refrigerant in the refrigerant pipe 26. . Among them, the contact thermal resistance R11 is greatly influenced by the contact surface width ε and the equivalent contact gap δ between the refrigerant pipe 26 and the vapor condensation plate a. The heat transfer resistance R10 of the refrigerant is related to the nucleate boiling heat transfer coefficient in the pipe.

本発明手段の蒸気凝結器(トラップ)103では、扁平な内面凹凸部y付きの楕円管16とした冷媒管26の接触面幅が、円筒管とした冷媒管26よりかなり増大するため、接触熱抵抗は小さくなり、かつ、内面凹凸部y付きの冷媒管26で冷媒の核沸騰熱伝達係数は2.3倍となり、冷媒の伝熱抵抗R10も半分以下に減少し、直接伝導で冷媒蒸発管へ伝わる熱流Q1は増大する。   In the vapor condensing device (trap) 103 according to the present invention, the contact surface width of the refrigerant tube 26 formed as the elliptic tube 16 with the flat inner surface uneven portion y is considerably increased as compared with the refrigerant tube 26 formed as a cylindrical tube. Refrigerant tube 26 with inner surface unevenness portion y has a small resistance, and the nucleate boiling heat transfer coefficient of the refrigerant is 2.3 times, the heat transfer resistance R10 of the refrigerant is also reduced to less than half, and the refrigerant evaporation tube is directly conducted. The heat flow Q1 transferred to increases.

他方、循環する熱媒液体Bを経由して内面凹凸部y付きの冷媒管26に達する熱流Q2の熱抵抗は、凝結氷層の熱抵抗R24、プレート板厚を貫通する熱抵抗R23、プレート内面(含間仕切)と熱媒液体Bとの界面の境膜伝熱抵抗R22と内面凹凸部y付きの冷媒管26の周囲(密着面幅εを除く)の境膜伝熱抵抗R21、冷媒管26内の冷媒の伝熱抵抗R20とにより構成している。そのうち、循環する熱媒液体Bの境膜熱伝達係数は熱抵抗R22とR21に大きい影響を与える。境膜熱伝達率の促進は、循環熱媒体を経由する熱流を増大する。トラップ103である蒸気凝結プレートaの伝熱性能の理論解析と試験評価の結果、この実施例のトラップ103は、乱流発生体zの適切間隔の配置により熱媒液体Bの境膜熱伝達係数は先行発明の2.7倍となり、大幅に改善した。先行発明トラップでは、通路w内の熱媒液体が冷媒管26の表面に沿って平行に流れ、境界層が厚くて熱伝達は低下し、本発明は境界層を擾乱する乱れ促進棒を配設して冷媒管26の表面に直交流と平行流の両方も生じ、熱媒液体の境膜熱伝達は大きく促進された。冷媒管26内の冷媒からトラップ凝結氷層表面までの総括伝熱係数は、先行発明のトラップより増大し、凍結乾燥初期で伝熱性能は約1.5倍増え、乾燥中期(氷層厚10mm)でも、総括伝熱係数は約100%増加した。   On the other hand, the thermal resistance of the heat flow Q2 reaching the refrigerant pipe 26 with the inner surface uneven portion y via the circulating heat medium liquid B is the thermal resistance R24 of the condensed ice layer, the thermal resistance R23 penetrating the plate thickness, The boundary film heat transfer resistance R22 at the interface between the (including partition) and the heat transfer liquid B, the boundary film heat transfer resistance R21 around the refrigerant pipe 26 with the inner surface uneven portion y (excluding the contact surface width ε), and the refrigerant pipe 26 It is comprised by the heat transfer resistance R20 of the inside refrigerant | coolant. Among them, the film heat transfer coefficient of the circulating heat transfer liquid B has a great influence on the thermal resistances R22 and R21. The promotion of the film heat transfer coefficient increases the heat flow through the circulating heat medium. As a result of theoretical analysis and test evaluation of the heat transfer performance of the steam condensing plate a which is the trap 103, the trap 103 of this embodiment has the film heat transfer coefficient of the heat transfer liquid B by arranging the turbulent flow generators z at appropriate intervals. Was 2.7 times that of the prior invention, a significant improvement. In the prior invention trap, the heat transfer liquid in the passage w flows in parallel along the surface of the refrigerant pipe 26, the boundary layer is thick and heat transfer is reduced, and the present invention is provided with a turbulence promoting rod that disturbs the boundary layer. As a result, both a cross flow and a parallel flow were generated on the surface of the refrigerant pipe 26, and the film heat transfer of the heat transfer liquid was greatly accelerated. The overall heat transfer coefficient from the refrigerant in the refrigerant pipe 26 to the trapped ice layer surface is larger than that of the trap of the prior invention, and the heat transfer performance is increased by about 1.5 times in the initial stage of freeze-drying. However, the overall heat transfer coefficient increased by about 100%.

また、この本発明の実施例では、内面凹凸部y付きの冷媒管26でトラップ103を製作し、先行発明トラップと同様に蒸気凝結プレートaの内腔の通路wを薄く製作することで、熱媒側の流路面積は減少し、熱媒体側の流動は促進され、乱流発生体zの配設を加え、境膜熱伝達性能もさらに向上している。乱流発生体zの配設により通路w内の熱媒圧力は増大しているが、熱媒循環量を減少して、先行発明トラップの熱媒圧力損失と同等にしても、熱媒境膜熱伝達係数は増大する。従って、熱媒液体の循環ポンプ10容量は低減でき、ポンプ発生熱により入熱損失も少なくなる。   Further, in this embodiment of the present invention, the trap 103 is manufactured by the refrigerant pipe 26 with the inner surface uneven portion y, and the inner passageway w of the vapor condensing plate a is manufactured thin like the trap of the prior invention, The flow path area on the medium side is reduced, the flow on the heat medium side is promoted, the arrangement of the turbulent flow generator z is added, and the film heat transfer performance is further improved. Although the heat medium pressure in the passage w is increased by the arrangement of the turbulent flow generator z, the heat medium boundary film is reduced even if the heat medium circulation amount is decreased to be equal to the heat medium pressure loss of the prior invention trap. The heat transfer coefficient increases. Therefore, the capacity of the circulating pump 10 for the heat transfer liquid can be reduced, and the heat input loss is reduced due to the heat generated by the pump.

また、トラップ伝熱と凝結性能が先行発明トラップより倍以上増大するので、トラップ枚数を減少でき、製作費用は低減できる。   In addition, since the trap heat transfer and condensation performance is increased more than double that of the prior invention trap, the number of traps can be reduced and the manufacturing cost can be reduced.

このように、この本発明の実施例は、冷媒蒸発器の蒸気凝結プレートa内の通路wに挿通する冷媒管26を、周面が平滑な平滑管から内面凹凸部y付きの楕円管16に加工し、その扁平面を通路wの内壁面に密着させているのだから、冷媒管26と金属材の蒸気凝結プレートとの接触面は十分に増大され、接触熱抵抗は大きく減少できる。しかも、楕円管の冷媒管26は、内面凹凸部y付きの円筒管の冷媒管を作って、それをプレスして、扁平に加工することで、最適な長短軸の冷媒管が簡単に得られ、このときそれの断面積が円筒管のそれと殆ど変わらないから、トラップの製作が容易となる。   As described above, in this embodiment of the present invention, the refrigerant pipe 26 inserted into the passage w in the vapor condensing plate a of the refrigerant evaporator is changed from a smooth pipe having a smooth peripheral surface to an elliptic pipe 16 with an inner surface uneven portion y. Since the processed flat surface is in close contact with the inner wall surface of the passage w, the contact surface between the refrigerant pipe 26 and the vapor condensing plate of the metal material is sufficiently increased, and the contact thermal resistance can be greatly reduced. In addition, the elliptical refrigerant pipe 26 is a cylindrical pipe with an inner surface uneven portion y, pressed, and processed into a flat shape, so that an optimum long and short axis refrigerant pipe can be easily obtained. At this time, since the cross-sectional area thereof is almost the same as that of the cylindrical tube, the trap can be easily manufactured.

また、熱媒液体Bの通路w内に装入した冷媒管26に沿って等間隔に並列配設した乱流発生体zは、冷媒管26外表面の層流を擾乱して熱媒液体Bの対流境膜伝熱を促進して、冷媒側の核沸騰熱伝達と熱媒液体の対流境膜熱伝達係数ともに2倍以上増大させるので、良い伝熱性能と高効率蒸気凝結能力をもって真空装置における新型蒸気凝結器が得られるようになる。   Further, the turbulent flow generators z arranged in parallel at equal intervals along the refrigerant pipe 26 charged in the passage w of the heat medium liquid B disturb the laminar flow on the outer surface of the refrigerant pipe 26 and thereby the heat medium liquid B. The convection film heat transfer of the refrigerant is promoted, and both the nucleate boiling heat transfer on the refrigerant side and the convection film heat transfer coefficient of the heat transfer liquid are increased more than twice, so the vacuum device has good heat transfer performance and high efficiency steam condensation ability. A new steam condensing unit will be obtained.

トラップに冷媒直冷型トラップを用いた従前の真空装置の概要説明図である。It is a general | schematic explanatory drawing of the conventional vacuum apparatus which used the refrigerant | coolant direct cooling type | mold trap for the trap. トラップに間接熱媒型トラップを用いた従前の真空装置の概要説明図である。It is outline | summary explanatory drawing of the conventional vacuum apparatus which used the indirect-heat-medium type | mold trap for the trap. トラップに三媒体間熱交換器を用いた従前の真空装置の概要説明図である。It is outline | summary explanatory drawing of the conventional vacuum apparatus which used the heat exchanger between three media for the trap. 同上真空装置のトラップ室およびトラップの縦断した正面図である。It is the front view which carried out the longitudinal section of the trap chamber and trap of a vacuum device same as the above. 同上真空装置のトラップ室およびトラップの縦断した側面図である。It is the side view which carried out the longitudinal section of the trap chamber and trap of a vacuum device same as the above. 同上のトラップの部分の縦断面図である。It is a longitudinal cross-sectional view of the trap part same as the above. 同上真空装置の別の形態のトラップ室の縦断面図である。It is a longitudinal cross-sectional view of the trap chamber of another form of a vacuum apparatus same as the above. 同上真空装置の別の形態のトラップの部分の縦断面図である。It is a longitudinal cross-sectional view of the trap part of another form of a vacuum apparatus same as the above. 先発明による真空装置におけるトラップの部分の縦断面図である。It is a longitudinal cross-sectional view of the trap part in the vacuum device by a prior invention. 先発明におけるトラップの別の実施例の部分の縦断面図である。It is a longitudinal cross-sectional view of the part of another Example of the trap in a prior invention. 先発明におけるトラップの凝結時の熱流説明図である。It is heat flow explanatory drawing at the time of condensation of a trap in a prior invention. 本発明によるトラップの別の実施例の平面図である。FIG. 6 is a plan view of another embodiment of a trap according to the present invention. 本発明によるトラップの部分縦断面図Partial longitudinal section of a trap according to the invention 本発明によるトラップの部分平面図Partial plan view of a trap according to the invention 本発明による別の実施例のトラップの部分縦断面図FIG. 5 is a partial longitudinal sectional view of another embodiment of the trap according to the present invention.

符号の説明Explanation of symbols

B…熱媒液体、R…冷媒、V…真空蒸気、W…真空凍結乾燥装置、a…蒸気凝結プレート、b…蒸気捕集面、w…通路、y…凹凸部、z…乱流発生体、1…真空乾燥室、10…熱媒循環ポンプ、101…冷媒直冷型トラップ、102…間接熱媒型トラップ、103…熱交換器を兼ねるトラップ、11…冷凍装置、12…副冷凍装置、13…冷媒弁、14…冷媒膨張弁、15…仕切弁、16…冷媒蒸発楕円管、16a…扁平面、17…天井壁、18…底壁、2…真空トラップ室、26…冷媒管、27…仕切壁、28…外壁、29…押さえ棒、3…主弁、3a…主管、4…真空排気系、5…熱板、6…熱媒液加熱器、7…熱交換器、7a…冷媒蒸発器、7b…熱媒液系、8…副熱交換器、8a…冷媒蒸発器、8b…熱媒液系、9…熱媒液体循環ポンプ。   B ... Heat transfer liquid, R ... Refrigerant, V ... Vacuum vapor, W ... Vacuum freeze-drying device, a ... Vapor condensation plate, b ... Vapor collecting surface, w ... Passage, y ... Uneven portion, z ... Turbulence generator DESCRIPTION OF SYMBOLS 1 ... Vacuum-drying chamber, 10 ... Heat-medium circulation pump, 101 ... Refrigerant direct cooling trap, 102 ... Indirect heat-medium trap, 103 ... Trap also serving as a heat exchanger, 11 ... Refrigerating device, 12 ... Sub-refrigerating device, DESCRIPTION OF SYMBOLS 13 ... Refrigerant valve, 14 ... Refrigerant expansion valve, 15 ... Gate valve, 16 ... Refrigerant evaporation elliptical tube, 16a ... Flat surface, 17 ... Ceiling wall, 18 ... Bottom wall, 2 ... Vacuum trap chamber, 26 ... Refrigerant tube, 27 DESCRIPTION OF SYMBOLS ... Partition wall, 28 ... Outer wall, 29 ... Holding rod, 3 ... Main valve, 3a ... Main pipe, 4 ... Vacuum exhaust system, 5 ... Heat plate, 6 ... Heating medium liquid heater, 7 ... Heat exchanger, 7a ... Refrigerant Evaporator, 7b ... Heat medium liquid system, 8 ... Sub heat exchanger, 8a ... Refrigerant evaporator, 8b ... Heat medium liquid system, 9 ... Heat medium liquid circulation port Flop.

Claims (4)

冷凍装置11から導く冷媒Rを蒸発させる金属材よりなる円筒チューブ状の冷媒管26を、金属材よりなる蒸気凝結プレートa内に形成した熱媒液体Bの通路w内に嵌通せしめて冷媒Rと熱媒液体Bとの間の熱交換を行わす熱交換器103を構成し、その熱交換器103を、真空室1の内部または内壁面に、該熱交換器103の真空空間側外表面の全部または一部が真空空間に面するように設けて、その真空空間側外表面が冷媒R・熱媒液体Bの何れの側からも、直接にあるいは直接の金属接触により冷却される構造とし、その熱交換器103の真空空間側外表面を真空蒸気Vの凝結捕集面として、冷媒Rと熱媒液体Bと真空蒸気Vとの三媒体のうちの、何れの二媒体の間にも境界金属壁乃至境界金属壁と密接する金属板を介しての直接の熱交換が存在する三媒体間熱交換器の形態とし、真空装置の蒸気凝結器において、冷媒管26を嵌通させる蒸気凝結プレートa内の通路wに、その通路w内を流れる熱媒液体Bに乱流を生ぜしめる乱流発生体zを、通路wを横切る桟状に形成して、通路wの長手方向に狭い間隔をおいて多数本並列させて通路wの左右または上下の隔壁間面に渡架装着したことを特徴とする真空装置における蒸気凝結器。   A cylindrical tube-shaped refrigerant pipe 26 made of a metal material for evaporating the refrigerant R led from the refrigeration apparatus 11 is fitted into a passage w of the heat transfer liquid B formed in the vapor condensation plate a made of the metal material, and the refrigerant R The heat exchanger 103 that performs heat exchange between the heat transfer medium B and the heat exchanger liquid B is configured, and the heat exchanger 103 is disposed on the inside or the inner wall surface of the vacuum chamber 1 on the vacuum space side outer surface of the heat exchanger 103. Is provided so that all or part of it faces the vacuum space, and the outer surface on the vacuum space side is cooled from either side of the refrigerant R or the heat transfer medium B directly or by direct metal contact. The outer surface on the vacuum space side of the heat exchanger 103 is used as a condensation collecting surface of the vacuum vapor V, and between any two of the three media of the refrigerant R, the heat medium liquid B, and the vacuum vapor V. Direct heat through the boundary metal wall or metal plate in close contact with the boundary metal wall In the vapor condensing unit of the vacuum apparatus, the heat medium liquid B flowing through the passage w is formed in the passage w in the vapor condensing plate a into which the refrigerant pipe 26 is fitted. A turbulent flow generator z that generates turbulent flow is formed in a cross-shape that crosses the passage w, and a plurality of turbulent flow generators z are juxtaposed at a narrow interval in the longitudinal direction of the passage w so as to be arranged between the left and right or upper and lower partition walls A steam condensing unit in a vacuum device, which is mounted on a cross. 前記蒸気凝結プレートa内の通路w中にその通路wの長手方向に多数並列させて設ける前記乱流発生体zの並列間隔を、80mmを規準としその前後10mm程度の70mm〜90mm程度の間隔に設定することを特徴とする請求項1記載の真空装置における蒸気凝結器。   The parallel interval of the turbulent flow generators z provided in parallel in the longitudinal direction of the passage w in the passage w in the steam condensing plate a is set to an interval of about 70 mm to 90 mm of about 10 mm before and after 80 mm as a reference. The vapor condensing unit in a vacuum apparatus according to claim 1, wherein the vapor condensing unit is set. 前記乱流発生体zを、棒状に成形して前記蒸気凝結プレートa内の通路w中に、その通路wの長手方向に狭い間隔をおいて多数本並列させて配設し、それら乱流発生体zの中から適宜選択した乱流発生体zを、前記通路w内に嵌通させる冷媒管26を支承する押さえ棒29とすることを特徴とする請求項1記載の真空装置における蒸気凝結器。   A plurality of the turbulent flow generators z are formed in a rod shape and arranged in parallel in the passage w in the steam condensing plate a with a narrow interval in the longitudinal direction of the passage w, and these turbulent flows are generated. 2. A steam condensing device in a vacuum apparatus according to claim 1, wherein a turbulent flow generating body z appropriately selected from the body z is used as a pressing rod 29 for supporting a refrigerant pipe 26 fitted into the passage w. . 前記蒸気凝結プレートa内の通路wに嵌通させる前記冷媒管26を、それの内周壁の内面の略全面に、軸方向視において多数の溝または多数のフィンが軸方向に連続する凹凸部yを形設しておくことを特徴とする請求項1記載の真空装置における蒸気凝結器。   The refrigerant pipe 26 fitted into the passage w in the vapor condensing plate a is provided on the substantially entire inner surface of the inner peripheral wall of the refrigerant pipe 26 so that a large number of grooves or a large number of fins are continuous in the axial direction when viewed in the axial direction. The steam condensing device in the vacuum apparatus according to claim 1, wherein:
JP2006336865A 2006-12-14 2006-12-14 Steam condensate in vacuum equipment Active JP4717794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006336865A JP4717794B2 (en) 2006-12-14 2006-12-14 Steam condensate in vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336865A JP4717794B2 (en) 2006-12-14 2006-12-14 Steam condensate in vacuum equipment

Publications (2)

Publication Number Publication Date
JP2008149210A true JP2008149210A (en) 2008-07-03
JP4717794B2 JP4717794B2 (en) 2011-07-06

Family

ID=39652003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336865A Active JP4717794B2 (en) 2006-12-14 2006-12-14 Steam condensate in vacuum equipment

Country Status (1)

Country Link
JP (1) JP4717794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145403A1 (en) * 2010-05-18 2011-11-24 株式会社ワイ・ジェー・エス. Heat exchanger
JP2018011570A (en) * 2016-07-22 2018-01-25 新洋技研工業株式会社 Steam cooked grain cooling device
CN108668508A (en) * 2018-06-08 2018-10-16 浙江大学山东工业技术研究院 The cooling device and cabinet of cabinet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185891A (en) * 1992-03-05 1994-07-08 Phillips Petroleum Co Rod baffle of tubular type heat exchanger
JPH0665759U (en) * 1993-01-19 1994-09-16 石川島播磨重工業株式会社 Bayonet type heat exchanger
JP2000018850A (en) * 1998-07-01 2000-01-18 Kyocera Corp Heating tube for heat exchanger
JP2003294380A (en) * 2002-03-29 2003-10-15 Hisaka Works Ltd Heat exchanger
JP2005221118A (en) * 2004-02-04 2005-08-18 Japan Steel Works Ltd:The Shell-and-tube exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185891A (en) * 1992-03-05 1994-07-08 Phillips Petroleum Co Rod baffle of tubular type heat exchanger
JPH0665759U (en) * 1993-01-19 1994-09-16 石川島播磨重工業株式会社 Bayonet type heat exchanger
JP2000018850A (en) * 1998-07-01 2000-01-18 Kyocera Corp Heating tube for heat exchanger
JP2003294380A (en) * 2002-03-29 2003-10-15 Hisaka Works Ltd Heat exchanger
JP2005221118A (en) * 2004-02-04 2005-08-18 Japan Steel Works Ltd:The Shell-and-tube exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145403A1 (en) * 2010-05-18 2011-11-24 株式会社ワイ・ジェー・エス. Heat exchanger
CN102297614A (en) * 2010-05-18 2011-12-28 株式会社Yjs Heat exchanger
JP2012002495A (en) * 2010-05-18 2012-01-05 Yjs:Kk Heat exchanger
JP2018011570A (en) * 2016-07-22 2018-01-25 新洋技研工業株式会社 Steam cooked grain cooling device
CN108668508A (en) * 2018-06-08 2018-10-16 浙江大学山东工业技术研究院 The cooling device and cabinet of cabinet
CN108668508B (en) * 2018-06-08 2024-03-26 浙江大学山东工业技术研究院 Cooling device of cabinet and cabinet

Also Published As

Publication number Publication date
JP4717794B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP6851492B2 (en) Condenser with tube support structure
US8091615B2 (en) Heat transfer pipe with grooved inner surface
BRPI1007042B1 (en) HEAT EXCHANGER
JP6894520B2 (en) Condenser
US10612856B2 (en) Heat exchanger and air conditioning system
CN106196755B (en) Shell and tube condenser and air-conditioning system
BRPI1102318A2 (en) heat exchanger set
JP3644845B2 (en) High-efficiency steam condenser in vacuum equipment.
EP3255362B1 (en) Semiconductor cooling refrigerator
JP4717794B2 (en) Steam condensate in vacuum equipment
JP6678235B2 (en) Heat exchanger
KR101110049B1 (en) Heat exchanger structure shared baffle plates for Refrigerated dehumidification unit
US20110024083A1 (en) Heat exchanger
WO2017110474A1 (en) Heat exchanger
JP2018179325A (en) Heat exchanger and heat pump system using the same
JP7140552B2 (en) Air cooler, refrigeration system and air cooler defrosting method
JP2570310Y2 (en) Heat exchanger
CN101498533B (en) Steam condenser of vacuum plant
KR100709421B1 (en) Heat exchanger
JPH0268494A (en) Heat exchanger
KR102148722B1 (en) Heat exchanger and air conditional having the same
JP7129372B2 (en) refrigerator
KR102076679B1 (en) A heat exchanger and a natural coolant circulation air conditioner
CN110260568A (en) A kind of horizontal shell-and-tube cooler and heat-exchange system
JPH02143094A (en) Heat exchanger equipped with heat transfer tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250