JP2000018850A - Heating tube for heat exchanger - Google Patents

Heating tube for heat exchanger

Info

Publication number
JP2000018850A
JP2000018850A JP10186702A JP18670298A JP2000018850A JP 2000018850 A JP2000018850 A JP 2000018850A JP 10186702 A JP10186702 A JP 10186702A JP 18670298 A JP18670298 A JP 18670298A JP 2000018850 A JP2000018850 A JP 2000018850A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
fins
transfer tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10186702A
Other languages
Japanese (ja)
Other versions
JP3405679B2 (en
Inventor
Yasuhiro Tanaka
泰宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18670298A priority Critical patent/JP3405679B2/en
Publication of JP2000018850A publication Critical patent/JP2000018850A/en
Application granted granted Critical
Publication of JP3405679B2 publication Critical patent/JP3405679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/12Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically the surrounding tube being closed at one end, e.g. return type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance heat transmission efficiency by employing ceramic heating tubes for a heat exchanger exchanging heat on the inside and outside and forming a plurality of fins on the inner surface thereof and to save the space by decreasing the ratio of tube length/thickness thereby shortening the length of the ceramic tube. SOLUTION: A heating tube 1 comprises a ceramic tube provided, on the inner surface thereof, with a large number of fins 2 integrally. Outer surface of the heating tube 1 is exposed to high temperature gas and gas to be heated is passed on the inside thus exchanging heat. Consequently, heat transfer area of each fin 2 is increased and thermal efficiency can be enhanced. Alternatively, a curved face sealing part may formed continuously to one side of the heating tube 1 and fed with the gas to be heated from an inner tube 4 through the air gap between the inner tube 4 and the heating tube 1. A hollow part 3 where the fin 2 is not present is formed in the center of the inner surface at the intersection of the fins 2, i.e., the sealing part, in order to prevent the gas to be heated from striking against the sealing part directly thus relaxing thermal stress on the inner and outer surfaces.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焼却・発電プラント
等における高温廃熱利用システムに用いる熱交換器用伝
熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger tube for a heat exchanger used in a high-temperature waste heat utilization system in an incineration / power generation plant or the like.

【0002】[0002]

【従来の技術】焼却・発電プラント等で発生する高温廃
ガスの持つ熱エネルギーを有効利用し、プラント全体と
してのエネルギー効率を上げるため、発生した廃ガス等
の高温ガスによって隔壁を介して低温の被加熱ガスを加
熱する方式の熱交換器が利用されるようになってきてい
る。
2. Description of the Related Art In order to effectively use the thermal energy of high-temperature waste gas generated in an incineration / power generation plant and to increase the energy efficiency of the entire plant, a high-temperature gas such as the generated waste gas flows through a partition wall through a partition wall. A heat exchanger of a type for heating a gas to be heated has been used.

【0003】具体的には、高温ガスが発生もしくは通過
する空間に隔壁として伝熱管を配し、その管の内部に被
加熱ガスを送り込み、熱伝達により被加熱ガスを加熱す
るという方法が一般的である。
Specifically, a method is generally used in which a heat transfer tube is arranged as a partition in a space where a high-temperature gas is generated or passes, and a gas to be heated is sent into the tube, and the gas to be heated is heated by heat transfer. It is.

【0004】従来より比較的低温の熱交換システムにお
いて伝熱管材に金属が用いられていたが、使用温度が1
000℃以上と高温であることに加え、ガス自体の腐食
性も強いことから、金属では不適であり、代わりにセラ
ミックスが利用され始めている。
Conventionally, metals have been used for heat transfer tubes in relatively low temperature heat exchange systems.
In addition to the high temperature of 000 ° C. or higher and the high corrosiveness of the gas itself, metals are not suitable, and ceramics have begun to be used instead.

【0005】[0005]

【発明が解決しようとする課題】ところで、熱交換器用
伝熱管の熱伝達効率を高くするためには、管長/肉厚の
比を非常に高くした伝熱管を使用する必要があった。し
かし肉厚を薄くするとしても耐食性や強度面で限度があ
ることから、現実的にはガスの流路を長くするため伝熱
管を長尺化している。あるいは被加熱流体の供給速度を
落として伝熱管の本数を増やす方法も考えられている
が、何れにしてもそのためのスペースが必要となり、設
備の省スペース化の妨げとなっていた。
By the way, in order to increase the heat transfer efficiency of the heat exchanger tube for a heat exchanger, it is necessary to use a heat exchanger tube having a very high ratio of tube length / wall thickness. However, even if the wall thickness is reduced, there is a limit in terms of corrosion resistance and strength. Therefore, in practice, the length of the heat transfer tube is increased in order to lengthen the gas flow path. Alternatively, a method of increasing the number of heat transfer tubes by reducing the supply speed of the fluid to be heated has been considered, but in any case, a space for the heat transfer tube is required, which hinders space saving of the equipment.

【0006】更に、伝熱管の管長/肉厚の比が非常に高
いと、機械的強度や耐クリープ性が低いため、ハンドリ
ング性が悪く、長時間使用により変形してしまうという
問題があった。
Further, when the ratio of the length / wall thickness of the heat transfer tube is very high, there is a problem that the mechanical strength and the creep resistance are low, the handling property is poor, and the heat transfer tube is deformed by use for a long time.

【0007】また、伝熱管を片側封止形状として、その
内部に内管を挿入し、内管を通じて被加熱ガスを伝熱管
封止部に供給し、内管と伝熱管の空隙を通過させながら
加熱させる方式の熱交換機用の伝熱管では、封止部にお
いて、外側が1000℃以上の高温であり、内側から低
温の被加熱ガスが吹き付けられるため非常に熱応力がか
かりやすく、封止部が破損しやすいという問題も生じて
いた。
Further, the heat transfer tube is formed into a one-sided sealed shape, an inner tube is inserted thereinto, a gas to be heated is supplied to the heat transfer tube sealing portion through the inner tube, and the gas is passed through the gap between the inner tube and the heat transfer tube. In a heat transfer tube for a heat exchanger of a heating type, the outside of the sealed portion is at a high temperature of 1000 ° C. or more, and a low-temperature heated gas is blown from the inside, so that thermal stress is very likely to be applied. Another problem is that it is easily damaged.

【0008】[0008]

【課題を解決するための手段】本発明は内外で熱交換を
行うようにした熱交換器用伝熱管において、セラミック
で形成するとともに、その内面に複数のフィンを一体的
に形成させたことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a heat exchanger tube for a heat exchanger in which heat is exchanged inside and outside, wherein the heat exchanger tube is formed of ceramic and a plurality of fins are integrally formed on the inner surface thereof. It is assumed that.

【0009】これにより、伝熱管内面の表面積を増やす
ことができるため、熱伝達効率を高くできる。この為、
従来の伝熱管に比べて管長/肉厚の比を小さくすること
ができ、実質的にはセラミックス管の長さを短縮するこ
とが出来るため省スペース化に貢献できる。
Thus, the surface area of the inner surface of the heat transfer tube can be increased, so that the heat transfer efficiency can be increased. Because of this,
Compared with the conventional heat transfer tube, the ratio of tube length / wall thickness can be reduced, and the length of the ceramic tube can be substantially reduced, thereby contributing to space saving.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態を図によ
って説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1に示す伝熱管1は、セラミックスから
なる円筒状体であり、その内面に多数のフィン2を一体
的に形成してある。この伝熱管1の外面を高温ガス中に
曝し、内側に被加熱ガスを通過させれば、伝熱管1を介
して熱交換を行い、被加熱ガスを加熱することができ
る。このとき、フィン2を備えてあることによって、伝
熱面積を増やして熱効率を高めることができる。
A heat transfer tube 1 shown in FIG. 1 is a cylindrical body made of ceramics, and has a large number of fins 2 integrally formed on the inner surface thereof. If the outer surface of the heat transfer tube 1 is exposed to a high-temperature gas and the gas to be heated is passed inside, heat exchange can be performed via the heat transfer tube 1 and the gas to be heated can be heated. At this time, since the fins 2 are provided, the heat transfer area can be increased and the thermal efficiency can be increased.

【0012】また、他の実施形態として、図2、3に示
すように、伝熱管1の片側に、側面に滑らかに連続する
曲面状の封止部1aを形成した形状とすることもでき
る。この伝熱管1を用いる場合は、図3のように、内部
に内管4を挿入し、内管4を通じて被加熱ガスを伝熱管
1の封止部1aに供給し、内管4と伝熱管1の空隙を通
過させながら加熱させる方式とする。
As another embodiment, as shown in FIGS. 2 and 3, one side of the heat transfer tube 1 can be formed into a shape in which a curved sealing portion 1a that is smoothly continuous with the side surface is formed. When this heat transfer tube 1 is used, as shown in FIG. 3, an inner tube 4 is inserted thereinto, and a gas to be heated is supplied to the sealing portion 1a of the heat transfer tube 1 through the inner tube 4, so that the inner tube 4 and the heat transfer tube Heating while passing through the gap 1

【0013】ここで、フィン2の数が1枚では、十分な
伝熱特性向上効果が期待できないだけでなく、伝熱管1
の軸方向の重量バランスが取れない。逆にフィン2の数
が多すぎると、管の自重を増す結果となり、また伝熱管
1内部の空隙が狭くなり、流速が速くなりすぎるため、
十分な伝熱特性を期待できない。このため、フィン2の
数は6〜24枚の間が好ましい。
Here, if the number of the fins 2 is one, not only a sufficient effect of improving the heat transfer characteristics cannot be expected, but also the heat transfer tubes 1
Cannot balance the weight in the axial direction. Conversely, if the number of the fins 2 is too large, the weight of the tube will increase, and the gap inside the heat transfer tube 1 will be narrowed, and the flow velocity will be too fast.
Sufficient heat transfer characteristics cannot be expected. For this reason, the number of the fins 2 is preferably between 6 and 24.

【0014】また、フィン2の厚さは伝熱管1の肉厚以
下が好ましく、フィン2の高さはフィン2の厚さ以上
で、他のフィン2や内管4と接触しない高さが好まし
い。これは、フィン2が厚すぎると熱衝撃特性が低下
し、逆に薄すぎると強度を保てないためである。また、
フィン2の高さは、低すぎると熱伝達効率を向上させに
くく、高すぎると他の部材に接触してしまうためであ
る。
The thickness of the fins 2 is preferably equal to or less than the thickness of the heat transfer tube 1, and the height of the fins 2 is preferably equal to or greater than the thickness of the fins 2 so as not to come into contact with other fins 2 or the inner tube 4. . This is because if the fins 2 are too thick, the thermal shock characteristics deteriorate, while if they are too thin, the strength cannot be maintained. Also,
If the height of the fins 2 is too low, it is difficult to improve the heat transfer efficiency, and if it is too high, the fins 2 come into contact with other members.

【0015】このようにフィン2を形成することによ
り、伝熱管1自体の単位長さ当たりの機械的強度を向上
させることができ、前述の通り伝熱管1の長さを短縮で
きるため、伝熱管1のハンドリング性や、耐クリープ性
を向上させることができる。
By forming the fins 2 in this manner, the mechanical strength of the heat transfer tube 1 per unit length can be improved, and the length of the heat transfer tube 1 can be reduced as described above. 1 can improve handling properties and creep resistance.

【0016】また、好ましくは、フィン2は先端部に行
くほど緩やかに薄くなり、伝熱管1の内面との接続部2
bやフィン2の先端部2aに曲率半径0.3〜3mmの
曲面を形成しておけば、重量増や耐熱衝撃性低下を防
ぎ、強度低下要因を減らすことができ、好適である。
Preferably, the fins 2 become gradually thinner toward the tip end, so that the fins 2 are connected to the inner surface of the heat transfer tube 1 at the connecting portions 2.
If a curved surface having a radius of curvature of 0.3 to 3 mm is formed on the end b of the fin 2 or the fin 2, it is possible to prevent an increase in weight and a decrease in thermal shock resistance and to reduce a factor of a decrease in strength.

【0017】さらに、図2、3に示す構造の伝熱管1に
ついては、フィン2同士の交差点となる封止部1aの内
面中央に、フィン2の存在しない中抜き部3を形成して
ある。これにより、熱交換器としての使用時に、中抜き
部3の空気が流動しにくくなり、この部分は、伝熱管1
の外部の高温ガスと内管4から供給される被加熱ガスと
の間の温度境界層となり、上記被加熱ガスが直接封止部
1aに当たることを防止できる。その結果、伝熱管1の
内外面の熱応力を緩和させることができ長寿命化が図れ
る。
Further, in the heat transfer tube 1 having the structure shown in FIGS. 2 and 3, a hollow portion 3 having no fins 2 is formed at the center of the inner surface of the sealing portion 1a which is an intersection of the fins 2. This makes it difficult for the air in the hollow portion 3 to flow when used as a heat exchanger.
And a temperature boundary layer between the external high-temperature gas and the gas to be heated supplied from the inner tube 4, thereby preventing the gas to be heated from directly hitting the sealing portion 1 a. As a result, the thermal stress on the inner and outer surfaces of the heat transfer tube 1 can be reduced, and the life can be extended.

【0018】また、上記伝熱管1をなすセラミックスと
しては、炭化珪素や窒化珪素等のさまざまなセラミック
スを用いることができるが、特に炭化珪素質セラミック
スが好ましい。この炭化珪素質セラミックスとは、90
重量%以上の炭化珪素(SiC)を主成分とし、焼結助
剤としてB、C等を含むものである。このような炭化珪
素質セラミックスは、熱伝導率50W/m・K以上、耐
熱衝撃性ΔT300℃以上と優れた特性を有しており、
伝熱管1の材料として最適である。
Various ceramics such as silicon carbide and silicon nitride can be used as the ceramics constituting the heat transfer tube 1, and silicon carbide ceramics are particularly preferable. This silicon carbide ceramic is 90
It contains silicon carbide (SiC) in an amount of at least% by weight and contains B, C, etc. as a sintering aid. Such a silicon carbide ceramic has excellent properties such as a thermal conductivity of 50 W / m · K or more and a thermal shock resistance ΔT of 300 ° C. or more.
It is optimal as a material for the heat transfer tube 1.

【0019】また、本発明の伝熱管1は、上述したセラ
ミックス原料を用い、押出成形により図1、2に示す形
状となるように一体成形し、得られた成形体を真空雰囲
気中、1900〜2300℃で焼成することによって得
ることができる。このようにすれば、フィン2を一体的
に備えた伝熱管1を容易に得ることができる。
The heat transfer tube 1 of the present invention is formed integrally with the above-mentioned ceramic material by extrusion molding into the shape shown in FIGS. 1 and 2, and the obtained molded body is placed in a vacuum atmosphere at 1900 to 1900. It can be obtained by firing at 2300 ° C. In this way, the heat transfer tube 1 integrally provided with the fins 2 can be easily obtained.

【0020】[0020]

【実施例】本発明の具体的な実施例を説明する。EXAMPLES Specific examples of the present invention will be described.

【0021】先ず、SiCを主成分とし、B、C等を含
む組成からなるセラミックス原料粉末にバインダーを添
加して坏土状とする。これを良く混練した後、所望の断
面形状になるような金型を使用して押出成形機にて成形
する。
First, a binder is added to a ceramic raw material powder having a composition containing SiC as a main component and containing B, C, etc. to form a clay. After kneading this well, it is molded by an extruder using a mold having a desired sectional shape.

【0022】金型はダイスとコアピンとダイスヘッドの
3つから成る。コアピンの先端部は伝熱管成形体の封止
部内面形状を形成するために半球面状もしくはそれに準
ずるような滑らかな曲面形状となっており、表面には成
形体にフィンが形成されるように深い溝を切った形状と
なっている。ダイスは伝熱管成形体の外側面が形成され
る様に円形に、ダイスヘッド内面は伝熱管成形体の封止
部外面を形成するため半球面状もしくはそれに準ずるよ
うな滑らかな曲面形状となっている。
The mold comprises three dies, a core pin and a die head. The tip of the core pin has a hemispherical surface or a smooth curved surface similar to it to form the inner surface shape of the sealed part of the heat transfer tube molded body, so that fins are formed on the surface of the molded body. It has a shape with a deep groove. The die has a circular shape so that the outer surface of the heat transfer tube molding is formed, and the inner surface of the die head has a hemispherical shape or a smooth curved surface equivalent to it to form the outer surface of the sealing portion of the heat transfer tube molding. I have.

【0023】押し出し成形開始時にはダイスにダイスヘ
ッドが固定してあり、成形体はダイスとダイスヘッドと
コアピンの間に充填される。その後、ダイスヘッドを外
し、押し出し成形を進めることにより、図2に示すよう
に内面にフィン2を備え片側を封止した伝熱管成形体を
得る。
At the start of extrusion molding, a die head is fixed to the die, and the molded body is filled between the die, the die head and the core pin. Thereafter, the die head is removed, and extrusion molding is advanced to obtain a heat transfer tube molded body provided with fins 2 on the inner surface and sealed on one side as shown in FIG.

【0024】以上の様な方法で得られた成形体を十分乾
燥させた後、最適な条件で焼成し、焼結体を得た。
After the compact obtained by the above-mentioned method was sufficiently dried, it was fired under optimum conditions to obtain a sintered body.

【0025】実施例1 上記の製造方法により、内側に高さ12mmのフィンが
複数枚形成された外径72mm、内径64mm、長さが
1100mm及び800mmの片側封止の伝熱管1を作
製した。
Example 1 A single-side sealed heat transfer tube 1 having an outer diameter of 72 mm, an inner diameter of 64 mm, a length of 1100 mm and a length of 800 mm, in which a plurality of fins having a height of 12 mm were formed on the inner side, was produced by the above-described manufacturing method.

【0026】そして伝熱管1を図4に示すような試験装
置に封止端から表1に示す有効長になる位置まで挿入し
た。ここで有効長は伝熱管1が熱交換に寄与できる長さ
のことを示す。更に伝熱管1の内部に外径36mm、内
径30mmの両端開放の内管4を、伝熱管1の封止端か
ら内管4の端面までの距離が100mmとなる位置まで
挿入した。
Then, the heat transfer tube 1 was inserted into a test device as shown in FIG. Here, the effective length indicates the length that the heat transfer tube 1 can contribute to heat exchange. Further, an inner tube 4 having an outer diameter of 36 mm and an inner diameter of 30 mm and open at both ends was inserted into the heat transfer tube 1 until the distance from the sealed end of the heat transfer tube 1 to the end surface of the inner tube 4 became 100 mm.

【0027】そして、試験装置内を1200℃に加熱
し、内管4内部に200℃に加熱された空気を供給し
た。そして表1中No.1の伝熱管1にて開放端側で5
00℃となるように供給する空気の流量を調整し、他の
伝熱管1でも流量一定で評価ができるように固定した。
図4中の矢印は空気の流れ方向を示す。
Then, the inside of the test apparatus was heated to 1200 ° C., and air heated to 200 ° C. was supplied into the inner tube 4. And in Table 1, No. 5 at the open end side in one heat transfer tube 1
The flow rate of the supplied air was adjusted to be 00 ° C., and the other heat transfer tubes 1 were fixed so that the flow rate could be evaluated at a constant flow rate.
Arrows in FIG. 4 indicate the direction of air flow.

【0028】そして、流量一定にて、表1に示すように
伝熱管1の有効長とフィン数を変化させた条件で得られ
る空気の温度を測定した。
Then, at a constant flow rate, as shown in Table 1, the temperature of the air obtained under the conditions in which the effective length of the heat transfer tube 1 and the number of fins were changed was measured.

【0029】結果を表1に示すように、フィン2を形成
することで、空気温度を高くし、熱交換効率が高くでき
ることが確認された。例えば、No.1とNo.7を比
較すると、12枚のフィンを形成することで、フィンの
ない伝熱管に比べ、約7割の有効長で同等以上の温度の
流体を得ることができた。
As shown in Table 1, it was confirmed that by forming the fins 2, the air temperature could be increased and the heat exchange efficiency could be increased. For example, no. 1 and No. Comparing No. 7, by forming 12 fins, it was possible to obtain a fluid having an effective length of about 70% and a temperature equal to or higher than that of a heat transfer tube without fins.

【0030】しかし、逆に24枚のフィン2を形成した
伝熱管1では、伝熱管1と内管4の空隙減少に伴う被加
熱ガスの流速が速くなりすぎ、伝熱管内表面積増加によ
る熱伝達向上効果が追いつかず、得られる空気温度がフ
ィン数12枚の伝熱管1を下回ったと思われる。
However, in the heat transfer tube 1 having the 24 fins 2, the flow rate of the gas to be heated becomes too high due to the decrease in the gap between the heat transfer tube 1 and the inner tube 4, and the heat transfer due to the increase in the surface area of the heat transfer tube. It is considered that the improvement effect could not catch up and the obtained air temperature was lower than the heat transfer tube 1 having 12 fins.

【0031】[0031]

【表1】 [Table 1]

【0032】実験例2 上記の伝熱管1を0.5mの高さからコンクリート上に
自由落下させて破壊の有無を確認した。結果を表2に示
す。試験本数は7本であり、表中のNoは実験例1のN
oと対応している。
Experimental Example 2 The above-mentioned heat transfer tube 1 was dropped freely on concrete from a height of 0.5 m to check for breakage. Table 2 shows the results. The number of test pieces is 7, and No in the table indicates N in Experimental Example 1.
It corresponds to o.

【0033】なお、端面のチッピング等の微小破損は含
めず、完全に伝熱管として使用不能なレベルのものの破
壊本数を調査した。
It should be noted that the number of broken pipes that could not be used completely as heat transfer tubes was investigated without including minute damage such as chipping of the end face.

【0034】結果を表2に示すように、No.1の伝熱
管とNo.7の伝熱管は実験例1にて同等の熱伝達性能
を示しているが、前者が6本破壊しているのに比較し、
後者は3本と減少している。これは、フィンを形成する
ことで全長を短縮でき、又フィン自身も伝熱管の強度を
高めていることがハンドリング性向上につながったと思
われる。
As shown in Table 2, the results are as shown in FIG. No. 1 heat transfer tube and No. 1 The heat transfer tube of No. 7 shows the same heat transfer performance in Experimental Example 1, but compared to the former case where six tubes were broken,
The latter has decreased to three. It is considered that the overall length can be shortened by forming the fins, and that the fins themselves also increase the strength of the heat transfer tube, which has led to an improvement in handling.

【0035】[0035]

【表2】 [Table 2]

【0036】実験例3 上記と同じ材質、寸法で、内側に高さ12mmのフィン
が12枚形成された両端開放の伝熱管を作製した。
EXPERIMENTAL EXAMPLE 3 A heat transfer tube having the same material and dimensions as above and having 12 fins with a height of 12 mm formed inside and open at both ends was manufactured.

【0037】そして還元雰囲気焼成炉内で両端から50
mmの位置で支持し、1400℃×100時間熱処理し
た。各2個について熱処理後反り変形量を測定し、平均
を求めた。
Then, 50% from both ends in a reducing atmosphere firing furnace.
mm, and heat-treated at 1400 ° C. × 100 hours. The warpage of each of the two samples was measured, and the average was determined.

【0038】結果を表3に示すように、フィンを形成す
ることによって耐クリープ性が向上することが確認され
た。
As shown in Table 3, it was confirmed that the formation of the fins improved the creep resistance.

【0039】[0039]

【表3】 [Table 3]

【0040】実験例4 実験例1と同じ伝熱管を用い、図4に示すような試験装
置に挿入し、内部に外径36mm、内径30mmの内管
を、伝熱管封止端から内管の端面までの距離が50mm
となる位置まで挿入した。
Experimental Example 4 Using the same heat transfer tube as in Experimental Example 1, the tube was inserted into a test device as shown in FIG. 4, and an inner tube having an outer diameter of 36 mm and an inner diameter of 30 mm was inserted from the sealed end of the heat transfer tube to the inner tube. The distance to the end face is 50mm
Inserted up to the position.

【0041】その後試験装置内を1400℃に加熱し、
内管から室温の空気を断続的に供給する熱サイクル試験
60分間行い、試験数5個のうちクラック等の破損を生
じた伝熱管数を調査した。
Thereafter, the inside of the test apparatus was heated to 1400 ° C.
A heat cycle test was conducted for 60 minutes in which room temperature air was intermittently supplied from the inner tube for 60 minutes, and the number of heat transfer tubes in which damage such as cracks occurred among the five test samples was investigated.

【0042】結果を表4に示すように、フィンを形成し
た伝熱管は形成していないNo.1の伝熱管と比べて破
損数が少ない。フィン同士の交差点となる封止端中央部
を中抜きとしたことで、封止部内面の中抜き部や交差部
周辺に温度境界層が生じ、内外面の熱応力を緩和されて
寿命が向上することが分かった。
As shown in Table 4, the heat transfer tubes with fins were not formed. The number of breaks is smaller than the heat transfer tube of No. 1. The central part of the sealing end, which is the intersection of the fins, is hollowed out, creating a temperature boundary layer around the hollowed out part and the intersection of the inner surface of the sealing part, reducing the thermal stress on the inner and outer surfaces and improving the life I found out.

【0043】[0043]

【表4】 [Table 4]

【0044】実験例5 表5に示す複数のセラミックスにより、内側に高さ12
mmのフィンが12枚形成された実験例1と同様の片側
封止の伝熱管を作製した。そして伝熱管を図4に示すよ
うな試験装置に挿入し、更に実験例1と同様に伝熱管内
部に内管を挿入した。
EXPERIMENTAL EXAMPLE 5 A plurality of ceramics shown in Table 5 were used to obtain a height 12 inside.
A one-side sealed heat transfer tube similar to that of Experimental Example 1 in which twelve mm fins were formed was produced. Then, the heat transfer tube was inserted into a test device as shown in FIG. 4, and an inner tube was further inserted inside the heat transfer tube as in Experimental Example 1.

【0045】そして、試験装置内を1200℃に加熱
し、内管内部に200℃に加熱された空気を供給した。
表1中No.1の炭化珪素質伝熱管にて伝熱管の開放端
側で500℃となるように供給する空気の流量を調整
し、他の伝熱管でも流量一定で評価が出来るように固定
した。そして、各材質の伝熱管で得られる空気の温度を
測定した。
Then, the inside of the test apparatus was heated to 1200 ° C., and air heated to 200 ° C. was supplied into the inner tube.
In Table 1, No. The flow rate of the supplied air was adjusted to 500 ° C. at the open end side of the heat transfer tube in the silicon carbide heat transfer tube of No. 1 and the other heat transfer tubes were fixed so that the flow rate could be evaluated at a constant flow rate. And the temperature of the air obtained by the heat transfer tube of each material was measured.

【0046】表5に結果を示す。同時に各材料の熱伝導
率と耐熱衝撃性の測定結果も示す。今回評価した材料内
では熱伝導率炭化珪素が最も高い空気温度を示した。ま
たアルミナとジルコニアは管が破損し測定できなかっ
た。本実験で炭化珪素が伝熱管材として最も優れている
ことが分かった。
Table 5 shows the results. At the same time, the measurement results of the thermal conductivity and thermal shock resistance of each material are also shown. Among the materials evaluated this time, silicon carbide having the highest thermal conductivity exhibited the highest air temperature. In addition, alumina and zirconia could not be measured because the tube was damaged. In this experiment, it was found that silicon carbide was the most excellent heat transfer tube material.

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【発明の効果】以上のように伝熱管の内側にフィンを形
成することにより熱伝達特性を高め、省スペース化を促
進できる。更に耐クリープ性、ハンドリング性を高める
ことができるため長寿命化が図れる。
As described above, by forming the fins inside the heat transfer tube, the heat transfer characteristics can be improved and the space saving can be promoted. Furthermore, since the creep resistance and the handling properties can be improved, the service life can be extended.

【0049】また片側を封止した伝熱管において封止端
部を曲面状とし、フィン同士の交差点となる封止部内面
の中央部を中抜きとすることにより、封止部の熱衝撃に
よる破損を抑えることができる。
In the heat transfer tube with one side sealed, the sealing end is curved and the center of the inner surface of the sealing portion, which is the intersection of the fins, is hollowed out, so that the sealing portion is damaged by thermal shock. Can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器用伝熱管を示す断面図であ
る。
FIG. 1 is a sectional view showing a heat exchanger tube for a heat exchanger of the present invention.

【図2】本発明の他の実施形態の断面図である。FIG. 2 is a sectional view of another embodiment of the present invention.

【図3】図2の伝熱管の使用状態を示す図である。FIG. 3 is a diagram showing a use state of the heat transfer tube of FIG. 2;

【図4】実験例で使用した試験装置の概略図である。FIG. 4 is a schematic diagram of a test apparatus used in an experimental example.

【符号の説明】[Explanation of symbols]

1:伝熱管 2:フィン 3:中抜き部 4:内管 1: heat transfer tube 2: fin 3: hollow part 4: inner tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】内外で熱交換を行うようにした伝熱管をセ
ラミックスで形成するとともに、その内面に複数のフィ
ンを一体的に形成したことを特徴とする熱交換器用伝熱
管。
1. A heat exchanger tube for a heat exchanger, wherein a heat exchanger tube for performing heat exchange inside and outside is formed of ceramics, and a plurality of fins are integrally formed on an inner surface thereof.
【請求項2】上記伝熱管の片側に、側面と滑らかに連続
する曲面状の封止部を形成するとともに、該封止部の内
面中央部にはフィンの存在しない中抜き部を備えたこと
を特徴とする請求項1記載の熱交換器用伝熱管。
2. A heat-transfer tube according to claim 1, wherein one side of the heat transfer tube is formed with a curved sealing portion smoothly continuing to the side surface, and a hollow portion having no fin is provided at a central portion of the inner surface of the sealing portion. The heat exchanger tube for a heat exchanger according to claim 1, wherein
【請求項3】炭化珪素を主成分とするセラミックスから
なることを特徴とする請求項1または2に記載の熱交換
器用伝熱管。
3. The heat exchanger tube for a heat exchanger according to claim 1, wherein the heat exchanger tube is made of a ceramic containing silicon carbide as a main component.
JP18670298A 1998-07-01 1998-07-01 Heat exchanger Expired - Fee Related JP3405679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18670298A JP3405679B2 (en) 1998-07-01 1998-07-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18670298A JP3405679B2 (en) 1998-07-01 1998-07-01 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2000018850A true JP2000018850A (en) 2000-01-18
JP3405679B2 JP3405679B2 (en) 2003-05-12

Family

ID=16193147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18670298A Expired - Fee Related JP3405679B2 (en) 1998-07-01 1998-07-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3405679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2265742A1 (en) * 2004-12-09 2007-02-16 Paulino Pastor Perez Refrigeration system for evaporation and condensation of circulating cooling water, has outer system of pipes made of porous material to retain water inside but allow part of water to evaporate using air from ventilators of internal circuit
JP2008149210A (en) * 2006-12-14 2008-07-03 Kyowa Shinku Gijutsu Kk Vapor condenser in vacuum device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2265742A1 (en) * 2004-12-09 2007-02-16 Paulino Pastor Perez Refrigeration system for evaporation and condensation of circulating cooling water, has outer system of pipes made of porous material to retain water inside but allow part of water to evaporate using air from ventilators of internal circuit
JP2008149210A (en) * 2006-12-14 2008-07-03 Kyowa Shinku Gijutsu Kk Vapor condenser in vacuum device
JP4717794B2 (en) * 2006-12-14 2011-07-06 共和真空技術株式会社 Steam condensate in vacuum equipment

Also Published As

Publication number Publication date
JP3405679B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
JPS6151240B2 (en)
JP5292690B2 (en) Heat storage member and heat exchanger using the same
JPS6183897A (en) Ceramic heat exchanging unit
US6484795B1 (en) Insert for a radiant tube
WO2019080625A1 (en) Heat exchanger, gas turbine, boiler, and heat exchanger preparation method
JP3405679B2 (en) Heat exchanger
JP6523415B2 (en) METHOD OF MANUFACTURING HEAT CONDUCTING MEMBER, HEAT CONDUCTING MEMBER MANUFACTURING DEVICE, AND JIG FOR MANUFACTURING HEAT CONDUCTING MEMBER
US9771927B2 (en) Heat/acoustic wave conversion component and heat/acoustic wave conversion unit
EP2998577A1 (en) Heat/acoustic wave conversion component and heat/acoustic wave conversion unit
CN109538881A (en) A kind of vacuum heat-insulation equipment and its production technology
JP5704131B2 (en) Heat storage member for regenerative heat exchanger and regenerative heat exchanger using the same
CN109053162B (en) Element capable of reinforcing radiation and preparation method
US20010024733A1 (en) Insert for a radiant tube
JPH02150691A (en) Honeycomb heat exchanger and manufacture thereof
JP2709709B2 (en) Manufacturing method of ceramic heat exchanger
CN212800129U (en) Curved surface glass bending heating bears device
JP6219705B2 (en) Manufacturing method of heat conduction member
KR100362846B1 (en) Heat accumulator for furnace regenerative combustion system_
CN218994065U (en) Hearth heating device of sintering furnace
US11998972B2 (en) Method and device for producing shrink-fitted member
JPH0868597A (en) Manufacture of burner heat accumulation body and structure thereof
JP2023140155A (en) Method and apparatus for producing multiple shrink-fitting members
CN116803591A (en) Method for manufacturing hot press-fitted component
JP2002286397A (en) Heat transfer tube for heat exchanger
JPS6039662Y2 (en) Ceramic heat transfer body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees