JP2008146987A - Manufacturing method for fuel-cell sealing structure - Google Patents

Manufacturing method for fuel-cell sealing structure Download PDF

Info

Publication number
JP2008146987A
JP2008146987A JP2006332064A JP2006332064A JP2008146987A JP 2008146987 A JP2008146987 A JP 2008146987A JP 2006332064 A JP2006332064 A JP 2006332064A JP 2006332064 A JP2006332064 A JP 2006332064A JP 2008146987 A JP2008146987 A JP 2008146987A
Authority
JP
Japan
Prior art keywords
rubber
mold
power generation
porous body
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006332064A
Other languages
Japanese (ja)
Other versions
JP5067527B2 (en
Inventor
Yoshihiro Kurano
慶宏 蔵野
Takeshi Masaka
武史 眞坂
Hiroki Yamamoto
博樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2006332064A priority Critical patent/JP5067527B2/en
Publication of JP2008146987A publication Critical patent/JP2008146987A/en
Application granted granted Critical
Publication of JP5067527B2 publication Critical patent/JP5067527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To restrict impregnation of a rubber material for gasket molding into the peripheral edge part 22 of each porous body 20, constituting both-side parts in the thickness direction of a power generation body 1, to a proper region in manufacturing of a fuel-cell sealing structure in which a gasket is integrally provided along the peripheral edge part of the power generation body 1 while being joined to the end face 1a of the power generation body. <P>SOLUTION: Each rubber-coating part 2, extending from the end face 1a of the power generation body 1 with a prescribed interval, is molded to each porous body 20 constituting both-side parts in the thickness direction of the power generation body 1. The power generation body 1 is set in a die 4. Each part located below the rubber-coating part 2 in each porous body 20 is pressed with the die inner face via the rubber-coating part 2 so as to clamp it in a properly compressed state. A low viscosity or liquid molding rubber material is filled into a cavity 43 defined between the end face 1a and the die inner face while it is partially impregnated into the peripheral edge part 22 of each porous body 20 so as to be crosslinked and cured. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、燃料電池スタックの各燃料電池セル間に形成される流路をシールするためのガスケットと、前記燃料電池セルの発電体における厚さ方向両側のGDLが一体化されたガスケット一体部品を製造する方法に関するものである。   The present invention includes a gasket for sealing a flow path formed between fuel cells of a fuel cell stack, and a gasket integrated part in which GDLs on both sides in the thickness direction of the power generator of the fuel cell are integrated. It relates to a method of manufacturing.

燃料電池は、電解質膜(イオン交換膜)の両面に一対の電極層を設けたMEA(Membrane Electrode Assembly:膜−電極複合体)の厚さ方向両側にGDL(Gas Diffusion Layer:ガス拡散層)を配置した発電体、あるいは電解質膜の両面に、多孔質のガス拡散電極層を配置したMEAからなる発電体を、セパレータで挟持して燃料電池セルとし、更にこの燃料電池セルを多数積層した、スタック構造を有する。そして、酸化ガス(空気)が、各セパレータの一方の面に形成された酸化ガス流路から、一方のGDLを介して発電体のカソード側に供給され、燃料ガス(水素)が、各セパレータの他方の面に形成された燃料ガス流路から、他方のガス拡散層を介して発電体のアノード側に供給され、水の電気分解の逆反応である電気化学反応、すなわち水素と酸素から水を生成する反応によって、電力を発生するものである。   A fuel cell has GDL (Gas Diffusion Layer) on both sides in the thickness direction of MEA (Membrane Electrode Assembly) having a pair of electrode layers on both sides of an electrolyte membrane (ion exchange membrane). A stack in which a power generation body made of MEA in which a porous gas diffusion electrode layer is disposed on both surfaces of the power generation body disposed on the electrolyte membrane is sandwiched between separators to form a fuel cell, and a number of these fuel cells are stacked. It has a structure. Then, the oxidizing gas (air) is supplied from the oxidizing gas flow path formed on one surface of each separator to the cathode side of the power generator via one GDL, and the fuel gas (hydrogen) is supplied to each separator. The fuel gas flow path formed on the other surface is supplied to the anode side of the power generator through the other gas diffusion layer, and the electrochemical reaction, which is the reverse reaction of water electrolysis, that is, water from hydrogen and oxygen is removed. Electric power is generated by the reaction to be generated.

このため、各燃料電池セルには、燃料ガスや酸化ガス、上述の電気化学反応により生成された水や、余剰空気等をシールするためのガスケットが例えば発電体に一体的に設けられ、燃料電池セルシールとしての燃料電池用シール構造体が構成される。図6及び図7は、従来の燃料電池用シール構造体の一例を示す断面図である。   For this reason, each fuel battery cell is integrally provided with a gasket for sealing a fuel gas, an oxidant gas, water generated by the above-described electrochemical reaction, surplus air, etc., for example, in the fuel cell. A fuel cell seal structure as a cell seal is formed. 6 and 7 are cross-sectional views showing an example of a conventional fuel cell seal structure.

図6及び図7において、参照符号100は、電解質膜111及びその両面に設けられた一対の電極層112,112からなるMEA110と、その両側に設けられたGDL120,120からなる発電体である。この発電体100には、ゴム状弾性材料からなるガスケット200が一体的に成形されている。   6 and 7, reference numeral 100 is a power generator composed of an electrolyte membrane 111 and an MEA 110 composed of a pair of electrode layers 112 and 112 provided on both sides thereof, and GDLs 120 and 120 provided on both sides thereof. The power generator 100 is integrally formed with a gasket 200 made of a rubber-like elastic material.

図6に示される燃料電池用シール構造体は、発電体100に開設したスルーホールを通じて、成形用ゴム材料を賦形させることにより、それぞれシールリップ201を有するガスケット200,200を、発電体100の厚さ方向両側に、前記スルーホール内で成形用ゴム材料が硬化した部分202を介して互いに連結された形状に成形したものである。また、この成形に際して、低粘度又は液状である前記成形用ゴム材料の一部を、カーボン繊維等の多孔質体からなるGDL120,120に含浸させることによって、このGDL120,120に、ガスケット200,200と連続したゴム含浸部121,121を形成し、GDL120,120からの透過漏れのない構造としている(例えば下記の特許文献参照)。
特開2003−7328号公報 WO2002−43172
In the fuel cell seal structure shown in FIG. 6, the molding rubber material is shaped through the through-hole formed in the power generator 100, whereby the gaskets 200 and 200 each having the seal lip 201 are formed on the power generator 100. It is formed into a shape in which both sides in the thickness direction are connected to each other via a portion 202 in which the molding rubber material is cured in the through hole. Further, at the time of molding, a part of the molding rubber material having low viscosity or liquid is impregnated into GDL 120, 120 made of a porous body such as carbon fiber, whereby gaskets 200, 200 are provided on GDL 120, 120. The rubber-impregnated portions 121 and 121 are formed continuously so that there is no permeation leakage from the GDLs 120 and 120 (see, for example, the following patent document).
JP 2003-7328 A WO2002-43172

しかしながら、図6に示される構造のものは、スタックとしての組立状態において両側のセパレータ300,300によってガスケット200,200に作用する圧縮荷重が、GDL120,120にも作用するため、このGDL120,120に、過度の負荷がかかるおそれがある。   However, in the structure shown in FIG. 6, the compressive load acting on the gaskets 200, 200 by the separators 300, 300 on both sides in the assembled state as a stack also acts on the GDLs 120, 120. Excessive load may be applied.

そこで、図7に示される燃料電池用シール構造体は、ガスケット200の圧縮荷重が、GDL120,120に作用することがないように、ガスケット200を、発電体100の平面延長方向を向いた端面100aに沿って無端状に延びる基部203と、その両側に形成されたシールリップ201,201を有する形状に成形したものである。カーボン繊維等の多孔質体からなるGDL120,120の周縁部には、低粘度又は液状の成形用ゴム材料を用いてガスケット200を成形する際に、この成形用ゴム材料の一部を含浸させたゴム含浸部121,121が形成されており、このゴム含浸部121,121を介してガスケット200がGDL120,120にしっかり接合されると共に、GDL120,120からの透過漏れのない構造としている。   Therefore, in the fuel cell seal structure shown in FIG. 7, the end face 100 a facing the planar extension direction of the power generator 100 is arranged so that the compressive load of the gasket 200 does not act on the GDLs 120 and 120. Are formed into a shape having a base 203 extending endlessly along the two sides and seal lips 201, 201 formed on both sides thereof. When the gasket 200 is molded using a low viscosity or liquid molding rubber material, a part of the molding rubber material is impregnated in the peripheral portion of the GDL 120 or 120 made of a porous body such as carbon fiber. Rubber impregnated portions 121, 121 are formed, and the gasket 200 is firmly joined to the GDLs 120, 120 via the rubber impregnated portions 121, 121, and there is no permeation leakage from the GDLs 120, 120.

しかしながら、カーボン繊維等の多孔質体からなるGDL120の気孔率にはバラツキがあるため、図7に示される構造のものは、低粘度又は液状の成形用ゴム材料を用いて金型でガスケット200を成形する際に、GDL120,120の周縁部への成形用ゴム材料の含浸を適切に制限することが難しい。このため、成形用ゴム材料の充填圧力や粘度等を一定にしても、GDL120,120の気孔率等によっては、ゴム含浸部121,121の幅Wが必要以上に大きくなり、その分、MEA110における発電領域が狭まってしまうおそれがあった。   However, since the porosity of the GDL 120 made of a porous material such as carbon fiber varies, the structure shown in FIG. 7 has a gasket 200 with a mold using a low-viscosity or liquid molding rubber material. When molding, it is difficult to appropriately limit impregnation of the molding rubber material into the peripheral portion of the GDLs 120 and 120. For this reason, even if the filling pressure and viscosity of the molding rubber material are constant, the width W of the rubber-impregnated portions 121 and 121 becomes larger than necessary depending on the porosity and the like of the GDLs 120 and 120. There was a risk that the power generation area would be narrowed.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題とするところは、発電体の周縁部に沿って、その端面に接合された状態でガスケットを一体的に設けた燃料電池用シール構造体の製造において、発電体の厚さ方向両側部分を構成する多孔質体の周縁部へのガスケット成形用ゴム材料の含浸を適切に制限することにある。   The present invention has been made in view of the above points, and the technical problem is that the gasket is integrally formed in a state of being joined to the end face along the peripheral edge of the power generator. In the production of the provided fuel cell seal structure, the impregnation of the rubber material for molding a gasket into the peripheral portion of the porous body constituting both side portions in the thickness direction of the power generator is appropriately limited.

上述した技術的課題を有効に解決するための手段として、本発明に係る燃料電池用シール構造体の製造方法は、燃料電池セルの発電体にその平面延長方向を向いた端面に沿ってガスケットを一体的に設けた燃料電池用シール構造体の製造において、前記発電体の厚さ方向両側部分を構成する多孔質体に、前記端面から所定の間隔をもって延びるゴムコーティング部を成形する工程と、前記発電体を金型内にセットし、前記多孔質体のうち前記ゴムコーティング部の下層に位置する部分を、このゴムコーティング部を介して金型内面で押圧することにより適宜圧縮された状態とする型締め工程と、前記端面と前記金型内面との間に画成されたキャビティに、低粘度又は液状の成形用ゴム材料を充填すると共にその一部を前記多孔質体の周縁部に含浸させ、架橋硬化させる工程とを備えるものである。   As a means for effectively solving the technical problem described above, the method for manufacturing a fuel cell seal structure according to the present invention includes a gasket along the end face of the fuel cell generator facing the planar extension direction. In the production of the fuel cell seal structure provided integrally, the step of forming a rubber coating portion extending from the end face at a predetermined interval on the porous body constituting both side portions in the thickness direction of the power generator; A power generator is set in a mold, and a portion of the porous body located in a lower layer of the rubber coating portion is pressed by the inner surface of the mold through the rubber coating portion to be appropriately compressed. A mold clamping step, and a cavity defined between the end surface and the inner surface of the mold is filled with a low-viscosity or liquid molding rubber material, and a part of the cavity is formed on the periphery of the porous body. Immersed allowed, in which and a step of crosslinking and curing.

なお、ここでいう発電体とは、電解質膜の両面に一対の電極層を設けたMEAの厚さ方向両側に多孔質体からなるGDLを配置した発電体、あるいは電解質膜の両面に多孔質体からなるガス拡散電極層を配置した発電体を総称するものである。   Here, the power generation body means a power generation body in which a GDL made of a porous body is arranged on both sides in the thickness direction of the MEA provided with a pair of electrode layers on both sides of the electrolyte membrane, or a porous body on both sides of the electrolyte membrane. The power generator in which the gas diffusion electrode layer made of is disposed is generically named.

本発明の方法において、発電体の端面と金型内面との間に画成されたキャビティに充填された成形用ゴム材料は、架橋硬化によって、発電体の端面に沿って延びるガスケットとなるものであり、成形用ゴム材料の一部が、発電体の厚さ方向両側部分を構成する多孔質体(例えばGDL又はガス拡散電極層)の周縁部に含浸された状態で架橋硬化した部分はゴム含浸部となるものであり、ガスケットがこのゴム含浸部を介して発電体にしっかり接合された構造の燃料電池用シール構造体が得られる。   In the method of the present invention, the molding rubber material filled in the cavity defined between the end face of the power generator and the inner surface of the mold becomes a gasket extending along the end face of the power generator by cross-linking curing. Yes, part of rubber material for molding is cross-linked and hardened while impregnated in the peripheral part of the porous body (for example, GDL or gas diffusion electrode layer) constituting both sides in the thickness direction of the power generator Thus, a fuel cell seal structure having a structure in which the gasket is firmly joined to the power generator via the rubber-impregnated portion is obtained.

そして型締め工程では、多孔質体にゴムコーティング部を設けた発電体を金型内にセットして型締めすると、多孔質体は、ゴムコーティング部の下層に位置する部分が、それ以外の部分よりも大きな型締め圧力を受けることにより圧縮されて、その気孔率が減少する。このため、発電体の端面と金型内面との間に画成されたキャビティに、低粘度又は液状の成形用ゴム材料を充填すると共にその一部を多孔質体の周縁部に含浸させる際に、多孔質体への成形用ゴム材料の含浸が、ゴムコーティング部による圧縮部分において有効に遮断され、多孔質体と金型内面との接触面間からの成形用ゴム材料の漏れも、ゴムコーティング部と金型内面との密接部によって堰き止められる。   In the mold clamping process, when the power generator with the rubber coating portion provided on the porous body is set in the mold and the mold is clamped, the porous body is located at the lower layer of the rubber coating portion. Compressed by receiving a larger clamping pressure, the porosity is reduced. For this reason, when the cavity defined between the end face of the power generator and the inner surface of the mold is filled with a low-viscosity or liquid molding rubber material and a part thereof is impregnated into the peripheral edge of the porous body. The impregnation of the rubber material for molding into the porous body is effectively cut off at the compression part by the rubber coating part, and the rubber material for molding from the contact surface between the porous body and the inner surface of the mold also has a rubber coating. It is dammed by the intimate contact between the part and the inner surface of the mold.

本発明に係る燃料電池用シール構造体の製造方法において一層好ましくは、型締め時に金型内面に押圧されたゴムコーティング部により圧縮される多孔質体の圧縮率が20〜50%となるように、前記ゴムコーティング部の高さが設定される。これは、多孔質体の圧縮率が20%未満では、成形用ゴム材料の含浸に対する制限作用が十分でなくなり、50%超では、GDL等の多孔質体に過度な負荷がかかるからである。   In the method for manufacturing a fuel cell seal structure according to the present invention, more preferably, the compressibility of the porous body compressed by the rubber coating portion pressed against the inner surface of the mold during clamping is 20 to 50%. The height of the rubber coating portion is set. This is because if the compressibility of the porous body is less than 20%, the limiting effect on the impregnation of the molding rubber material is not sufficient, and if it exceeds 50%, an excessive load is applied to the porous body such as GDL.

本発明に係る燃料電池用シール構造体の製造方法によれば、ガスケットがゴム含浸部を介して発電体にしっかり接合された燃料電池用シール構造体を得ることができる。そして、ガスケット成形過程での多孔質体への成形用ゴム材料の含浸が、ゴムコーティング部による多孔質体の圧縮部分で有効に制限されるので、ゴム含浸部を一定の幅に制限することができ、このため、MEAの発電領域が狭まってしまうのを有効に防止することができる。また、多孔質体と金型内面との接触面間から発電領域側へ漏れようとする成形用ゴム材料も、ゴムコーティング部によって堰き止められるので、発電領域側へのゴムバリの発生も有効に防止することができる。したがって、製造過程での各種の制御に必要な不確定要素を減少させて、ロバスト性を向上させることができる。   According to the method for manufacturing a fuel cell seal structure according to the present invention, it is possible to obtain a fuel cell seal structure in which a gasket is firmly joined to a power generator via a rubber-impregnated portion. And, since the impregnation of the molding rubber material into the porous body in the gasket molding process is effectively limited at the compression portion of the porous body by the rubber coating portion, the rubber impregnation portion can be limited to a certain width. Therefore, it is possible to effectively prevent the power generation area of the MEA from being narrowed. In addition, rubber material for molding that tries to leak from the contact surface between the porous body and the inner surface of the mold to the power generation area side is also dammed by the rubber coating part, effectively preventing the occurrence of rubber burrs on the power generation area side. can do. Therefore, it is possible to improve the robustness by reducing the uncertainties necessary for various controls in the manufacturing process.

以下、本発明に係る燃料電池用シール構造体の製造方法の好ましい実施の形態について、図面を参照しながら説明する。図1は、本発明に係る燃料電池用シール構造体の製造方法において、GDLにゴムコーティング部を成形する工程を示す説明図、図2は、型締め工程を示す説明図、図3は、本発明によって製造された燃料電池用シール構造体を示す説明図である。   Hereinafter, a preferred embodiment of a method for producing a fuel cell seal structure according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a process of forming a rubber coating portion on GDL in a method for manufacturing a fuel cell seal structure according to the present invention, FIG. 2 is an explanatory view showing a mold clamping process, and FIG. It is explanatory drawing which shows the sealing structure for fuel cells manufactured by invention.

図1において、参照符号1は燃料電池のセルを構成する発電体で、電解質膜11の両面に一対の電極層12を設けたMEA10の厚さ方向両側に、GDL20を配置したものである。GDL20には、まず、発電体1における平面延長方向を向いた端面1aから所定の間隔Lをもって延びるゴムコーティング部2を所要の高さhで成形する。端面1aからゴムコーティング部2までの間隔Lは、GDL20に形成すべきゴム含浸層(後述)の幅を考慮して適切に決められる。なお、GDL20は、請求項1に記載された「多孔質体」に相当するものであって、すなわちカーボン繊維等の多孔質体からなる。   In FIG. 1, reference numeral 1 denotes a power generator that constitutes a cell of a fuel cell, in which GDLs 20 are arranged on both sides in the thickness direction of an MEA 10 in which a pair of electrode layers 12 are provided on both surfaces of an electrolyte membrane 11. In the GDL 20, first, the rubber coating portion 2 extending at a predetermined interval L from the end face 1a facing the plane extending direction of the power generation body 1 is formed at a required height h. The distance L from the end surface 1a to the rubber coating portion 2 is appropriately determined in consideration of the width of a rubber-impregnated layer (described later) to be formed on the GDL 20. The GDL 20 corresponds to the “porous body” recited in claim 1, that is, is made of a porous body such as carbon fiber.

ゴムコーティング部2は、低粘度又は液状の成形用ゴム材料(未加硫ゴムコンパウンドを有機溶媒に分散させたゴムインクも含む)を用いて、シルクスクリーン印刷法、ディスペンサー法、圧縮成形法、あるいは射出成形法により成形することができる。使用可能な成形用ゴム材料としては、液状EPDM、液状フッ素ゴム、液状シリコーンゴム、液状アクリルゴムなどが挙げられ、MEA10における発電機能に悪影響を及ぼす溶出ガスなどを発生しないものであれば、特に限定しないが、後述のガスケット3を成形するゴム材料と同質のものが好ましく、架橋硬化後のゴム硬度がHs20〜70、好ましくはHs20〜40の柔軟なものが良い。   The rubber coating part 2 uses a low-viscosity or liquid molding rubber material (including rubber ink in which an unvulcanized rubber compound is dispersed in an organic solvent), silk screen printing method, dispenser method, compression molding method, or injection. It can be formed by a forming method. Usable molding rubber materials include liquid EPDM, liquid fluororubber, liquid silicone rubber, liquid acrylic rubber, and the like, and are not particularly limited as long as they do not generate elution gas that adversely affects the power generation function in MEA10. However, the same material as the rubber material for molding the gasket 3 to be described later is preferable, and a flexible material having a rubber hardness after crosslinking and curing of Hs20 to 70, preferably Hs20 to 40 is preferable.

ゴムコーティング部2は、成形の際に、その成形用ゴム材料の一部がGDL20の表層部に含浸された状態で硬化するため、このGDL20にしっかり接合される。   The rubber coating portion 2 is firmly bonded to the GDL 20 because the rubber coating portion 2 is cured in a state where a part of the rubber material for molding is impregnated in the surface layer portion of the GDL 20 at the time of molding.

ゴムコーティング部2が成形された発電体1は、図2に示されるように、金型4内にセットされる。すなわち、金型4は互いに接離される上型41と下型42からなるものであって、互いに対向されるその内面には、発電体1の周縁部をゴムコーティング部2と共に型締めによって挟持可能な挟持面41a,42aが形成され、その外周側へ延びる内面と、発電体1の端面1aとの間でキャビティ43が画成されるようになっている。   The power generator 1 in which the rubber coating portion 2 is molded is set in a mold 4 as shown in FIG. That is, the mold 4 is composed of an upper mold 41 and a lower mold 42 that are brought into contact with and separated from each other, and the peripheral portion of the power generator 1 can be clamped together with the rubber coating portion 2 by mold clamping on the inner surfaces facing each other. Cavity 43 is defined between the inner surface extending toward the outer periphery and the end surface 1a of the power generator 1.

上型41には、キャビティ43へ液状ゴムを充填するためのゲート44が、挟持面41aへ向けて開設されている。このゲート44の内端開口は、上型41の挟持面41aのうち、発電体1のゴムコーティング部2との密接位置よりもキャビティ43側に位置している。   In the upper die 41, a gate 44 for filling the cavity 43 with liquid rubber is opened toward the clamping surface 41a. The inner end opening of the gate 44 is located on the cavity 43 side of the clamping surface 41a of the upper die 41 with respect to the close contact position with the rubber coating portion 2 of the power generator 1.

キャビティ43は、図3に示されるガスケット3を成形する空間であって、すなわち、ガスケット3の基部33と対応する形状の基部成形部431と、ガスケット3のシールリップ32,33と対応する形状のシールリップ成形部432,433とからなる。また、図2に示される型締め状態での挟持面41a,42a間の対向距離は、発電体1の厚さt(図1参照)にほぼ等しい。   The cavity 43 is a space for molding the gasket 3 shown in FIG. 3, that is, a base molding portion 431 having a shape corresponding to the base portion 33 of the gasket 3 and a shape corresponding to the seal lips 32 and 33 of the gasket 3. It consists of seal lip forming parts 432 and 433. Further, the facing distance between the clamping surfaces 41a and 42a in the mold clamping state shown in FIG. 2 is substantially equal to the thickness t (see FIG. 1) of the power generator 1.

このため、金型4を図2に示されるように型締めすると、GDL20の表面から突出したゴムコーティング部2が上型41及び下型42の挟持面41a,42aに押圧されて、GDL20のうちゴムコーティング部2の下層に位置する部分が、このゴムコーティング部2を介して圧縮されることになる(圧縮部21)。   For this reason, when the mold 4 is clamped as shown in FIG. 2, the rubber coating portion 2 protruding from the surface of the GDL 20 is pressed by the clamping surfaces 41 a and 42 a of the upper mold 41 and the lower mold 42, and the GDL 20 The part located in the lower layer of the rubber coating part 2 is compressed through this rubber coating part 2 (compression part 21).

ここで、ゴムコーティング部2の高さh(図1参照)が高いほど、GDL20における圧縮部21の圧縮率も高くなるが、好ましくは、前記圧縮率が20〜50%となるように、ゴムコーティング部2の高さhが設定される。   Here, the higher the height h (see FIG. 1) of the rubber coating portion 2 is, the higher the compression rate of the compression portion 21 in the GDL 20 is. Preferably, the rubber is adjusted so that the compression rate is 20 to 50%. The height h of the coating part 2 is set.

次に、図2に示される型締め状態で、不図示の成形機からゲート44を通じて、低粘度又は液状の成形用ゴム材料(未加硫ゴムコンパウンドを有機溶媒に分散させたゴムインクも含む)を、キャビティ43内へ充填する。使用可能な成形用ゴム材料としては、ゴムコーティング部2の材料と同様、液状EPDM、液状フッ素ゴム、液状シリコーンゴム、液状アクリルゴムなどが挙げられ、MEA10における発電機能に悪影響を及ぼす溶出ガスなどを発生しないものであれば、特に限定しない。   Next, in the clamped state shown in FIG. 2, a low-viscosity or liquid molding rubber material (including rubber ink in which an unvulcanized rubber compound is dispersed in an organic solvent) is fed from a molding machine (not shown) through a gate 44. The cavity 43 is filled. Usable molding rubber materials include liquid EPDM, liquid fluororubber, liquid silicone rubber, liquid acrylic rubber, and the like, as with the rubber coating portion 2 material. If it does not generate | occur | produce, it will not specifically limit.

多孔質体であるGDL20には、無数の連続気孔が存在するため、ゲート44から所要の圧力で注入される低粘度又は液状の成形用ゴム材料は、GDL20のうち、ゴムコーティング部2による圧縮部21の外周側(周縁部22)を通じてキャビティ43内へ充填される。このため、GDL20の周縁部22には成形用ゴム材料が含浸されることになる。   Since the GDL 20 that is a porous body has innumerable continuous pores, a low-viscosity or liquid molding rubber material that is injected from the gate 44 at a required pressure is a compression portion formed by the rubber coating portion 2 of the GDL 20. The cavity 43 is filled through the outer peripheral side (peripheral portion 22) of 21. For this reason, the peripheral portion 22 of the GDL 20 is impregnated with the molding rubber material.

また、ゲート44からGDL20の周縁部22へ向けて注入された低粘度又は液状の成形用ゴム材料の一部は、キャビティ43と反対側へも浸透しようとするが、そこは、ゴムコーティング部2による圧縮部21となっていて、圧縮により気孔率が減少し、気孔の間隙が小さくなっているため、流動抵抗が大きく、容易に浸透することができない。このため、GDL20への成形用ゴム材料の含浸が、圧縮部21の外周側の領域(周縁部22)に制限されることになる。   Further, a part of the low-viscosity or liquid molding rubber material injected from the gate 44 toward the peripheral edge portion 22 of the GDL 20 tries to penetrate into the side opposite to the cavity 43, which is the rubber coating portion 2. Since the porosity is reduced by compression and the gap between the pores is reduced by the compression, the flow resistance is large and cannot easily penetrate. For this reason, impregnation of the molding rubber material into the GDL 20 is limited to the outer peripheral side region (peripheral portion 22) of the compression portion 21.

金型4内に充填された成形用ゴム材料が架橋硬化したら、上型41と下型42を離間することによって型開きを行い、製品(燃料電池用シール構造体)を取り出す。この燃料電池用シール構造体は、図3に示されるように、電解質膜11及びその両面の電極層12,12からなるMEA10の両側にGDL20,20が設けられた発電体1と、その平面延長方向を向いた端面1aに沿って一体的に成形されたゴム状弾性材料からなるガスケット3とを備える。   When the molding rubber material filled in the mold 4 is cross-linked and cured, the upper mold 41 and the lower mold 42 are separated from each other to open the mold, and the product (fuel cell seal structure) is taken out. As shown in FIG. 3, the fuel cell seal structure includes a power generator 1 in which GDLs 20 and 20 are provided on both sides of an MEA 10 composed of an electrolyte membrane 11 and electrode layers 12 and 12 on both sides thereof, and a planar extension thereof. And a gasket 3 made of a rubber-like elastic material integrally formed along the end face 1a facing in the direction.

詳しくは、ガスケット3は、発電体1の平面延長方向を向いた端面1aに沿って無端状に延びる基部31と、そこから厚さ方向両側へ突出したシールリップ32,33を有する形状であって、図2のキャビティ43内で成形された部分である。このガスケット3の基部31は、上述した成形の過程でGDL20,20の周縁部22,22に含浸された成形用ゴム材料が硬化したゴム含浸部23,23を介して、GDL20,20にしっかり接合されている。   Specifically, the gasket 3 has a shape having a base 31 extending endlessly along the end surface 1a facing the planar extension direction of the power generator 1, and seal lips 32, 33 projecting from both sides in the thickness direction. 2 is a portion formed in the cavity 43 of FIG. The base 31 of the gasket 3 is firmly joined to the GDL 20 and 20 via the rubber-impregnated portions 23 and 23 obtained by curing the molding rubber material impregnated in the peripheral portions 22 and 22 of the GDL 20 and 20 in the molding process described above. Has been.

ゴム含浸部23,23から見てガスケット3と反対側(内周側)となる部分は、圧縮部21,21となっていて、ここではGDL20におけるゴムの含有率が急激に減少する形でゴムの含浸が遮断されている。また、この圧縮部21,21の表面側にはそれぞれゴムコーティング部2が存在している。   The portions on the opposite side (inner peripheral side) from the gasket 3 when viewed from the rubber-impregnated portions 23 and 23 are compression portions 21 and 21. Here, the rubber content in the GDL 20 is drastically reduced. Impregnation is blocked. Further, rubber coating portions 2 are present on the surface sides of the compression portions 21 and 21, respectively.

上記構成を備える図3の燃料電池用シール構造体は、燃料電池スタックとしての組立状態において、ガスケット3のシールリップ32,33が、図中一点鎖線で示される両側のセパレータ5に適当に圧縮された状態で密接することにより、燃料ガスや酸化ガス等に対するシール機能を奏する。そして、このガスケット3は、発電体1の平面延長方向を向いた端面1aに沿ってその外周を延びるように設けられているので、圧縮による反力がGDL20,20に過度な負荷となって直接作用するようなことはない。   In the fuel cell seal structure of FIG. 3 having the above-described configuration, the seal lips 32 and 33 of the gasket 3 are appropriately compressed by the separators 5 on both sides indicated by the one-dot chain line in the drawing in the assembled state as the fuel cell stack. In close contact with each other, a sealing function against fuel gas, oxidizing gas, etc. is achieved. And since this gasket 3 is provided so that the outer periphery may be extended along the end surface 1a which faced the planar extension direction of the electric power generation body 1, the reaction force by compression becomes an excessive load to GDL20 and 20 directly. There is no such thing as working.

また、多孔質であるGDL20,20の周縁部22は、ゴム含浸部23,23によって連続気孔の存在しない組織となっており、しかもその外周側がガスケット3で包囲されているので、密封対象のガス等が、GDL20,20の内部をその平面延長方向へ移動して外部へ浸透漏れするのを防止できる。   Further, the peripheral edge portion 22 of the porous GDL 20, 20 has a structure in which continuous pores do not exist due to the rubber-impregnated portions 23, 23, and the outer peripheral side thereof is surrounded by the gasket 3, so that the gas to be sealed Etc. can prevent the inside of the GDL 20 and 20 from moving in the plane extension direction and leaking out to the outside.

ここで、図4は、比較例としての燃料電池用シール構造体の製造方法を示す説明図である。すなわち、この図4に示されるように、金型内面(上型41及び下型42の挟持面41a,42a)に絞り部41b,42bを突設することによっても、GDL20に、成形用ゴム材料の含浸を制限するための圧縮部21を形成することが可能である。したがって、この方法でも、GDL20への成形用ゴム材料の含浸(ゴム含浸部23)を、周縁部22に制限することができる。   Here, FIG. 4 is explanatory drawing which shows the manufacturing method of the sealing structure for fuel cells as a comparative example. That is, as shown in FIG. 4, the rubber material for molding is also formed on the GDL 20 by projecting the throttle portions 41 b and 42 b on the inner surface of the mold (the holding surfaces 41 a and 42 a of the upper mold 41 and the lower mold 42). It is possible to form the compression part 21 for restricting the impregnation of the resin. Therefore, also with this method, the impregnation of the rubber material for molding into the GDL 20 (rubber impregnated portion 23) can be limited to the peripheral portion 22.

しかしながら、GDL20に対する型締め力は低いものであり、金型内面とGDL20との接触面間には、GDL20の気孔による微細な連続間隙が無数に存在する。しかも、GDL20の撥水処理による気孔率の低下等によって、ゲート44から注入される成形用ゴム材料の圧力が上昇する。このため、図4に示される比較例の方法によれば、成形用ゴム材料の一部は、前記連続間隙によって、金型内面の絞り部41b,42bとGDL20の圧縮部21との接触面間を通過し、この圧縮部21より内側の領域(発電領域)の表面部に滲み出ることによるゴムバリ34が発生しやすい。そしてこのようなゴムバリ34の発生を防止するために、GDL20の性状(気孔率など)、成形用ゴム材料の流動性、成形圧力などを適切に選定・制御することが困難である。   However, the clamping force for the GDL 20 is low, and there are innumerable fine continuous gaps due to the pores of the GDL 20 between the inner surface of the mold and the contact surface of the GDL 20. Moreover, the pressure of the molding rubber material injected from the gate 44 increases due to a decrease in porosity due to the water repellent treatment of the GDL 20. Therefore, according to the method of the comparative example shown in FIG. 4, a part of the molding rubber material is formed between the contact surfaces of the throttle portions 41 b and 42 b on the inner surface of the mold and the compression portion 21 of the GDL 20 by the continuous gap. The rubber burr 34 is liable to be generated by passing through the surface portion of the region inside the compression portion 21 (power generation region). In order to prevent the occurrence of such rubber burrs 34, it is difficult to appropriately select and control the properties (porosity, etc.) of the GDL 20, the fluidity of the molding rubber material, and the molding pressure.

しかも、GDL20の圧縮率にはバラツキがあるため、絞り部41bによる圧縮部21と、それ以外の部分との境界で圧縮率の差が大きくなって、この境界部分に破損を生じるおそれがある。   Moreover, since the compression rate of the GDL 20 varies, there is a possibility that the difference in compression rate becomes large at the boundary between the compression unit 21 by the throttle unit 41b and the other part, and the boundary part may be damaged.

これに対し、本発明の方法によれば、図2に示される型締め状態において、ゴムコーティング部2,2が、上型41及び下型42の挟持面41a,42aに、自らの弾性やGDL20の圧縮部21の圧縮反力に由来する適当な面圧をもって密接されるので、ゲート44からGDL20の周縁部22に流入した低粘度又は液状の成形用ゴム材料が、ゴムコーティング部2,2と前記挟持面41a,42aとの密接面で堰き止められ、その内周側へ漏れることはない。また、ゴムコーティング部2と圧縮部21は互いに接合されているので、両者間に漏れ経路が形成されることもない。   On the other hand, according to the method of the present invention, in the mold clamping state shown in FIG. 2, the rubber coating portions 2, 2 are applied to the holding surfaces 41 a, 42 a of the upper mold 41 and the lower mold 42 with their own elasticity or GDL 20. Therefore, the low-viscosity or liquid molding rubber material flowing from the gate 44 to the peripheral portion 22 of the GDL 20 is connected to the rubber coating portions 2 and 2. It is dammed by the contact surface with the clamping surfaces 41a and 42a and does not leak to the inner peripheral side. Moreover, since the rubber coating part 2 and the compression part 21 are mutually joined, a leak path | route is not formed between both.

したがって、低粘度又は液状の成形用ゴム材料を用いて、金型4でガスケット3を成形する際に、GDL20,20の周縁部22,22への成形用ゴム材料の含浸領域を確実に制御することができ、このため、カーボン繊維等の多孔質体からなるGDL20,20の気孔率等のバラツキによって、ゴム含浸部23,23の幅が必要以上に大きくなってしまうのを有効に防止して、MEA10における所定の発電領域を確保することができる。しかも、発電体1と金型内面との接触面間に沿って発電領域側へ漏れようとする成形用ゴム材料も、ゴムコーティング部2によって堰き止められるので、前記発電領域に図4のようなゴムバリ34が発生したり破損が発生するのを防止することができる。   Therefore, when the gasket 3 is molded with the mold 4 using a low-viscosity or liquid molding rubber material, the impregnation region of the molding rubber material on the peripheral portions 22 and 22 of the GDLs 20 and 20 is reliably controlled. For this reason, it is possible to effectively prevent the width of the rubber-impregnated portions 23 and 23 from becoming unnecessarily large due to variations in the porosity of the GDL 20 and 20 made of a porous material such as carbon fiber. A predetermined power generation area in the MEA 10 can be secured. Moreover, since the molding rubber material that leaks to the power generation region side along the contact surface between the power generation body 1 and the inner surface of the mold is also dammed by the rubber coating portion 2, the power generation region as shown in FIG. It is possible to prevent the rubber burr 34 from being generated or damaged.

なお、上述した図1〜図3に示される形態は、発電体1が、電解質膜11の両面に電極層12,12を設けたMEA10の厚さ方向両側に、多孔質体からなるGDL20を配置したものである場合について説明したが、本発明は、発電体1がMEAからなるものについても実施することができる。図5は、その一例として、本発明に係る燃料電池用シール構造体の製造方法における他の実施の形態を示す説明図である。   In the embodiment shown in FIGS. 1 to 3 described above, the power generator 1 has the GDL 20 made of a porous material disposed on both sides in the thickness direction of the MEA 10 in which the electrode layers 12 and 12 are provided on both surfaces of the electrolyte membrane 11. However, the present invention can also be implemented when the power generator 1 is made of MEA. FIG. 5 is an explanatory view showing another embodiment of the method for manufacturing a fuel cell seal structure according to the present invention as an example.

すなわち、図5において、発電体1は、電解質膜11の両面に、例えばGDLなどに使われるカーボン繊維等からなる多孔質体の少なくとも電解質膜接触面に電極用触媒を担持したガス拡散電極層13,13を、積層状態に設けたものである。この場合も、基本的には先に説明した方法と同様の工程で、燃料電池用シール構造体を製造することができる。   That is, in FIG. 5, the power generation body 1 includes a gas diffusion electrode layer 13 that carries an electrode catalyst on at least an electrolyte membrane contact surface of a porous body made of carbon fiber or the like used for GDL or the like on both surfaces of an electrolyte membrane 11. , 13 are provided in a stacked state. Also in this case, the fuel cell seal structure can be manufactured basically by the same steps as those described above.

詳しくは、まずガス拡散電極層13に、発電体1における平面延長方向を向いた端面1aから所定の間隔Lをもって延びるゴムコーティング部2を所要の高さで成形する。次に、この発電体1を金型内にセットし、型締めして、前記端面1aと金型内面との間に画成されたキャビティに、低粘度又は液状の成形用ゴム材料を充填すると共にその一部をガス拡散電極層13の周縁部に含浸させ、架橋硬化させる。   Specifically, first, the rubber coating portion 2 extending at a predetermined interval L from the end surface 1a facing the planar extension direction of the power generator 1 is formed on the gas diffusion electrode layer 13 at a required height. Next, the power generator 1 is set in a mold, clamped, and a low-viscosity or liquid molding rubber material is filled in a cavity defined between the end face 1a and the inner surface of the mold. At the same time, a part of the gas diffusion electrode layer 13 is impregnated into the peripheral edge of the gas diffusion electrode layer 13 and cured by crosslinking.

この方法によって製造された燃料電池用シール構造体は、図5に示されるように、電解質膜11及びその両面のガス拡散電極層13,13からなる発電体(MEA)1と、その平面延長方向を向いた端面1aに沿って一体的に成形されたゴム状弾性材料からなるガスケット3とを備えるものであって、ガスケット3は、その基部31が、上述した成形の過程でガス拡散電極層13,13の周縁部に含浸された成形用ゴム材料が硬化することによって形成されたゴム含浸部13b,13bを介して、ガス拡散電極層13,13にしっかり接合されている。   As shown in FIG. 5, the fuel cell seal structure manufactured by this method includes a power generation body (MEA) 1 including an electrolyte membrane 11 and gas diffusion electrode layers 13 and 13 on both sides thereof, and a planar extension direction thereof. And a gasket 3 made of a rubber-like elastic material integrally formed along the end surface 1a facing the gas. The gasket 3 has a base 31 formed in the above-described forming process in the gas diffusion electrode layer 13. , 13 are firmly joined to the gas diffusion electrode layers 13, 13 through rubber-impregnated portions 13b, 13b formed by curing the molding rubber material impregnated in the peripheral portion.

そしてこの実施の形態によれば、型締め工程において、金型にセットされた発電体1のガス拡散電極層13のうち、ゴムコーティング部2の下層に位置する部分が、それ以外の部分よりも大きな型締め圧力を受けて圧縮され、その気孔率が減少するため、このガス拡散電極層13の周縁部に対する低粘度又は液状の成形用ゴム材料の含浸が、ゴムコーティング部2による圧縮部13aにおいて有効に遮断される。このため、ゴム含浸部13bを一定の幅に制限することができ、発電領域が狭まってしまうのを有効に防止することができる。   And according to this embodiment, the part located in the lower layer of the rubber coating part 2 among the gas diffusion electrode layers 13 of the power generator 1 set in the mold in the mold clamping step is more than the other parts. Since the porosity is reduced by receiving a large clamping pressure, the peripheral portion of the gas diffusion electrode layer 13 is impregnated with a low-viscosity or liquid molding rubber material in the compression portion 13a by the rubber coating portion 2. Effectively cut off. For this reason, the rubber-impregnated portion 13b can be limited to a certain width, and the power generation region can be effectively prevented from being narrowed.

また、ガス拡散電極層13と金型内面との接触面間からの成形用ゴム材料の漏れも、ゴムコーティング部2と金型内面との密接部によって堰き止められるので、圧縮部13aよりも発電領域側にゴムバリが発生するようなことがない。   In addition, leakage of the molding rubber material from between the contact surfaces of the gas diffusion electrode layer 13 and the inner surface of the mold is blocked by the close contact portion between the rubber coating portion 2 and the inner surface of the mold. Rubber burr is not generated on the region side.

本発明に係る燃料電池用シール構造体の製造方法において、GDLにゴムコーティング部を成形する工程を示す説明図である。It is explanatory drawing which shows the process of shape | molding a rubber coating part in GDL in the manufacturing method of the sealing structure for fuel cells which concerns on this invention. 本発明に係る燃料電池用シール構造体の製造方法における型締め工程を示す説明図である。It is explanatory drawing which shows the clamping process in the manufacturing method of the sealing structure for fuel cells which concerns on this invention. 本発明によって製造された燃料電池用シール構造体を示す説明図である。It is explanatory drawing which shows the sealing structure for fuel cells manufactured by this invention. 燃料電池用シール構造体の製造方法の比較例を示す説明図である。It is explanatory drawing which shows the comparative example of the manufacturing method of the sealing structure for fuel cells. 本発明に係る燃料電池用シール構造体の製造方法における他の形態を示す説明図である。It is explanatory drawing which shows the other form in the manufacturing method of the sealing structure for fuel cells which concerns on this invention. 従来の燃料電池用シール構造体の一例を示す断面図である。It is sectional drawing which shows an example of the conventional sealing structure for fuel cells. 従来の燃料電池用シール構造体の一例を示す断面図である。It is sectional drawing which shows an example of the conventional sealing structure for fuel cells.

符号の説明Explanation of symbols

1 発電体
1a 端面
10 MEA
11 電解質膜
12 電極層
13 ガス拡散電極層(多孔質体)
20 GDL(多孔質体)
21 圧縮部
22 周縁部
23 ゴム含浸部
2 ゴムコーティング部
3 ガスケット
4 金型
41 上型
42 下型
41a,42a 挟持面
43 キャビティ
44 ゲート
DESCRIPTION OF SYMBOLS 1 Power generation body 1a End surface 10 MEA
11 Electrolyte membrane 12 Electrode layer 13 Gas diffusion electrode layer (porous body)
20 GDL (porous material)
21 Compression part 22 Peripheral part 23 Rubber impregnation part 2 Rubber coating part 3 Gasket 4 Mold 41 Upper mold 42 Lower mold 41a, 42a Clamping surface 43 Cavity 44 Gate

Claims (2)

燃料電池セルの発電体(1)にその平面延長方向を向いた端面(1a)に沿ってガスケット(3)を一体的に設けた燃料電池用シール構造体の製造において、
前記発電体(1)の厚さ方向両側部分を構成する多孔質体(20,13)に、前記端面(1a)から所定の間隔をもって延びるゴムコーティング部(2)を成形する工程と、
前記発電体(1)を金型(4)内にセットし、前記多孔質体(20,13)のうち前記ゴムコーティング部(2)の下層に位置する部分を、このゴムコーティング部(2)を介して金型内面で押圧することにより適宜圧縮された状態とする型締め工程と、
前記端面(1a)と前記金型内面との間に画成されたキャビティ(43)に、低粘度又は液状の成形用ゴム材料を充填すると共にその一部を前記多孔質体(20,13)の周縁部に含浸させ、架橋硬化させる工程と、
を備えることを特徴とする燃料電池用シール構造体の製造方法。
In the production of a fuel cell seal structure in which a gasket (3) is integrally provided along an end surface (1a) facing the planar extension direction of a power generator (1) of a fuel cell,
Forming a rubber coating portion (2) extending from the end face (1a) at a predetermined interval on the porous bodies (20, 13) constituting both sides in the thickness direction of the power generation body (1);
The power generation body (1) is set in a mold (4), and a portion of the porous body (20, 13) located below the rubber coating portion (2) is defined as the rubber coating portion (2). A mold clamping step that is appropriately compressed by pressing on the inner surface of the mold via
A cavity (43) defined between the end face (1a) and the inner surface of the mold is filled with a low-viscosity or liquid molding rubber material, and a part of the cavity (43) is filled with the porous body (20, 13). A step of impregnating the peripheral edge of the resin and crosslinking and curing;
The manufacturing method of the sealing structure for fuel cells characterized by the above-mentioned.
型締め時に金型内面に押圧されたゴムコーティング部(2)により圧縮される多孔質体(20,13)の圧縮率が20〜50%となるように、前記ゴムコーティング部(2)の高さ(h)が設定されることを特徴とする請求項1に記載の燃料電池用シール構造体の製造方法。   The height of the rubber coating portion (2) is set so that the compressibility of the porous body (20, 13) compressed by the rubber coating portion (2) pressed against the inner surface of the mold during clamping is 20 to 50%. The method for manufacturing a fuel cell seal structure according to claim 1, wherein length (h) is set.
JP2006332064A 2006-12-08 2006-12-08 Manufacturing method of fuel cell seal structure Active JP5067527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332064A JP5067527B2 (en) 2006-12-08 2006-12-08 Manufacturing method of fuel cell seal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332064A JP5067527B2 (en) 2006-12-08 2006-12-08 Manufacturing method of fuel cell seal structure

Publications (2)

Publication Number Publication Date
JP2008146987A true JP2008146987A (en) 2008-06-26
JP5067527B2 JP5067527B2 (en) 2012-11-07

Family

ID=39606917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332064A Active JP5067527B2 (en) 2006-12-08 2006-12-08 Manufacturing method of fuel cell seal structure

Country Status (1)

Country Link
JP (1) JP5067527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069839A (en) * 2013-09-30 2015-04-13 住友理工株式会社 Method of manufacturing laminate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357861A (en) * 2000-06-12 2001-12-26 Honda Motor Co Ltd Thermo-hardening type liquid sealing compound for solid high-polymer type fuel cell, unit cell with seal formed out of the sealing compound and manufacturing method for unit cell, and solid high-polymer type fuel cell and its generating method
JP2003007328A (en) * 2001-06-20 2003-01-10 Nok Corp Component for fuel cell
JP2005327514A (en) * 2004-05-13 2005-11-24 Nok Corp Component for fuel cell
JP2005339891A (en) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp Polymer electrolyte fuel cell
JP2006179497A (en) * 2000-06-29 2006-07-06 Nok Corp Component for fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357861A (en) * 2000-06-12 2001-12-26 Honda Motor Co Ltd Thermo-hardening type liquid sealing compound for solid high-polymer type fuel cell, unit cell with seal formed out of the sealing compound and manufacturing method for unit cell, and solid high-polymer type fuel cell and its generating method
JP2006179497A (en) * 2000-06-29 2006-07-06 Nok Corp Component for fuel cell
JP2003007328A (en) * 2001-06-20 2003-01-10 Nok Corp Component for fuel cell
JP2005327514A (en) * 2004-05-13 2005-11-24 Nok Corp Component for fuel cell
JP2005339891A (en) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp Polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015069839A (en) * 2013-09-30 2015-04-13 住友理工株式会社 Method of manufacturing laminate

Also Published As

Publication number Publication date
JP5067527B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
WO2014069172A1 (en) Seal with integral base material and die for manufacturing same
JP5067528B2 (en) Manufacturing method of fuel cell seal structure
JP5177619B2 (en) Method for manufacturing a gasket-integrated part for a fuel cell
JP5067526B2 (en) Manufacturing method of fuel cell seal
JP5142080B2 (en) Method for manufacturing seal structure
JP4331719B2 (en) Sealing structure of polymer electrolyte fuel cell
JP5310991B2 (en) Manufacturing method of seal structure for fuel cell
JP5275070B2 (en) Fuel cell and manufacturing method thereof
WO2007029309A1 (en) Component for constituting fuel cell
JP5224035B2 (en) Method for manufacturing seal structure
JP4193059B2 (en) Fuel cell components
KR101584874B1 (en) Fuel cell seal
JP5067527B2 (en) Manufacturing method of fuel cell seal structure
JP5120529B2 (en) Fuel cell seal
JP2011090802A (en) Sealing structure for fuel cell and method of manufacturing the same
JP2007165132A (en) Seal structure between constitution members for fuel cell
JP2007149472A (en) Gasket molding method of constituent member for fuel cell
JP2007026931A (en) Gasket molding method in porous body peripheral part and die used for it
JP5447777B2 (en) Fuel cell
JP2009104922A (en) Fuel cell and method for manufacturing fuel cell
JP2007280615A (en) Seal structure for fuel cell and manufacturing method of seal
JP4826717B2 (en) Manufacturing method of gasket for fuel cell
JP2010165473A (en) Fuel cell, and method of manufacturing sealing structure for the same
JP5146630B2 (en) Gasket integrated with reinforcing frame and manufacturing method thereof
JP5418784B2 (en) Seal structure for fuel cell and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250