JP2008145373A - Apparatus and method for inspecting surface defect on stainless steel plate - Google Patents

Apparatus and method for inspecting surface defect on stainless steel plate Download PDF

Info

Publication number
JP2008145373A
JP2008145373A JP2006335551A JP2006335551A JP2008145373A JP 2008145373 A JP2008145373 A JP 2008145373A JP 2006335551 A JP2006335551 A JP 2006335551A JP 2006335551 A JP2006335551 A JP 2006335551A JP 2008145373 A JP2008145373 A JP 2008145373A
Authority
JP
Japan
Prior art keywords
stainless steel
steel plate
ccd camera
light
regular reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006335551A
Other languages
Japanese (ja)
Inventor
Masahiro Hirano
正大 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006335551A priority Critical patent/JP2008145373A/en
Publication of JP2008145373A publication Critical patent/JP2008145373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection apparatus and an inspection method for accurately detecting a surface defect on a stainless steel plate whose scale is removed by hot rolling, annealing and acid washing. <P>SOLUTION: An incident light is irradiated from a light emitting apparatus for scanning a light in the width direction of the stainless steel plate at an angle α to a traveling direction of the stainless steel plate. A regular reflection light is reflected from the surface of the stainless steel plate at the angle α, and received by a regular reflection CCD camera. An irregular reflection light is reflected from the surface of the stainless steel plate at the angle β, and received by an irregular reflection CCD camera. An input signal as regular reflection data and irregular reflection data obtained by the regular reflection CCD camera and the irregular reflection CCD camera is transmitted to a calculation apparatus. The calculation apparatus calculates and processes the regular reflection data and the irregular reflection data regarding the same surface defect. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱間圧延とそれに続く焼鈍を施し、さらに酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を検出する検査装置および検査方法に関するものである。   The present invention relates to an inspection apparatus and an inspection method for detecting a surface defect of a stainless steel plate that has been subjected to hot rolling and subsequent annealing, and further pickled to remove scale.

熱間圧延を行ない、さらに焼鈍を施したステンレス鋼板は、その表面にスケール(厚さ数10μm)が生成する。ステンレス鋼板を加工して製造する各種の製品には、特有の表面光沢が求められる。したがってステンレス鋼板を加工工程に送給する前に、ステンレス鋼板の製造工程にてスケールを除去する必要がある。
スケールを除去するためには、酸洗が広く採用されている。酸洗に先立って、ブラシ研削によるスケール除去を行なう場合もある。熱間圧延のみならずブラシ研削によってステンレス鋼板の表面に欠陥(たとえばスリ疵,窪み等)が生じると、その後の冷間圧延を施しても欠陥は残存し、ステレンス鋼板の歩留り低下を招く。また、製鋼工程にて混入する介在物に起因する欠陥(たとえばヘゲ等)もステレンス鋼板の歩留り低下の原因になる。
A stainless steel plate subjected to hot rolling and further annealed has a scale (thickness of 10 μm) formed on its surface. Various products manufactured by processing stainless steel sheets are required to have a specific surface gloss. Therefore, it is necessary to remove the scale in the manufacturing process of the stainless steel plate before feeding the stainless steel plate to the machining process.
In order to remove scale, pickling is widely used. Prior to pickling, descaling may be performed by brush grinding. If a defect (for example, a scratch or a dent) occurs on the surface of the stainless steel plate not only by hot rolling but also by brush grinding, the defect remains even if the subsequent cold rolling is performed, leading to a decrease in yield of the stainless steel plate. In addition, defects caused by inclusions mixed in the steel making process (for example, heges) also cause a decrease in yield of the stainless steel plate.

これに対して、スケールを除去(すなわち酸洗)した後で、これらのスリ疵,窪み,ヘゲ等の欠陥(以下、表面欠陥という)を検出すれば、ステンレス鋼板の歩留りを向上することができる。何故なら、表面欠陥が検出されたステンレス鋼板を研摩した後で冷間圧延を行なうことによって、表面欠陥が解消されるからである。
そこで、熱間圧延および焼鈍を施した後、酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を検出する技術が種々検討されている。
On the other hand, the yield of stainless steel sheets can be improved by detecting defects (hereinafter referred to as surface defects) after removing scales (that is, pickling) and then detecting such defects such as slits, dents, and baldness. it can. This is because the surface defects are eliminated by performing cold rolling after polishing the stainless steel plate in which the surface defects are detected.
Therefore, various techniques for detecting surface defects of a stainless steel plate that has been subjected to hot rolling and annealing and then pickled to remove scale have been studied.

たとえば従来から、ステンレス鋼板にレーザー光を照射して表面欠陥を検出する技術が知られている。この技術は、清浄な表面(すなわち平坦かつ平滑な平面)に照射されたレーザー光が入射角と同じ角度で反射するのに対して、表面欠陥に照射されたレーザー光は乱反射する現象を利用して表面欠陥を検出する技術である。つまり、入射角と同じ角度で反射する反射光を受光して、その信号波形に基づいて表面欠陥を判定する。しかし、レーザー光は清浄な表面でも乱反射し易いので、表面欠陥の検出精度は低い。   For example, conventionally, a technique for detecting surface defects by irradiating a stainless steel plate with laser light is known. This technology uses the phenomenon that laser light irradiated on a clean surface (ie flat and smooth flat surface) is reflected at the same angle as the incident angle, whereas laser light irradiated on surface defects is diffusely reflected. This technology detects surface defects. That is, the reflected light reflected at the same angle as the incident angle is received, and the surface defect is determined based on the signal waveform. However, since laser light is easily diffusely reflected even on a clean surface, the surface defect detection accuracy is low.

なお以下では、照射した入射光が入射角と同じ角度で反射することを正反射と記して、乱反射(すなわち入射角と反射角が異なる反射)と区別する。
また特許文献1には、板状の被検査物(すなわち鋼板,アルミ板,紙等)に白色光を照射して正反射光と乱反射光を受光し、欠陥を検出する技術が開示されている。この技術は、寸法の大きい欠陥を正反射光の受光器で検出し、小さい欠陥を乱反射光の受光器で検出するものである。つまり特許文献1では、一つの欠陥を正反射光または乱反射光のいずれか片方のみで検出するので、ノイズの影響を受け易く、欠陥の検出精度は低い。
In the following description, the reflected incident light reflected at the same angle as the incident angle is referred to as regular reflection, and is distinguished from irregular reflection (that is, reflection having a different incident angle and reflection angle).
Patent Document 1 discloses a technique for detecting defects by irradiating a plate-like inspection object (ie, a steel plate, an aluminum plate, paper, etc.) with white light to receive regular reflection light and irregular reflection light. . In this technique, a defect having a large size is detected by a regular reflection light receiver, and a small defect is detected by a diffuse reflection light receiver. That is, in Patent Document 1, since one defect is detected by only one of regular reflection light and irregular reflection light, it is easily affected by noise, and the defect detection accuracy is low.

そこで特許文献1ではS/N比を改善するために、被検査物表面の凹凸の平均間隔より大きい間隔を有する2点のみを識別するように正反射光の受光器を設定する。しかし乱反射光の受光器にはS/N比の改善がなされておらず、検出精度の大幅な向上は期待できない。
特開平9-89800号公報
Therefore, in Patent Document 1, in order to improve the S / N ratio, a regular reflection light receiver is set so as to identify only two points having an interval larger than the average interval of unevenness on the surface of the object to be inspected. However, the diffusely reflected light receiver has not been improved in the S / N ratio, and a significant improvement in detection accuracy cannot be expected.
JP-A-9-89800

本発明は、熱間圧延とそれに続く焼鈍を施し、さらに酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を精度良く検出する検査装置および検査方法を提供することを目的とする。   An object of this invention is to provide the inspection apparatus and inspection method which detect the surface defect of the stainless steel plate which performed hot rolling and subsequent annealing, and also pickled and removed the scale with high precision.

本発明は、熱間圧延および焼鈍を施した後、酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を検出する検査装置であって、ステンレス鋼板の進行方向に沿って角度αで入射する入射光を照射する投光装置と、ステンレス鋼板の表面から角度αで反射する正反射光を受光する正反射CCDカメラと、ステンレス鋼板の表面から角度βで反射する乱反射光を受光する乱反射CCDカメラと、投光装置を前記ステンレス鋼板の幅方向に走査させる光源走査装置と、正反射CCDカメラで得た正反射データおよび乱反射CCDカメラで得た乱反射データを入力信号として演算処理する演算装置と、演算装置で得た出力信号を表示する表示装置と、を有するステンレス鋼板の表面欠陥検査装置である。   The present invention is an inspection device that detects surface defects of a stainless steel plate that has been subjected to hot rolling and annealing and then pickled to remove scale, and is incident at an angle α along the traveling direction of the stainless steel plate. Projection device for irradiating incident light, regular reflection CCD camera for receiving regular reflection light reflected from the surface of the stainless steel plate at an angle α, and irregular reflection CCD camera for receiving irregular reflection light reflected from the surface of the stainless steel plate at an angle β A light source scanning device that scans the light projecting device in the width direction of the stainless steel plate, an arithmetic device that performs arithmetic processing using the regular reflection data obtained by the regular reflection CCD camera and the irregular reflection data obtained by the irregular reflection CCD camera as input signals, And a display device for displaying an output signal obtained by an arithmetic device.

また本発明は、熱間圧延および焼鈍を施した後、酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を検出する検査方法において、ステンレス鋼板の幅方向に走査する投光装置からステンレス鋼板の進行方向に沿って角度αで入射光を照射し、ステンレス鋼板の表面から角度αで反射する正反射光を正反射CCDカメラで受光するとともに、ステンレス鋼板の表面から角度βで反射する乱反射光を乱反射CCDカメラで受光し、正反射CCDカメラで得た正反射データおよび乱反射CCDカメラで得た乱反射データを入力信号として演算装置に伝送し、演算装置で同一の表面欠陥に関する正反射データと乱反射データとを演算処理して得た出力信号を表示装置に伝送し、表示装置にて出力信号を表示するステンレス鋼板の表面欠陥検査方法である。   Further, the present invention provides an inspection method for detecting surface defects of a stainless steel plate that has been subjected to hot rolling and annealing, and then pickled to remove scale, from a light projection device that scans in the width direction of the stainless steel plate to the stainless steel plate. Irradiate incident light at an angle α along the traveling direction of the light, and receive regular reflection light reflected at an angle α from the surface of the stainless steel plate with a regular reflection CCD camera, and diffuse reflection light reflected at an angle β from the surface of the stainless steel plate. Is received by the irregular reflection CCD camera, the regular reflection data obtained by the regular reflection CCD camera and the irregular reflection data obtained by the irregular reflection CCD camera are transmitted as input signals to the arithmetic unit, and the regular reflection data and irregular reflection on the same surface defect are obtained by the arithmetic unit. Detects surface defects on stainless steel plates that transmit the output signal obtained by computing the data to the display device and displays the output signal on the display device. It is a method.

本発明の表面欠陥検査装置および表面欠陥検査方法においては、投光装置がハロゲンランプであることが好ましい。   In the surface defect inspection apparatus and the surface defect inspection method of the present invention, the light projecting apparatus is preferably a halogen lamp.

本発明によれば、熱間圧延とそれに続く焼鈍を施し、さらに酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を精度良く検出できる。   According to the present invention, it is possible to accurately detect surface defects of a stainless steel plate that has been subjected to hot rolling and subsequent annealing, and further pickled to remove scale.

図1は、本発明を適用してステンレス鋼板の表面欠陥を検出する際の投光装置,正反射CCDカメラ,乱反射CCDカメラ,ステンレス鋼板の配置の例を模式的に示す断面図である。図1中の矢印Aは、ステンレス鋼板1の進行方向を示す。なお、図1に示すステンレス鋼板1は、熱間圧延とそれに続く焼鈍を施し、さらに酸洗を行なってスケールを除去したステンレス鋼板である。   FIG. 1 is a cross-sectional view schematically showing an example of the arrangement of a light projecting device, a regular reflection CCD camera, a diffuse reflection CCD camera, and a stainless steel plate when detecting surface defects of a stainless steel plate by applying the present invention. An arrow A in FIG. 1 indicates the traveling direction of the stainless steel plate 1. A stainless steel plate 1 shown in FIG. 1 is a stainless steel plate that has been subjected to hot rolling and subsequent annealing and further pickled to remove scale.

図1に示すように、入射光4をステンレス鋼板1の進行方向(すなわち矢印Aの方向)に沿って照射する。入射光4とステンレス鋼板1とのなす角度(いわゆる入射角)をα(°)とする。入射光4を照射する投光装置2は、光源走査装置(図示せず)によってステンレス鋼板1の幅方向に走査させる。投光装置2をステンレス鋼板1の幅方向に走査させることによって、ステンレス鋼板1の全面を検査できる。投光装置2の種類は特に限定しないが、発明者の研究によれば、ハロゲンランプが好適である。   As shown in FIG. 1, the incident light 4 is irradiated along the traveling direction of the stainless steel plate 1 (that is, the direction of the arrow A). An angle formed by the incident light 4 and the stainless steel plate 1 (so-called incident angle) is α (°). The light projecting device 2 that irradiates the incident light 4 is scanned in the width direction of the stainless steel plate 1 by a light source scanning device (not shown). By scanning the light projecting device 2 in the width direction of the stainless steel plate 1, the entire surface of the stainless steel plate 1 can be inspected. The type of the light projecting device 2 is not particularly limited, but a halogen lamp is suitable according to the inventor's research.

なお図1には、ステンレス鋼板1の進行方向(すなわち矢印Aの方向)と入射光4を照射する方向を同一にする例を示したが、ステンレス鋼板1の進行方向と入射光4を照射する方向が逆であっても支障なく本発明を適用できる。
このようにして照射された入射光4は、ステンレス鋼板1の表面で反射する。このときステンレス鋼板1の表面が清浄(すなわち平坦かつ平滑)な平面であれば、反射光5aとステンレス鋼板1とのなす角度(いわゆる反射角)はα(°)となる。つまり入射角と反射角は同じ角度となる。ここでは、この反射光5aを正反射光と記す。
1 shows an example in which the traveling direction of the stainless steel plate 1 (that is, the direction of the arrow A) is the same as the direction in which the incident light 4 is irradiated, but the traveling direction of the stainless steel plate 1 and the incident light 4 are irradiated. The present invention can be applied without hindrance even if the direction is reversed.
The incident light 4 thus irradiated is reflected on the surface of the stainless steel plate 1. At this time, if the surface of the stainless steel plate 1 is a clean (that is, flat and smooth) plane, the angle (so-called reflection angle) formed between the reflected light 5a and the stainless steel plate 1 is α (°). That is, the incident angle and the reflection angle are the same angle. Here, the reflected light 5a is referred to as regular reflected light.

この正反射光5aを受光するために正反射CCDカメラ3aを配設する。
ところが入射光4が表面欠陥に照射されると、正反射のみならず乱反射が発生する。乱反射による反射光(すなわち乱反射光)とステンレス鋼板1とのなす角度(いわゆる反射角)は一定ではなく、表面欠陥の形状や深さ等の様々な要因によって変化する。その乱反射光を受光するために乱反射CCDカメラ3bを配設する。乱反射CCDカメラ3bが受光する乱反射光5bの反射角をβ(°)とする。
In order to receive this regular reflection light 5a, a regular reflection CCD camera 3a is provided.
However, when the incident light 4 is irradiated to the surface defect, not only regular reflection but also irregular reflection occurs. The angle (so-called reflection angle) formed between the reflected light by irregular reflection (that is, irregularly reflected light) and the stainless steel plate 1 is not constant and varies depending on various factors such as the shape and depth of the surface defect. In order to receive the irregular reflection light, an irregular reflection CCD camera 3b is provided. The reflection angle of the irregularly reflected light 5b received by the irregularly reflected CCD camera 3b is assumed to be β (°).

この乱反射光5bの反射角βは、正反射光5aの反射角αと異なる角度である。なお、図1にはα<βの例を示したが、α>βであっても支障なく本発明を適用できる。
投光装置2はステンレス鋼板1の幅方向に走査されるので、正反射CCDカメラ3aと乱反射CCDカメラ3bを有する受光装置を、投光装置2に同期して走査させる。あるいは、ステンレス鋼板1の幅方向に複数台の受光装置を固定して設置しても良い。
The reflection angle β of the irregular reflection light 5b is different from the reflection angle α of the regular reflection light 5a. Although FIG. 1 shows an example of α <β, the present invention can be applied without any trouble even when α> β.
Since the light projecting device 2 is scanned in the width direction of the stainless steel plate 1, the light receiving device having the regular reflection CCD camera 3 a and the irregular reflection CCD camera 3 b is scanned in synchronization with the light projecting device 2. Alternatively, a plurality of light receiving devices may be fixed and installed in the width direction of the stainless steel plate 1.

正反射光5aを受光する正反射CCDカメラ3aで得られた正反射データおよび乱反射光5bを受光する乱反射CCDカメラ3bで得られた乱反射データは、演算装置6に伝送される。つまり、正反射データと乱反射データが演算装置6の入力信号となる。
演算装置6では、同一の表面欠陥に関する正反射データと乱反射データを演算処理して、表面欠陥の形状や深さ等を判定する。演算処理の方法は、検出すべき表面欠陥の性状(すなわち形状,深さ等)や周辺の環境(すなわち気温,明るさ等)などに応じて適宜設定する。以下では一例として、表面欠陥のアスペクト比と色調に基づく検出技術について、図2を参照して説明する。図2は正反射CCDカメラ3aと乱反射CCDカメラ3bで同一の表面欠陥を撮影した画像であり、(a)が正反射CCDカメラ3aの画像、(b)が乱反射CCDカメラ3bの画像である。
The regular reflection data obtained by the regular reflection CCD camera 3a that receives the regular reflection light 5a and the irregular reflection data obtained by the irregular reflection CCD camera 3b that receives the irregular reflection light 5b are transmitted to the arithmetic unit 6. That is, regular reflection data and irregular reflection data are input signals to the arithmetic unit 6.
In the arithmetic unit 6, the specular reflection data and irregular reflection data related to the same surface defect are arithmetically processed to determine the shape and depth of the surface defect. The calculation processing method is appropriately set according to the nature (namely, shape, depth, etc.) of the surface defect to be detected and the surrounding environment (namely, temperature, brightness, etc.). Hereinafter, as an example, a detection technique based on the aspect ratio and color tone of a surface defect will be described with reference to FIG. 2A and 2B are images obtained by photographing the same surface defect with the regular reflection CCD camera 3a and the irregular reflection CCD camera 3b. FIG. 2A is an image of the regular reflection CCD camera 3a, and FIG. 2B is an image of the irregular reflection CCD camera 3b.

正反射CCDカメラ3aの画像を解析して、表面欠陥8の縦方向の最大長さL1(mm)と横方向の最大長さL2(mm)を測定する。次いで、L1とL2の測定値を用いてアスペクト比を算出する。アスペクト比は、下記の(1)式で算出される値である。
アスペクト比(%)=100×L1/L2 ・・・(1)
また、乱反射CCDカメラ3bの画像を解析して、表面欠陥8の色調とその周囲のステンレス鋼板1の色調との差(いわゆるグレースケール)を測定する。
The image of the regular reflection CCD camera 3a is analyzed, and the maximum length L 1 (mm) in the vertical direction and the maximum length L 2 (mm) in the horizontal direction of the surface defect 8 are measured. Next, the aspect ratio is calculated using the measured values of L 1 and L 2 . The aspect ratio is a value calculated by the following equation (1).
Aspect ratio (%) = 100 × L 1 / L 2 (1)
Further, the image of the irregular reflection CCD camera 3b is analyzed, and the difference (so-called gray scale) between the color tone of the surface defect 8 and the color tone of the surrounding stainless steel plate 1 is measured.

このようにして得られたアスペクト比とグレースケールに基づいて、表面欠陥の有無を検出し、さらにその種類,性状(すなわち形状,深さ等)を判定する。これが演算装置6の出力信号となる。
演算装置6で行なう演算処理は、アスペクト比やグレースケールに関わる解析に限定せず、その他のファクター(たとえば受光した正反射光または乱反射光の波長,振幅等)に基づく判定も可能である。その場合も、表面欠陥の有無,種類,性状が演算装置6の出力信号となる。
Based on the aspect ratio and gray scale obtained in this way, the presence or absence of surface defects is detected, and the type and properties (ie, shape, depth, etc.) are further determined. This becomes an output signal of the arithmetic unit 6.
The arithmetic processing performed by the arithmetic device 6 is not limited to the analysis relating to the aspect ratio and gray scale, and determination based on other factors (for example, the wavelength and amplitude of received regular reflection light or irregular reflection light) is also possible. Also in this case, the presence / absence, type, and properties of surface defects are output signals of the arithmetic unit 6.

演算装置6の出力信号は、表示装置7に伝送されて表示される。表示装置7の構成は特に限定しない。たとえば、特定の表面欠陥が検出されたときにランプを点滅させる,特定の表面欠陥が検出されたときに警報を鳴らす,検出された表面欠陥を画面に表示する等の様々な構成の表示装置が使用できる。   The output signal of the arithmetic device 6 is transmitted to the display device 7 and displayed. The configuration of the display device 7 is not particularly limited. For example, there are various display devices such as blinking a lamp when a specific surface defect is detected, sounding an alarm when a specific surface defect is detected, and displaying the detected surface defect on a screen. Can be used.

熱間圧延とそれに続く焼鈍を施し、さらに酸洗を行なってスケールを除去したステンレス鋼板の搬送ラインにて、ステンレス鋼板の表面欠陥を検査した。図1に示すように、投光装置2,正反射CCDカメラ3a,乱反射CCDカメラ3bを配設した。入射光4の入射角αと正反射光5aの反射角αは共に80°であり、乱反射光5bの反射角βは60°であった。投光装置2はハロゲンランプを使用し、ステンレス鋼板1の幅方向に走査させた。正反射CCDカメラ3aと乱反射CCDカメラ3bを有する受光装置はステンレス鋼板1の幅方向に3台設置した。   A surface defect of the stainless steel plate was inspected in a stainless steel plate conveying line that was subjected to hot rolling and subsequent annealing, and further pickled to remove scale. As shown in FIG. 1, a projector 2, a regular reflection CCD camera 3a, and an irregular reflection CCD camera 3b are provided. The incident angle α of the incident light 4 and the reflection angle α of the regular reflection light 5a are both 80 °, and the reflection angle β of the irregular reflection light 5b is 60 °. The light projector 2 used a halogen lamp and scanned in the width direction of the stainless steel plate 1. Three light receiving devices including the regular reflection CCD camera 3a and the irregular reflection CCD camera 3b were installed in the width direction of the stainless steel plate 1.

このようにして正反射CCDカメラ3aと乱反射CCDカメラ3bで同一の表面欠陥を撮影し、その画像を演算装置6で解析してアスペクト比とグレースケールを求め、それぞれのしきい値と比較することによって、表面欠陥の種類を判定した。その判定基準を表1に示す。なお、しきい値は予め設定した値であり、アスペクト比のしきい値は50%,グレースケールのしきい値は200とした。   In this way, the same surface defect is photographed by the regular reflection CCD camera 3a and the irregular reflection CCD camera 3b, and the image is analyzed by the arithmetic unit 6 to obtain the aspect ratio and the gray scale, and compared with the respective threshold values. Thus, the type of surface defect was determined. The determination criteria are shown in Table 1. The threshold value is a preset value, the threshold value of the aspect ratio is 50%, and the threshold value of the gray scale is 200.

Figure 2008145373
Figure 2008145373

表1中の押込み疵は熱間圧延時に異物(たとえばスケール等)が押込まれ脱落して窪み状になったもの,スリ疵は表面が擦られたもので疵の終端にカキ玉を伴わないもの,飛込み疵は熱間圧延時に異物が飛込み圧延されたものであり、それぞれ形状や大きさ,深さが異なる。
このようにして表面欠陥の有無を判定して液晶画面の表示装置7に表示した。これを発明例とする。
The indentations in Table 1 are those in which foreign objects (for example, scales) are pushed in and dropped out during hot rolling, resulting in depressions. , The spear is a foreign material sprinkled and rolled during hot rolling, and each has a different shape, size and depth.
Thus, the presence or absence of surface defects was determined and displayed on the display device 7 of the liquid crystal screen. This is an invention example.

一方、従来は、投光装置2はレーザー発信器を使用して正反射光のみを受光し、受光信号波形に基づいて表面欠陥の有無を判定していた。これを従来例とする。
発明例と従来例で表面欠陥を検出したステンレス鋼板を目視で観察して、疵一致率を調査した。疵一致率は下記の(2)式で算出される値である。
疵一致率(%)=100×N2/N1 ・・・(2)
1:目視で確認された疵の総個数
2:表面欠陥検査装置と目視で確認された疵が一致した個数
その結果、発明例の疵一致率は77.6%であったのに対して、従来例の疵一致率は60.1%であった。
On the other hand, conventionally, the light projecting device 2 receives only specular reflection light using a laser transmitter, and determines the presence or absence of a surface defect based on the light reception signal waveform. This is a conventional example.
The stainless steel plates in which surface defects were detected in the inventive example and the conventional example were visually observed to investigate the wrinkle coincidence rate. The wrinkle coincidence rate is a value calculated by the following equation (2).
疵 Match rate (%) = 100 × N 2 / N 1 (2)
N 1 : Total number of wrinkles visually confirmed N 2 : Number of surface defects inspection device and visually confirmed wrinkles As a result, the wrinkle agreement rate of the inventive example was 77.6%, The wrinkle agreement rate of the conventional example was 60.1%.

このようにして本発明を適用することによって表面欠陥の検出精度が向上することが確かめられた。   Thus, it was confirmed that the accuracy of detection of surface defects was improved by applying the present invention.

本発明を適用する際の投光装置,正反射CCDカメラ,乱反射CCDカメラ,ステンレス鋼板の配置の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of arrangement | positioning of the light projector at the time of applying this invention, a regular reflection CCD camera, a diffuse reflection CCD camera, and a stainless steel plate. 表面欠陥を撮影した画像の例であり、(a)が正反射CCDカメラ3aの画像、(b)が乱反射CCDカメラ3bの画像である。It is an example of the image which image | photographed the surface defect, (a) is an image of the regular reflection CCD camera 3a, (b) is an image of the irregular reflection CCD camera 3b.

符号の説明Explanation of symbols

1 ステンレス鋼板
2 投光装置
3a 正反射CCDカメラ
3b 乱反射CCDカメラ
4 入射光
5a 正反射光
5b 乱反射光
6 演算装置
7 表示装置
8 表面欠陥
1 Stainless steel plate 2 Floodlight device
3a Regular reflection CCD camera
3b Diffuse reflection CCD camera 4 Incident light
5a Regular reflection
5b Diffuse reflected light 6 Arithmetic device 7 Display device 8 Surface defect

Claims (4)

熱間圧延および焼鈍を施した後、酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を検出する検査装置であって、前記ステンレス鋼板の進行方向に沿って角度αで入射する入射光を照射する投光装置と、前記ステンレス鋼板の表面から角度αで反射する正反射光を受光する正反射CCDカメラと、前記ステンレス鋼板の表面から角度βで反射する乱反射光を受光する乱反射CCDカメラと、前記投光装置を前記ステンレス鋼板の幅方向に走査させる光源走査装置と、前記正反射CCDカメラで得た正反射データおよび前記乱反射CCDカメラで得た乱反射データを入力信号として演算処理する演算装置と、前記演算装置で得た出力信号を表示する表示装置と、を有することを特徴とするステンレス鋼板の表面欠陥検査装置。   An inspection device for detecting surface defects of a stainless steel plate that has been subjected to hot rolling and annealing and then pickled to remove scale, and incident light incident at an angle α along the traveling direction of the stainless steel plate A projecting device for irradiating; a regular reflection CCD camera that receives regular reflection light reflected from the surface of the stainless steel plate at an angle α; and a diffuse reflection CCD camera that receives irregular reflection light reflected from the surface of the stainless steel plate at an angle β; A light source scanning device for scanning the light projecting device in the width direction of the stainless steel plate, and an arithmetic device for performing arithmetic processing using the regular reflection data obtained by the regular reflection CCD camera and the irregular reflection data obtained by the irregular reflection CCD camera as input signals And a display device for displaying an output signal obtained by the arithmetic device. 前記投光装置が、ハロゲンランプであることを特徴とする請求項1に記載のステンレス鋼板の表面欠陥検査装置。   The surface defect inspection apparatus for a stainless steel plate according to claim 1, wherein the light projecting apparatus is a halogen lamp. 熱間圧延および焼鈍を施した後、酸洗を行なってスケールを除去したステンレス鋼板の表面欠陥を検出する検査方法において、前記ステンレス鋼板の幅方向に走査する投光装置から前記ステンレス鋼板の進行方向に沿って角度αで入射光を照射し、前記ステンレス鋼板の表面から角度αで反射する正反射光を正反射CCDカメラで受光するとともに、前記ステンレス鋼板の表面から角度βで反射する乱反射光を乱反射CCDカメラで受光し、前記正反射CCDカメラで得た正反射データおよび前記乱反射CCDカメラで得た乱反射データを入力信号として演算装置に伝送し、前記演算装置で同一の表面欠陥に関する正反射データと乱反射データとを演算処理して得た出力信号を表示装置に伝送し、前記表示装置にて前記出力信号を表示することを特徴とするステンレス鋼板の表面欠陥検査方法。   In an inspection method for detecting surface defects of a stainless steel plate that has been subjected to hot rolling and annealing and then pickled to remove scale, the traveling direction of the stainless steel plate from a light projection device that scans in the width direction of the stainless steel plate Is irradiated with incident light at an angle α, and regular reflection light reflected at an angle α from the surface of the stainless steel plate is received by a regular reflection CCD camera, and irregular reflection light reflected at an angle β from the surface of the stainless steel plate is received. The regular reflection data received by the irregular reflection CCD camera, the regular reflection data obtained by the regular reflection CCD camera and the irregular reflection data obtained by the irregular reflection CCD camera are transmitted as input signals to the arithmetic unit, and the regular reflection data relating to the same surface defect is obtained by the arithmetic unit. And output the output signal obtained by computing the diffuse reflection data to the display device, and display the output signal on the display device Surface defect inspection method of a stainless steel sheet characterized. 前記投光装置が、ハロゲンランプであることを特徴とする請求項3に記載のステンレス鋼板の表面欠陥検査方法。   4. The surface defect inspection method for a stainless steel plate according to claim 3, wherein the light projecting device is a halogen lamp.
JP2006335551A 2006-12-13 2006-12-13 Apparatus and method for inspecting surface defect on stainless steel plate Pending JP2008145373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335551A JP2008145373A (en) 2006-12-13 2006-12-13 Apparatus and method for inspecting surface defect on stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335551A JP2008145373A (en) 2006-12-13 2006-12-13 Apparatus and method for inspecting surface defect on stainless steel plate

Publications (1)

Publication Number Publication Date
JP2008145373A true JP2008145373A (en) 2008-06-26

Family

ID=39605701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335551A Pending JP2008145373A (en) 2006-12-13 2006-12-13 Apparatus and method for inspecting surface defect on stainless steel plate

Country Status (1)

Country Link
JP (1) JP2008145373A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210322A (en) * 2009-03-09 2010-09-24 Jfe Steel Corp Scale residue inspection device of pickled steel sheet
JP2010249685A (en) * 2009-04-16 2010-11-04 Nippon Steel Corp Flaw detector, flaw detection method and program
KR101230064B1 (en) * 2011-04-29 2013-02-05 주식회사 포스코 Apparatus for sensing surface shape of steel
JP2016013561A (en) * 2014-07-01 2016-01-28 Jfeスチール株式会社 Surface defect detection method for mandrel bar
JP2016083663A (en) * 2014-10-23 2016-05-19 Jfeスチール株式会社 Surface crack detection method, and surface crack detection device of mandrel bar
JP2017207288A (en) * 2016-05-16 2017-11-24 Jfeスチール株式会社 Surface inspection device-purpose calibration plate and surface inspection device calibration method
CN109540918A (en) * 2018-11-28 2019-03-29 鞍钢集团自动化有限公司 A kind of hot rolled coil edge fault detection device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210322A (en) * 2009-03-09 2010-09-24 Jfe Steel Corp Scale residue inspection device of pickled steel sheet
JP2010249685A (en) * 2009-04-16 2010-11-04 Nippon Steel Corp Flaw detector, flaw detection method and program
KR101230064B1 (en) * 2011-04-29 2013-02-05 주식회사 포스코 Apparatus for sensing surface shape of steel
JP2016013561A (en) * 2014-07-01 2016-01-28 Jfeスチール株式会社 Surface defect detection method for mandrel bar
JP2016083663A (en) * 2014-10-23 2016-05-19 Jfeスチール株式会社 Surface crack detection method, and surface crack detection device of mandrel bar
JP2017207288A (en) * 2016-05-16 2017-11-24 Jfeスチール株式会社 Surface inspection device-purpose calibration plate and surface inspection device calibration method
CN109540918A (en) * 2018-11-28 2019-03-29 鞍钢集团自动化有限公司 A kind of hot rolled coil edge fault detection device and method
CN109540918B (en) * 2018-11-28 2021-04-16 鞍钢集团自动化有限公司 Hot-rolled coil edge defect detection device and method

Similar Documents

Publication Publication Date Title
CN107735674B (en) Surface defect detection device, surface defect detection method, and steel product manufacturing method
JP2008145373A (en) Apparatus and method for inspecting surface defect on stainless steel plate
EP2102587B1 (en) Method of automated quantitative analysis of distortion shaped vehicle glass by reflected optical imaging
JP2008275424A (en) Surface inspection device
WO2012114909A1 (en) Thin film obverse face inspection method and inspection device
KR101862310B1 (en) Apparatus and Method for Detecting Mura Defects
JP7039299B2 (en) Residual grain boundary oxide layer inspection method and residual grain boundary oxide layer inspection device
JP2009287980A (en) Visual inspection device
JP2012229928A (en) Surface flaw detection method and surface flaw detection device
JP4108829B2 (en) Thickness defect inspection apparatus and inspection method thereof
JP5201014B2 (en) Scale remaining inspection equipment for pickled steel sheet
JP2006177852A (en) Surface inspection device and its method
JP2004138417A (en) Method and apparatus for inspecting scratch in steel plate
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP2001272341A (en) Measuring method for uneven brightness of metal plate
JP7131509B2 (en) Surface defect detection device, surface defect detection method, and steel manufacturing method
JP2012141322A (en) Surface defect inspection device
JP5392903B2 (en) Surface flaw inspection device
JP2007328583A (en) Image sensing system
JP2007101239A (en) Visual inspection device and visual inspection method
JP2011089967A (en) Method for inspecting surface of mirror finished belt
JP7110777B2 (en) Metal thin plate inspection device and metal thin plate inspection method
RU2788586C1 (en) Method for control of steel sheets for surface defects using laser triangulation scanners
JP7493163B2 (en) Defect inspection device
KR100448619B1 (en) Apparatus using infrared-illumination for detecting defect on surface of steel sheet