JP2007101239A - Visual inspection device and visual inspection method - Google Patents

Visual inspection device and visual inspection method Download PDF

Info

Publication number
JP2007101239A
JP2007101239A JP2005288445A JP2005288445A JP2007101239A JP 2007101239 A JP2007101239 A JP 2007101239A JP 2005288445 A JP2005288445 A JP 2005288445A JP 2005288445 A JP2005288445 A JP 2005288445A JP 2007101239 A JP2007101239 A JP 2007101239A
Authority
JP
Japan
Prior art keywords
detection result
light
barycentric
dark
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005288445A
Other languages
Japanese (ja)
Inventor
Masahiro Umeda
真宏 梅田
Yasuhiko Shigematsu
康彦 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005288445A priority Critical patent/JP2007101239A/en
Publication of JP2007101239A publication Critical patent/JP2007101239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a visual inspection device capable of efficiently detecting a surface flaw difficult to detect by a conventional visual inspection device to judge the kind of the detected flaw. <P>SOLUTION: An illumination/imaging system 2 is constituted so as to obliquely irradiate a copper clad laminated sheet being an inspection target with light to capture an image. An image processor 3 processes the image sent from the illumination/imaging system 2. A composite processor 4 is constituted so as to sense the surface flaw by applying composite processing to the image processed by the image processor 3 to judge the kind of the surface flaw. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば銅張積層板の表面上に発生する欠陥を自動的に検出するための外観検査装置及び外観検査方法に関する。   The present invention relates to an appearance inspection apparatus and an appearance inspection method for automatically detecting defects generated on the surface of a copper clad laminate, for example.

近年のプリント配線板の高密度、高精度、高多層化に伴い、多層用ガラス布エポキシ銅張積層板(MCL)のような銅張積層板は、外観レベルの高い製品が強く要求されるようになった。   With recent increases in the density, high precision, and multi-layered printed wiring boards, copper-clad laminates such as glass cloth epoxy copper-clad laminates (MCL) for multilayers are strongly demanded for products with a high appearance level. Became.

従来、銅張積層板の外観検査は、人間の目視による方法が行われていた。しかし、人間の目視検査では、個人差があり、また同一人であっても検査対象の全面にわたって同一レベルで検査することは事実上不可能であり、欠陥の検出にムラが生じる。また、欠陥の見逃しも発生してしまう。   Conventionally, the visual inspection of a copper clad laminate has been performed by a human visual method. However, in human visual inspection, there are individual differences, and even the same person cannot effectively inspect the entire surface to be inspected at the same level, resulting in uneven detection of defects. In addition, the defect may be overlooked.

そこで、下記特許文献1、特許文献2によって開示されているように、外観検査装置を利用する方法も多く提案されている。例えば、モノクロラインセンサカメラと単一照明とを用いて検査対象物表面で反射される光の輝度変化を検出して表面の欠陥を検知する外観検査装置による外観検査方法等がある。
特開平10−9838号公報 特開平11−183395号公報
Thus, as disclosed in Patent Document 1 and Patent Document 2 below, many methods using an appearance inspection apparatus have been proposed. For example, there is an appearance inspection method using an appearance inspection apparatus that detects a surface defect by detecting a change in luminance of light reflected from the surface of an inspection object using a monochrome line sensor camera and a single illumination.
JP-A-10-9838 JP-A-11-183395

ところで、モノクロラインセンサカメラと単一照明を組み合わせた検査方法では、コントラストが明確な欠陥でないと検出できず、撮像角度によっては、変色などの低コントラストの欠陥検出は困難である。また、各欠陥のコントラスト差が少なく検出欠陥の種類まで判別することは不可能である。   By the way, in the inspection method combining the monochrome line sensor camera and the single illumination, it cannot be detected unless the defect has a clear contrast, and it is difficult to detect a low-contrast defect such as discoloration depending on the imaging angle. In addition, it is impossible to discriminate the types of detected defects because the contrast difference between the defects is small.

また、従来の外観検査装置では、所定レベル(閾値)以上の輝度変化の有無で欠陥を判定するので、非欠陥であっても輝度変化が生じる場合、欠陥と非欠陥(光点)を判別できないという問題がある。ここでいう光点とは、銅張積層板を製造時に発生する鏡面状の点のことである。   Further, in the conventional appearance inspection apparatus, since the defect is determined based on whether or not the luminance change exceeds a predetermined level (threshold), if the luminance change occurs even if it is non-defective, the defect cannot be distinguished from the non-defect (light spot). There is a problem. The light spot here is a specular point generated during the production of a copper clad laminate.

また、被検査物の表面欠陥は種々であるが、従来の外観検査装置では異なった種々の欠陥が同じような変化として捕らえることが多く、正確な欠陥の種類判別は困難である。   In addition, there are various surface defects of the object to be inspected, but in the conventional appearance inspection apparatus, various different defects are often captured as the same change, and it is difficult to accurately determine the type of the defect.

本発明は、上記実情に鑑みてなされたものであり、従来の外観検査装置では困難であった表面欠陥を効率よく検出し、かつ検出欠陥の種類別を判定することができる外観検査装置及び外観検査方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and an appearance inspection apparatus and an appearance that can efficiently detect surface defects that have been difficult with a conventional appearance inspection apparatus and determine the type of detection defect. The purpose is to provide inspection methods.

本発明に係る外観検査装置は、前記課題を解決するために、被検査物の表面上に発生する欠陥を自動的に検査する外観検査装置において、前記被検査物の移動方向の反対(または移動)方向から平行光線で前記被検査物の表面に正反射光のため及び乱反射光のためにそれぞれ光を照射する二つの照明源と、前記二つの照明源から前記被検査物の表面に照射されたそれぞれの光の前記被検査物の表面からの正反射光及び乱反射光を検出する、前記被検査物の移動(または移動方向の反対)方向に直交する方向に受光操作方向を持つ二つの受光手段と、前記二つの受光手段によって検出された検出出力に画像処理を施してそれぞれ2値化データを生成する画像処理手段と、前記画像処理手段によって生成された各2値化データ結果を複合処理し、反射光の違いにより被検査物の表面の欠陥を検知する複合処理手段とを備える。   In order to solve the above problems, an appearance inspection apparatus according to the present invention is an appearance inspection apparatus that automatically inspects defects generated on the surface of an object to be inspected. ) Two illumination sources that irradiate the surface of the object to be inspected with parallel rays from the direction for specularly reflected light and irregularly reflected light, respectively, and the surface of the object to be inspected from the two illumination sources. In addition, two light receptions having a light receiving operation direction in a direction orthogonal to the moving direction (or the opposite direction of the moving direction) of the inspection object for detecting the regular reflection light and the irregular reflection light from the surface of the inspection object of each light. Means, image processing means for subjecting the detection outputs detected by the two light receiving means to image processing to generate binarized data, respectively, and composite processing of each binarized data result generated by the image processing means And And a composite processing means for detecting defects on the surface of the inspection object by the difference in Shako.

また、この外観検査装置にあって、複合処理手段は、欠陥と光点とを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの明検出結果の重心座標(X1,Y1)を検出し、重心座標間の重心座標差|X1−X2|、|Y1−Y2|を算出し、この重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、光点と判定する。   Further, in this appearance inspection apparatus, the composite processing means distinguishes the defect and the light spot from the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the binary value. Centroid coordinates (X1, Y1) of the bright detection result from the normalized specular image are detected, and centroid coordinate differences | X1-X2 |, | Y1-Y2 | between the centroid coordinates are calculated. X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary are determined, and if the conditions match, it is determined as a light spot.

また、複合処理手段は、凹欠陥と擦りキズを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X1,Y1)と、同じ乱反射画像からの明検出結果の重心座標(X2,Y2)を検出し、明検出結果の重心座標の任意距離に暗検出結果の重心座標があるか、又は暗検出結果の重心座標の任意距離に明検出結果の重心座標があるかを判定し、明(暗)検出結果の重心座標の任意距離に暗(明)検出結果の重心座標が有れば凹欠陥と判定し、無ければ擦りキズ欠陥と判定する。   Further, the composite processing means distinguishes the concave defect from the scratches and the barycentric coordinates (X1, Y1) of the dark detection result from the binarized diffuse reflection image and the barycenter of the bright detection result from the same diffuse reflection image. Whether coordinates (X2, Y2) are detected and the center of gravity coordinates of the dark detection result is at an arbitrary distance of the center of gravity coordinates of the light detection result, or is the center of gravity coordinate of the light detection result at an arbitrary distance of the center of gravity coordinates of the dark detection result If there is a barycentric coordinate of the dark (bright) detection result at an arbitrary distance of the barycentric coordinate of the bright (dark) detection result, it is determined as a concave defect, and if not, it is determined as a scratch flaw defect.

また、複合処理手段は、変色欠陥を検出するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの暗検出結果の重心座標(X1,Y1)を検出し、また乱反射画像の暗検出結果の重心座標の任意距離に明検出結果の重心座標が有るか否かを判定してから、前記乱反射画像からの暗検出結果の重心座標(X2,Y2)と前記正反射画像からの暗検出結果の重心座標(X1,Y1)の間の重心座標差|X1−X2|、|Y1−Y2|を算出し、重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、変色欠陥と判定する。   Further, the composite processing means detects the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the dark detection result from the binarized regular reflection image in order to detect the discoloration defect. Centroid coordinates (X1, Y1) are detected, and it is determined whether the centroid coordinates of the bright detection result are at an arbitrary distance of the centroid coordinates of the dark detection result of the diffuse reflection image, and then dark detection from the diffuse reflection image is performed. The barycentric coordinate difference | X1-X2 |, | Y1-Y2 | between the barycentric coordinates (X2, Y2) of the result and the barycentric coordinates (X1, Y1) of the dark detection result from the specular reflection image is calculated, and the barycentric coordinates The difference | X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary is determined, and if the condition matches, it is determined that the color change defect.

また、二つの照明源は、被検査物の全ての欠陥を顕在化できる2本のライン照明源であり、被検査物に対して斜光照明を行う。   The two illumination sources are two line illumination sources that can reveal all defects of the inspection object, and perform oblique illumination on the inspection object.

また、二つの受光手段は、ラインセンサ方式の2台のカメラを正反射光による画像撮像用カメラ及び乱反射光による画像撮像用カメラとして用いている。   The two light receiving means use two line sensor type cameras as an image capturing camera using specularly reflected light and an image capturing camera using irregularly reflected light.

本発明に係る外観検査方法は、前記課題を解決するために、被検査物の表面上に発生する欠陥を自動的に検査するための外観検査方法において、前記被検査物の移動方向の反対(または移動)方向から平行光線で前記被検査物の表面に正反射光のため及び乱反射光のために二つの照明源からそれぞれ光を照射する照明ステップと、前記照明ステップにより二つの照明源から前記被検査物の表面に照射されたそれぞれの光の前記被検査物の表面からの正反射光及び乱反射光を、前記被検査物の移動(または移動方向の反対)方向に直交する方向に受光操作方向を持つ二つの受光手段により受光する受光ステップと、前記受光ステップにて二つの受光手段によって検出された検出出力に画像処理を施してそれぞれ2値化データを生成する画像処理ステップと、前記画像処理ステップによって生成された各2値化データ結果を複合処理し、反射光の違いにより被検査物の表面の欠陥を検知する複合処理ステップとを備える。   In order to solve the above problems, an appearance inspection method according to the present invention is an appearance inspection method for automatically inspecting a defect generated on a surface of an inspection object. Or an illumination step of irradiating light from the two illumination sources for specular reflection light and irregular reflection light with parallel rays from the direction of movement), and from the two illumination sources by the illumination step. Receiving operation of regular reflection light and irregular reflection light from the surface of the inspection object of each light irradiated on the surface of the inspection object in a direction orthogonal to the movement direction (or the opposite direction of the movement direction) of the inspection object A light receiving step for receiving light by two light receiving means having a direction, and image processing for generating binarized data by performing image processing on the detection outputs detected by the two light receiving means in the light receiving step And step, combined processes each binary data results produced by said image processing step, and a composite processing step of detecting a defect of a surface of an object to be inspected by the difference of the reflected light.

また、複合処理ステップは、欠陥と光点とを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの明検出結果の重心座標(X1,Y1)を検出し、重心座標間の重心座標差|X1−X2|、|Y1−Y2|を算出し、この重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、光点と判定する。   Further, in the composite processing step, in order to distinguish the defect and the light spot, the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the binarized regular reflection image The barycentric coordinates (X1, Y1) of the bright detection result are detected, barycentric coordinate differences | X1-X2 |, | Y1-Y2 | between the barycentric coordinates are calculated, and this barycentric coordinate difference | X1-X2 | <= arbitrary, | Y1-Y2 | <= Arbitrary is determined, and if the condition matches, it is determined as a light spot.

また、前記複合処理ステップは、凹欠陥と擦りキズを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X1,Y1)と、同じ乱反射画像からの明検出結果の重心座標(X2,Y2)を検出し、明検出結果の重心座標の任意距離に暗検出結果の重心座標があるか、又は暗検出結果の重心座標の任意距離に明検出結果の重心座標があるかを判定し、明(暗)検出結果の重心座標の任意距離に暗(明)検出結果の重心座標が有れば凹欠陥と判定し、無ければ擦りキズ欠陥と判定する。   Further, in the composite processing step, the barycentric coordinates (X1, Y1) of the dark detection result from the binarized irregular reflection image and the bright detection result from the same irregular reflection image are used to distinguish the concave defect and the scratch. The barycentric coordinates (X2, Y2) are detected, and the barycentric coordinates of the dark detection result are at an arbitrary distance of the barycentric coordinates of the bright detection result, or the barycentric coordinates of the bright detection result are at an arbitrary distance of the barycentric coordinates of the dark detection result If there is a barycentric coordinate of the dark (bright) detection result at an arbitrary distance of the barycentric coordinate of the bright (dark) detection result, it is determined as a concave defect, and if not, it is determined as a scratch flaw defect.

また、複合処理ステップは、変色欠陥を検出するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの暗検出結果の重心座標(X1,Y1)を検出し、さらに乱反射画像の暗検出結果の重心座標の任意距離に明検出結果の重心座標が有るか否かを判定してから、前記乱反射画像からの暗検出結果の重心座標(X2,Y2)と前記正反射画像からの暗検出結果の重心座標(X1,Y1)の間の重心座標差|X1−X2|、|Y1−Y2|を算出し、重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、変色欠陥と判定する。   Further, in the composite processing step, the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the dark detection result from the binarized regular reflection image are used to detect the discoloration defect. Centroid coordinates (X1, Y1) are detected, and it is further determined whether or not the centroid coordinates of the bright detection result are at an arbitrary distance of the centroid coordinates of the dark detection result of the diffuse reflection image, and then dark detection from the diffuse reflection image is performed. The barycentric coordinate difference | X1-X2 |, | Y1-Y2 | between the barycentric coordinates (X2, Y2) of the result and the barycentric coordinates (X1, Y1) of the dark detection result from the specular reflection image is calculated, and the barycentric coordinates The difference | X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary is determined, and if the condition matches, it is determined that the color change defect.

以上に説明したように、本発明に係る外観検査装置及び方法は、被検査物である、例えば銅張積層板の移動方向の反対(または移動)方向から平行光線で正反射・乱反射をそれぞれ照射し、銅張積層板の移動(または移動方向の反対)方向に直交する方向に受光操作方向を持つラインセンサにより、銅張積層板の検査面反射光を受光走査検知し、受光量に応じたラインセンサからの検知出力を各々2値化し、その結果を複合処理し、反射光の違いにより被検査物の表面の欠陥を検知する。   As described above, the appearance inspection apparatus and method according to the present invention irradiate specular reflection and irregular reflection with parallel rays from the opposite (or movement) direction of the inspection object, for example, the copper clad laminate, for example. Then, the line sensor having the light receiving operation direction in the direction orthogonal to the direction of movement of the copper clad laminate (or opposite to the moving direction) detects and scans the inspection surface reflected light of the copper clad laminate, and according to the amount of light received Each detection output from the line sensor is binarized, the result is combined, and a defect on the surface of the inspection object is detected by the difference in reflected light.

本発明に係る外観検査装置及び外観検査方法によれば、従来の外観検査装置では困難であった表面欠陥を効率よく検出・種類別判定することができる。また、銅張積層板の品質保証及び種別判定による前ステップへの不良対策を提供できる。   According to the appearance inspection apparatus and the appearance inspection method according to the present invention, it is possible to efficiently detect and determine the type of surface defects that have been difficult with the conventional appearance inspection apparatus. In addition, it is possible to provide countermeasures against defects in the previous step by quality assurance and type determination of the copper clad laminate.

以下、本発明を実施するための最良の形態について図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、実施の形態の外観検査装置1の全体構成図である。この外観検査装置1は、被検査物として、多層用ガラス布エポキシ銅張積層板(MCL)のような銅張積層板の外観を検査する装置であり、本発明の外観検査方法を実行する。   FIG. 1 is an overall configuration diagram of an appearance inspection apparatus 1 according to an embodiment. This appearance inspection apparatus 1 is an apparatus for inspecting the appearance of a copper clad laminate such as a multilayer glass cloth epoxy copper clad laminate (MCL) as an object to be inspected, and executes the appearance inspection method of the present invention.

銅張積層板の欠陥の種類としては、大きく区分して、凹欠陥、キズ欠陥、平滑欠陥がある。これらの欠陥は、断線などの原因となる致命欠陥となる虞があり、製品機能に支障を生じさせてしまう。   The types of defects in the copper clad laminate are roughly classified into a concave defect, a scratch defect, and a smooth defect. These defects may become fatal defects that cause disconnection or the like, causing trouble in product functions.

凹欠陥には、打痕、銅しわ、型キズ、たも割れ、たもしわがある。打痕は、φ0.5mm以上の凹みであり、銅箔と鏡板間の異物によって生じる。銅しわは、銅箔のシワであり、薄い銅箔の寄れが発生原因である。型キズは、深さ0.7μm以上の帯状の凹みであり、銅板のキズによって生じる。たも割れはプリプレグの樹脂突起(たも)部での銅箔の割れであり、たもによる銅箔の重度の寄れにより生じる。また、たもしわは、たも部での銅シワであり、たもによる銅箔の経度の寄れにより生じる。   Concave defects include dents, copper wrinkles, mold flaws, cracks, and wrinkles. The dent is a dent of φ0.5 mm or more, and is generated by a foreign matter between the copper foil and the end plate. A copper wrinkle is a wrinkle of a copper foil, and is caused by a thin copper foil. A mold flaw is a strip-shaped depression having a depth of 0.7 μm or more, and is caused by a flaw in a copper plate. The crack is a crack in the copper foil at the resin protrusion (tread) portion of the prepreg, and is caused by the heavy deviation of the copper foil due to the crack. Also, tame wrinkles are copper wrinkles in the thigh part, and are caused by a shift in the longitude of the copper foil by the tuna.

また、キズ欠陥は、長さ30mm以上または深さ7μm以上のキズであり、機械のトラブルにより生じる。また、平滑欠陥には、変色と付着物変色がある。変色は銅張積層板銅箔の錆及び汚れであり、鏡板の水残りなどによって生ずる。また、付着物変色は、銅張積層板表面に異物が付着することによって生ずる。これは、機械油等の付着が原因である。   A flaw defect is a flaw having a length of 30 mm or more or a depth of 7 μm or more, and is caused by a machine trouble. In addition, smooth defects include discoloration and deposit discoloration. Discoloration is rust and dirt on the copper clad laminate copper foil, and is caused by water residue on the end plate. Adherent discoloration occurs when foreign matter adheres to the surface of the copper-clad laminate. This is caused by adhesion of machine oil or the like.

なお、銅張積層板には製造時に発生する光点がある。光点とは銅張積層板表面上に発生する平坦な鏡面状の点のことである。光点は断線などの原因となる致命欠陥ではなく、製品機能に支障は生じない。この光点は、虚報の原因となる。そこで上記欠陥とは区別する必要がある。   Note that the copper clad laminate has a light spot generated during production. The light spot is a flat specular spot generated on the surface of the copper clad laminate. The light spot is not a fatal defect that causes disconnection or the like, and does not hinder the product function. This light spot causes a false alarm. Therefore, it is necessary to distinguish from the above defects.

外観検査装置1は、被検査物である銅張積層板に後述する照射方法に基づいて光を照射し、画像を撮像する照明・撮像系2と、照明・撮像系2から送られた画像を処理し2値化する画像処理装置3と、画像処理装置3により処理された2値化画像に対して複合処理を施して表面の欠陥を検知し、さらに表面の欠陥の種類を判定する複合処理装置4とを備えてなる。   The appearance inspection apparatus 1 irradiates light on a copper-clad laminate, which is an object to be inspected, based on an irradiation method to be described later, and illuminates and images the imaging system 2 and images sent from the illumination and imaging system 2. An image processing device 3 for processing and binarizing, and a composite processing for detecting a surface defect by performing a composite processing on the binarized image processed by the image processing device 3 and further determining the type of the surface defect The apparatus 4 is provided.

ここで、照明・撮像系2は、後述するように、前記被検査物の移動方向の反対(または移動)方向から平行光線で前記被検査物の表面に正反射光のため及び乱反射光のためにそれぞれ光を照射する二つの照明源22及び23と、二つの照明源22及び23から前記被検査物21の表面に照射されたそれぞれの光の前記被検査物の表面からの正反射光及び乱反射光を検出する、前記被検査物の移動(または移動方向の反対)方向に直交する方向に受光操作方向を持つ二つの受光手段(ラインセンサ方式の画像撮像用カメラ24及び25)からなる。   Here, as will be described later, the illumination / imaging system 2 is used for specularly reflected light and irregularly reflected light on the surface of the inspected object with parallel rays from the opposite (or moving) direction of the inspected object. Two illumination sources 22 and 23 that respectively irradiate light, and the specularly reflected light from the surface of the object to be inspected and the respective lights irradiated on the surface of the object 21 from the two illumination sources 22 and 23 and It comprises two light receiving means (line sensor type image capturing cameras 24 and 25) having a light receiving operation direction in a direction orthogonal to the moving direction (or the opposite direction of the moving direction) of the inspection object for detecting diffusely reflected light.

照明・撮像系2は、図1にあって側面を示すように、テーブルに載置されて矢印20方向に沿って搬送(移動)されてくる銅張積層板21に対して、全ての欠陥を顕在化できる2本のライン照明源22及び23から斜光照明を行っている。ライン照明源22は、正反射のための斜光照明を行うものであり、高照度出力のメタルハライド照明を用いている。また、ライン照明源23は乱反射のための斜光照明を行うものであり、同じく高照度出力のメタルハライド照明を用いている。これらの照明光は、平行光とされている。   As shown in FIG. 1, the illumination / imaging system 2 removes all defects from the copper-clad laminate 21 placed on the table and conveyed (moved) along the arrow 20 direction. Oblique illumination is performed from two line illumination sources 22 and 23 that can be realized. The line illumination source 22 performs oblique illumination for regular reflection, and uses metal halide illumination with high illuminance output. The line illumination source 23 performs oblique illumination for irregular reflection, and similarly uses metal halide illumination with high illuminance output. These illumination lights are parallel light.

また、照明・撮像系2は、ラインセンサ方式の2台のカメラを正反射光による画像撮像用受光部(カメラ)24及び乱反射光による画像撮像用受光部(カメラ)25として用いている。ラインセンサ方式のカメラは、水平方向に7500画像と画素数が多く高解像度の画像取り込みができ、走査速度も選定時に比較したエリアセンサ方式のカメラの2倍という特徴を持つ。よって、この外観検査装置1では、高解像度、高速処理という特徴からモノクロラインセンサ用カメラを用いている。このラインセンサ方式の画像撮像用カメラ24及び25は、銅張積層板の移動(または移動方向の反対)方向に直交する方向に受光操作方向を持つ。   Further, the illumination / imaging system 2 uses two line sensor type cameras as the image capturing light receiving unit (camera) 24 using specularly reflected light and the image capturing light receiving unit (camera) 25 using irregularly reflected light. The line sensor type camera has a feature that the number of pixels is 7500 in the horizontal direction and a high resolution image can be captured, and the scanning speed is twice that of the area sensor type camera compared with the selection. Therefore, in this appearance inspection apparatus 1, a monochrome line sensor camera is used because of the features of high resolution and high speed processing. The line sensor type image capturing cameras 24 and 25 have a light receiving operation direction in a direction orthogonal to the moving direction of the copper clad laminate (or the direction opposite to the moving direction).

この2本のライン照明源22及び23による正反射及び乱反射のための2系統の斜光照明を銅張積層板21の表面に照射し、銅張積層板21の検査面反射光をラインセンサ方式の画像撮像用カメラ24及び25により受光する。   The two lines of oblique illumination for regular reflection and irregular reflection by the two line illumination sources 22 and 23 are irradiated on the surface of the copper-clad laminate 21, and the inspection surface reflected light of the copper-clad laminate 21 is reflected by the line sensor method. Light is received by the image capturing cameras 24 and 25.

図2は、2本のライン照明源22及び23による各欠陥の受光量の違いを示す図である。凹欠陥(打痕、しわ)は正反射による受光量により暗検出され、乱反射では明・暗両方で検出される。打痕としわは、通常、横:縦=X:Yの比で分類できる。また、擦りキズは暗検出され、乱反射では明検出される。また、変色は正反射及び乱反射による受光量によりともに暗検出される。光点は、正反射では明検出、乱反射では暗反射とそれぞれ異なる。なお、ここでは、モノクロ255階調のうち、明検出は131以上、暗検出は129以下、無は130と設定した。この図2に示した結果から、正反射、乱反射による欠陥検出部の受光量の違いにより大幅な欠陥分類が可能であることが判る。つまり、正反射、乱反射の2光学系複合処理により、凹欠陥、平滑欠陥、光点の区別が可能となり、それぞれの判定条件で欠陥を検出することができる。   FIG. 2 is a diagram showing a difference in received light amount of each defect by the two line illumination sources 22 and 23. Concave defects (such as dents and wrinkles) are detected in the dark by the amount of light received by specular reflection, and are detected both brightly and darkly by irregular reflection. Indentations and wrinkles can be generally classified by the ratio of horizontal: vertical = X: Y. Further, the scratch is detected in the dark, and the bright is detected in the irregular reflection. In addition, the color change is darkly detected by the amount of light received by regular reflection and irregular reflection. The light spot is different from bright detection in regular reflection and dark reflection in irregular reflection. Here, out of 255 gradations for monochrome, bright detection was set to 131 or more, dark detection was set to 129 or less, and none was set to 130. From the results shown in FIG. 2, it can be seen that significant defect classification is possible due to the difference in the amount of light received by the defect detection unit due to regular reflection and irregular reflection. That is, it is possible to distinguish a concave defect, a smooth defect, and a light spot by the two-optical system combined processing of regular reflection and irregular reflection, and the defect can be detected under each determination condition.

画像撮像用カメラ24及び25による上記反射光の受光量は、画像処理装置3に供給される。画像処理装置3は、受光量に応じたラインセンサ(画像撮像用カメラ24及び25)からの検知出力に対して銅張積層板21の表面上の凹欠陥、キズ欠陥及び平滑欠陥の判定が可能となるような撮像を行った上で、各々の検知出力を2値化する。   The amount of the reflected light received by the image capturing cameras 24 and 25 is supplied to the image processing device 3. The image processing apparatus 3 can determine a concave defect, a scratch defect, and a smooth defect on the surface of the copper-clad laminate 21 with respect to the detection output from the line sensor (image capturing cameras 24 and 25) according to the amount of received light. Then, each detection output is binarized.

画像処理装置3による2値化結果は、複合処理装置4に渡される。複合処理装置4は、前記2値化結果を複合処理し、欠陥種類を判断する複合処理部40と、前記複合処理結果に基づいて欠陥種類別に設定したパラメータの基準により欠陥を判定する判定部41と、判定部41の判定結果を出力する結果出力部42からなる。   The binarization result by the image processing device 3 is passed to the composite processing device 4. The composite processing apparatus 4 performs composite processing on the binarization result to determine a defect type, and a determination unit 41 that determines a defect based on a parameter set for each defect type based on the composite processing result. And a result output unit 42 for outputting the determination result of the determination unit 41.

図3は、外観検査装置1にて実行される外観検査方法の処理手順を示すフローチャートである。まず、ステップS1にて照明・撮像系2により被検査物である銅張積層板21を撮像する。具体的には、前記2本のライン照明源22及び23による正反射及び乱反射のための2系統の斜光照明を銅張積層板21の表面に照射し、銅張積層板21の検査面反射光をラインセンサ方式の画像撮像用カメラ24及び25により受光する。これら画像撮像用カメラ24及び25は、各受光量を撮像信号に変換して画像処理装置3に供給する。   FIG. 3 is a flowchart showing a processing procedure of an appearance inspection method executed by the appearance inspection apparatus 1. First, in step S1, the illumination / imaging system 2 images the copper-clad laminate 21, which is an inspection object. Specifically, the surface of the copper clad laminate 21 is irradiated with two systems of oblique illumination for regular reflection and irregular reflection by the two line illumination sources 22 and 23, and the inspection surface reflected light of the copper clad laminate 21 is irradiated. Is received by the line sensor type image capturing cameras 24 and 25. These image capturing cameras 24 and 25 convert each received light amount into an image signal and supply it to the image processing apparatus 3.

次に、ステップS2にて画像処理装置3は、前記各撮像信号に対して陰影化(shading)補正又は輝度補正を行う。シェーディング補正により陰影化あるいは輝度補正された撮像信号は、ステップS3にて平滑化された後、ステップS4で同じく画像処理装置3内にて2値化データとされ、複合処理装置4に供給される。   Next, in step S <b> 2, the image processing device 3 performs shading correction or luminance correction on each of the imaging signals. The imaging signal shaded or brightness-corrected by shading correction is smoothed in step S3, and then converted into binary data in the image processing apparatus 3 in step S4, and supplied to the composite processing apparatus 4. .

複合処理装置4では、ステップS5にて、複合処理部40を用い、反射光の違いを算出し、欠陥の種別を判断する。ステップS6にて判定部41により、複合処理結果に基づいて欠陥の良否を判定し、結果出力部42から判定結果を出力する。   In the composite processing apparatus 4, in step S5, the composite processing unit 40 is used to calculate the difference in reflected light and determine the type of defect. In step S <b> 6, the determination unit 41 determines the quality of the defect based on the composite processing result, and outputs the determination result from the result output unit 42.

複合処理装置4は、欠陥と光点とを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの明検出結果の重心座標(X1,Y1)を検出し、重心座標間の重心座標差|X1−X2|、|Y1−Y2|を算出し、この重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、光点と判定する。   In order to distinguish the defect and the light spot, the composite processing device 4 centroid coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the light from the binarized regular reflection image The barycentric coordinates (X1, Y1) of the detection result are detected, barycentric coordinate differences | X1-X2 |, | Y1-Y2 | between the barycentric coordinates are calculated, and this barycentric coordinate difference | X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary is determined, and if the condition matches, it is determined as a light spot.

また、複合処理装置4は、凹欠陥と擦りキズを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X1,Y1)と、同じ乱反射画像からの明検出結果の重心座標(X2,Y2)を検出し、明検出結果の重心座標の任意距離に暗検出結果の重心座標があるか、又は暗検出結果の重心座標の任意距離に明検出結果の重心座標があるかを判定し、明(暗)検出結果の重心座標の任意距離に暗(明)検出結果の重心座標が有れば凹欠陥と判定し、無ければ擦りキズ欠陥と判定する。   Further, in order to distinguish the concave defect and the scratch flaw, the composite processing device 4 uses the barycentric coordinates (X1, Y1) of the dark detection result from the binarized irregular reflection image and the bright detection result from the same irregular reflection image. The barycentric coordinates (X2, Y2) are detected, and the barycentric coordinates of the dark detection result are at an arbitrary distance of the barycentric coordinates of the bright detection result, or the barycentric coordinates of the bright detection result are at an arbitrary distance of the barycentric coordinates of the dark detection result If there is a barycentric coordinate of the dark (bright) detection result at an arbitrary distance of the barycentric coordinate of the bright (dark) detection result, it is determined as a concave defect, and if not, it is determined as a scratch flaw defect.

このため、複合処理装置4の複合処理部40及び判定部41では、図2の反射光の違いにより以下に説明する各検出アルゴリズムによって欠陥の区分化を行う。   For this reason, the composite processing unit 40 and the determination unit 41 of the composite processing apparatus 4 classify defects according to each detection algorithm described below based on the difference in reflected light in FIG.

図4は光点検出アルゴリズムを説明するための図である。また、図5は光点検出のフローチャートである。まず、ステップS11にて乱反射画像からの暗検出結果から重心座標(X2,Y2)を検出する。また、正反射画像からの明検出結果から重心座標(X1,Y1)を検出する。そして、ステップS12にて、これら重心座標間の重心座標差を|X1−X2|、|Y1−Y2|のように算出する。ステップS13では、この重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、光点と判定する(ステップS14)。   FIG. 4 is a diagram for explaining the light spot detection algorithm. FIG. 5 is a flowchart of light spot detection. First, in step S11, the barycentric coordinates (X2, Y2) are detected from the dark detection result from the irregular reflection image. Further, the barycentric coordinates (X1, Y1) are detected from the bright detection result from the regular reflection image. In step S12, the barycentric coordinate difference between these barycentric coordinates is calculated as | X1-X2 |, | Y1-Y2 |. In step S13, this barycentric coordinate difference | X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary is determined, and if the conditions match, it is determined as a light spot (step S14).

図6は凹欠陥と擦りキズの区分方法を説明するための図である。図7は凹欠陥と擦りキズの区分フローチャートである。図8は凹欠陥と擦りキズの具体例から前記フローチャートにより欠陥の種別を判定する処理を示す図である。   FIG. 6 is a diagram for explaining a method of classifying a concave defect and a scratch. FIG. 7 is a flowchart illustrating the classification of the concave defect and the scratch. FIG. 8 is a diagram showing processing for determining the type of defect according to the flowchart from specific examples of a concave defect and a scratch.

図6に示すように凹欠陥と擦りキズに対する乱反射画像により、凹欠陥では明・暗の両方が検出され、擦りキズでは明検出される。これは図2に示したとおりである。   As shown in FIG. 6, the diffuse reflection image with respect to the concave defect and the rubbing scratch detects both bright and dark in the concave defect and bright detection in the rubbing scratch. This is as shown in FIG.

図7のステップS21では、凹欠陥及び擦りキズの乱反射画像から2値化結果を得る。ステップS22では、複合処理部40が暗検出結果及び明検出結果の重心座標を算出する。そして、ステップS23では、複合処理部40が暗検出結果の重心座標(X1,Y1)の任意距離に明検出結果の重心座標(X2,Y2)が有るか否かを判定する。明検出結果の重心座標(X2,Y2)の任意距離に暗検出結果の重心座標(X1,Y1)が有るか否かを判定してもよい。例えば、暗検出結果の重心座標(X1,Y1)の任意距離に明検出結果の重心座標(X2,Y2)が有れば(YES)、ステップS24に進んで複合処理部40は凹欠陥であることを判定する。また、暗検出結果の重心座標(X1,Y1)の任意距離に明検出結果の重心座標(X2,Y2)が無ければ(NO)、ステップS25に進んで複合処理部40は擦りキズ欠陥であることを判定する。これは、図8に示すように、擦りキズの場合、重心座標算出において明検出の重心座標(X2,Y2)しか算出できず、よって重心位置サーチにあっては明検出の重心座標(X2、Y2)から任意距離には他の重心座標が無いからである。以上により、凹欠陥と擦りキズの区分化が可能である。   In step S21 of FIG. 7, a binarization result is obtained from the irregular reflection image of the concave defect and the scratch. In step S22, the composite processing unit 40 calculates the barycentric coordinates of the dark detection result and the light detection result. In step S23, the composite processing unit 40 determines whether the barycentric coordinates (X2, Y2) of the light detection result are present at an arbitrary distance of the barycentric coordinates (X1, Y1) of the dark detection result. It may be determined whether or not the barycentric coordinates (X1, Y1) of the dark detection result are at an arbitrary distance of the barycentric coordinates (X2, Y2) of the bright detection result. For example, if the barycentric coordinates (X2, Y2) of the bright detection result are present at an arbitrary distance of the barycentric coordinates (X1, Y1) of the dark detection result (YES), the process proceeds to step S24 and the composite processing unit 40 is a concave defect. Judge that. If there is no center of gravity coordinate (X2, Y2) of the bright detection result at an arbitrary distance of the center of gravity coordinate (X1, Y1) of the dark detection result (NO), the process proceeds to step S25 and the composite processing unit 40 has a scratch flaw defect. Judge that. As shown in FIG. 8, in the case of a scratch, only the light detection gravity center coordinates (X2, Y2) can be calculated in the gravity center coordinate calculation. Therefore, in the gravity center position search, the light detection gravity center coordinates (X2,. This is because there is no other barycentric coordinate at an arbitrary distance from Y2). As described above, the concave defect and the scratch can be divided.

そして、判定部41は、複合処理部40によるステップS24、ステップS25での判定結果を踏まえ、欠陥の種類別の判定条件により欠陥の可否を判定する。この判定部41による判定条件は、主に255階調の濃度、欠陥の面積(画素数)に基いている。   Then, the determination unit 41 determines whether or not a defect is possible based on the determination condition for each type of defect based on the determination results in step S24 and step S25 by the composite processing unit 40. The determination condition by the determination unit 41 is mainly based on the density of 255 gradations and the defect area (number of pixels).

図9は変色欠陥検出アルゴリズムを説明するための図である。また、図10は変色欠陥検出のフローチャートである。まず、ステップS31及びステップS32にて乱反射画像からの暗検出結果から重心座標(X2,Y2)を検出する。また、正反射画像からの暗検出結果から重心座標(X1,Y1)を検出する。   FIG. 9 is a diagram for explaining a color change defect detection algorithm. FIG. 10 is a flowchart for detecting a discoloration defect. First, in step S31 and step S32, the barycentric coordinates (X2, Y2) are detected from the dark detection result from the irregular reflection image. Further, the barycentric coordinates (X1, Y1) are detected from the dark detection result from the regular reflection image.

次に、ステップS33にて、複合処理部40が乱反射画像の暗検出結果の重心座標(X2,Y2)の任意距離に明検出結果の重心座標が有るか否かを判定する。この判定により欠陥が凹欠陥では無いことを確認している。このステップS33の処理は、凹欠陥と擦り傷欠陥を区分化したアルゴリズムの一部(図7、図8参照)と同様である。このステップS33の処理にて、凹欠陥である乱反射の暗検出部を除去する。自動的に凹欠陥である正反射の暗検出部も除去する。このステップS33にて、暗検出部の重心座標の任意距離に明検出部の重心座標が無い(NO)ならば、凹欠陥では無いことを確認したのでステップS34に進む。   Next, in step S33, the composite processing unit 40 determines whether or not the barycentric coordinates of the bright detection result are present at an arbitrary distance of the barycentric coordinates (X2, Y2) of the dark detection result of the irregular reflection image. This determination confirms that the defect is not a concave defect. The processing in step S33 is the same as part of the algorithm (see FIGS. 7 and 8) that divides the concave defect and the scratch defect. In this step S33, the irregular reflection dark detection portion which is a concave defect is removed. The specular reflection dark detection part which is a concave defect is also automatically removed. If it is determined in step S33 that the center of gravity coordinates of the light detection unit do not exist at an arbitrary distance of the center of gravity coordinates of the dark detection unit (NO), it is confirmed that there is no concave defect, and the process proceeds to step S34.

ステップS34では、前記ステップS32にて算出した、乱反射画像の暗検出部と正反射画像の暗検出部の2つの重心座標間の重心座標差を|X1−X2|、|Y1−Y2|のように算出する。さらに、この重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば(YES)、ステップS35にて、複合処理部40は変色欠陥と判定する。つまり、ステップS34における処理が、図9に示したように、乱反射と正反射の暗検出部の重心位置を比較する。   In step S34, the barycentric coordinate difference between the two barycentric coordinates of the dark detection part of the irregular reflection image and the dark detection part of the regular reflection image calculated in step S32 is expressed as | X1-X2 |, | Y1-Y2 |. To calculate. Further, this center-of-gravity coordinate difference | X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary is determined, and if the condition is met (YES), in step S35, the composite processing unit 40 determines that the color change defect is present. judge. That is, the process in step S34 compares the gravity center positions of the irregular reflection and regular reflection dark detection units, as shown in FIG.

このように図10に示したフローチャートでは、処理順番として、ステップS33にて凹欠陥であるか否かを検出し、ステップS34にて変色欠陥であるか否かを検出している。つまり、変色欠陥検出アルゴリズムの流れのなかで、凹欠陥でないことを確認しながら、変色欠陥であることを判定できるので効率的な処理を行うことができる。   As described above, in the flowchart shown in FIG. 10, as a processing order, it is detected whether or not it is a concave defect in step S33, and whether or not it is a discoloration defect is detected in step S34. That is, in the flow of the color change defect detection algorithm, it can be determined that the defect is a color change defect while confirming that it is not a concave defect, so that efficient processing can be performed.

以上に説明したように、本発明の外観検査方法を実行する外観検査装置1は、従来の外観検査装置では困難であった表面欠陥を効率よく検出し、かつ欠陥の種類別判定をすることができる。   As described above, the appearance inspection apparatus 1 that executes the appearance inspection method of the present invention can efficiently detect surface defects that have been difficult with conventional appearance inspection apparatuses, and determine the type of defect. it can.

次に、図11乃至図13を挙げて、外観検査装置1を含む、銅張積層板21の検査システム50について説明する。図11は検査システム50の側面図(A)及び上面図(B)である。図12は外観検査装置1の要部の斜視図である。図13は外観検査装置1の上面図である。   Next, an inspection system 50 for the copper clad laminate 21 including the appearance inspection apparatus 1 will be described with reference to FIGS. 11 to 13. FIG. 11 is a side view (A) and a top view (B) of the inspection system 50. FIG. 12 is a perspective view of a main part of the appearance inspection apparatus 1. FIG. 13 is a top view of the appearance inspection apparatus 1.

検査システム50は、図11に示すように、被検査物である銅張積層板をシステムに投入する投入機51と、2枚検知、板厚検知及び銅箔厚検査を行うC/V52と、クリーンローラー53と、第1検査機に移動する前に銅張積層板を整列する整列部54と、外観検査装置1である第一検査機1と、第1検査機1にて検査の終了した銅張積層板を反転し一方の面から他方の面、例えば裏面から表面に反転する反転機55と、反転機55により反転された銅張積層板に刻印をうち整列する刻印整列部56と、第二検査機58と、第二検査機58により検査の終了した銅張積層板を、検査結果に基づいて、良品、再検査が必要な被検査物、欠陥品に分けて載置する載置部59とを備えてなる。   As shown in FIG. 11, the inspection system 50 includes an input device 51 that inputs a copper-clad laminate as an inspection object into the system, a C / V 52 that performs two-sheet detection, plate thickness detection, and copper foil thickness inspection, The inspection was completed by the clean roller 53, the alignment unit 54 for aligning the copper clad laminate before moving to the first inspection machine, the first inspection machine 1 as the appearance inspection apparatus 1, and the first inspection machine 1. A reversing machine 55 for reversing the copper-clad laminate and reversing from one surface to the other, for example, from the back surface to the front surface, and a marking alignment unit 56 for aligning the markings on the copper-clad laminate reversed by the reversing machine 55; Place the second inspection machine 58 and the copper-clad laminate, which has been inspected by the second inspection machine 58, on the basis of the inspection result, and classify them into non-defective products, inspected items that require re-inspection, and defective products. Part 59.

投入機51により、検査システム50に投入された銅張積層板は、C/V52により、2枚検知、板厚検知及び銅箔厚検査が行われる。整列部54は、C/V52から移動された銅張積層板21を整列し、例えば裏面検査機として用いられる外観検査装置1の図12及び図13に示すテーブル26に投入する。テーブル26に載せられた銅張積層板21は、テーブル26の矢印方向への移動、すなわち往復移動に伴って、固定されている照明源22及び23とカメラ24及び25の下部を往復移動する。   The copper clad laminate that has been input to the inspection system 50 by the input device 51 is subjected to two-sheet detection, plate thickness detection, and copper foil thickness inspection by the C / V 52. The aligning unit 54 aligns the copper clad laminate 21 moved from the C / V 52 and puts it on the table 26 shown in FIGS. 12 and 13 of the appearance inspection apparatus 1 used as a back surface inspection machine, for example. The copper clad laminate 21 placed on the table 26 reciprocates between the fixed illumination sources 22 and 23 and the lower portions of the cameras 24 and 25 as the table 26 moves in the direction of the arrow, that is, reciprocates.

この往復移動により、銅張積層板21は、前述したように、表面(このシステムでは裏面)が検査され、欠陥の検知及び欠陥種類が判定される。第1検査機での検査が終了すると、銅張積層板は排出される。   By this reciprocation, the front surface (the back surface in this system) of the copper clad laminate 21 is inspected to detect the defect and determine the defect type. When the inspection by the first inspection machine is completed, the copper clad laminate is discharged.

反転機は第1検査機1にて検査の終了により排出された銅張積層板を反転し一方の面から他方の面、例えば裏面から表面に反転する。刻印整列部56にて刻印され、整列しなおされた銅張積層板は、第二検査機58に投入される。   The reversing machine reverses the copper-clad laminate discharged at the end of the inspection by the first inspection machine 1 and reverses it from one surface to the other surface, for example, from the back surface to the front surface. The copper-clad laminate that has been stamped and rearranged by the stamp alignment unit 56 is put into the second inspection machine 58.

第二検査機58にて例えば表面検査が行われた銅張積層板は、載置部59により、両検査結果に基づいて、良品、再検査が必要な被検査物、欠陥品に分けて載置される。   For example, the copper clad laminate that has been surface-inspected by the second inspection machine 58 is placed by the placement unit 59 into a non-defective product, an inspected object that needs re-inspection, and a defective product based on both inspection results. Placed.

外観検査装置の構成図である。It is a block diagram of an external appearance inspection apparatus. 2本のライン照明源23及び22による各欠陥の受光量の違いを示す図である。It is a figure which shows the difference in the light reception amount of each defect by the two line illumination sources 23 and 22. FIG. 外観検査装置にて実行される外観検査方法の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the external appearance inspection method performed with an external appearance inspection apparatus. 光点検出アルゴリズムを説明するための図である。It is a figure for demonstrating a light spot detection algorithm. 光点検出のフローチャートである。It is a flowchart of a light spot detection. 凹欠陥と擦りキズの区分方法を説明するための図である。It is a figure for demonstrating the classification method of a concave defect and a abrasion crack. 凹欠陥と擦りキズの区分フローチャートである。It is a division | segmentation flowchart of a concave defect and a abrasion crack. 凹欠陥と擦りキズの具体例から図7のフローチャートにより欠陥の種別を判定する処理を示す図である。It is a figure which shows the process which determines the classification of a defect with the flowchart of FIG. 7 from the specific example of a concave defect and a flaw. 変色欠陥検出アルゴリズムを説明するための図である。It is a figure for demonstrating a discoloration defect detection algorithm. 変色欠陥検出のフローチャートである。It is a flowchart of a discoloration defect detection. 外観検査装置を含む検査システムの外観側面図である。It is an external appearance side view of the inspection system containing an external appearance inspection apparatus. 外観検査装置の要部の斜視図である。It is a perspective view of the principal part of an appearance inspection apparatus. 外観検査装置の上面図である。It is a top view of an appearance inspection apparatus.

符号の説明Explanation of symbols

1 外観検査装置、2 照明・撮像系、3 画像処理装置、4 複合処理装置、21 銅張積層板、22 ライン照明源(乱反射用)、23 ライン照明源(正反射用)、24 乱反射光による画像撮像用カメラ、25 正反射光による画像撮像用カメラ、40 複合処理部、41 判定部、42 結果出力部

1 visual inspection device, 2 illumination / imaging system, 3 image processing device, 4 composite processing device, 21 copper-clad laminate, 22 line illumination source (for irregular reflection), 23 line illumination source (for regular reflection), 24 by irregular reflection light Image capturing camera, 25 Image capturing camera using specularly reflected light, 40 Composite processing unit, 41 Determination unit, 42 Result output unit

Claims (10)

被検査物の表面上に発生する欠陥を自動的に検査する外観検査装置において、
前記被検査物の移動方向の反対(または移動)方向から平行光線で前記被検査物の表面に正反射光のため及び乱反射光のためにそれぞれ光を照射する二つの照明源と、
前記二つの照明源から前記被検査物の表面に照射されたそれぞれの光の前記被検査物の表面からの正反射光及び乱反射光を検出する、前記被検査物の移動(または移動方向の反対)方向に直交する方向に受光操作方向を持つ二つの受光手段と、
前記二つの受光手段によって検出された検出出力に画像処理を施してそれぞれ2値化データを生成する画像処理手段と、
前記画像処理手段によって生成された各2値化データ結果を複合処理し、反射光の違いにより被検査物の表面の欠陥を検知する複合処理手段と
を備えることを特徴とする外観検査装置。
In visual inspection equipment that automatically inspects defects that occur on the surface of the inspection object,
Two illumination sources that respectively irradiate the surface of the inspection object with parallel rays from the opposite (or movement) direction of the movement direction of the inspection object for regular reflection light and irregular reflection light;
The movement of the inspection object (or the opposite of the movement direction) for detecting regular reflection light and irregular reflection light from the surface of the inspection object of each light irradiated on the surface of the inspection object from the two illumination sources. ) Two light receiving means having a light receiving operation direction in a direction orthogonal to the direction;
Image processing means for generating binarized data by performing image processing on the detection outputs detected by the two light receiving means;
A visual inspection apparatus comprising: composite processing means for performing composite processing on each binarized data result generated by the image processing means and detecting defects on the surface of the object to be inspected based on a difference in reflected light.
前記複合処理手段は、欠陥と光点とを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの明検出結果の重心座標(X1,Y1)を検出し、重心座標間の重心座標差|X1−X2|、|Y1−Y2|を算出し、重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、光点と判定することを特徴とする請求項1記載の外観検査装置。   In order to distinguish the defect from the light spot, the composite processing means is configured to display the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the light from the binarized regular reflection image. The barycentric coordinates (X1, Y1) of the detection result are detected, barycentric coordinate differences | X1-X2 |, | Y1-Y2 | between the barycentric coordinates are calculated, and barycentric coordinate differences | X1-X2 | <= arbitrary, | Y1 The appearance inspection apparatus according to claim 1, wherein -Y2 | <= arbitrary is determined, and if the condition matches, the light spot is determined. 前記複合処理手段は、凹欠陥と擦りキズを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X1,Y1)と、同じ乱反射画像からの明検出結果の重心座標(X2,Y2)を検出し、明検出結果の重心座標の任意距離に暗検出結果の重心座標があるか、又は暗検出結果の重心座標の任意距離に明検出結果の重心座標があるかを判定し、明(暗)検出結果の重心座標の任意距離に暗(明)検出結果の重心座標が有れば凹欠陥と判定し、無ければ擦りキズ欠陥と判定することを特徴とする請求項1記載の外観検査装置。   In order to distinguish the concave defect and the scratch flaw, the composite processing means uses the barycentric coordinates (X1, Y1) of the dark detection result from the binarized irregular reflection image and the barycentric coordinates of the bright detection result from the same irregular reflection image. (X2, Y2) is detected, and whether there is a barycentric coordinate of the dark detection result at an arbitrary distance of the barycentric coordinate of the bright detection result, or whether there is a barycentric coordinate of the bright detection result at an arbitrary distance of the barycentric coordinate of the dark detection result And determining a concave defect if the barycentric coordinate of the dark (bright) detection result is present at an arbitrary distance of the barycentric coordinate of the bright (dark) detection result, and determining that it is a scratch flaw defect if not. 1. An appearance inspection apparatus according to 1. 前記複合処理手段は、変色欠陥を検出するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの暗検出結果の重心座標(X1,Y1)を検出し、また乱反射画像の暗検出結果の重心座標の任意距離に明検出結果の重心座標が有るか否かを判定してから、前記乱反射画像からの暗検出結果の重心座標(X2,Y2)と前記正反射画像からの暗検出結果の重心座標(X1,Y1)の間の重心座標差|X1−X2|、|Y1−Y2|を算出し、重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、変色欠陥と判定することを特徴とする請求項1記載の外観検査装置。   The composite processing means detects the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the dark detection result from the binarized regular reflection image in order to detect a discoloration defect. The barycentric coordinates (X1, Y1) are detected, and it is determined whether or not the barycentric coordinates of the bright detection result are at an arbitrary distance of the barycentric coordinates of the dark detection result of the diffuse reflection image, and then the dark detection result from the diffuse reflection image Centroid coordinate difference | X1-X2 |, | Y1-Y2 | between the centroid coordinates (X2, Y2) of the image and the centroid coordinates (X1, Y1) of the dark detection result from the specular reflection image is calculated. 2. The appearance inspection apparatus according to claim 1, wherein | X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary are determined, and if the condition is met, it is determined as a discoloration defect. 前記二つの照明源は、被検査物の全ての欠陥を顕在化できる2本のライン照明源であり、被検査物に対して斜光照明を行うことを特徴とする請求項1記載の外観検査装置。   2. The visual inspection apparatus according to claim 1, wherein the two illumination sources are two line illumination sources capable of revealing all defects of the inspection object, and perform oblique illumination on the inspection object. . 前記二つの受光手段は、ラインセンサ方式の2台のカメラを正反射光による画像撮像用カメラ及び乱反射光による画像撮像用カメラとして用いていることを特徴とする請求項1記載の外観検査装置。   2. The visual inspection apparatus according to claim 1, wherein the two light receiving units use two line sensor type cameras as an image capturing camera using specular reflection light and an image capturing camera using diffuse reflection light. 被検査物の表面上に発生する欠陥を自動的に検査するための外観検査方法において、
前記被検査物の移動方向の反対(または移動)方向から平行光線で前記被検査物の表面に正反射光のため及び乱反射光のために二つの照明源からそれぞれ光を照射する照明ステップと、
前記照明ステップにより二つの照明源から前記被検査物の表面に照射されたそれぞれの光の前記被検査物の表面からの正反射光及び乱反射光を、前記被検査物の移動(または移動方向の反対)方向に直交する方向に受光操作方向を持つ二つの受光手段により受光する受光ステップと、
前記受光ステップにて二つの受光手段によって検出された検出出力に画像処理を施してそれぞれ2値化データを生成する画像処理ステップと、
前記画像処理ステップによって生成された各2値化データ結果を複合処理し、反射光の違いにより被検査物の表面の欠陥を検知する複合処理ステップと
を備えることを特徴とする外観検査方法。
In the appearance inspection method for automatically inspecting defects that occur on the surface of the inspection object,
Illumination step of irradiating light from two illumination sources respectively for specular reflection light and irregular reflection light on the surface of the inspection object with parallel rays from the opposite (or movement) direction of the inspection object movement direction;
The specularly reflected light and the irregularly reflected light from the surface of the inspection object of the respective lights irradiated from the two illumination sources by the illumination step are moved (or moved in the moving direction) of the inspection object. A light receiving step for receiving light by two light receiving means having a light receiving operation direction in a direction orthogonal to the opposite direction;
An image processing step of performing image processing on the detection outputs detected by the two light receiving means in the light receiving step and generating binarized data, respectively;
A visual inspection method comprising: a composite processing step of performing composite processing on each binarized data result generated by the image processing step and detecting a defect on the surface of the inspection object based on a difference in reflected light.
前記複合処理ステップは、欠陥と光点とを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの明検出結果の重心座標(X1,Y1)を検出し、重心座標間の重心座標差|X1−X2|、|Y1−Y2|を算出し、重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、光点と判定することを特徴とする請求項7記載の外観検査方法。   In the composite processing step, in order to distinguish the defect and the light spot, the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the light from the binarized regular reflection image are obtained. The barycentric coordinates (X1, Y1) of the detection result are detected, barycentric coordinate differences | X1-X2 |, | Y1-Y2 | between the barycentric coordinates are calculated, and barycentric coordinate differences | X1-X2 | <= arbitrary, | Y1 The appearance inspection method according to claim 7, wherein -Y2 | <= arbitrary is determined, and if the condition matches, the light spot is determined. 前記複合処理ステップは、凹欠陥と擦りキズを区分するために、2値化された乱反射画像からの暗検出結果の重心座標(X1,Y1)と、同じ乱反射画像からの明検出結果の重心座標(X2,Y2)を検出し、明検出結果の重心座標の任意距離に暗検出結果の重心座標があるか、又は暗検出結果の重心座標の任意距離に明検出結果の重心座標があるかを判定し、明(暗)検出結果の重心座標の任意距離に暗(明)検出結果の重心座標が有れば凹欠陥と判定し、無ければ擦りキズ欠陥と判定することを特徴とする請求項7記載の外観検査方法。   In the composite processing step, the barycentric coordinates (X1, Y1) of the dark detection result from the binarized irregular reflection image and the barycentric coordinates of the bright detection result from the same irregular reflection image are used to distinguish the concave defect and the scratch flaw. (X2, Y2) is detected, and whether there is a barycentric coordinate of the dark detection result at an arbitrary distance of the barycentric coordinate of the bright detection result, or whether there is a barycentric coordinate of the bright detection result at an arbitrary distance of the barycentric coordinate of the dark detection result And determining a concave defect if the barycentric coordinate of the dark (bright) detection result is present at an arbitrary distance of the barycentric coordinate of the bright (dark) detection result, and determining that it is a scratch flaw defect if not. 7. An appearance inspection method according to 7. 前記複合処理ステップは、変色欠陥を検出するために、2値化された乱反射画像からの暗検出結果の重心座標(X2,Y2)と、2値化された正反射画像からの暗検出結果の重心座標(X1,Y1)を検出し、さらに乱反射画像の暗検出結果の重心座標の任意距離に明検出結果の重心座標が有るか否かを判定してから、前記乱反射画像からの暗検出結果の重心座標(X2,Y2)と前記正反射画像からの暗検出結果の重心座標(X1,Y1)の間の重心座標差|X1−X2|、|Y1−Y2|を算出し、重心座標差|X1−X2|<=任意、|Y1−Y2|<=任意を判定し、その条件が一致すれば、変色欠陥と判定することを特徴とする請求項7記載の外観検査方法。


In the composite processing step, the barycentric coordinates (X2, Y2) of the dark detection result from the binarized irregular reflection image and the dark detection result from the binarized regular reflection image are detected in order to detect a discoloration defect. The barycentric coordinates (X1, Y1) are detected, and it is determined whether or not the barycentric coordinates of the bright detection result are at an arbitrary distance of the barycentric coordinates of the dark detection result of the irregular reflection image, and then the dark detection result from the irregular reflection image Centroid coordinate difference | X1-X2 |, | Y1-Y2 | between the centroid coordinates (X2, Y2) of the image and the centroid coordinates (X1, Y1) of the dark detection result from the specular reflection image is calculated. 8. The appearance inspection method according to claim 7, wherein | X1-X2 | <= arbitrary, | Y1-Y2 | <= arbitrary are determined, and if the condition is met, it is determined as a discoloration defect.


JP2005288445A 2005-09-30 2005-09-30 Visual inspection device and visual inspection method Pending JP2007101239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288445A JP2007101239A (en) 2005-09-30 2005-09-30 Visual inspection device and visual inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288445A JP2007101239A (en) 2005-09-30 2005-09-30 Visual inspection device and visual inspection method

Publications (1)

Publication Number Publication Date
JP2007101239A true JP2007101239A (en) 2007-04-19

Family

ID=38028351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288445A Pending JP2007101239A (en) 2005-09-30 2005-09-30 Visual inspection device and visual inspection method

Country Status (1)

Country Link
JP (1) JP2007101239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217117A (en) * 2009-03-18 2010-09-30 Hitachi Chem Co Ltd Device and method for defect inspection
JP2011242310A (en) * 2010-05-20 2011-12-01 Hitachi High-Technologies Corp Checking apparatus and checking method
CN112345555A (en) * 2020-10-30 2021-02-09 凌云光技术股份有限公司 High bright imaging light source system of visual inspection machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191547A (en) * 1984-10-12 1986-05-09 Matsushita Electric Works Ltd Defect detector
JPH07218451A (en) * 1994-01-31 1995-08-18 Nippon Steel Corp Device for optically inspecting steel plate for surface flaw
JP2003329601A (en) * 2002-05-10 2003-11-19 Mitsubishi Rayon Co Ltd Apparatus and method for inspecting defect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191547A (en) * 1984-10-12 1986-05-09 Matsushita Electric Works Ltd Defect detector
JPH07218451A (en) * 1994-01-31 1995-08-18 Nippon Steel Corp Device for optically inspecting steel plate for surface flaw
JP2003329601A (en) * 2002-05-10 2003-11-19 Mitsubishi Rayon Co Ltd Apparatus and method for inspecting defect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217117A (en) * 2009-03-18 2010-09-30 Hitachi Chem Co Ltd Device and method for defect inspection
JP2011242310A (en) * 2010-05-20 2011-12-01 Hitachi High-Technologies Corp Checking apparatus and checking method
CN112345555A (en) * 2020-10-30 2021-02-09 凌云光技术股份有限公司 High bright imaging light source system of visual inspection machine

Similar Documents

Publication Publication Date Title
WO2011052332A1 (en) Image processing device for defect inspection and image processing method for defect inspection
KR101800597B1 (en) Apparatus for inspecting surface defects of a hot-dip coated steel sheet and method for inspecting surface defects
JP6753553B1 (en) Surface defect detection method, surface defect detection device, steel material manufacturing method, steel material quality control method, steel material manufacturing equipment, surface defect judgment model generation method, and surface defect judgment model
JP6264132B2 (en) Inspection device and inspection method for painted surface of vehicle body
CN107709977B (en) Surface defect detection device and surface defect detection method
JP2014066657A (en) Vehicle body surface inspection device and surface inspection method
KR20080096056A (en) Inspection apparatus and method for dectecting surface defects of metal plate using vision system and laser depth profiler
JPWO2011071035A1 (en) Appearance inspection device
JP5732605B2 (en) Appearance inspection device
JP2007101239A (en) Visual inspection device and visual inspection method
JP2014025809A (en) Method and apparatus for detecting scratch
JP2008107311A (en) Defect inspection method and device
JP2008180667A (en) Method and apparatus for visually inspecting metal foil plated laminated plate
JP2006177852A (en) Surface inspection device and its method
JP2006145415A (en) Surface inspection method and device
JP2005083906A (en) Defect detector
KR102117697B1 (en) Apparatus and method for surface inspection
CN116997927A (en) Curved substrate bubble detection method and detection system
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP2010038723A (en) Flaw inspecting method
JP2006226834A (en) Surface inspection device and surface inspection method
JP2005351825A (en) Defect inspection device
JP7131509B2 (en) Surface defect detection device, surface defect detection method, and steel manufacturing method
JP2010121958A (en) Flaw detecting method and flaw detector
JP2011145305A (en) Defect inspection system, and photographing device for defect inspection, image processing apparatus for defect inspection, image processing program for defect inspection, recording medium, and image processing method for defect inspection used for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080807

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110705

Free format text: JAPANESE INTERMEDIATE CODE: A02