JP2010277742A - Battery cell, and fuel battery - Google Patents

Battery cell, and fuel battery Download PDF

Info

Publication number
JP2010277742A
JP2010277742A JP2009127195A JP2009127195A JP2010277742A JP 2010277742 A JP2010277742 A JP 2010277742A JP 2009127195 A JP2009127195 A JP 2009127195A JP 2009127195 A JP2009127195 A JP 2009127195A JP 2010277742 A JP2010277742 A JP 2010277742A
Authority
JP
Japan
Prior art keywords
porous body
seal member
elastic seal
battery cell
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009127195A
Other languages
Japanese (ja)
Inventor
Kazutaka Iizuka
和孝 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009127195A priority Critical patent/JP2010277742A/en
Publication of JP2010277742A publication Critical patent/JP2010277742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve effectiveness of peeling prevention of a peripheral edge of porus bodies in integrating a cell structuring member including an MEA (membrane-electrode assembly) and the porus bodies on both sides at peripheral edges with an elastic seal member. <P>SOLUTION: In integrating the cell structuring member 30 and a first porus body 40 of the battery cell 20 at the peripheral edges with the elastic seal member 60, a step part 42 of the first porus body 40 is positioned inside the elastic seal member 60. Therefore, the elastic seal member 60 includes an upper surface part 61 of a step part formed on an upper surface side of the step part 42 of the first porus body 40, and a lower surface part 62 of the step part formed between the step part 42 and a protection film 37 around the cell structuring member 30 in forming the elastic seal member 60. Thereby, the elastic seal member 60 vertically sandwiches the step part 42 as a peripheral edge part of the first porus body 40 in a thickness direction of the porus body. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料電池の発電単位となる電池セルと当該セルを積層して備える燃料電池に関する。   The present invention relates to a battery cell as a power generation unit of a fuel cell and a fuel cell provided with the cells stacked.

燃料電池は、アノードに供給された燃料ガス中の燃料、例えば水素と、カソードに供給された酸素含有ガス中の酸素との電気化学反応を進行させて発電する。この電気化学反応は、電解質膜に触媒電極を接合した膜電極接合体(MEA:Membrane-Electrode Assembly )にて進行するので、発電起電力を確保する上で、MEAを含むセル構成部材とセパレーターとを交互に積層して積層方向に締結する、いわゆるスタック構造の燃料電池が知られている。   The fuel cell generates electricity by advancing an electrochemical reaction between a fuel, for example hydrogen, in the fuel gas supplied to the anode and oxygen in the oxygen-containing gas supplied to the cathode. Since this electrochemical reaction proceeds in a membrane-electrode assembly (MEA) in which a catalyst electrode is joined to an electrolyte membrane, in order to secure a generated electromotive force, a cell constituent member including MEA and a separator A fuel cell having a so-called stack structure is known in which are stacked alternately and fastened in the stacking direction.

ところで、セル構成部材は、電極面へのガス供給の均一化を図るため、MEAの両面に通常はガス拡散層を備えた上で、金属メッシュ等からなる連続気孔を有する多孔質体で挟持されて電池セルを構成する。その一方、積層されたそれぞれの電池セルでは、MEA両側のアノード電極・カソード電極の気密・液密性を確保するため、MEAを含むセル構成部材とその両側の多孔質体とを、その周縁において弾性シール部材にて一体化しつつシール確保を行う手法が知られている(例えば、特許文献1)。   By the way, in order to make the gas supply to the electrode surface uniform, the cell constituent member is usually provided with a gas diffusion layer on both sides of the MEA and is sandwiched by a porous body having continuous pores made of a metal mesh or the like. The battery cell is configured. On the other hand, in each of the stacked battery cells, in order to ensure the air tightness and liquid tightness of the anode electrode and the cathode electrode on both sides of the MEA, the cell constituent member including the MEA and the porous body on the both sides are arranged at the periphery. A technique for securing a seal while being integrated by an elastic seal member is known (for example, Patent Document 1).

特開2008−123883号公報JP 2008-123883 A

上記特許文献で提案された手法によれば、弾性シール部材と接合する多孔質体の周縁における連続気孔に弾性シール部材の形成用材料を含浸させることで、多孔質体周縁端部と弾性シール部材との間にいわゆるアンカー効果を発現させ、多孔質体周縁での剥がれを防止している。ところで、弾性シール部材による一体化は、成形型内へのセル構成部材や多孔質体のセット、弾性シール部材の形成用材料の射出、脱型を経て行われ、成形型の型面への多孔質体の密着力が大きいと、脱型の際に多孔質体周縁の剥がれを招きかねない。このため、成形型の型面への多孔質体の密着力の低減のための作業や、剥がれが起きた場合の手直しが必要となり、その煩雑さが指摘されるに至った。   According to the technique proposed in the above-mentioned patent document, the peripheral edge of the porous body and the elastic seal member are impregnated with the material for forming the elastic seal member into the continuous pores at the peripheral edge of the porous body joined to the elastic seal member. A so-called anchor effect is expressed between the two and the peeling at the periphery of the porous body is prevented. By the way, the integration by the elastic seal member is carried out through the setting of the cell constituent member and the porous body into the mold, the injection of the material for forming the elastic seal member, and the demolding. If the adhesion of the material is large, the peripheral edge of the porous material may be peeled off during demolding. For this reason, work for reducing the adhesion of the porous body to the mold surface of the mold and reworking when peeling occurs are required, and the complexity has been pointed out.

本発明は、上記した課題を踏まえ、MEAを含むセル構成部材とその両側の多孔質体とをその周縁において弾性シール部材にて一体化するに当たり、多孔質体周縁の剥がれ防止の実効性を高めることをその目的とする。   In light of the above-described problems, the present invention enhances the effectiveness of preventing the peripheral edge of the porous body from being integrated when the cell constituent member including the MEA and the porous body on both sides thereof are integrated with the elastic seal member at the peripheral edge. That is the purpose.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用:電池セル]
燃料電池の発電単位となる電池セルであって、
電解質膜に触媒電極を接合した膜電極接合体を含むセル構成部材と、
ガスの拡散供給路を連続気孔で形成する多孔質体と、
前記セル構成部材とその両側に重ね合わせた前記多孔質体とを、その周縁に亘って取り囲んで一体化する弾性シール部材とを備え、
前記多孔質体は、多孔質体周縁において該多孔質体周縁の内側の部位より薄肉の周縁部位を備え、該周縁部位を前記弾性シール部材の内部に位置させている
を備えることを要旨とする。
[Application: Battery cell]
A battery cell as a power generation unit of a fuel cell,
A cell constituent member including a membrane electrode assembly in which a catalyst electrode is joined to an electrolyte membrane;
A porous body forming a gas diffusion supply path with continuous pores;
An elastic seal member that surrounds and integrates the cell constituent member and the porous body superposed on both sides thereof over the periphery thereof;
The gist of the porous body is provided with a peripheral portion that is thinner than a portion inside the peripheral portion of the porous body at a peripheral portion of the porous body, and the peripheral portion is positioned inside the elastic seal member. .

上記構成の電池セルでは、弾性シール部材により一体化された多孔質体周縁では、多孔質体は該多孔質体周縁の内側の部位より薄肉の周縁部位を備えて、該周縁部位は前記弾性シール部材の内部に位置する。このため、弾性シール部材は、多孔質体の周縁部位を多孔質体の厚み方向の上下で挟むことになる。よって、仮に、多孔質体にその周縁が剥がれるような力が作用しても、例えば脱型の際の成形型の型面と多孔質体との密着力が多孔質体に作用しても、多孔質体周縁において、弾性シール部材は、その外表面の側から多孔質体の周縁部位を上記の力に抗して押さえるように機能する。脱型の際の密着力に限らず、他の力が多孔質体周縁を剥がすように作用しても同様である。この結果、上記構成の電池セルによれば、多孔質体周縁の剥がれを高い実効性で防止できる。   In the battery cell having the above configuration, at the periphery of the porous body integrated by the elastic seal member, the porous body has a thinner peripheral part than the inner part of the peripheral part of the porous body, and the peripheral part is the elastic seal. Located inside the member. For this reason, the elastic seal member sandwiches the peripheral portion of the porous body between the upper and lower sides in the thickness direction of the porous body. Therefore, even if a force that causes the peripheral edge to peel off acts on the porous body, for example, even if the adhesion force between the mold surface of the mold and the porous body at the time of demolding acts on the porous body, At the periphery of the porous body, the elastic seal member functions to hold down the peripheral portion of the porous body against the above force from the outer surface side. Not only the adhesion force at the time of demolding, the same applies even if other forces act so as to peel off the periphery of the porous body. As a result, according to the battery cell having the above configuration, peeling of the periphery of the porous body can be prevented with high effectiveness.

上記した電池セルは、次のような態様とすることができる。例えば、前記多孔質体を、前記弾性シール部材の形成用材料の前記多孔質体への含浸を回避するよう前記連続気孔を埋めてなる目止め部位を前記多孔質体周縁の側に備えるものとした上で、該目止め部位よりも周縁側に前記周縁部位を位置させる。こうすれば、弾性シール部材にて多孔質体の周縁部位を押さえるようにして多孔質体周縁の剥がれを防止した上で、目止め部位より内側には弾性シール部材を含浸させないようにして多孔質体でのガス拡散供給を確保することができる。   The battery cell described above can be configured as follows. For example, the porous body is provided with a sealing portion that fills the continuous pores on the peripheral side of the porous body so as to avoid impregnating the porous body with the material for forming the elastic seal member In addition, the peripheral portion is positioned closer to the peripheral side than the eye stop portion. In this way, the elastic sealing member can be used to prevent the peripheral edge of the porous body from being peeled by pressing the peripheral portion of the porous body, and the porous sealing member can be prevented from being impregnated with the elastic sealing member inside the sealing portion. The gas diffusion supply in the body can be ensured.

また、前記周縁部位を、前記多孔質体周縁を押し潰して段差状とされた段差部位を有するものとできる。こうすれば、段差部位は押し潰しにより強度が高まるので、弾性シール部材による多孔質体の周縁部位(段差部位)の押さえ効果が増して、多孔質体周縁の剥がれ防止の実効性がより高まる。   Moreover, the said peripheral part can be made into the thing which has the level | step-difference part made into the step shape by crushing the said porous body periphery. By so doing, the strength of the stepped portion is increased by crushing, so the effect of suppressing the peripheral portion (stepped portion) of the porous body by the elastic seal member is increased, and the effectiveness of preventing the peripheral edge of the porous body from peeling off is further increased.

この場合、前記目止め部位よりも周縁側の前記周縁部位において、前記段差部位と前記目止め部位との間に、前記連続気孔に前記弾性シール部材の形成用材料が含浸した含浸部位を有するようにすることもできる。こうすれば、弾性シール部材による多孔質体の周縁部位(段差部位)の押さえ効果と、含浸部位での弾性シール部材の形成用材料含浸によるアンカー効果とで、多孔質体周縁の剥がれ防止の実効性をより高めることができる。   In this case, in the peripheral part on the peripheral side of the sealing part, the continuous pores have an impregnation part impregnated with the material for forming the elastic seal member between the step part and the sealing part. It can also be. In this way, the effect of preventing the peripheral edge of the porous body from being peeled by the pressing effect of the peripheral part (step part) of the porous body by the elastic seal member and the anchor effect by impregnating the material for forming the elastic seal member at the impregnated part. The sex can be increased.

また、前記周縁部位を、前記多孔質体周縁においてくびれた有底部位を有するものとできる。こうすれば、弾性シール部材は、多孔質体の有底部位を埋めるように存在した上でその有底部位を押さえて、多孔質体周縁の剥がれを防止する。   Moreover, the said peripheral part can have a bottomed part constricted in the said porous body peripheral part. In this way, the elastic sealing member exists so as to fill the bottomed portion of the porous body and then presses down the bottomed portion to prevent the peripheral edge of the porous body from peeling off.

この場合、前記周縁部位を、前記有底部位から前記多孔質体周縁まで延びた周縁部を有するものとし、該周縁部の前記連続気孔に前記弾性シール部材の形成用材料を含浸した状態とすることができる。こうすれば、弾性シール部材による多孔質体の有底部位の押さえ効果と、この有底部位よりも周縁側の周縁部での弾性シール部材の形成用材料含浸によるアンカー効果とで、多孔質体周縁の剥がれ防止の実効性をより高めることができる。しかも、有底部位を埋める弾性シール部材は、当該部位の形成用材料が周縁部に含浸した形成用材料と繋がることから、弾性シール部材の押さえ効果はより高まり、多孔質体周縁の剥がれ防止の実効性はより一層高まる。   In this case, the peripheral part has a peripheral part extending from the bottomed part to the peripheral part of the porous body, and the continuous pores of the peripheral part are impregnated with a material for forming the elastic seal member. be able to. In this way, the porous body has a pressing effect on the bottomed portion of the porous body by the elastic seal member, and an anchor effect by impregnating the material for forming the elastic seal member at the peripheral portion on the peripheral side of the bottomed portion. The effectiveness of preventing peeling of the peripheral edge can be further enhanced. Moreover, since the elastic seal member that fills the bottomed portion is connected to the forming material impregnated in the peripheral portion with the forming material of the portion, the pressing effect of the elastic seal member is further enhanced, and the peripheral edge of the porous body is prevented from peeling off. Effectiveness is further enhanced.

また、上記の電池セルは、更に、前記セル構成部材に重なった前記多孔質体の一方の側にセパレーターを接合して備えた上で、該セパレーターの側の前記多孔質体と他方の前記多孔質体の少なくとも一方を前記周縁部位を有する多孔質体とすることもできる。こうすれば、セパレーターを接合して備える電池セルにおいて、上記した効果を奏することができる。   The battery cell further includes a separator bonded to one side of the porous body overlapping the cell constituent member, and the porous body on the separator side and the other porous body. At least one of the solid bodies can be a porous body having the peripheral portion. If it carries out like this, in a battery cell equipped with a separator joined, the above-mentioned effect can be produced.

本発明は、電池セルとしての形態の他、上記したいずれかの電池セルを複数積層して備える燃料電池としても適用できる。   The present invention can be applied not only as a battery cell but also as a fuel cell provided with a plurality of stacked battery cells.

本発明の実施例としての燃料電池10の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the fuel cell 10 as an Example of this invention. この燃料電池10の構成単位の電池セル20を側面視して示す説明図である。It is explanatory drawing which shows the battery cell 20 of the structural unit of this fuel cell 10 by side view. 燃料電池10の製造手順を示すフローチャートである。4 is a flowchart showing a manufacturing procedure of the fuel cell 10. 電池セル20の要部を断面視して示す説明図である。FIG. 3 is an explanatory view showing a main part of a battery cell 20 in cross-section. 電池セル20を構成する第1多孔質体40の作製の様子を示す説明図である。FIG. 4 is an explanatory diagram showing a state of producing a first porous body 40 that constitutes a battery cell 20. 実施例の電池セル20の製造手順を示すフローチャートである。It is a flowchart which shows the manufacture procedure of the battery cell 20 of an Example. 電池セル20の型成型の様子を用いる成形型を併記して説明するための説明図である。It is explanatory drawing for writing together and explaining the shaping | molding die using the mode of the shaping | molding of the battery cell. 電池セル20の利点を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining an advantage of the battery cell 20. 図5相当図であり第2実施例の第1多孔質体40Aをその作製の様子と弾性シール部材60による一体化の様子と共に示す説明図である。FIG. 6 is an explanatory view showing the first porous body 40A of the second embodiment together with its production and integration with the elastic seal member 60, corresponding to FIG. 図4相当図であり第3実施例の電池セル20Aの要部を断面視しつつその一部を拡大して示す説明図である。FIG. 4 is an explanatory diagram corresponding to FIG. 4 and an enlarged view showing a part of a battery cell 20A of a third embodiment as viewed in cross section. 図10相当図であり第4実施例の電池セル20Bの要部を断面視しつつその一部を拡大して示す説明図である。FIG. 10 is an equivalent view of FIG. 10, and is an explanatory view showing a part of the battery cell 20 </ b> B of the fourth embodiment in an enlarged manner while viewing a cross-sectional view.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の実施例としての燃料電池10の概略構成を示す説明図、図2はこの燃料電池10の構成単位の電池セル20を側面視して示す説明図、図3は燃料電池10の製造手順を示すフローチャートである。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of a fuel cell 10 as an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a side view of a battery cell 20 of a unit of the fuel cell 10, and FIG. It is a flowchart which shows the manufacturing procedure of.

図1および図2に示すように、燃料電池10は、電池セル20が複数個積層された構造(いわゆるスタック構造)を有している。この燃料電池10の製造に当たっては、図3に示すように、まず、電池セル20を所定枚数積層し(ステップS102)、積層された電池セル20を積層方向に所定の締結力を負荷するように締結する(ステップS104)。電池セル20は、燃料電池10における発電単位であることから、その積層数によって燃料電池10の発電能力が定まる。よって、ステップS100では、燃料電池10に求められる発電能力に応じて定まる数の電池セル20が積層され、ステップS104では、各セル間のシール維持等の要請から定まる締結力で締結される。   As shown in FIGS. 1 and 2, the fuel cell 10 has a structure in which a plurality of battery cells 20 are stacked (so-called stack structure). In manufacturing the fuel cell 10, as shown in FIG. 3, first, a predetermined number of battery cells 20 are stacked (step S102), and the stacked battery cells 20 are loaded with a predetermined fastening force in the stacking direction. Fasten (step S104). Since the battery cell 20 is a unit of power generation in the fuel cell 10, the power generation capability of the fuel cell 10 is determined by the number of stacks. Therefore, in step S100, the number of battery cells 20 determined according to the power generation capacity required for the fuel cell 10 are stacked, and in step S104, the cells are fastened with a fastening force determined from a request for maintaining a seal between the cells.

図1に示すように、燃料電池10のそれぞれの電池セル20には、酸化ガス(酸素含有ガス)が供給される酸化ガス供給マニホールド11と、酸化ガスを排出する酸化ガス排出マニホールド12と、燃料ガスが供給される燃料ガス供給マニホールド13と、燃料ガスを排出する燃料ガス排出マニホールド14と、冷却媒体を供給する冷却媒体供給マニホールド15と、冷却媒体を排出する冷却媒体排出マニホールド16と、が設けられている。なお、酸化ガスとしては空気が一般的に用いられ、燃料ガスとしては水素が一般的に用いられる。また、酸化ガス、燃料ガスは共に反応ガスとも呼ばれる。冷却媒体としては、水、エチレングリコール等の不凍水、空気等を用いることができる。   As shown in FIG. 1, each battery cell 20 of the fuel cell 10 has an oxidizing gas supply manifold 11 to which an oxidizing gas (oxygen-containing gas) is supplied, an oxidizing gas discharge manifold 12 that discharges the oxidizing gas, and a fuel. A fuel gas supply manifold 13 that supplies gas, a fuel gas discharge manifold 14 that discharges fuel gas, a cooling medium supply manifold 15 that supplies cooling medium, and a cooling medium discharge manifold 16 that discharges cooling medium are provided. It has been. Note that air is generally used as the oxidizing gas, and hydrogen is generally used as the fuel gas. Further, both the oxidizing gas and the fuel gas are also called reaction gases. As the cooling medium, water, antifreeze water such as ethylene glycol, air, or the like can be used.

次に、電池セル20の特徴的な構成について説明する。図4は電池セル20の要部を断面視して示す説明図、図5は電池セル20を構成する第1多孔質体40の作製の様子を示す説明図である。図4に示すように、電池セル20は、セル構成部材30と、その両面の第1多孔質体40と第2多孔質体50と、弾性シール部材60と、セパレーター70とを備える。セル構成部材30は、電解質膜の膜両面に触媒電極を接合した膜電極接合体(Membrane Electrode Assembly:以下、MEAと称する)32と、その両面のアノード側ガス拡散層34とカソード側ガス拡散層36とを、ホットプレス等の手法にて一体にして備える。MEA32は、例えばフッ素系樹脂材料あるいは炭化水素系樹脂材料で形成され湿潤状態において良好なイオン導電性を有するイオン交換膜を電解質膜とし、その両側の表面に、白金または白金と他の金属からなる合金を触媒として含有する触媒電極を触媒インクの塗布等の手法にて形成して構成される。アノード・カソードの両ガス拡散層は、例えば、炭素繊維からなる糸で織成したカーボンクロス、あるいはカーボンペーパまたはカーボンフェルトによって形成され、供給された酸化ガス・燃料ガスをMEA32に拡散供給する。本実施例では、MEA32の周縁側上下面を保護フィルム37で被覆し、これにより、上記の両ガス拡散層の表面の毛羽からMEA32を保護している。保護フィルム37は、耐熱性と耐酸性を備える材料、例えば、ポリエチレンテレフタレートやポリブチレンテレフタレート等の合成樹脂やクロロブレンゴム等のゴムを用いて、MEA32の端部周縁の上下面に形成される。   Next, a characteristic configuration of the battery cell 20 will be described. FIG. 4 is an explanatory view showing the main part of the battery cell 20 in cross-section, and FIG. 5 is an explanatory view showing a state of manufacturing the first porous body 40 constituting the battery cell 20. As shown in FIG. 4, the battery cell 20 includes a cell constituent member 30, first porous bodies 40 and second porous bodies 50 on both sides thereof, an elastic seal member 60, and a separator 70. The cell constituent member 30 includes a membrane electrode assembly (hereinafter referred to as MEA) 32 in which catalyst electrodes are joined to both surfaces of an electrolyte membrane, and an anode side gas diffusion layer 34 and a cathode side gas diffusion layer on both sides thereof. 36 are integrated with a technique such as hot pressing. The MEA 32 is made of, for example, an ion exchange membrane formed of a fluorine-based resin material or a hydrocarbon-based resin material and having good ionic conductivity in a wet state. The MEA 32 is made of platinum or platinum and other metals on both surfaces. A catalyst electrode containing an alloy as a catalyst is formed by a technique such as application of catalyst ink. Both the anode and cathode gas diffusion layers are formed of, for example, carbon cloth woven with yarns made of carbon fibers, carbon paper or carbon felt, and the supplied oxidizing gas / fuel gas is diffused and supplied to the MEA 32. In the present embodiment, the peripheral upper and lower surfaces of the MEA 32 are covered with the protective film 37, thereby protecting the MEA 32 from the fluff on the surfaces of the two gas diffusion layers. The protective film 37 is formed on the upper and lower surfaces of the peripheral edge of the MEA 32 using a material having heat resistance and acid resistance, for example, synthetic resin such as polyethylene terephthalate and polybutylene terephthalate, and rubber such as chlorobrene rubber.

第1多孔質体40と第2多孔質体50の両多孔質体は、金属多孔体などのガス拡散性および導電性を有する多孔質の材料で形成されている。この両多孔質体は、上述したアノード側ガス拡散層34およびカソード側ガス拡散層36より空孔率が高く、内部におけるガスの流動抵抗が両ガス拡散層より低いものが用いられ、内部の連続気孔をガスの拡散供給路とする。第1多孔質体40は、図4における右端側の多孔質体周縁に、目止め部位41と段差部位42とを並べて備え、段差部位42については多孔質体表面から段差43をもって形成されている。図5に示すように、第1多孔質体40の作製に当たっては、まず、板状のままの第1多孔質体40を準備し(図5(A))、次いで、周縁側の第1多孔質体40にプレス体Pを押し当てて多孔質体周縁を押し潰して、段差部位42を段差43をもって形成する(図5(B))。段差部位42は、プレス体Pによる押し潰しにより連続気孔がほぼ潰れた状態となるので、第1多孔質体40の中央側部位、即ちガス拡散供給部位よりも強度が高まる。   Both porous bodies of the first porous body 40 and the second porous body 50 are formed of a porous material having gas diffusibility and conductivity such as a metal porous body. This porous body has a higher porosity than the above-mentioned anode side gas diffusion layer 34 and cathode side gas diffusion layer 36 and has a lower gas flow resistance than both gas diffusion layers. The pores are used as gas diffusion supply paths. The first porous body 40 is provided with a sealing portion 41 and a stepped portion 42 side by side on the periphery of the porous body on the right end side in FIG. 4, and the stepped portion 42 is formed with a step 43 from the surface of the porous body. . As shown in FIG. 5, in producing the first porous body 40, first, the first porous body 40 having a plate shape is prepared (FIG. 5A), and then the first porous body on the peripheral side is prepared. The press body P is pressed against the material body 40 to crush the periphery of the porous body, thereby forming the step portion 42 with the step 43 (FIG. 5B). Since the stepped portion 42 is in a state where the continuous pores are almost crushed by being crushed by the press body P, the strength is higher than that of the central portion of the first porous body 40, that is, the gas diffusion supply portion.

段差部位42の形成に続き、当該部位に続く多孔質体部位を目止め部位41の形成箇所とし、当該箇所に対向する樹脂噴出ノズルSから樹脂をスプレーする(図5(C))。スプレーされた樹脂は、ノズルとの対向箇所における多孔質体の連続気孔内に入り込み、乾燥後に連続気孔を埋めて、目止め部位41を形成する。このため、目止め部位41は、後述する電池セル20の製造過程において、弾性シール部材60の形成用材料の第1多孔質体40への含浸を回避する。目止め部位41形成のための樹脂としては、多孔質体気孔への入り込みができる低粘度のエポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂等が好適である。樹脂に代わり低粘度で乾燥硬化するゴム、例えば、フッ素ゴム、シリコーンゴム、アクリルゴム等を用いることもできる。   Subsequent to the formation of the stepped portion 42, the porous body portion that follows the portion is set as the formation portion of the sealing portion 41, and the resin is sprayed from the resin ejection nozzle S facing the portion (FIG. 5C). The sprayed resin enters the continuous pores of the porous body at the location facing the nozzle, fills the continuous pores after drying, and forms the sealing portion 41. For this reason, the sealing part 41 avoids impregnation of the first porous body 40 with the material for forming the elastic seal member 60 in the manufacturing process of the battery cell 20 described later. As the resin for forming the sealing portion 41, a low-viscosity epoxy resin, a silicone resin, a phenol resin, a urethane resin, or the like that can enter the porous pores is preferable. Instead of resin, rubber that is dry and hardened with low viscosity, for example, fluorine rubber, silicone rubber, acrylic rubber, or the like can be used.

上記した目止め部位41とこれに続く段差部位42は、図4においては第1多孔質体40の端部側に位置する。ところで、電池セル20は図1に示すように矩形形状であることから、目止め部位41と段差部位42は、第1多孔質体40の中央側部位(ガス拡散供給部位)を取り囲むように存在し、段差部位42は、第1多孔質体40の周縁においてガス拡散供給部位より段差43だけ薄肉となる。そして、後述の弾性シール部材60の形成を経ると、目止め部位41は、アノード側ガス拡散層34の周縁に合わせて弾性シール部材60の側に延び、段差部位42は、弾性シール部材60の内部に位置することになる。そして、段差部位42は、目止め部位41よりも多孔質体周縁側に位置することになる。   The above-described sealing portion 41 and the stepped portion 42 subsequent thereto are located on the end side of the first porous body 40 in FIG. Incidentally, since the battery cell 20 has a rectangular shape as shown in FIG. 1, the sealing portion 41 and the stepped portion 42 exist so as to surround the central side portion (gas diffusion supply portion) of the first porous body 40. However, the stepped portion 42 is thinner by the stepped portion 43 than the gas diffusion supply portion at the periphery of the first porous body 40. Then, after the formation of the elastic seal member 60 described later, the sealing portion 41 extends toward the elastic seal member 60 in accordance with the peripheral edge of the anode-side gas diffusion layer 34, and the step portion 42 is formed on the elastic seal member 60. It will be located inside. And the level | step-difference site | part 42 is located in the porous body peripheral side rather than the sealing site | part 41. FIG.

第2多孔質体50は、後述のセパレーター70に接合した状態で電池セル製造過程において弾性シール部材60に取り囲まれ、セパレーター70の側の面では弾性シール部材60に接しない。このため、第2多孔質体50にあっては、その中央側部位(ガス拡散供給部位)への弾性シール部材材料の入り込みを防止できればよく、図4における右端側の多孔質体周縁に目止め部位51を備える。この目止め部位51にあっても、第2多孔質体50の中央側部位(ガス拡散供給部位)を取り囲むように存在し、カソード側ガス拡散層36の周縁に合わせて弾性シール部材60の側に延びている。   The second porous body 50 is surrounded by the elastic seal member 60 in the battery cell manufacturing process in a state of being joined to the separator 70 described later, and does not contact the elastic seal member 60 on the surface on the separator 70 side. For this reason, in the second porous body 50, it is only necessary to prevent the elastic seal member material from entering the central side portion (gas diffusion supply portion). A portion 51 is provided. Even in the sealing portion 51, it exists so as to surround the central side portion (gas diffusion supply portion) of the second porous body 50, and the elastic sealing member 60 side is aligned with the peripheral edge of the cathode side gas diffusion layer 36. It extends to.

弾性シール部材60は、MEA32を有するセル構成部材30と、その両側の第1多孔質体40と第2多孔質体50とを、これらが図4に示すように重ね合った状態でその周縁に亘って取り囲んで一体化する。これら部材の周縁の一体化は、その周縁に亘って行われることから、MEA32のカソード側からアノード側への、あるいは、アノード側からカソード側への反応ガスの漏洩が抑制される。この弾性シール部材60は、こうした一体化と共に、図1で示した酸化ガス排出マニホールド12等のマニホールドをも形成し、ガス不透性と弾力性と燃料電池の運転温度域における耐熱性とを有する材料、例えば、ゴムやエラストマーなどの弾性材料により形成される。具体的には、シリコーン系ゴム、ブチルゴム、アクリルゴム、天然ゴム、フッ素系ゴム、エチレン・プロピレン系ゴム、スチレン系エラストマー、フッ素系エラストマーなどが用いられ得る。なお、弾性シール部材60は、電池セル20の後述の型成型に当たり、セパレーター70の表面上に形成される。   The elastic sealing member 60 has a cell constituent member 30 having an MEA 32, and a first porous body 40 and a second porous body 50 on both sides of the cell structural member 30 in a state where they overlap each other as shown in FIG. Surround and integrate. Since the peripheral edges of these members are integrated over the peripheral edge, leakage of the reaction gas from the cathode side to the anode side of the MEA 32 or from the anode side to the cathode side is suppressed. In addition to such integration, the elastic seal member 60 also forms a manifold such as the oxidizing gas discharge manifold 12 shown in FIG. 1 and has gas impermeability, elasticity, and heat resistance in the operating temperature range of the fuel cell. It is made of a material, for example, an elastic material such as rubber or elastomer. Specifically, silicone rubber, butyl rubber, acrylic rubber, natural rubber, fluorine rubber, ethylene / propylene rubber, styrene elastomer, fluorine elastomer and the like can be used. The elastic seal member 60 is formed on the surface of the separator 70 when the battery cell 20 is molded as described later.

上記材料で形成される弾性シール部材60は、セパレーター70と反対側にリブ突起64を備え、突起基部に凹所65を備える。このリブ突起64と凹所65は、図1に示す酸化ガス排出マニホールド12等のマニホールドを取り囲むようにマニホールドごとに形成されている。電池セル20の積層・締結を経て燃料電池10とする際、ある電池セル20のリブ突起64は、積層方向の締結力を受けて、隣の電池セル20のセパレーター70に接合して潰され、取り囲むマニホールドを気密にシールする。この場合、リブ突起64の潰れ代は、凹所65で吸収される。   The elastic seal member 60 formed of the above material includes a rib protrusion 64 on the side opposite to the separator 70 and a recess 65 on the protrusion base. The rib protrusion 64 and the recess 65 are formed for each manifold so as to surround a manifold such as the oxidizing gas discharge manifold 12 shown in FIG. When the fuel cell 10 is formed through the stacking / fastening of the battery cell 20, the rib protrusion 64 of a certain battery cell 20 receives the fastening force in the stacking direction, and is crushed by being joined to the separator 70 of the adjacent battery cell 20, The surrounding manifold is hermetically sealed. In this case, the crushing margin of the rib protrusion 64 is absorbed by the recess 65.

セパレーター70は、耐食性を有する金属鋼板、例えばステンレス鋼板製の第1プレート71と第2プレート72とで中間プレート73を挟持して構成され、これらプレートにて、セル内の冷却流路と燃料ガス流路と参加ガス流路とを形成する。図4では、セパレーター70は、カソード側ガス拡散層36の側に位置して電池セル20に含まれることから、そのセパレーター70が含まれる電池セル20の第2多孔質体50に酸化ガスを供給する酸化ガス流路と、図4における下方側に積層された電池セル20の第1多孔質体40に燃料ガスを供給する燃料ガス流路を形成する。   The separator 70 is configured by sandwiching an intermediate plate 73 between a first plate 71 and a second plate 72 made of a corrosion-resistant metal steel plate, for example, a stainless steel plate, and in these plates, the cooling channel and fuel gas in the cell A flow path and a participating gas flow path are formed. In FIG. 4, since the separator 70 is located on the cathode side gas diffusion layer 36 side and is included in the battery cell 20, the oxidizing gas is supplied to the second porous body 50 of the battery cell 20 including the separator 70. And a fuel gas channel for supplying fuel gas to the first porous body 40 of the battery cell 20 stacked on the lower side in FIG. 4 is formed.

次に、上記構成を備える電池セル20の製造方法について説明する。図6は実施例の電池セル20の製造手順を示すフローチャートである。図7は電池セル20の型成型の様子を用いる成形型を併記して説明するための説明図である。   Next, the manufacturing method of the battery cell 20 provided with the said structure is demonstrated. FIG. 6 is a flowchart showing a manufacturing procedure of the battery cell 20 of the embodiment. FIG. 7 is an explanatory diagram for explaining the mold using the state of the molding of the battery cell 20 together.

電池セル20の製造に際しては、図6に示すように、先ず、一体成型用の成形型を準備する(ステップS202)。成形型は、図7(A)に示すように、対向する上型100と下型110とで構成され、上型100は、電池セル20における第1多孔質体40と接する平型面部102と、これに続くシール部形成凹所104とを有する。シール部形成凹所104には、弾性シール部材60のリブ突起64と凹所65の外形形状が反転した二つのリブ凹所106と射出口107が形成されている。下型110は、セパレーター70の外形に合致したセパレーター凹所112を備える。この場合、セパレーター70は、弾性シール部材60と共に酸化ガス排出マニホールド12等のマニホールドを形成することから、上型100のシール部形成凹所104と下型110には、マニホールド形状より若干大きくされた凸部114が形成されている。この凸部114は、後述の型締めにおいて、セパレーター70に当接してセパレーター70のマニホールドをシールする。   When manufacturing the battery cell 20, as shown in FIG. 6, first, a molding die for integral molding is prepared (step S202). As shown in FIG. 7A, the mold is composed of an upper mold 100 and a lower mold 110 that face each other, and the upper mold 100 includes a flat mold surface portion 102 that contacts the first porous body 40 in the battery cell 20. And a sealing portion forming recess 104 subsequent thereto. In the seal portion forming recess 104, two rib recesses 106 in which the outer shapes of the rib protrusions 64 and the recesses 65 of the elastic seal member 60 are reversed and an injection port 107 are formed. The lower mold 110 includes a separator recess 112 that matches the outer shape of the separator 70. In this case, since the separator 70 forms a manifold such as the oxidizing gas discharge manifold 12 together with the elastic seal member 60, the seal part forming recess 104 and the lower mold 110 of the upper mold 100 are slightly larger than the manifold shape. A convex portion 114 is formed. The projection 114 abuts against the separator 70 and seals the manifold of the separator 70 in mold clamping described later.

次いで、下型110のセパレーター凹所112へのセパレーター70の配置(ステップS204)と、配置済みセパレーター70への第2多孔質体50の配置(ステップS206)と、配置済み第2多孔質体50へのMEA30の配置(ステップS208)と、配置済みMEA30への第1多孔質体40の配置(ステップS210)とを順次行う。こうして、下型110に対して、セパレーター70と、セル構成部材30の構成材が全て配置されると、下型110に対して上型100を所定の型圧で型締めし、射出口107から弾性シール部材60の形成用材料(例えば、上記したシリコン系ゴム等)を射出して弾性シール部材60を射出成形する(ステップS212)。上下の型の型締め後には、図7(B)に示すように、上型100における平型面部102の端部型面とリブ凹所106の型面と、下型110に配置済みのセパレーター70の上面と、上下の型間の凸部114の側面とでキャビティ120が形成され、このキャビティ120に弾性シール部材60の形成用材料が射出される。射出された材料は、例えばシリコーン系ゴム等の液状ゴムは、加硫を経て弾性シール部材60を形成する。   Next, the arrangement of the separator 70 in the separator recess 112 of the lower mold 110 (step S204), the arrangement of the second porous body 50 in the arranged separator 70 (step S206), and the arranged second porous body 50. The MEA 30 is placed on the MEA 30 (step S208) and the first porous body 40 is placed on the placed MEA 30 (step S210). In this way, when the separator 70 and the constituent members of the cell constituent member 30 are all disposed with respect to the lower mold 110, the upper mold 100 is clamped to the lower mold 110 with a predetermined mold pressure. The elastic seal member 60 is injection-molded by injecting a material for forming the elastic seal member 60 (for example, the above-described silicon rubber) (step S212). After the upper and lower molds are clamped, as shown in FIG. 7B, the end mold surface of the flat mold surface portion 102, the mold surface of the rib recess 106 in the upper mold 100, and the separator already disposed in the lower mold 110. A cavity 120 is formed by the upper surface of 70 and the side surfaces of the convex portions 114 between the upper and lower molds, and a material for forming the elastic seal member 60 is injected into the cavity 120. The injected material, for example, a liquid rubber such as silicone rubber, forms the elastic seal member 60 through vulcanization.

この射出成形において、弾性シール部材60の形成用材料は、キャビティ120に行き渡り、セパレーター70に積層されたセル構成部材30とその上下の多孔質体の周縁を取り囲んでこれらを一体化する弾性シール部材60を形成する。こうして形成された弾性シール部材60は、第1多孔質体40の段差部位42と平型面部102の型面の間に行き渡った材料で形成された段差部位上面部61と、第1多孔質体40とセル構成部材30(詳しくは、保護フィルム37)との間に行き渡った材料で形成された段差部位下面部62と、第2多孔質体50とセル構成部材30(詳しくは、保護フィルム37)との間に行き渡った材料で形成された多孔質体上面部63とを備えることになる。この場合、第1多孔質体40は目止め部位41を備え、第2多孔質体50は目止め部位51を備えることから、弾性シール部材60の形成用材料は、第1多孔質体40と第2多孔質体50の中央側部位に含浸することはない。   In this injection molding, the material for forming the elastic seal member 60 reaches the cavity 120 and surrounds the peripheral edges of the cell constituent member 30 laminated on the separator 70 and the porous body above and below the elastic seal member. 60 is formed. The elastic seal member 60 thus formed includes a stepped portion upper surface portion 61 formed of a material spread between the stepped portion 42 of the first porous body 40 and the mold surface of the flat surface portion 102, and the first porous body. 40 and the cell component 30 (specifically, the protective film 37), a stepped portion lower surface portion 62 formed of a material spread between the second porous body 50 and the cell component 30 (specifically, the protective film 37). ) And a porous body upper surface portion 63 formed of a material that has been distributed between. In this case, since the first porous body 40 includes the sealing portion 41 and the second porous body 50 includes the sealing portion 51, the material for forming the elastic seal member 60 is the same as the first porous body 40. The central part of the second porous body 50 is not impregnated.

射出成形後には、上型100と下型110の型開きと、射出成型品である電池セル20を脱型して(ステップS214)、電池セル20を得る。得られた電池セル20は、既述したように所定枚数が積層されて燃料電池10を構成する。   After the injection molding, the upper mold 100 and the lower mold 110 are opened, and the battery cell 20 that is an injection molded product is removed (step S214) to obtain the battery cell 20. A predetermined number of the obtained battery cells 20 are stacked to constitute the fuel cell 10 as described above.

以上説明した本実施例の電池セル20では、弾性シール部材60によりその周縁においてセル構成部材30と一体化された第1多孔質体40は、その中央側部位より薄肉に備える段差部位42を弾性シール部材60の内部に位置させる。このため、弾性シール部材60は、その成型時において、第1多孔質体40の段差部位42の上面側に段差部位上面部61を形成し、段差部位42とセル構成部材30周縁の保護フィルム37との間に段差部位下面部62を形成して備える。よって、弾性シール部材60は、第1多孔質体40の周縁部位である段差部位42を多孔質体厚み方向の上下で挟むことになる。この結果、仮に、第1多孔質体40にその周縁が剥がれるような力が作用しても、例えば脱型の際の上型100の平型面部102の型面と第1多孔質体40との密着力が第1多孔質体40の周縁を引き剥がすように第1多孔質体40に作用しても、弾性シール部材60は、多孔質体周縁の段差部位42において、その外表面の側から段差部位42を上記の力に抗して段差部位上面部61で押さえるように機能する。脱型の際の密着力に限らず、他の力が第1多孔質体40の周縁を剥がすように作用しても同様である。例えば、電池セル20は、締結力を受けているので、セル構成部材30のアノード側ガス拡散層34は圧縮を受けたバネ様の作用をなし、締結力解放の際に、アノード側ガス拡散層34は第1多孔質体40を持ち上げるよう力を及ぼし、この力は、第1多孔質体40の周縁を剥がすように作用する。この力に対しても、弾性シール部材60は、その段差部位上面部61により段差部位42を押さえるように機能する。以上より、本実施例の電池セル20によれば、第1多孔質体40の周縁の剥がれを高い実効性で防止できる。   In the battery cell 20 of the present embodiment described above, the first porous body 40 integrated with the cell constituent member 30 at the periphery thereof by the elastic seal member 60 is elastic to the stepped portion 42 provided thinner than the central side portion. It is located inside the seal member 60. For this reason, the elastic seal member 60 forms a stepped portion upper surface portion 61 on the upper surface side of the stepped portion 42 of the first porous body 40 at the time of molding, and the protective film 37 around the stepped portion 42 and the periphery of the cell constituent member 30. A stepped portion lower surface portion 62 is formed between and provided. Therefore, the elastic seal member 60 sandwiches the step portion 42 that is the peripheral portion of the first porous body 40 in the upper and lower directions in the thickness direction of the porous body. As a result, even if a force that causes the peripheral edge to peel off acts on the first porous body 40, for example, the mold surface of the flat surface portion 102 of the upper mold 100 and the first porous body 40 at the time of demolding Even if the adhesive force acts on the first porous body 40 so that the peripheral edge of the first porous body 40 is peeled off, the elastic seal member 60 is located on the outer surface side in the step portion 42 on the peripheral edge of the porous body. The step portion 42 functions so as to be pressed by the step portion upper surface portion 61 against the above force. Not only the adhesion force at the time of demolding, the same applies even if other forces act to peel the peripheral edge of the first porous body 40. For example, since the battery cell 20 receives a fastening force, the anode-side gas diffusion layer 34 of the cell constituent member 30 has a spring-like action under compression, and the anode-side gas diffusion layer is released when the fastening force is released. 34 exerts a force to lift the first porous body 40, and this force acts to peel the peripheral edge of the first porous body 40. Even with this force, the elastic seal member 60 functions to hold the step portion 42 by the step portion upper surface portion 61. As mentioned above, according to the battery cell 20 of a present Example, peeling of the periphery of the 1st porous body 40 can be prevented with high effectiveness.

また、本実施例の電池セル20では、段差部位42をプレス体Pにて押し潰して段差43を有する段差状としたので、段差部位42の強度を押し潰しにより高めることができる。このため、弾性シール部材60の段差部位上面部61による段差部位42の押さえ効果が増して、第1多孔質体40の周縁の剥がれ防止の実効性がより高まる。   Moreover, in the battery cell 20 of the present embodiment, since the stepped portion 42 is crushed by the press body P into a stepped shape having the stepped portion 43, the strength of the stepped portion 42 can be increased by crushing. For this reason, the pressing effect of the step portion 42 by the step portion upper surface portion 61 of the elastic seal member 60 is increased, and the effectiveness of preventing the peripheral edge of the first porous body 40 from being peeled off is further increased.

また、本実施例の電池セル20は、その第1多孔質体40において、段差部位42より内側に目止め部位41を備え、この目止め部位41により、弾性シール部材60の形成用材料の含浸を回避するようにした。このため、弾性シール部材60にて第1多孔質体40の周縁の剥がれを防止した上で、第1多孔質体40の中央側部位でのガス拡散供給を確保できる。   Further, the battery cell 20 of the present embodiment includes a sealing portion 41 inside the stepped portion 42 in the first porous body 40, and the sealing portion 41 impregnates the material for forming the elastic seal member 60. To avoid. For this reason, after preventing peeling of the periphery of the 1st porous body 40 with the elastic seal member 60, the gas diffusion supply in the center side site | part of the 1st porous body 40 is securable.

そして、本実施例の電池セル製造方法によれば、第1多孔質体40の周縁の剥がれ防止の実効性を備えた電池セル20を容易に製造できる。しかも、製造された電池セル20は、弾性シール部材60にて周縁を一体化したセル構成部材30と第1多孔質体40と第2多孔質体50とをセパレーター70に積層済みであるので、本実施例の電池セル20を積層・締結するだけで燃料電池10を製造でき、燃料電池10の組み付け性の向上や製造工程の削減の上から有益である。   And according to the battery cell manufacturing method of a present Example, the battery cell 20 provided with the effectiveness of peeling prevention of the periphery of the 1st porous body 40 can be manufactured easily. And since the manufactured battery cell 20 has already laminated | stacked the cell structural member 30, the 1st porous body 40, and the 2nd porous body 50 which integrated the periphery with the elastic seal member 60 on the separator 70, The fuel cell 10 can be manufactured simply by stacking and fastening the battery cells 20 of the present embodiment, which is advantageous in terms of improving the assembly property of the fuel cell 10 and reducing the manufacturing process.

また、本実施例の電池セル20では、第1多孔質体40の周縁に段差状の段差部位42を形成したことから、次のような利点がある。図8は電池セル20の利点を説明するための説明図である。   Further, in the battery cell 20 of the present embodiment, the step-like step portion 42 is formed on the periphery of the first porous body 40, and thus has the following advantages. FIG. 8 is an explanatory diagram for explaining the advantages of the battery cell 20.

第1多孔質体40は、金属多孔体である都合上、矩形形状へのカッティングに際して、通常は周縁にバリを有する。図8(A)に示すように、仮に、第1多孔質体140がバリ141を有するままそのバリを外側に向けていると、図における上側に積層された電池セルのセパレーター70にバリ141が当たる。バリ141は、電池セル締結により押し潰されるが、隣り合う電池セル間の接触状況が変わったり、バリ押し潰し箇所に不用意な空洞を残すことが有り得る。また、図8(B)に示すように、仮に、第1多孔質体140がバリ141をセル構成部材30のMEA32の側に向けていると、電池セル締結に際して、バリ141がMEA32の損傷を招くことが危惧される。第2多孔質体150にあってもそのバリ151をMEA32の側に向けていると、電池セル締結に際して、バリ141とバリ151の接触を招くことが危惧される。或いは、図8(C)に示すように、仮に、第2多孔質体150がバリ151をセパレーター70の側に向けていると、セパレーター70の上面側に、ガスパスカットを招く空洞を残すことが有り得る。このため、金属多孔体のカッティングと共に、バリ除去が必要となる。しかしながら、本実施例の電池セル20では、第1多孔質体40の周縁での段差部位42の形成に際して、自ずからバリを除去できるので、バリ除去のための作業や工程が不要となり好ましい。   Because of the fact that the first porous body 40 is a metal porous body, the first porous body 40 usually has burrs at the periphery when cutting into a rectangular shape. As shown in FIG. 8A, if the first porous body 140 has the burr 141 with the burr 141 facing outward, the burr 141 is formed on the separator 70 of the battery cell stacked on the upper side in the figure. Hit it. The burr 141 is crushed when the battery cell is fastened, but the contact state between adjacent battery cells may change, or an inadvertent cavity may be left at the burr crushing location. 8B, if the first porous body 140 has the burr 141 facing the MEA 32 side of the cell constituent member 30, the burr 141 may damage the MEA 32 when the battery cell is fastened. It is feared to invite. If the burr 151 is directed toward the MEA 32 even in the second porous body 150, there is a concern that the burr 141 and the burr 151 may be brought into contact when the battery cell is fastened. Alternatively, as shown in FIG. 8C, if the second porous body 150 has the burr 151 facing the separator 70 side, a cavity that causes a gas path cut is left on the upper surface side of the separator 70. There can be. For this reason, it is necessary to remove burrs together with the cutting of the metal porous body. However, in the battery cell 20 of the present embodiment, since the burrs can be removed automatically when forming the stepped portion 42 at the peripheral edge of the first porous body 40, it is preferable that operations and processes for removing the burrs are unnecessary.

次に、他の実施例について説明する。図9は図5相当図であり第2実施例の第1多孔質体40Aをその作製の様子と弾性シール部材60による一体化の様子と共に示す説明図である。   Next, another embodiment will be described. FIG. 9 is a view corresponding to FIG. 5, and is an explanatory view showing the first porous body 40 </ b> A of the second embodiment together with its production and integration with the elastic seal member 60.

図示するように、この第1多孔質体40Aは、目止め部位41より周縁側でくびれた有底部位42Aを備え、この有底部位42Aは、多孔質体表面からV字状に陥没した陥没部43Aを有する。その上で、この有底部位42Aを、弾性シール部材60の射出成形前の状態では連続気孔を有するものとし、射出成形を経て、有底部位42Aに弾性シール部材60の形成用材料を含浸させるようにした。つまり、有底部位42Aについては、図9(A)に示すように回転切削工具SCにて切削形成することで、連続気孔を潰さないようにする。そして、連続気孔が残った状態の有底部位42Aを有する第1多孔質体40Aを、図7に示した第1多孔質体40に代えて型内にセットし、弾性シール部材60を射出成形する。こうすれば、有底部位42Aの連続気孔には、射出成形の際に、弾性シール部材60の形成用材料が含浸し、弾性シール部材60は、図9(B)に示すように、陥没部43Aを埋めるようにして段差部位上面部61を形成し、多孔質体下面には段差部位下面部62を形成して備えることになる。   As shown in the figure, the first porous body 40A includes a bottomed portion 42A that is constricted on the peripheral side of the sealing portion 41, and the bottomed portion 42A is a recess that is recessed in a V shape from the surface of the porous body. It has a portion 43A. In addition, the bottomed portion 42A has continuous pores in the state before the injection molding of the elastic seal member 60, and the bottomed portion 42A is impregnated with the material for forming the elastic seal member 60 through the injection molding. I did it. That is, the bottomed portion 42A is cut by the rotary cutting tool SC as shown in FIG. 9A so that the continuous pores are not crushed. Then, the first porous body 40A having the bottomed portion 42A in a state where the continuous pores remain is set in the mold in place of the first porous body 40 shown in FIG. 7, and the elastic seal member 60 is injection molded. To do. In this way, the continuous pores of the bottomed portion 42A are impregnated with the material for forming the elastic seal member 60 during the injection molding, and the elastic seal member 60 has a depressed portion as shown in FIG. 9B. The step portion upper surface portion 61 is formed so as to fill 43A, and the step portion lower surface portion 62 is formed on the lower surface of the porous body.

上記した第1多孔質体40Aを用いた第2実施例によっても、既述した効果を奏することがきるほか、次の利点がある。まず第1に、この第2実施例では、弾性シール部材60は、陥没部43Aを段差部位上面部61で埋めているので、弾性シール部材60に図9における右方方向の力が加わっても、当該力に抗して弾性シール部材60を保持できる。また、陥没部43Aを段差部位上面部61で埋めた上で、その段差部位上面部61で有底部位42Aを押さえるので、多孔質体40周縁の剥がれ防止の実効性向上の上で望ましい。加えて、陥没部43Aを埋めた段差部位上面部61と有底部位42Aの下面側の段差部位下面部62とを、有底部位42Aの連続気孔に含浸して加硫した弾性シール部材60の形成用材料で繋げて一体とできる。よって、弾性シール部材60の段差部位上面部61による有底部位42Aの押さえ効果と、有底部位42Aに含浸・加硫した弾性シール部材60の形成用材料によるアンカー効果とで、第1多孔質体40Aの周縁の剥がれ防止の実効性は、より一層高まる。この場合、有底部位42Aへの弾性シール部材60の形成用材料の含浸は、有底部位42Aの内部にまで起きることが望ましいが、有底部位42Aの外表面近傍で起きれば、その外表面においてアンカー効果が得られる。本実施例では、有底部位42Aにおける陥没部43AをV字状に陥没させたが、陥没部43Aの陥没形状は、V字状に限らず、U字状やピン角の凹形状とすることができる。   According to the second embodiment using the first porous body 40A described above, the above-described effects can be achieved and the following advantages can be obtained. First, in the second embodiment, since the elastic seal member 60 has the depressed portion 43A filled with the stepped portion upper surface portion 61, even if a rightward force in FIG. The elastic seal member 60 can be held against the force. Further, since the depressed portion 43A is filled with the stepped portion upper surface portion 61 and the bottomed portion 42A is pressed by the stepped portion upper surface portion 61, it is desirable for improving the effectiveness of preventing the peripheral edge of the porous body 40 from peeling off. In addition, the elastic seal member 60 is formed by impregnating and vulcanizing the stepped portion upper surface 61 filled with the depressed portion 43A and the stepped portion lower surface 62 on the lower surface side of the bottomed portion 42A into the continuous pores of the bottomed portion 42A. It can be integrated with the forming material. Therefore, the first porous structure includes the pressing effect of the bottomed portion 42A by the stepped portion upper surface portion 61 of the elastic seal member 60 and the anchor effect by the material for forming the elastic seal member 60 impregnated and vulcanized in the bottomed portion 42A. The effectiveness of preventing the peripheral edge of the body 40A from peeling off is further enhanced. In this case, it is preferable that the bottomed portion 42A is impregnated with the material for forming the elastic seal member 60 up to the inside of the bottomed portion 42A, but if it occurs near the outer surface of the bottomed portion 42A, the outer surface thereof An anchor effect can be obtained. In this embodiment, the depressed portion 43A in the bottomed portion 42A is depressed in a V shape. However, the depressed shape of the depressed portion 43A is not limited to the V shape, and is a U shape or a concave shape with a pin angle. Can do.

図10は図4相当図であり第3実施例の電池セル20Aの要部を断面視しつつその一部を拡大して示す説明図である。   FIG. 10 is a view corresponding to FIG. 4, and is an explanatory view showing a part of the battery cell 20 </ b> A of the third embodiment in an enlarged manner while viewing a cross-sectional view.

図示するように、第3実施例の電池セル20Aが備える第1多孔質体40Bは、既述した目止め部位41と段差部位42との間に、気孔残置部位44を備える。この気孔残置部位44は、上記した有底部位42Aと同様、弾性シール部材60の射出成形前の状態では連続気孔を有するものとし、射出成形を経て、弾性シール部材60の形成用材料を含浸・加硫させる。こうした第1多孔質体40Bを得るには、図5で説明した樹脂噴出ノズルSによる目止め部位41の形成箇所を、気孔残置部位44を設ける分だけ中央側部位寄りとすれば、その後のプレス体Pによる段差部位42の形成により、第1多孔質体40Bの周縁部に、目止め部位41と気孔残置部位44と段差部位42がこの順に並ぶこととなる。そして、連続気孔が残った気孔残置部位44を有する第1多孔質体40Bを、図7に示した第1多孔質体40に代えて型内にセットし、弾性シール部材60を射出成形する。こうすれば、気孔残置部位44の連続気孔では、射出成形の際に、弾性シール部材60の形成用材料が含浸して加硫する。   As shown in the drawing, the first porous body 40B provided in the battery cell 20A of the third embodiment includes a pore remaining part 44 between the sealing part 41 and the step part 42 described above. This pore remaining part 44 has continuous pores in the state before the injection molding of the elastic seal member 60 in the same manner as the bottomed part 42A described above, and is impregnated with a material for forming the elastic seal member 60 after injection molding. Vulcanize. In order to obtain such a first porous body 40B, the formation site of the sealing portion 41 by the resin ejection nozzle S described in FIG. By the formation of the stepped portion 42 by the body P, the sealing portion 41, the pore remaining portion 44, and the stepped portion 42 are arranged in this order on the peripheral edge of the first porous body 40B. Then, instead of the first porous body 40 shown in FIG. 7, the first porous body 40B having the pore-remaining portions 44 where the continuous pores remain is set in a mold, and the elastic seal member 60 is injection-molded. By so doing, the continuous pores of the pore remaining part 44 are impregnated with the material for forming the elastic seal member 60 and vulcanized during injection molding.

上記した第1多孔質体40Bを用いた第3実施例の電池セル20Aによっても、既述した第2実施例と同様の効果を奏することがきる。つまり、段差部位42を押さえる作用を果たす段差部位上面部61は、気孔残置部位44の内部にまで含浸・加硫した弾性シール部材60の形成用材料で段差部位下面部62と繋がることによるアンカー効果、或いは、気孔残置部位44と段差部位上面部61との界面におけるアンカー効果により、第1多孔質体40Bの周縁の剥がれ防止の実効性は、より一層高まる。   Even with the battery cell 20A of the third embodiment using the first porous body 40B described above, the same effects as those of the second embodiment described above can be obtained. That is, the step portion upper surface portion 61 that acts to hold down the step portion 42 is anchored by being connected to the step portion lower surface portion 62 with the material for forming the elastic seal member 60 impregnated and vulcanized into the pore remaining portion 44. Alternatively, due to the anchor effect at the interface between the pore remaining portion 44 and the stepped portion upper surface portion 61, the effectiveness of preventing the peripheral edge of the first porous body 40B from peeling off is further enhanced.

図11は図10相当図であり第4実施例の電池セル20Bの要部を断面視しつつその一部を拡大して示す説明図である。この実施例では、セパレーター70に接合する第2多孔質体50Aについて、陥没部や段差部位を形成した点に特徴がある。   FIG. 11 is a view corresponding to FIG. 10, and is an explanatory view showing a part of the battery cell 20 </ b> B of the fourth embodiment in an enlarged manner while viewing a cross-sectional view. In this embodiment, the second porous body 50A joined to the separator 70 is characterized in that a depressed portion or a stepped portion is formed.

図示するように、電池セル20Bが有する第2多孔質体50Aは、既述した第1多孔質体40が有する目止め部位41と同様の目止め部位51を多孔質体周縁に備え、その目止め51に並べて陥没部53と最外周縁部位52とを備える。陥没部53は、第1多孔質体40Aの陥没部43Aと同様にV字状に陥没形成され、そのV字の深さに相当する段差の分だけ、第2多孔質体50の中央側部位より薄くなる。最外周縁部位52は、第2多孔質体50の中央側部位と同じ厚みで形成されている。そして、この最外周縁部位52と陥没部53は、第1多孔質体40Aの有底部位42Aと同様、弾性シール部材60の射出成形前の状態では連続気孔を有するものとし、射出成形を経て、弾性シール部材60の形成用材料を含浸・加硫させる。電池セル20Bの製造の際には、連続気孔が残った状態の最外周縁部位52と陥没部53を有する第2多孔質体50Aを、図7に示した第2多孔質体50に代えて型内にセットする。この際、陥没部53がセル構成部材30のMEA32の側に向くようにした上で、弾性シール部材60を射出成形する。こうすれば、最外周縁部位52と陥没部53の連続気孔には、射出成形の際に、弾性シール部材60の形成用材料が含浸する。   As shown in the figure, the second porous body 50A included in the battery cell 20B includes a sealing portion 51 similar to the sealing portion 41 included in the first porous body 40 described above at the periphery of the porous body. A recessed portion 53 and an outermost peripheral edge portion 52 are provided side by side with the stopper 51. The depressed portion 53 is formed in a V shape like the depressed portion 43 </ b> A of the first porous body 40 </ b> A, and a central portion of the second porous body 50 corresponding to a step corresponding to the depth of the V shape. Thinner. The outermost peripheral edge part 52 is formed with the same thickness as the central part of the second porous body 50. The outermost peripheral edge portion 52 and the depressed portion 53 have continuous pores in the state before the injection molding of the elastic seal member 60, like the bottomed portion 42A of the first porous body 40A. The material for forming the elastic seal member 60 is impregnated and vulcanized. In manufacturing the battery cell 20B, the second porous body 50A having the outermost peripheral edge portion 52 and the depressed portion 53 in a state where the continuous pores remain is replaced with the second porous body 50 shown in FIG. Set in the mold. At this time, the elastic seal member 60 is injection-molded after the depressed portion 53 faces the MEA 32 side of the cell constituent member 30. In this way, the continuous pores of the outermost peripheral portion 52 and the depressed portion 53 are impregnated with the material for forming the elastic seal member 60 during the injection molding.

こうした弾性シール部材60の形成用材料の射出の際には、射出圧力を受けて弾性シール部材60の形成用材料が流れ込む。この材料流れ込みにより、MEA32が射出圧力を受けて保護フィルム37とともに図示するように湾曲して、第2多孔質体の周縁表面にMEA32の保護フィルム37が乗り上げてしまうことが起き得る。仮に、MEA32の保護フィルム37が第2多孔質体表面に乗り上げて当該周縁表面を覆ったまま何の対処も行わないとすると、カソード側ガス拡散層36の周縁端側のMEA32の基部領域60Sに弾性シール部材60の形成用材料が行き渡らず、基部領域60Sに空隙を残すことが危惧される。   When the material for forming the elastic seal member 60 is injected, the material for forming the elastic seal member 60 flows under the injection pressure. Due to this material flow, the MEA 32 may receive injection pressure and bend as shown in the figure together with the protective film 37, and the protective film 37 of the MEA 32 may ride on the peripheral surface of the second porous body. If the protective film 37 of the MEA 32 rides on the surface of the second porous body and does not take any measures while covering the peripheral surface, the base region 60S of the MEA 32 on the peripheral edge side of the cathode-side gas diffusion layer 36 is formed. There is a concern that the material for forming the elastic seal member 60 will not spread and leave a gap in the base region 60S.

しかしながら、上記した第2多孔質体50Aを用いた第4実施例の電池セル20Bでは、図11の拡大部分に示すように、弾性シール部材60の形成用材料の射出に伴い、弾性シール部材60の形成用材料は、連続気孔を有する状態の最外周縁部位52の側から、当該部位とその隣の陥没部53の連続気孔に図中矢印Xで示すように順次含浸する。その上で、弾性シール部材60の形成用材料は、陥没部53の表面から抜け出して、カソード側ガス拡散層36の周縁端側のMEA32の基部領域60Sにまで達する。つまり、射出された弾性シール部材60の形成用材料は、最外周縁部位52と陥没部53の内部に含浸した上で、基部領域60Sについても当該領域を埋め尽くして加硫する。このため、第4実施例の電池セル20Bによれば、基部領域60Sに空隙を残さないので、基部領域60Sに空隙が残っている場合の不具合、例えば当該空隙への生成水の滞留・濃縮による部品劣化やこれに伴う性能低下等を回避できる。また、弾性シール部材60は、基部領域60Sおよび陥没部53を埋め尽くすシール部材部位と最外周縁部位52と陥没部53に含浸・加硫した弾性シール部材60の形成用材料によるアンカー効果により、セル構成部材30とその上下の多孔質体周縁の一体化の確実化をもたらすことができる。   However, in the battery cell 20B of the fourth embodiment using the above-described second porous body 50A, as shown in the enlarged portion of FIG. 11, the elastic seal member 60 is accompanied by the injection of the material for forming the elastic seal member 60. As shown by the arrow X in the figure, the forming material is sequentially impregnated from the outermost peripheral edge portion 52 side having continuous pores into the continuous pores of the portion and the adjacent depressed portion 53 as indicated by an arrow X in the figure. Then, the material for forming the elastic seal member 60 escapes from the surface of the depressed portion 53 and reaches the base region 60S of the MEA 32 on the peripheral edge side of the cathode side gas diffusion layer 36. That is, the injected material for forming the elastic seal member 60 is impregnated in the outermost peripheral edge portion 52 and the depressed portion 53, and the base region 60S is filled and vulcanized. For this reason, according to the battery cell 20B of the fourth embodiment, since no gap is left in the base region 60S, there is a problem in the case where a void remains in the base region 60S, for example, due to retention / concentration of generated water in the gap. It is possible to avoid the deterioration of parts and the accompanying performance degradation. Further, the elastic seal member 60 has an anchor effect by a material for forming the elastic seal member 60 impregnated and vulcanized in the seal member portion that fills the base region 60S and the depressed portion 53, the outermost peripheral portion 52, and the depressed portion 53, It is possible to ensure the integration of the cell constituent member 30 and the peripheral edges of the upper and lower porous bodies.

本発明は上記した実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において、種々の態様で実施可能である。例えば、セル構成部材30を、MEA32とその上下のアノード側ガス拡散層34とカソード側ガス拡散層36を有するものとしたが、アノード・カソード側のガス拡散層を有しない形態とすることもできる。また、MEA32については、その周縁に保護フィルム37を有するものとしたが、保護フィルム37を有しない形態とすることもできる。   The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the cell component 30 has the MEA 32, the upper and lower anode-side gas diffusion layers 34, and the cathode-side gas diffusion layer 36, but may not have the anode-cathode-side gas diffusion layers. . In addition, the MEA 32 has the protective film 37 on the periphery thereof, but may have a form without the protective film 37.

また、第1多孔質体40と第2多孔質体50とを異なる形態としたが、同じ物を用いることもできる。例えば、図10に示す電池セル20Aにおいて、第2多孔質体50を第1多孔質体40Bと同一の形状の多孔質体として、段差部位42の段差43がセパレーター70の表面側に位置するようにすることもできる。こうすれば、仮にMEA32が上記したように湾曲しても、弾性シール部材60の形成用材料は、段差部位42とセパレーター70の表面との間を経て気孔残置部位44に含浸した当該部位を通過した後、基部領域60Sにまで達して当該領域を弾性シール部材60の形成用材料で埋め尽くすことができる。   Moreover, although the 1st porous body 40 and the 2nd porous body 50 were made into the different form, the same thing can also be used. For example, in the battery cell 20A shown in FIG. 10, the second porous body 50 is a porous body having the same shape as the first porous body 40B, and the step 43 of the step portion 42 is positioned on the surface side of the separator 70. It can also be. Thus, even if the MEA 32 is curved as described above, the material for forming the elastic seal member 60 passes through the portion impregnated in the pore remaining portion 44 through the gap between the step portion 42 and the surface of the separator 70. After that, the base region 60S is reached and the region can be filled with the material for forming the elastic seal member 60.

図11に示す電池セル20Bにおいて、第1多孔質体40を第2多孔質体50Aと同一の形状の多孔質体として、陥没部53が電池セル外表面側に位置するようにすることもできる。こうすれば、弾性シール部材60は、電池セル外表面側に位置してV字状段差分だけ薄い陥没部53を弾性シール部材60の形成用材料で埋め尽くしたシール部材部位により陥没部53の押さえつけと、当該シール部材部位と最外周縁部位52および陥没部53に含浸・加硫した弾性シール部材60の形成用材料とのアンカー効果により、多孔質体周縁を高い実効性で防止できる。   In the battery cell 20B shown in FIG. 11, the first porous body 40 may be a porous body having the same shape as the second porous body 50A so that the depressed portion 53 is positioned on the outer surface side of the battery cell. . In this way, the elastic seal member 60 is located on the outer surface side of the battery cell, and the depression 53 is thinned by the material for forming the elastic seal member 60 and is thinned by the V-shaped step. The peripheral edge of the porous body can be prevented with high effectiveness by the anchor effect of the pressing and the sealing member portion, the outermost peripheral edge portion 52 and the material for forming the elastic seal member 60 impregnated and vulcanized in the depressed portion 53.

また、図4や図10において、段差部位42を第1多孔質体周縁の下面側に形成したが、電池セル外表面の側から段差43を持って形成されていれば、段差部位42を第1多孔質体周縁端部の中央に形成することもできる。   4 and 10, the step portion 42 is formed on the lower surface side of the periphery of the first porous body. However, if the step portion 42 is formed with the step 43 from the outer surface side of the battery cell, the step portion 42 is It can also be formed at the center of the peripheral edge of one porous body.

10…燃料電池
11…酸化ガス供給マニホールド
12…酸化ガス排出マニホールド
13…燃料ガス供給マニホールド
14…燃料ガス排出マニホールド
15…冷却媒体供給マニホールド
16…冷却媒体排出マニホールド
20、20A〜20B…電池セル
30…セル構成部材
34…アノード側ガス拡散層
36…カソード側ガス拡散層
37…保護フィルム
40、40A〜40B…第1多孔質体
41…目止め部位
42…段差部位
42A…有底部位
43…段差
43A…陥没部
44…気孔残置部位
50、50A…第2多孔質体
51…目止め部位
52…最外周縁部位
53…陥没部
60…弾性シール部材
60S…基部領域
61…段差部位上面部
62…段差部位下面部
63…多孔質体上面部
64…リブ突起
65…凹所
70…セパレーター
71…第1プレート
72…第2プレート
73…中間プレート
100…上型
102…平型面部
104…シール部形成凹所
106…リブ凹所
107…射出口
110…下型
112…セパレーター凹所
114…凸部
120…キャビティ
S…樹脂噴出ノズル
P…プレス体
SC…回転切削工具
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 11 ... Oxidation gas supply manifold 12 ... Oxidation gas discharge manifold 13 ... Fuel gas supply manifold 14 ... Fuel gas discharge manifold 15 ... Coolant supply manifold 16 ... Coolant discharge manifold 20, 20A-20B ... Battery cell 30 ... Cell component 34 ... Anode-side gas diffusion layer 36 ... Cathode-side gas diffusion layer 37 ... Protective film 40, 40A to 40B ... First porous body 41 ... Sealing part 42 ... Step part 42A ... Bottom part 43 ... Step 43A ... recessed part 44 ... remaining pore part 50, 50A ... second porous body 51 ... sealing part 52 ... outermost peripheral part 53 ... recessed part 60 ... elastic seal member 60S ... base region 61 ... stepped part upper surface part 62 ... step Lower part of part 63 ... Upper surface part of porous body 64 ... Rib protrusion 65 ... Recess 70 ... Separator 7 DESCRIPTION OF SYMBOLS 1 ... 1st plate 72 ... 2nd plate 73 ... Intermediate | middle plate 100 ... Upper mold | type 102 ... Flat mold | type surface part 104 ... Sealing part formation recess 106 ... Rib recess 107 ... Injection port 110 ... Lower mold 112 ... Separator recess 114 ... Projection 120 ... Cavity S ... Resin ejection nozzle P ... Press body SC ... Rotary cutting tool

Claims (8)

燃料電池の発電単位となる電池セルであって、
電解質膜に触媒電極を接合した膜電極接合体を含むセル構成部材と、
ガスの拡散供給路を連続気孔で形成する多孔質体と、
前記セル構成部材とその両側に重ね合わせた前記多孔質体とを、その周縁に亘って取り囲んで一体化する弾性シール部材とを備え、
前記多孔質体は、多孔質体周縁において該多孔質体周縁の内側の部位より薄肉の周縁部位を備え、該周縁部位を前記弾性シール部材の内部に位置させている
電池セル。
A battery cell as a power generation unit of a fuel cell,
A cell constituent member including a membrane electrode assembly in which a catalyst electrode is joined to an electrolyte membrane;
A porous body forming a gas diffusion supply path with continuous pores;
An elastic seal member that surrounds and integrates the cell constituent member and the porous body superposed on both sides thereof over the periphery thereof;
The porous body includes a peripheral portion that is thinner than a portion inside the periphery of the porous body at the periphery of the porous body, and the peripheral portion is positioned inside the elastic seal member.
前記多孔質体は、前記弾性シール部材の形成用材料の前記多孔質体への含浸を回避するよう前記連続気孔を埋めてなる目止め部位を前記多孔質体周縁の側に備え、該目止め部位よりも周縁側に前記周縁部位を有する請求項1に記載の電池セル。   The porous body is provided with a sealing portion on the peripheral edge side of the porous body, which is formed by filling the continuous pores so as to avoid impregnation of the material for forming the elastic seal member into the porous body. The battery cell according to claim 1, wherein the peripheral portion is located on the peripheral side of the portion. 前記周縁部位は、前記多孔質体周縁を押し潰して段差状とされた段差部位を有する請求項1または請求項2に記載の電池セル。   3. The battery cell according to claim 1, wherein the peripheral portion has a stepped portion that is formed into a step shape by crushing the periphery of the porous body. 前記目止め部位よりも周縁側の前記周縁部位は、前記段差部位と前記目止め部位との間に、前記連続気孔に前記弾性シール部材の形成用材料が含浸した含浸部位を有する請求項3に記載の電池セル。   The peripheral edge portion on the peripheral side of the sealing portion has an impregnation portion in which the continuous pores are impregnated with the material for forming the elastic seal member between the stepped portion and the sealing portion. The battery cell of description. 前記周縁部位は、前記多孔質体周縁においてくびれた有底部位を有する請求項1または請求項2に記載の電池セル。   The battery cell according to claim 1, wherein the peripheral portion has a bottomed portion constricted at a peripheral edge of the porous body. 前記周縁部位は、前記有底部位から前記多孔質体周縁まで延びた周縁部を、該周縁部の前記連続気孔に前記弾性シール部材の形成用材料を含浸した状態で有する請求項5に記載の電池セル。   The said peripheral part has the peripheral part extended from the said bottomed part to the said porous body periphery in the state which impregnated the formation material of the said elastic seal member in the said continuous pore of this peripheral part. Battery cell. 請求項1ないし請求項6のいずれかに記載の電池セルであって、
更に、前記セル構成部材に重なった前記多孔質体の一方の側にセパレーターを接合して備え、
該セパレーターの側の前記多孔質体と他方の前記多孔質体の少なくとも一方が前記周縁部位を有する
電池セル。
The battery cell according to any one of claims 1 to 6,
Furthermore, a separator is joined to one side of the porous body overlapping the cell constituent member,
A battery cell in which at least one of the porous body on the separator side and the other porous body has the peripheral portion.
請求項7に記載の電池セルを複数積層して備える燃料電池。   A fuel cell comprising a plurality of the battery cells according to claim 7 stacked thereon.
JP2009127195A 2009-05-27 2009-05-27 Battery cell, and fuel battery Pending JP2010277742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127195A JP2010277742A (en) 2009-05-27 2009-05-27 Battery cell, and fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127195A JP2010277742A (en) 2009-05-27 2009-05-27 Battery cell, and fuel battery

Publications (1)

Publication Number Publication Date
JP2010277742A true JP2010277742A (en) 2010-12-09

Family

ID=43424546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127195A Pending JP2010277742A (en) 2009-05-27 2009-05-27 Battery cell, and fuel battery

Country Status (1)

Country Link
JP (1) JP2010277742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091720A (en) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 Secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091720A (en) * 2014-10-31 2016-05-23 日立オートモティブシステムズ株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
US6667124B2 (en) Seal for fuel cell and forming method therefor
US9484581B2 (en) Integrally molded gasket for a fuel cell assembly
US6057054A (en) Membrane electrode assembly for an electrochemical fuel cell and a method of making an improved membrane electrode assembly
KR100918133B1 (en) Polymer electrolyte fuel cell and electrode/film/frame assembly manufacturing method
US20100167171A1 (en) Fuel Cell Component, Porous Body for Fuel Cell and Method of Manufacturing Fuel Cell Component
US20110236786A1 (en) Fuel cell
EP1156546B1 (en) Method of making a resilient seal for membrane electrode assembly (MEA) in an electrochemical fuel cell
JP5067528B2 (en) Manufacturing method of fuel cell seal structure
US8202666B2 (en) Unit cell assembly, fuel cell, and method for manufacturing unit cell assembly
JP2006526249A (en) Sealing structure of polymer electrolyte fuel cell
JP2007329083A (en) Fuel cell
JP2014026799A (en) Membrane electrode assembly for fuel cell
JP2010277742A (en) Battery cell, and fuel battery
JP2007250432A (en) Fuel cell
JP2010021057A (en) Fuel cell
JP2008218392A (en) Fuel cell
JP2007149472A (en) Gasket molding method of constituent member for fuel cell
JP2009123381A (en) Electrolyte membrane structure of solid polymer fuel cell and its manufacturing method
JP5447777B2 (en) Fuel cell
JP2011090802A (en) Sealing structure for fuel cell and method of manufacturing the same
JP5604404B2 (en) Fuel cell
KR101822246B1 (en) Fuel cell stack
JP2008204636A (en) Injection mold and manufacturing method for manufacturing seal-integrated membrane electrode assembly
JP5809614B2 (en) Fuel cell stack
JP7205381B2 (en) Fuel cell manufacturing method