JP2008147103A - Manufacturing method for fuel-cell sealing structure - Google Patents

Manufacturing method for fuel-cell sealing structure Download PDF

Info

Publication number
JP2008147103A
JP2008147103A JP2006335327A JP2006335327A JP2008147103A JP 2008147103 A JP2008147103 A JP 2008147103A JP 2006335327 A JP2006335327 A JP 2006335327A JP 2006335327 A JP2006335327 A JP 2006335327A JP 2008147103 A JP2008147103 A JP 2008147103A
Authority
JP
Japan
Prior art keywords
power generation
generation body
mold
fuel cell
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006335327A
Other languages
Japanese (ja)
Other versions
JP5067528B2 (en
Inventor
Yoshihiro Kurano
慶宏 蔵野
Takeshi Masaka
武史 眞坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2006335327A priority Critical patent/JP5067528B2/en
Publication of JP2008147103A publication Critical patent/JP2008147103A/en
Application granted granted Critical
Publication of JP5067528B2 publication Critical patent/JP5067528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a fuel cell sealing structure that improves robustness in manufacturing while properly restricting a reduction in power generation region due to impregnation of a rubber material for gasket molding into each porous body constituting both sides in the thickness direction of a cell of a fuel cell. <P>SOLUTION: A filler made of a low viscosity or liquid rubber or a resin is impregnated into a region, having a prescribed width from the end face 1a of a power generation body 1, in each porous body 20 so as to form each impregnated part 21. After that or before that, recessed parts 1b, respectively having each engagement face 1c in the planar extension direction of the power generation body 1, are formed in the end face 1a of the power generation body 1 at prescribed intervals. The power generation body 1 is set in a die while the die inner face is brought into close contact with each impregnated part 21. A molding rubber material is filled into a cavity defined between the end face 1a and the die inner face so as to be crosslinked and cured. Consequently, it is possible to mold a gasket 3 that is joined to the power generation body 1 while being firmly and adheringly engaged with the power generation body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池スタックの各燃料電池セル間に形成される流路をシールするためのガスケットと、前記燃料電池セルの発電体における厚さ方向両側のGDLが一体化されたガスケット一体部品を製造する方法に関するものである。   The present invention includes a gasket for sealing a flow path formed between fuel cells of a fuel cell stack, and a gasket integrated part in which GDLs on both sides in the thickness direction of the power generator of the fuel cell are integrated. It relates to a method of manufacturing.

燃料電池は、電解質膜(イオン交換膜)の両面に一対の電極層を設けたMEA(Membrane Electrode Assembly:膜−電極複合体)の厚さ方向両側にGDL(Gas Diffusion Layer:ガス拡散層)を配置した発電体、あるいは電解質膜の両面に、多孔質のガス拡散電極層を配置したMEAからなる発電体を、セパレータで挟持して燃料電池セルとし、更にこの燃料電池セルを多数積層した、スタック構造を有する。そして、酸化ガス(空気)が、各セパレータの一方の面に形成された酸化ガス流路から、一方のGDLを介して発電体のカソード側に供給され、燃料ガス(水素)が、各セパレータの他方の面に形成された燃料ガス流路から、他方のガス拡散層を介して発電体のアノード側に供給され、水の電気分解の逆反応である電気化学反応、すなわち水素と酸素から水を生成する反応によって、電力を発生するものである。   The fuel cell has GDL (Gas Diffusion Layer) on both sides in the thickness direction of MEA (Membrane Electrode Assembly) with a pair of electrode layers on both sides of the electrolyte membrane (ion exchange membrane). A stack in which a power generation body made of MEA in which a porous gas diffusion electrode layer is disposed on both surfaces of the power generation body disposed on the electrolyte membrane is sandwiched between separators to form a fuel cell, and a number of these fuel cells are stacked. It has a structure. Then, the oxidizing gas (air) is supplied from the oxidizing gas flow path formed on one surface of each separator to the cathode side of the power generator via one GDL, and the fuel gas (hydrogen) is supplied to each separator. The fuel gas flow path formed on the other surface is supplied to the anode side of the power generator through the other gas diffusion layer, and the electrochemical reaction, which is the reverse reaction of water electrolysis, that is, water from hydrogen and oxygen is removed. Electric power is generated by the reaction to be generated.

このため、各燃料電池セルには、燃料ガスや酸化ガス、上述の電気化学反応により生成された水や、余剰空気等をシールするためのガスケットが例えば発電体に一体的に設けられ、燃料電池セルシールとしての燃料電池用シール構造体が構成される。図11及び図12は、従来の燃料電池用シール構造体の一例を示す断面図である。   For this reason, each fuel battery cell is integrally provided with a gasket for sealing a fuel gas, an oxidant gas, water generated by the above-described electrochemical reaction, surplus air, etc., for example, in the fuel cell. A fuel cell seal structure as a cell seal is formed. 11 and 12 are cross-sectional views showing an example of a conventional fuel cell seal structure.

この燃料電池用シール構造体において、参照符号100は、電解質膜111及びその両面に設けられた一対の電極層112,112からなるMEA110と、その両側に設けられたGDL120,120からなる発電体である。この発電体100には、ゴム状弾性材料からなるガスケット200が一体的に成形されている。   In this fuel cell seal structure, reference numeral 100 is a power generator composed of an electrolyte membrane 111 and an MEA 110 comprising a pair of electrode layers 112 and 112 provided on both sides thereof, and GDLs 120 and 120 provided on both sides thereof. is there. The power generator 100 is integrally formed with a gasket 200 made of a rubber-like elastic material.

図11に示される燃料電池用シール構造体は、発電体100に開設したスルーホール100aを通じて、成形用ゴム材料を賦形させることにより、それぞれシールリップ201を有するガスケット200,200を、発電体100の厚さ方向両側に、前記スルーホール100a内で成形用ゴム材料が硬化した部分202を介して互いに連結された形状に成形したものである。また、この成形に際して、低粘度又は液状である前記成形用ゴム材料の一部を、カーボン繊維等の多孔質体からなるGDL120,120に含浸させることによって、このGDL120,120に、ガスケット200,200と連続したゴム含浸部121,121を形成し、GDL120,120からの透過漏れのない構造としている(例えば下記の特許文献1参照)。
特開2003−7328号公報
In the fuel cell seal structure shown in FIG. 11, the molding rubber material is shaped through the through-hole 100 a opened in the power generation body 100, so that the gaskets 200 and 200 each having the seal lip 201 are formed into the power generation body 100. Are formed in a shape in which the rubber material for molding is connected to each other in the through hole 100a via the portions 202 which are hardened. Further, at the time of molding, a part of the molding rubber material having low viscosity or liquid is impregnated into the GDL 120, 120 made of a porous body such as carbon fiber, so that the GDL 120, 120 is filled with the gasket 200, 200. The rubber-impregnated portions 121 and 121 that are continuous with each other are formed so as to prevent permeation leakage from the GDLs 120 and 120 (see, for example, Patent Document 1 below).
JP 2003-7328 A

しかしながら、図11に示される構造のものは、スタックとしての組立状態において両側のセパレータ300,300によってガスケット200,200に作用する圧縮荷重が、GDL120,120にも作用するため、このGDL120,120に、過度の負荷がかかるおそれがある。   However, in the structure shown in FIG. 11, the compressive load acting on the gaskets 200, 200 by the separators 300, 300 on both sides in the assembled state as a stack also acts on the GDLs 120, 120. Excessive load may be applied.

そこで、図12に示される燃料電池用シール構造体は、セパレータ300によるガスケット200の圧縮荷重が、GDL120,120に作用することがないように、ガスケット200を、発電体100の平面延長方向を向いた端面100aに沿って無端状に延びる基部203と、その両側に形成されたシールリップ201,201を有する形状に成形したものである。カーボン繊維等の多孔質体からなるGDL120,120の周縁部には、低粘度又は液状の成形用ゴム材料を用いてガスケット200を成形する際に、この成形用ゴム材料の一部を含浸させたゴム含浸部121,121が形成されており、このゴム含浸部121,121を介してガスケット200がGDL120,120にしっかり接合されると共に、GDL120,120からの透過漏れのない構造としている。   Therefore, in the fuel cell seal structure shown in FIG. 12, the gasket 200 is oriented in the plane extension direction of the power generator 100 so that the compressive load of the gasket 200 by the separator 300 does not act on the GDLs 120 and 120. It is formed into a shape having a base 203 extending endlessly along the end face 100a and seal lips 201, 201 formed on both sides thereof. When the gasket 200 is molded using a low viscosity or liquid molding rubber material, a part of the molding rubber material is impregnated in the peripheral portion of the GDL 120 or 120 made of a porous body such as carbon fiber. Rubber impregnated portions 121, 121 are formed, and the gasket 200 is firmly joined to the GDLs 120, 120 via the rubber impregnated portions 121, 121, and there is no permeation leakage from the GDLs 120, 120.

しかしながら、カーボン繊維等の多孔質体からなるGDL120の気孔率にはバラツキがあるため、図12に示される構造のものは、低粘度又は液状の成形用ゴム材料を用いて金型でガスケット200を成形する際に、GDL120,120の周縁部への成形用ゴム材料の含浸を、適切に制限することが難しい。このため、成形用ゴム材料の充填圧力や粘度等を一定にしても、GDL120,120の気孔率等によっては、ゴム含浸部121,121の幅Wが必要以上に大きくなり、その分、MEA110における発電領域が狭まってしまうおそれがあった。   However, since the porosity of the GDL 120 made of a porous material such as carbon fiber varies, the structure shown in FIG. 12 has a gasket 200 formed of a mold using a low-viscosity or liquid molding rubber material. When molding, it is difficult to appropriately limit the impregnation of the molding rubber material into the peripheral portion of the GDL 120, 120. For this reason, even if the filling pressure and viscosity of the molding rubber material are constant, the width W of the rubber-impregnated portions 121 and 121 becomes larger than necessary depending on the porosity and the like of the GDLs 120 and 120. There was a risk that the power generation area would be narrowed.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題とするところは、発電体の周縁部に沿って、その端面に接合された状態でガスケットを一体的に設けた燃料電池用シール構造体の製造において、発電体の厚さ方向両側を構成する多孔質体へのガスケット成形用ゴム材料の含浸による発電領域の減少を適切に制限すると共に、製造上のロバスト性を向上させることにある。   The present invention has been made in view of the above points, and the technical problem is that the gasket is integrally formed in a state of being joined to the end face along the peripheral edge of the power generator. In the manufacture of the provided fuel cell seal structure, the reduction of the power generation area due to the impregnation of the gasket forming rubber material into the porous body constituting both sides in the thickness direction of the power generation body is appropriately limited, and the manufacturing robustness It is to improve the performance.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る燃料電池用シール構造体の製造方法は、燃料電池セルの発電体にその平面延長方向を向いた端面に沿ってガスケットを一体的に設けた燃料電池用シール構造体の製造において、前記発電体の厚さ方向両側部分を構成する多孔質体のうち、前記端面から所定幅の領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることにより含浸部を形成する工程と、その後、前記発電体の端面に前記平面延長方向に対する係合面を持った凹部を所定間隔で形成する工程と、前記発電体を金型内にセットしてこの金型の内面を前記含浸部に密接させ、前記端面と前記金型の内面との間に画成されたキャビティに成形用ゴム材料を充填して架橋硬化させる工程とを備える。   As a means for effectively solving the technical problem described above, the method for manufacturing a fuel cell seal structure according to the invention of claim 1 is directed to an electric power generator of a fuel cell along an end surface facing the planar extension direction. In the production of the fuel cell seal structure in which the gasket is integrally provided, among the porous bodies constituting the both sides in the thickness direction of the power generation body, a low-viscosity or liquid state is formed in a region having a predetermined width from the end face. A step of forming an impregnated portion by impregnating a sealant made of rubber or resin and curing it by cross-linking, and then forming recesses having engagement surfaces with respect to the planar extension direction on the end surface of the power generator at predetermined intervals. A rubber material for molding in a cavity defined between the end surface and the inner surface of the mold, and the step of setting the power generator in the mold and bringing the inner surface of the mold into intimate contact with the impregnation portion Filled with cross-linked cured And a that process.

また、請求項2の発明に係る燃料電池用シール構造体の製造方法は、請求項1における成形用ゴム材料の含浸・架橋硬化と、発電体の端面に凹部を形成する順番とを逆にしたものであり、すなわち、発電体の端面に発電体の平面延長方向に対する係合面を持った凹部を所定間隔で形成する工程と、その後、前記発電体の厚さ方向両側部分を構成する多孔質体のうち、前記端面から所定幅の領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることにより含浸部を形成する工程と、前記発電体を金型内にセットしてこの金型の内面を前記含浸部に密接させ、前記端面と前記金型の内面との間に画成されたキャビティに成形用ゴム材料を充填して架橋硬化させる工程とを備える。   According to a second aspect of the present invention, there is provided a method for manufacturing a fuel cell seal structure, wherein the molding rubber material impregnation / crosslinking curing according to the first aspect and the order of forming the recesses on the end face of the power generator are reversed. That is, a step of forming concave portions having engagement surfaces with respect to the planar extension direction of the power generation body at predetermined intervals on the end face of the power generation body, and then a porous material constituting both side portions in the thickness direction of the power generation body A step of forming an impregnated portion by impregnating a sealing material made of low-viscosity or liquid rubber or resin into a region having a predetermined width from the end face of the body and crosslinking and curing the power generation body in the mold And setting the inner surface of the mold in close contact with the impregnated portion, filling the cavity defined between the end surface and the inner surface of the mold with a molding rubber material, and crosslinking and curing. .

なお、ここでいう発電体とは、電解質膜の両面に一対の電極層を設けたMEAの厚さ方向両側に多孔質体からなるGDLを配置した発電体、あるいは電解質膜の両面に多孔質体からなるガス拡散電極層を配置した発電体を含むものである。   Here, the power generation body means a power generation body in which a GDL made of a porous body is arranged on both sides in the thickness direction of the MEA provided with a pair of electrode layers on both sides of the electrolyte membrane, or a porous body on both sides of the electrolyte membrane. It includes a power generator having a gas diffusion electrode layer made of

これらの方法によれば、発電体の厚さ方向両側部分を構成する多孔質体のうち、この発電体の端面から所定幅の領域に、予め低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることによって、この部分は、多孔質体の連続気孔がゴム又は樹脂で目止めされた含浸部となる。このため、前記発電体を金型内にセットして型締めする際に、前記含浸部に、発電体の端面と金型内面との間に画成されるキャビティを密封するのに必要・十分な型締め力を与えることができ、その後のガスケット成形工程において、キャビティ内に充填された成形用ゴム材料の漏出や、多孔質体への浸透が防止される。   According to these methods, a sealing material made of a low-viscosity or liquid rubber or resin in advance in a region having a predetermined width from the end face of the power generation body among the porous bodies constituting both sides in the thickness direction of the power generation body. By impregnating and curing by crosslinking, this portion becomes an impregnation portion in which the continuous pores of the porous body are sealed with rubber or resin. Therefore, when the power generator is set in a mold and clamped, it is necessary / sufficient to seal a cavity defined between the end face of the power generator and the inner surface of the mold in the impregnated portion. A mold clamping force can be applied, and leakage of the molding rubber material filled in the cavity and penetration into the porous body can be prevented in the subsequent gasket molding process.

また、発電体の端面には、発電体の平面延長方向に対する係合面を持った凹部が予め形成されているため、キャビティ内に充填された成形用ゴム材料は、前記凹部に流れ込んだ部分が架橋硬化する過程でこの凹部と密着係合状態となり、これによって、ガスケットが成形と同時に発電体と一体化される。   In addition, since a recess having an engaging surface with respect to the planar extension direction of the power generator is formed in advance on the end face of the power generator, the molding rubber material filled in the cavity has a portion that flows into the recess. In the process of cross-linking and curing, the recesses are brought into close contact with each other, whereby the gasket is integrated with the power generator simultaneously with molding.

請求項1又は2の発明によれば、発電体に、その端面に形成した凹部との密着係合によってしっかり接合されたガスケットを有する燃料電池用シール構造体を得ることができる。そして、発電体における多孔質体には、ガスケットの成形前に、予め液状のゴム又は樹脂からなる目止め材を含浸するので、発電体の端面から一定の幅の含浸部を容易に形成することができ、しかもガスケットの成形過程でキャビティから発電領域側へ漏れようとする成形用ゴム材料が、前記含浸部によって堰き止められるので、発電領域が成形用ゴムの浸透によって狭まってしまうのを有効に防止することができる。また、ガスケットの成形過程では多孔質体に成形用ゴム材料を含浸させる目的でキャビティへの充填圧を高圧にする必要がないため、製造過程での各種の制御に必要な不確定要素を減少させて、ロバスト性を向上させることができる。   According to the first or second aspect of the invention, it is possible to obtain a fuel cell seal structure having a gasket firmly joined to the power generator by close engagement with a recess formed on the end face thereof. And since the porous body in the power generation body is impregnated with a sealing material made of liquid rubber or resin in advance before molding the gasket, an impregnation portion having a certain width can be easily formed from the end face of the power generation body. In addition, since the molding rubber material that leaks from the cavity to the power generation area side in the gasket molding process is blocked by the impregnated portion, it is effective that the power generation area is narrowed by the penetration of the molding rubber. Can be prevented. In addition, in the gasket molding process, it is not necessary to increase the filling pressure in the cavity for the purpose of impregnating the porous material with the molding rubber material, thereby reducing the uncertainties necessary for various controls in the manufacturing process. Thus, robustness can be improved.

以下、本発明に係る燃料電池用シール構造体の製造方法の好ましい実施の形態について、図面を参照しながら説明する。図1は、本発明に係る燃料電池用シール構造体の製造方法を実施する発電体1の一部を示すもので、(A)は断面図、(B)は平面図である。すなわち、図1に示される発電体1は、電解質膜11の両面に一対の電極層12を設けたMEA10の厚さ方向両側に、GDL20を配置したものである。なお、GDL20は、請求項1又は2に記載された「多孔質体」に相当するものであって、カーボン繊維等からなる。   Hereinafter, a preferred embodiment of a method for producing a fuel cell seal structure according to the present invention will be described with reference to the drawings. 1A and 1B show a part of a power generator 1 for carrying out a method for producing a fuel cell seal structure according to the present invention, wherein FIG. 1A is a sectional view and FIG. 1B is a plan view. That is, the power generator 1 shown in FIG. 1 has GDLs 20 arranged on both sides in the thickness direction of the MEA 10 in which a pair of electrode layers 12 are provided on both surfaces of the electrolyte membrane 11. The GDL 20 corresponds to the “porous body” described in claim 1 or 2 and is made of carbon fiber or the like.

図2は、本発明に係る燃料電池用シール構造体の製造方法において、発電体1のGDL20に含浸部21を形成した状態を示すもので、(A)は断面図、(B)は平面図である。すなわち、発電体1の厚さ方向両側部分を構成するGDL20には、予め、発電体1の平面延長方向を向いた端面1aから所定幅Wの領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることにより含浸部21を形成する。この工程には、例えば前記目止め材を貯留した液槽に、発電体1を所定深さまで浸漬することによって含浸させる方法や、スクリーン印刷又はディスペンサー押し出しにより前記目止め材を塗布・含浸させる方法などを採用することができ、このため、発電体1の端面1aから一定の幅Wの含浸部21を容易に形成することができる。   2A and 2B show a state in which an impregnation portion 21 is formed on the GDL 20 of the power generator 1 in the method for manufacturing a fuel cell seal structure according to the present invention, where FIG. 2A is a cross-sectional view and FIG. 2B is a plan view. It is. That is, the GDL 20 constituting both side portions in the thickness direction of the power generator 1 is made of a low-viscosity or liquid rubber or resin in a region having a predetermined width W from the end surface 1a facing the planar extension direction of the power generator 1 in advance. The impregnated portion 21 is formed by impregnating the sealing material and crosslinking and curing. In this step, for example, a method of impregnating the power generator 1 by immersing it in a liquid tank storing the sealing material to a predetermined depth, a method of applying and impregnating the sealing material by screen printing or dispenser extrusion, etc. Therefore, it is possible to easily form the impregnated portion 21 having a certain width W from the end face 1a of the power generator 1.

上述した目止め材としては、GDL20の連続気孔に浸透可能で、MEA10における発電機能に悪影響を及ぼす溶出ガスなどを発生しないものが好ましく、例えば、低粘度又は液状のフッ素ゴム、EPDM、シリコーンゴム、アクリルゴムなどのゴム材、あるいは低粘度又は液状のエポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂などの樹脂材が使用可能である。   As the above-mentioned sealing material, those that can penetrate into the continuous pores of GDL 20 and do not generate elution gas that adversely affects the power generation function in MEA 10 are preferable. For example, low-viscosity or liquid fluorine rubber, EPDM, silicone rubber, A rubber material such as acrylic rubber, or a resin material such as a low-viscosity or liquid epoxy resin, silicone resin, phenol resin, or urethane resin can be used.

このようにしてGDL20の周縁部に形成された含浸部21では、GDL20の繊維間の間隙等による連続気孔がゴム又は樹脂で埋められ、目止めされた構造となっている。   Thus, in the impregnation part 21 formed in the peripheral part of GDL20, the continuous pore by the gap | interval etc. between the fibers of GDL20 is filled with rubber | gum or resin, and it has the structure sealed.

図3は、本発明に係る燃料電池用シール構造体の製造方法において、GDL20に含浸部21を形成し、発電体1の端面1aに凹部1bを形成した状態を示すもので、(A)は断面図、(B)は平面図である。すなわち、GDL20の周縁部に含浸部21を形成した発電体1の端面1aには、平面延長方向に対する係合面1cを持った多数の凹部1bを所定間隔で切欠形成する。図示の例では、各凹部1bは蟻溝状であって、その両内側面が、溝開口端部側ほど間口が狭まるように互いに略対称に傾斜した係合面1cとなっている。   FIG. 3 shows a state in which the impregnated portion 21 is formed in the GDL 20 and the concave portion 1b is formed in the end surface 1a of the power generator 1, in the method for manufacturing the fuel cell seal structure according to the present invention. Sectional drawing and (B) are top views. That is, a large number of recesses 1b having engagement surfaces 1c with respect to the planar extension direction are formed at predetermined intervals on the end surface 1a of the power generator 1 in which the impregnated portion 21 is formed on the peripheral edge of the GDL 20. In the illustrated example, each concave portion 1b has a dovetail shape, and both inner side surfaces thereof are engaging surfaces 1c inclined substantially symmetrically so that the front end is narrowed toward the groove opening end side.

この凹部1bは、治具を用いて一度に打ち抜くといった方法によって、容易に形成することができ、凹部1bの深さDは、含浸部21の幅Wよりも小さいものとなっている。   The recess 1b can be easily formed by a method of punching at once using a jig, and the depth D of the recess 1b is smaller than the width W of the impregnation portion 21.

図4は、本発明に係る燃料電池用シール構造体の製造方法において、ガスケットを成形する工程を示す説明図である。すなわち、上述のようにしてGDL20の周縁部に含浸部21を形成すると共に端面1aに多数の凹部1bを形成した発電体1は、金型4内にセットされる。すなわち、金型4は互いに接離される上型41と下型42からなるものであって、互いに対向されるその内面には、発電体1の周縁部、言い換えればGDL20の周縁の含浸部21を型締めによって挟持可能な挟持面41a,42aが形成され、その外周側へ延びる内面41b,42bと、発電体1の端面1aとの間でキャビティ43が画成されるようになっている。上型41には、キャビティ43へ向けてゲート44が開設されている。   FIG. 4 is an explanatory diagram showing a process of molding a gasket in the method for manufacturing a fuel cell seal structure according to the present invention. In other words, the power generator 1 in which the impregnated portion 21 is formed in the peripheral portion of the GDL 20 and a large number of the concave portions 1b are formed in the end surface 1a as described above is set in the mold 4. That is, the mold 4 is composed of an upper mold 41 and a lower mold 42 that are brought into contact with and separated from each other, and on the inner surfaces facing each other, the peripheral portion of the power generator 1, in other words, the impregnation portion 21 at the peripheral edge of the GDL 20 Clamping surfaces 41 a and 42 a that can be clamped by clamping are formed, and a cavity 43 is defined between the inner surfaces 41 b and 42 b that extend to the outer peripheral side and the end surface 1 a of the power generator 1. In the upper mold 41, a gate 44 is opened toward the cavity 43.

キャビティ43は、後述の図5に示されるガスケット3を成形する空間であって、すなわち、ガスケット3の基部33と対応する形状の基部成形部431と、ガスケット3のシールリップ32,32と対応する形状のシールリップ成形部432,432とからなる。そして、発電体1を、金型4内にセットして図4に示されるように型締めすると、発電体1のGDL20における含浸部21が、上型41及び下型42の挟持面41a,42a間で型締め力(圧縮力)を受け、すなわち金型内面である挟持面41a,42aと含浸部21が、適当な面圧で密接された状態となる。   The cavity 43 is a space for molding the gasket 3 shown in FIG. 5 described later. That is, the cavity 43 corresponds to the base molding portion 431 having a shape corresponding to the base 33 of the gasket 3 and the seal lips 32 and 32 of the gasket 3. The seal lip molding portions 432 and 432 are shaped. Then, when the power generator 1 is set in the mold 4 and clamped as shown in FIG. 4, the impregnation portion 21 in the GDL 20 of the power generator 1 causes the clamping surfaces 41 a and 42 a of the upper mold 41 and the lower mold 42. A clamping force (compression force) is received between them, that is, the clamping surfaces 41a and 42a, which are inner surfaces of the mold, and the impregnated portion 21 are brought into close contact with each other with an appropriate surface pressure.

次に、図4に示される型締め状態で、不図示の成形機からゲート44を通じて、成形用ゴム材料を、キャビティ43内へ充填する。ここで使用可能な成形用ゴム材料も、MEA10における発電機能に悪影響を及ぼす溶出ガスなどを発生しないものが好ましく、例えば低粘度又は液状のフッ素ゴム、EPDM、シリコーンゴム、アクリルゴムなどが使用可能である。成形方法としては、液状の成形用ゴム材料によるLIM成形や、低粘度の成形用ゴム材料によるSIM成形あるいは圧縮成形が採用される。   Next, the molding rubber material is filled into the cavity 43 from the molding machine (not shown) through the gate 44 in the clamped state shown in FIG. The molding rubber material that can be used here is preferably one that does not generate an elution gas that adversely affects the power generation function in the MEA 10. For example, low-viscosity or liquid fluorine rubber, EPDM, silicone rubber, acrylic rubber, or the like can be used. is there. As the molding method, LIM molding using a liquid molding rubber material, SIM molding or compression molding using a low viscosity molding rubber material is employed.

また、発電体1のGDL20の周縁部は、繊維間の間隙等による連続気孔がゴム又は樹脂で目止めされた含浸部21となっているので、キャビティ43内の低粘度又は液状の成形用ゴム材料がGDL20へ浸透することはなく、前記含浸部21が上型41及び下型42の挟持面41a,42aに適当な面圧で密接されているので、この密接面間からの成形用ゴム材料の漏れも防止される。しかも、挟持面41a,42a間でGDL20を挟持する場合と異なり、圧縮率の制約を緩和することができ、成形用ゴム材料をGDL20へ含浸させる目的でキャビティ43への成形用ゴム材料の充填圧を高圧にする必要がない。   Further, the peripheral edge portion of the GDL 20 of the power generator 1 is an impregnated portion 21 in which continuous pores due to gaps between fibers or the like are sealed with rubber or resin, so that the low-viscosity or liquid molding rubber in the cavity 43 is formed. The material does not penetrate into the GDL 20, and the impregnated portion 21 is in intimate contact with the clamping surfaces 41a and 42a of the upper die 41 and the lower die 42 with an appropriate surface pressure. Leakage is also prevented. Moreover, unlike the case where the GDL 20 is sandwiched between the clamping surfaces 41a and 42a, the compression rate restriction can be relaxed, and the filling pressure of the molding rubber material into the cavity 43 for the purpose of impregnating the GDL 20 with the molding rubber material. There is no need to use high pressure.

また、発電体1の端面1aには、溝肩側ほど間口が狭まるように互いに略対称に傾斜した係合面1cを有する蟻溝状の凹部1bが所定間隔で多数切欠形成されているので、キャビティ43内に充填された成形用ゴム材料の一部は、各凹部1bに流れ込んで架橋硬化する。   In addition, the end face 1a of the power generation body 1 is formed with a plurality of dovetail recesses 1b having engagement surfaces 1c inclined substantially symmetrically so as to narrow the front end toward the groove shoulder side, so that a plurality of notches are formed at predetermined intervals. A part of the molding rubber material filled in the cavity 43 flows into each recess 1b and is cured by crosslinking.

図5は、本発明によって製造された燃料電池用シール構造体を示すもので、(A)は断面図、(B)は平面図である。すなわち、図4に示されるキャビティ43内に充填された成形用ゴム材料が架橋硬化したら、上型41と下型42を離間することによって型開きを行い、製品(燃料電池用シール構造体)を取り出す。この燃料電池用シール構造体は、図5に示されるように、電解質膜11及びその両面の電極層12からなるMEA10の両側にGDL20が設けられた発電体1と、その平面延長方向を向いた端面1aに沿って一体的に成形されたゴム状弾性材料からなるガスケット3とを備える。   5A and 5B show a fuel cell seal structure manufactured according to the present invention, in which FIG. 5A is a sectional view and FIG. 5B is a plan view. That is, when the molding rubber material filled in the cavity 43 shown in FIG. 4 is cross-linked and cured, the upper mold 41 and the lower mold 42 are separated from each other to open the product (fuel cell seal structure). Take out. As shown in FIG. 5, the fuel cell seal structure has a power generator 1 in which GDLs 20 are provided on both sides of an MEA 10 composed of an electrolyte membrane 11 and electrode layers 12 on both sides thereof, and a plane extending direction thereof. And a gasket 3 made of a rubber-like elastic material integrally formed along the end face 1a.

詳しくは、ガスケット3は、発電体1の平面延長方向を向いた端面1aに沿って無端状に延びる基部31と、そこから厚さ方向両側へ突出したシールリップ32を有する形状であって、図4のキャビティ43内で成形された部分である。このガスケット3と発電体1は、発電体1の端面1aに形成された蟻溝状の多数の凹部1bと、この凹部1b内で架橋硬化することによって成形された多数の突部33において、互いに密着されている。そして、各凹部1bにおける傾斜した係合面1cは、これに密接された突部33の被係合面33aに対して、発電体1の平面延長方向への係合力を発揮するので、ガスケット3と発電体1は、この凹部1bと突部33においてしっかり密着係合された状態で接合されている。   Specifically, the gasket 3 has a shape having a base 31 extending endlessly along the end surface 1a facing the planar extension direction of the power generator 1, and a seal lip 32 protruding from both sides in the thickness direction. 4 is a portion molded in the cavity 43. The gasket 3 and the power generation body 1 are connected to each other in a large number of dovetail-shaped recesses 1b formed on the end surface 1a of the power generation body 1 and a large number of protrusions 33 formed by crosslinking and curing in the recesses 1b. It is in close contact. And since the inclined engaging surface 1c in each recessed part 1b exhibits the engaging force in the plane extension direction of the electric power generation body 1 with respect to the to-be-engaged surface 33a of the protrusion 33 closely_contact | adhered to this, the gasket 3 The power generator 1 is joined in a state of being tightly engaged with the recess 1b and the protrusion 33.

図6は、上述のようにして製造された燃料電池用シール構造体と、燃料電池用セパレータとの関係を示す断面図である。すなわち、この燃料電池用シール構造体は、図6に一点鎖線で示されるセパレータ5と共に燃料電池セルを構成するもので、組立状態において、ガスケット3のシールリップ32が、両側のセパレータ5に適当に圧縮された状態で密接することにより、燃料ガスや酸化ガス等に対するシール機能を奏する。そして、このガスケット3は、発電体1の平面延長方向を向いた端面1aに沿ってその外周を延びるように設けられているので、シールリップ32の圧縮による反力がGDL20に過度な負荷となって直接作用するようなことはない。   FIG. 6 is a cross-sectional view showing the relationship between the fuel cell seal structure manufactured as described above and the fuel cell separator. That is, this fuel cell seal structure constitutes a fuel cell together with the separator 5 indicated by the alternate long and short dash line in FIG. 6. In the assembled state, the seal lip 32 of the gasket 3 is appropriately applied to the separators 5 on both sides. By closely contacting in a compressed state, a sealing function against fuel gas, oxidizing gas, and the like is achieved. And since this gasket 3 is provided so that the outer periphery may be extended along the end surface 1a which faced the planar extension direction of the electric power generation body 1, the reaction force by compression of the seal lip 32 will become an excessive load to GDL20. Does not act directly.

また、多孔質体であるGDL20の周縁部は、連続気孔が目止めされた含浸部21となっており、しかもその外周側がガスケット3で包囲されているので、密封対象のガス等が、GDL20の内部をその平面延長方向へ移動して外部へ浸透漏れするのを防止できる。   Moreover, since the peripheral part of GDL20 which is a porous body becomes the impregnation part 21 with which the continuous pores were plugged, and the outer peripheral side is surrounded by the gasket 3, gas etc. of sealing object of GDL20 It is possible to prevent the inside from moving in the plane extension direction and leaking into the outside.

なお、上述の製造方法では、発電体1のGDL20の周縁部に目止め材を含浸して含浸部21を形成してから、発電体1の端面1aに蟻溝状の凹部1bを形成したが、これとは逆に、発電体1の端面1aに蟻溝状の凹部1bを形成してから、GDL20の周縁部に目止め材を含浸して含浸部21を形成しても良い。   In the manufacturing method described above, the impregnation portion 21 is formed by impregnating the peripheral portion of the GDL 20 of the power generation body 1 to form the impregnation portion 21, and then the dovetail recess 1 b is formed on the end surface 1 a of the power generation body 1. On the contrary, after forming the dovetail-shaped recess 1b on the end face 1a of the power generator 1, the impregnation part 21 may be formed by impregnating the edge of the GDL 20 with a sealing material.

図7は、本発明における他の形態による製造方法として、GDL20への含浸部の形成前に、発電体1の端面1aに凹部1bを形成した状態を示すもので、(A)は断面図、(B)は平面図である。すなわちこの方法においては、まず図1に示される発電体1の端面1aに、発電体1の平面延長方向に対する係合面1cを持った多数の凹部1bを所定間隔で切欠形成する。図示の例では、各凹部1bは蟻溝状であって、その両内側面が、溝肩側ほど間口が狭まるように互いに略対称に傾斜した係合面1cとなっている。   FIG. 7 shows a state in which the concave portion 1b is formed in the end surface 1a of the power generator 1 before the formation of the impregnation portion in the GDL 20 as a manufacturing method according to another embodiment of the present invention. (B) is a plan view. That is, in this method, first, a large number of recesses 1b having engagement surfaces 1c with respect to the planar extension direction of the power generator 1 are formed at predetermined intervals on the end face 1a of the power generator 1 shown in FIG. In the illustrated example, each recess 1b has a dovetail shape, and both inner side surfaces thereof are engaging surfaces 1c that are inclined substantially symmetrically so that the front end is narrower toward the groove shoulder side.

そして、凹部1bの形成後は、先に説明した図3に示されるように、発電体1の厚さ方向両側部分を構成するGDL20のうち、発電体1の平面延長方向を向いた端面1aから、凹部1bの深さDよりも大きい所定幅Wの領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることにより含浸部21を形成する。その後の工程は、先に説明した方法と同様である。   And after formation of the recessed part 1b, as FIG. 3 demonstrated previously demonstrates from the end surface 1a which faced the planar extension direction of the electric power generation body 1 among GDL20 which comprises the thickness direction both sides part of the electric power generation body 1. Then, the impregnated portion 21 is formed by impregnating a region having a predetermined width W larger than the depth D of the concave portion 1b with a sealing material made of low-viscosity or liquid rubber or resin and curing it. Subsequent steps are the same as those described above.

また、凹部1bの形状は、発電体1の平面延長方向に対する係合面1cを有するものであれば、蟻溝状以外の形状であっても良い。図8は、その形状例を示すもので、(A)は断面図、(B)は平面図である。   Moreover, the shape of the recessed part 1b may be shapes other than dovetail shape, as long as it has the engaging surface 1c with respect to the planar extension direction of the electric power generation body 1. FIG. FIG. 8 shows an example of the shape, where (A) is a cross-sectional view and (B) is a plan view.

すなわち、図8に例示された凹部1bは、鉤形に形成されたものであって、内面に、発電体1の平面延長方向に対する係合面1cが段差状に形成されており、凹部1bの深さDは、含浸部21の幅Wよりも小さいものとなっている。そしてこの場合も、凹部1bは、発電体1のGDL20の周縁部に目止め材を含浸して含浸部21を形成した後で形成しても良いし、あるいは凹部1bを形成してから、GDL20の周縁部に目止め材を含浸して含浸部21を形成しても良い。   That is, the recess 1b illustrated in FIG. 8 is formed in a bowl shape, and an engagement surface 1c with respect to the planar extension direction of the power generator 1 is formed in a step shape on the inner surface. The depth D is smaller than the width W of the impregnation portion 21. Also in this case, the concave portion 1b may be formed after the impregnated portion 21 is formed by impregnating the peripheral edge portion of the GDL 20 of the power generating body 1 or after forming the concave portion 1b. The impregnated portion 21 may be formed by impregnating the peripheral edge portion with a sealing material.

その後、先に説明した図4のような成形工程によって、ガスケットを一体成形する。この成形工程において、発電体1に形成された凹部1bと、これに成形用ゴム材料の一部が流れ込んで架橋硬化することにより成形された多数の鉤状の突部33は、互いに密着される。そして各凹部1bにおける段差状の係合面1cは、これに対応して形成された突部33の被係合面33aに対して、発電体1の平面延長方向への係合力を発揮するので、ガスケット3と発電体1は、この凹部1bと突部33においてしっかり密着係合された状態で接合される。   Thereafter, the gasket is integrally molded by the molding process as shown in FIG. In this molding step, the recesses 1b formed in the power generation body 1 and a plurality of hook-shaped protrusions 33 formed by a part of the molding rubber material flowing into this and cross-linking and curing are in close contact with each other. . And the step-shaped engaging surface 1c in each recessed part 1b exhibits the engaging force in the plane extension direction of the electric power generation body 1 with respect to the to-be-engaged surface 33a of the protrusion 33 formed corresponding to this. The gasket 3 and the power generator 1 are joined in a state of being tightly engaged at the recess 1b and the protrusion 33.

次に図9及び図10は、本発明の製造方法を、MEA10のみからなる発電体1にガスケットを一体化する方法に適用した例を示すもので、(A)は断面図、(B)は平面図である。すなわち図9及び図10に示される発電体1は、電解質膜11の両面に、例えばGDLなどに使われるカーボン繊維等の多孔質体の少なくとも電解質膜接触面に電極用触媒を担持したガス拡散電極層13を積層状態に設けたもので、この場合も、基本的には先に説明した方法と同様の工程で、燃料電池用シール構造体を製造することができる。   Next, FIG. 9 and FIG. 10 show an example in which the manufacturing method of the present invention is applied to a method of integrating a gasket with a power generator 1 consisting only of MEA 10, wherein (A) is a cross-sectional view and (B) is a cross-sectional view. It is a top view. That is, the power generation body 1 shown in FIGS. 9 and 10 is a gas diffusion electrode in which an electrode catalyst is supported on both surfaces of an electrolyte membrane 11 and at least an electrolyte membrane contact surface of a porous body such as carbon fiber used for GDL or the like. The layer 13 is provided in a laminated state, and in this case as well, a fuel cell seal structure can be manufactured basically in the same process as described above.

詳しくは、発電体1(MEA10)の厚さ方向両側部分を構成する多孔質体からなるガス拡散電極層13のうち、発電体1の端面1aから所定幅Wの領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることによって含浸部131を形成してから、発電体1の端面1aに発電体1の平面延長方向に対する係合面1cを持った多数の凹部1bを所定間隔で形成するか、あるいはその逆に、発電体1の端面1aに発電体1の平面延長方向に対する係合面1cを持った多数の凹部1bを所定間隔で形成してから、発電体1の端面1aから所定幅Wの領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることによって含浸部131を形成する。   Specifically, in the gas diffusion electrode layer 13 made of a porous body constituting both sides in the thickness direction of the power generation body 1 (MEA 10), a low-viscosity or liquid state is formed in a region having a predetermined width W from the end face 1a of the power generation body 1. After impregnating part 131 is formed by impregnating a sealing material made of rubber or resin and curing by cross-linking, a large number of engagement surfaces 1c with respect to the planar extension direction of power generator 1 are provided on end surface 1a of power generator 1. The recesses 1b are formed at predetermined intervals, or conversely, a plurality of recesses 1b having engagement surfaces 1c with respect to the planar extension direction of the power generator 1 are formed at predetermined intervals on the end surface 1a of the power generator 1. The impregnated portion 131 is formed by impregnating an area of a predetermined width W from the end face 1a of the power generator 1 with a sealing material made of low-viscosity or liquid rubber or resin and curing it.

このようにしてガス拡散電極層13の周縁部に形成された含浸部131では、ガス拡散電極層13の連続気孔がゴム又は樹脂で埋められ、目止めされた構造となっている。なお、この場合の含浸部131の形成にも、例えば液状の目止め材を貯留した液槽に、発電体1を所定深さまで浸漬することによって含浸させる方法や、スクリーン印刷又はディスペンサー押し出しにより前記目止め材を塗布・含浸させる方法などを採用することができ、したがって、発電体1の端面1aから一定の幅Wの含浸部21を容易に形成することができる。   Thus, in the impregnation part 131 formed in the peripheral part of the gas diffusion electrode layer 13, the continuous pores of the gas diffusion electrode layer 13 are filled with rubber or resin to have a structure that is sealed. In this case, the impregnation portion 131 is also formed by, for example, a method of impregnating the power generator 1 by immersing it in a liquid tank storing a liquid sealing material to a predetermined depth, or by screen printing or dispenser extrusion. A method of applying and impregnating a stopper can be employed, and therefore, the impregnation portion 21 having a certain width W can be easily formed from the end face 1a of the power generator 1.

なお、図9に示される凹部1bは蟻溝状であって、その両内側面が、溝肩側ほど間口が狭まるように互いに略対称に傾斜した係合面1cとなっている。また、図10に示される凹部1bは鉤形に形成されたものであって、内面に、係合面1cが段差状に形成されている。   The recess 1b shown in FIG. 9 has a dovetail shape, and both inner side surfaces thereof are engaging surfaces 1c inclined substantially symmetrically so that the front end is narrower toward the groove shoulder side. Moreover, the recessed part 1b shown by FIG. 10 is formed in the bowl shape, Comprising: The engagement surface 1c is formed in the inner surface at the level | step difference form.

次に、上述の工程によって含浸部131及び凹部1bが形成された発電体1を不図示の金型内にセットして、先に説明した成形工程と同様、金型の内面間に含浸部131を密接挟持させ、発電体1と前記金型の内面との間に画成されたキャビティに低粘度又は液状の成形用ゴム材料を充填して架橋硬化させる。   Next, the power generator 1 in which the impregnated portion 131 and the concave portion 1b are formed by the above-described steps is set in a mold (not shown), and the impregnated portion 131 is interposed between the inner surfaces of the mold in the same manner as the molding step described above. Then, the cavity defined between the power generator 1 and the inner surface of the mold is filled with a low-viscosity or liquid molding rubber material and cured by crosslinking.

そしてこの成形工程では、キャビティに充填された低粘度又は液状の成形用ゴム材料の漏れが、含浸部131及びこの含浸部131と金型内面との密接部において有効に遮断されるため、ガス拡散電極層13への成形用ゴム材料の浸透や漏れによって発電領域が狭まってしまうのを有効に防止することができる。そして、金型内面間でガス拡散電極層13を挟持する場合と異なり、圧縮率の制約を緩和することができ、成形用ゴム材料をガス拡散電極層13へ含浸させる目的でキャビティへの成形用ゴム材料の充填圧を高圧にする必要がない。   In this molding process, the leakage of the low viscosity or liquid molding rubber material filled in the cavity is effectively blocked at the impregnation portion 131 and the close contact portion between the impregnation portion 131 and the mold inner surface. It is possible to effectively prevent the power generation region from being narrowed by the penetration or leakage of the molding rubber material into the electrode layer 13. Unlike the case where the gas diffusion electrode layer 13 is sandwiched between the inner surfaces of the mold, the restriction on the compressibility can be relaxed, and for molding into the cavity for the purpose of impregnating the gas diffusion electrode layer 13 with the rubber material for molding. There is no need to increase the filling pressure of the rubber material.

この方法によって製造された燃料電池用シール構造体は、電解質膜11及びその両面のガス拡散電極層13,13からなるMEA10のみによる発電体1と、その平面延長方向を向いた端面1aに沿って一体的に成形されたゴム状弾性材料からなるガスケット3とを備えるものであって、ガスケット3は、その基部31が、発電体1に形成された凹部1bと、これに上述した成形の過程で成形用ゴム材料の一部が流れ込んで架橋硬化して成形された多数の突部33がしっかり密着係合された状態で、ガス拡散電極層13に接合される。   The fuel cell sealing structure manufactured by this method includes a power generator 1 composed of only the MEA 10 composed of the electrolyte membrane 11 and the gas diffusion electrode layers 13 and 13 on both sides thereof, and an end face 1a facing in the plane extension direction. The gasket 3 is made of a rubber-like elastic material that is integrally molded. The gasket 3 has a base 31 formed in the recess 1b formed in the power generator 1 and the above-described molding process. A part of the molding rubber material flows in and is joined to the gas diffusion electrode layer 13 in a state in which a large number of projections 33 formed by crosslinking and curing are firmly engaged.

本発明に係る燃料電池用シール構造体の製造方法を実施する発電体の一部を示すもので、(A)は断面図、(B)は平面図である。FIG. 2 shows a part of a power generation body that implements the method for manufacturing a fuel cell seal structure according to the present invention, in which (A) is a sectional view and (B) is a plan view. 本発明の製造方法において、発電体のGDLに含浸部を形成した状態を示すもので、(A)は断面図、(B)は平面図である。In the manufacturing method of this invention, the state which formed the impregnation part in GDL of an electric power generation body is shown, (A) is sectional drawing, (B) is a top view. 本発明の製造方法において、GDLに含浸部を形成し、発電体の端面に凹部を形成した状態を示すもので、(A)は断面図、(B)は平面図である。In the manufacturing method of this invention, the impregnation part is formed in GDL and the state which formed the recessed part in the end surface of an electric power generation body is shown, (A) is sectional drawing, (B) is a top view. 本発明の製造方法において、ガスケットを成形する工程を示す説明図である。It is explanatory drawing which shows the process of shape | molding a gasket in the manufacturing method of this invention. 本発明によって製造された燃料電池用シール構造体を示すもので、(A)は断面図、(B)は平面図である。1 shows a fuel cell seal structure manufactured according to the present invention, in which (A) is a sectional view and (B) is a plan view. 本発明によって製造された燃料電池用シール構造体を、燃料電池用セパレータとの関係で示す断面図である。It is sectional drawing which shows the sealing structure for fuel cells manufactured by this invention in relation to the separator for fuel cells. 本発明における他の形態として、GDLへの含浸部の形成前に、発電体の端面に凹部を形成した状態を示すもので、(A)は断面図、(B)は平面図である。As another embodiment of the present invention, a state in which a concave portion is formed on the end face of the power generation body before the formation of the impregnation portion in the GDL is shown, (A) is a cross-sectional view, and (B) is a plan view. 本発明の製造方法において、発電体の端面に形成された凹部の他の形状例を示すもので、(A)は断面図、(B)は平面図である。In the manufacturing method of this invention, the other shape example of the recessed part formed in the end surface of an electric power generation body is shown, (A) is sectional drawing, (B) is a top view. 本発明の製造方法を、MEAからなる発電体にガスケットを一体化する方法に適用した例を示すもので、(A)は断面図、(B)は平面図である。The example which applied the manufacturing method of this invention to the method of integrating a gasket with the electric power generation body which consists of MEA is shown, (A) is sectional drawing, (B) is a top view. 本発明の製造方法を、MEAからなる発電体にガスケットを一体化する方法に適用した他の例を示すもので、(A)は断面図、(B)は平面図である。The other example which applied the manufacturing method of this invention to the method of integrating a gasket with the electric power generation body which consists of MEA is shown, (A) is sectional drawing, (B) is a top view. 従来の燃料電池用シール構造体の一例を示す断面図である。It is sectional drawing which shows an example of the conventional sealing structure for fuel cells. 従来の燃料電池用シール構造体の他の例を示す断面図である。It is sectional drawing which shows the other example of the conventional sealing structure for fuel cells.

符号の説明Explanation of symbols

1 発電体
1a 端面
1b 凹部
1c 係合面
10 MEA
11 電解質膜
12 電極層
13 ガス拡散電極層(多孔質体)
20 GDL(多孔質体)
21,131 含浸部
3 ガスケット
31 基部
32 シールリップ
33 突部
33a 被係合面
4 金型
41 上型
42 下型
43 キャビティ
44 ゲート
DESCRIPTION OF SYMBOLS 1 Electric power generation body 1a End surface 1b Recessed part 1c Engagement surface 10 MEA
11 Electrolyte membrane 12 Electrode layer 13 Gas diffusion electrode layer (porous body)
20 GDL (porous material)
21, 131 Impregnated portion 3 Gasket 31 Base portion 32 Seal lip 33 Projection portion 33a Engaged surface 4 Mold 41 Upper die 42 Lower die 43 Cavity 44 Gate

Claims (2)

燃料電池セルの発電体(1)にその平面延長方向を向いた端面(1a)に沿ってガスケット(3)を一体的に設けた燃料電池用シール構造体の製造において、
前記発電体(1)の厚さ方向両側部分を構成する多孔質体(20,13)のうち、前記端面(1a)から所定幅(W)の領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることにより含浸部(21,131)を形成する工程と、
その後、前記発電体(1)の端面(1a)に前記平面延長方向に対する係合面(1c)を持った凹部(1b)を所定間隔で形成する工程と、
前記発電体(1)を金型(4)内にセットしてこの金型(4)の内面を前記含浸部(21,131)に密接させ、前記端面(1a)と前記金型(4)の内面との間に画成されたキャビティ(43)に成形用ゴム材料を充填して架橋硬化させる工程と、
を備えることを特徴とする燃料電池用シール構造体の製造方法。
In the production of a fuel cell seal structure in which a gasket (3) is integrally provided along an end surface (1a) facing the planar extension direction of a power generator (1) of a fuel cell,
Of the porous body (20, 13) constituting both side portions in the thickness direction of the power generation body (1), a region having a predetermined width (W) from the end face (1a) is made of a low-viscosity or liquid rubber or resin. Forming an impregnated portion (21, 131) by impregnating a sealing material to be crosslinked and curing;
Then, forming a recess (1b) having an engagement surface (1c) in the planar extension direction on the end surface (1a) of the power generation body (1) at a predetermined interval;
The power generation body (1) is set in the mold (4), and the inner surface of the mold (4) is brought into close contact with the impregnation portion (21, 131), and the end surface (1a) and the mold (4) Filling a rubber material for molding into a cavity (43) defined between the inner surface and the cross-linking and curing;
The manufacturing method of the sealing structure for fuel cells characterized by the above-mentioned.
燃料電池セルの発電体(1)にその平面延長方向を向いた端面(1a)に沿ってガスケット(3)を一体的に設けた燃料電池用シール構造体の製造において、
前記発電体(1)の端面(1a)に前記平面延長方向に対する係合面(1c)を持った凹部(1b)を所定間隔で形成する工程と、
その後、前記発電体(1)の厚さ方向両側部分を構成する多孔質体(20,13)のうち、前記端面(1a)から所定幅(W)の領域に、低粘度又は液状のゴム又は樹脂からなる目止め材を含浸して架橋硬化させることにより含浸部(21,131)を形成する工程と、
前記発電体(1)を金型(4)内にセットしてこの金型(4)の内面を前記含浸部(21,131)に密接させ、前記端面(1a)と前記金型(4)の内面との間に画成されたキャビティ(43)に成形用ゴム材料を充填して架橋硬化させる工程と、
を備えることを特徴とする燃料電池用シール構造体の製造方法。
In the production of a fuel cell seal structure in which a gasket (3) is integrally provided along an end surface (1a) facing the planar extension direction of a power generator (1) of a fuel cell,
Forming recesses (1b) having engagement surfaces (1c) in the planar extension direction on the end surface (1a) of the power generation body (1) at predetermined intervals;
Thereafter, in the porous body (20, 13) constituting the both sides in the thickness direction of the power generation body (1), a low-viscosity or liquid rubber or a region having a predetermined width (W) from the end face (1a) A step of forming an impregnated portion (21, 131) by impregnating a sealing material made of resin and curing by crosslinking;
The power generation body (1) is set in the mold (4), and the inner surface of the mold (4) is brought into close contact with the impregnation portion (21, 131), and the end surface (1a) and the mold (4) Filling a rubber material for molding into a cavity (43) defined between the inner surface and the cross-linking and curing;
The manufacturing method of the sealing structure for fuel cells characterized by the above-mentioned.
JP2006335327A 2006-12-13 2006-12-13 Manufacturing method of fuel cell seal structure Active JP5067528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335327A JP5067528B2 (en) 2006-12-13 2006-12-13 Manufacturing method of fuel cell seal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335327A JP5067528B2 (en) 2006-12-13 2006-12-13 Manufacturing method of fuel cell seal structure

Publications (2)

Publication Number Publication Date
JP2008147103A true JP2008147103A (en) 2008-06-26
JP5067528B2 JP5067528B2 (en) 2012-11-07

Family

ID=39607025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335327A Active JP5067528B2 (en) 2006-12-13 2006-12-13 Manufacturing method of fuel cell seal structure

Country Status (1)

Country Link
JP (1) JP5067528B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181951A (en) * 2008-02-01 2009-08-13 Japan Gore Tex Inc Method of manufacturing membrane electrode assembly and membrane electrode assembly manufactured by this
JP2009193687A (en) * 2008-02-12 2009-08-27 Nok Corp Method of manufacturing seal structure
JP2010062024A (en) * 2008-09-04 2010-03-18 Panasonic Corp Membrane electrode assembly, membrane electrode-frame assembly, and polymer electrolyte fuel cell
JP2011233474A (en) * 2010-04-30 2011-11-17 Nok Corp Seal structure for fuel cell and manufacturing method thereof
JP2012164588A (en) * 2011-02-09 2012-08-30 Toyota Motor Corp Seal structure of fuel cell separator
JP2014203553A (en) * 2013-04-02 2014-10-27 Nok株式会社 Method of manufacturing gasket integrated with plate
JP2019190604A (en) * 2018-04-27 2019-10-31 Nok株式会社 Gdl-integrated gasket and its manufacturing method
JP2020095838A (en) * 2018-12-12 2020-06-18 Nok株式会社 Gas diffusion layer integrated gasket and member for fuel battery cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510932A (en) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド Elastic seal for a membrane electrode assembly (MEA) in an electrochemical fuel cell and method of making the seal
WO2002089240A1 (en) * 2001-04-23 2002-11-07 Nok Corporation Fuel cell and method of manufacturing the fuel cell
JP2003282090A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Junction of electrolyte membrane and electrode, production process thereof and fuel cell
JP2004095565A (en) * 2003-12-25 2004-03-25 Nok Corp Gasket for laminated fuel cell
JP2005327514A (en) * 2004-05-13 2005-11-24 Nok Corp Component for fuel cell
JP2006310288A (en) * 2005-04-01 2006-11-09 Matsushita Electric Ind Co Ltd Mea, mea manufacturing method, and high polymer electrolyte fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510932A (en) * 1997-07-16 2001-08-07 バラード パワー システムズ インコーポレイティド Elastic seal for a membrane electrode assembly (MEA) in an electrochemical fuel cell and method of making the seal
WO2002089240A1 (en) * 2001-04-23 2002-11-07 Nok Corporation Fuel cell and method of manufacturing the fuel cell
JP2003282090A (en) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd Junction of electrolyte membrane and electrode, production process thereof and fuel cell
JP2004095565A (en) * 2003-12-25 2004-03-25 Nok Corp Gasket for laminated fuel cell
JP2005327514A (en) * 2004-05-13 2005-11-24 Nok Corp Component for fuel cell
JP2006310288A (en) * 2005-04-01 2006-11-09 Matsushita Electric Ind Co Ltd Mea, mea manufacturing method, and high polymer electrolyte fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181951A (en) * 2008-02-01 2009-08-13 Japan Gore Tex Inc Method of manufacturing membrane electrode assembly and membrane electrode assembly manufactured by this
JP2009193687A (en) * 2008-02-12 2009-08-27 Nok Corp Method of manufacturing seal structure
JP2010062024A (en) * 2008-09-04 2010-03-18 Panasonic Corp Membrane electrode assembly, membrane electrode-frame assembly, and polymer electrolyte fuel cell
JP2011233474A (en) * 2010-04-30 2011-11-17 Nok Corp Seal structure for fuel cell and manufacturing method thereof
JP2012164588A (en) * 2011-02-09 2012-08-30 Toyota Motor Corp Seal structure of fuel cell separator
JP2014203553A (en) * 2013-04-02 2014-10-27 Nok株式会社 Method of manufacturing gasket integrated with plate
JP2019190604A (en) * 2018-04-27 2019-10-31 Nok株式会社 Gdl-integrated gasket and its manufacturing method
JP2020095838A (en) * 2018-12-12 2020-06-18 Nok株式会社 Gas diffusion layer integrated gasket and member for fuel battery cell
JP7217141B2 (en) 2018-12-12 2023-02-02 Nok株式会社 Integrated Gas Diffusion Layer Gasket and Fuel Cell Member

Also Published As

Publication number Publication date
JP5067528B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5067528B2 (en) Manufacturing method of fuel cell seal structure
WO2014069172A1 (en) Seal with integral base material and die for manufacturing same
JP5310976B2 (en) Fuel cell sealing structure
US20100167171A1 (en) Fuel Cell Component, Porous Body for Fuel Cell and Method of Manufacturing Fuel Cell Component
JP2008168448A (en) Manufacturing method of seal part
JP5177619B2 (en) Method for manufacturing a gasket-integrated part for a fuel cell
US20030082430A1 (en) Fuel cell gasket assembly and method of making
JP5067526B2 (en) Manufacturing method of fuel cell seal
CN107534166B (en) Seal member for solid polymer electrolyte fuel cell
JP2008171613A (en) Fuel cells
JP5142080B2 (en) Method for manufacturing seal structure
KR101199736B1 (en) Component for constituting fuel cell
JP5310991B2 (en) Manufacturing method of seal structure for fuel cell
US11171341B2 (en) Fuel cell and method of manufacturing fuel cell
JP5224035B2 (en) Method for manufacturing seal structure
JP4193059B2 (en) Fuel cell components
JP5120529B2 (en) Fuel cell seal
JP5067527B2 (en) Manufacturing method of fuel cell seal structure
JP2011090802A (en) Sealing structure for fuel cell and method of manufacturing the same
JP2007026931A (en) Gasket molding method in porous body peripheral part and die used for it
JP5447777B2 (en) Fuel cell
JP5418784B2 (en) Seal structure for fuel cell and manufacturing method thereof
JP2009104922A (en) Fuel cell and method for manufacturing fuel cell
JP2010165473A (en) Fuel cell, and method of manufacturing sealing structure for the same
JP4826717B2 (en) Manufacturing method of gasket for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250