JP2008145366A - Method for inspecting internal contamination of optically transparent material - Google Patents

Method for inspecting internal contamination of optically transparent material Download PDF

Info

Publication number
JP2008145366A
JP2008145366A JP2006335463A JP2006335463A JP2008145366A JP 2008145366 A JP2008145366 A JP 2008145366A JP 2006335463 A JP2006335463 A JP 2006335463A JP 2006335463 A JP2006335463 A JP 2006335463A JP 2008145366 A JP2008145366 A JP 2008145366A
Authority
JP
Japan
Prior art keywords
foreign matter
film
internal
laser
light transmissive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006335463A
Other languages
Japanese (ja)
Inventor
Masao Azuma
昌男 東
Masayuki Tsutsumi
正幸 堤
Keizo Kawahara
恵造 河原
Satoshi Maeda
郷司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006335463A priority Critical patent/JP2008145366A/en
Publication of JP2008145366A publication Critical patent/JP2008145366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a comparatively simple inspection method usable for measuring internal contamination related greatly to the quality of an optically transparent material, especially a polymer film. <P>SOLUTION: In the method for inspecting internal contamination of the optically transparent material, by using a laser wherein the wavelength of laser light is 150-2,000 nm which is transmissible through a polymer film which is the optically transparent material, image data X acquired by observing an image including information of the surface and internal contaminations of the polymer film by a laser microscope, and image data Y acquired by observing an image including information of only the surface foreign matter of the polymer film by the laser microscope are acquired, and information of only the internal contamination is acquired by performing image processing of (X-Y). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光透過性のある材料の内部のみに含まれる異物を観察可能とし、異物の大きさや含有量の評価方法に関する。更に詳しくは、平面性に影響を与えうる汎用フィルムや電子材料分野に使用される絶縁フィルム、ならびに石英ガラス基板等の内部異物の評価方法に関する。   The present invention relates to a method for evaluating the size and content of a foreign material that enables observation of the foreign material contained only in the inside of the light-transmitting material. More specifically, the present invention relates to a general-purpose film that can affect flatness, an insulating film used in the field of electronic materials, and a method for evaluating internal foreign matter such as a quartz glass substrate.

前記材料の例として挙げた高分子フィルムの中でもポリイミドフィルムに代表される絶縁フィルムは、その優れた耐熱性・耐溶剤性・電気絶縁性などから種々の用途に広く用いられており、とりわけ半導体や実装回路基板用途に幅広く使用されている。これらのように高絶縁性が要求される分野にとって、フィルムに異物が存在するとその絶縁性が低下するなど、またフィルムの基本特性が大きく損なわれてしまうことにより、精密さが要求される回路基板製造工程に悪影響を与える可能性がある。   Among the polymer films cited as examples of the above materials, insulating films represented by polyimide films are widely used for various applications due to their excellent heat resistance, solvent resistance, electrical insulation, etc. Widely used in mounting circuit board applications. For these fields where high insulation is required, circuit boards that require high precision because the basic properties of the film are greatly impaired, such as when the film contains foreign objects, the insulation is degraded. May adversely affect the manufacturing process.

ポリイミドフィルムとしては、ピロメリット酸二無水物やビフェニルテトラカルボン酸二無水物などの酸二無水物と、4,4’−ジアミノジフェニルエーテルやパラフェニレンジアミンなどのジアミンとからなるポリイミドのフィルムである(例えば、特許文献1参照)。
また、ベンザオキサゾ−ル骨格を有するポリイミド(ベンゾオキサゾール)のフィルムも知られている(例えば、特許文献2参照)。
また、これらのポリイミドフィルムの異物分析方法として、物体表面上の微細な異物の検出と分析とを短時間で自動的に行うことができ、半導体製造ラインなどでのインライン計測にも適する方法として、検査対象の物体フィルムなどをXYステージ上に載置し、レーザー 光源からの相対的に大きなスポットサイズ(例えば1000μm)のレーザー光を用いて物体の表面を走査し、異物を検出してその異物の概略位置を求める。次に、レーザー光源からの相対的に小さなスポットサイズ(例えば10μm)のレーザー光を用いて物体の表面を走査し、レーザービームにおける動径方向のレーザー光強度分布も利用して、スポットサイズよりも細かい位置精度で異物の精測位置を求める。そしてこの精測位置の近傍に対し、走査型電子銃によって電子ビームを走査し、二次電子像や特性X線を観測して異物の分析を行う方法が提案されている(特許文献3参照)。
The polyimide film is a polyimide film composed of an acid dianhydride such as pyromellitic dianhydride or biphenyltetracarboxylic dianhydride and a diamine such as 4,4′-diaminodiphenyl ether or paraphenylenediamine ( For example, see Patent Document 1).
Further, a polyimide (benzoxazole) film having a benzoxazol skeleton is also known (see, for example, Patent Document 2).
In addition, as a foreign matter analysis method of these polyimide films, detection and analysis of fine foreign matter on the object surface can be automatically performed in a short time, and as a method suitable for in-line measurement in a semiconductor production line, An object film to be inspected is placed on an XY stage, the surface of the object is scanned with a laser beam having a relatively large spot size (eg, 1000 μm) from a laser light source, and a foreign object is detected to detect the foreign object. Find the approximate position. Next, the surface of the object is scanned using a laser beam having a relatively small spot size (for example, 10 μm) from the laser light source, and the laser beam intensity distribution in the radial direction in the laser beam is also used to make the size smaller The precise position of a foreign object is obtained with fine positional accuracy. Then, a method has been proposed in which an electron beam is scanned with a scanning electron gun in the vicinity of the precise measurement position, and a secondary electron image and characteristic X-rays are observed to analyze foreign matter (see Patent Document 3). .

特開平05−237928号公報JP 05-237828 A 特表平10−508059号公報Japanese National Patent Publication No. 10-508059 特開平11−125602号公報Japanese Patent Laid-Open No. 11-125602

ポリイミドフィルムが多く使用され、精密さが要求される回路基板製造工程などで導通孔の加工などにおけるフィルム内部への加工が広く採用されている。このときフィルム内部における異物が加工時に孔壁面において残存するなどして導電ペーストの充填がスムースに行われないなどの弊害が発生する。フィルム表面の異物の測定は広く知られているが内部異物の測定は困難であった。ポリイミドフィルムは、溶融もせず溶媒に溶けることもない場合が多く、流動状態にして含有する内部異物を測定することが困難であった。   Polyimide film is often used, and processing into the inside of a film such as processing of a conductive hole is widely adopted in a circuit board manufacturing process or the like that requires precision. At this time, foreign matters in the film remain on the hole wall surface during processing, and thus the conductive paste is not filled smoothly. Measurement of foreign matter on the film surface is widely known, but measurement of internal foreign matter has been difficult. In many cases, the polyimide film does not melt and does not dissolve in the solvent, and it is difficult to measure the internal foreign matter contained in a fluidized state.

本発明者らは、かかる状況に鑑み、光透過性材料の品質に大きく関与する内部異物の測定に利用できる、しかも比較的簡便な方法で検査方法を見出した。
すなわち本発明は下記の構成による。
1.光透過性材料の表面異物及び内部異物の情報を含む画像をレーザー顕微鏡で観察して得られる画像データXと、光透過性材料の表面異物のみの情報を含む画像をレーザー顕微鏡で観察して得られる画像データYを得て、(X−Y)の画像処理を行うことで内部異物のみの情報を得ることを特徴とする光透過性材料の内部異物検査方法。
2.レーザー顕微鏡のレーザー光の波長が光透過性材料に透過可能な150〜2000nmである前記1記載の光透過性材料の内部異物検査方法。
3.光透過性材料が有色透明高分子フィルムである前記1又は2いずれかに記載の内部異物検査方法。
4.光透過性材料がポリイミドフィルムである前記1〜3いずれかに記載の内部異物検査方法。
In view of such a situation, the present inventors have found an inspection method that can be used for measurement of internal foreign matters that are largely involved in the quality of a light-transmitting material and that is relatively simple.
That is, the present invention has the following configuration.
1. Image data X obtained by observing an image containing information on the surface foreign matter and internal foreign matter of the light transmissive material with a laser microscope, and an image containing information on only the surface foreign matter of the light transmissive material obtained by observing with a laser microscope A method for inspecting an internal foreign matter of a light-transmitting material, wherein information on only the internal foreign matter is obtained by obtaining image data Y to be obtained and performing (XY) image processing.
2. 2. The method for inspecting an internal foreign matter of a light transmissive material as described in 1 above, wherein the wavelength of the laser beam of the laser microscope is 150 to 2000 nm which can be transmitted through the light transmissive material.
3. 3. The internal foreign matter inspection method according to either 1 or 2, wherein the light transmissive material is a colored transparent polymer film.
4). 4. The internal foreign matter inspection method according to any one of 1 to 3, wherein the light transmissive material is a polyimide film.

本発明の、レーザー光の波長が光透過性材料に透過可能な150〜2000nmであるレーザーを使用して、光透過性材料の表面異物及び内部異物の情報を含む画像をレーザー顕微鏡で観察して得られる画像データXと、同材料の表面異物のみの情報を含む画像をレーザー顕微鏡で観察して得られる画像データYを得て、(X−Y)の画像処理を行うことで内部異物のみの情報を得る光透過性材料の内部異物検査方法は、比較的簡便に光透過性材料の内部異物を検査でき、工業的に広く精密な分野に使用される高分子フィルムならびにアモルファスの品質を予め知ることができ、製造上の品質管理などに有効的に使用でき工業的意義は大きい。
また、本発明にて検出可能な異物の大きさは、レーザー光の波長程度の微粒子からフィルム膜厚に相当する大きな粒子と多岐に渡る。
Using the laser of the present invention having a laser beam wavelength of 150 to 2000 nm that can be transmitted through the light transmissive material, an image including information on the surface foreign matter and internal foreign matter of the light transmissive material is observed with a laser microscope. Obtain image data X and image data Y obtained by observing an image including information on only the surface foreign matter of the same material with a laser microscope, and perform (XY) image processing to obtain only internal foreign matter. The method for inspecting foreign matter in light-transmitting materials that can obtain information can be used to relatively easily inspect foreign matter in light-transmitting materials and know in advance the quality of polymer films and amorphous materials that are used in industrially wide and precise fields. It can be used effectively for quality control in manufacturing, and has great industrial significance.
In addition, the size of foreign matter that can be detected by the present invention varies widely from fine particles having a wavelength of laser light to large particles corresponding to the film thickness.

本発明における光透過性のある高分子フィルムの例としては、PET、OPP、ONY、PVA、PE、PP等が挙げられるが、別段これらに制限されることはなく、高分子フィルムが光透過性を有していればよい。また、本発明はポリイミドフィルムのような有色フィルムの内部異物を観察する場合に特に好ましい手法である。
また、本発明における高度に光透過性が求められ、かつ極めて高い無塵性が求められる材料の例としては、石英ガラス基板や、透過性薄膜フォトマスク用防塵カバーとして使用されるペリクル材が挙げられるが、別段これに制限されることはなく、アモルファスが光透過性を有していればよい。
Examples of the light transmissive polymer film in the present invention include PET, OPP, ONY, PVA, PE, PP, etc., but are not limited to these, and the polymer film is light transmissive. As long as it has. In addition, the present invention is a particularly preferable method for observing internal foreign matter of a colored film such as a polyimide film.
In addition, examples of materials that are required to have high light transmittance and extremely high dust-free properties in the present invention include quartz glass substrates and pellicle materials used as dust-proof covers for transparent thin film photomasks. However, the present invention is not limited to this, and it is sufficient that the amorphous has light transmittance.

本発明におけるポリイミドフィルムとは、芳香族ジアミン類と、芳香族テトラカルボン
酸類を重縮合して得られるポリイミドフィルムであって、特に限定されるものではないが、好ましくは下記の芳香族ジアミン類と芳香族テトラカルボン酸(無水物)類との組み合わせが好ましい例として挙げられる。
A.ベンゾオキサゾール構造を有する芳香族ジアミン類と芳香族テトラカルボン酸類との組み合わせ。
B.ジアミノジフェニルエーテル骨格を有する芳香族ジアミン類とピロメリット酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
C.フェニレンジアミン骨格を有する芳香族ジアミン類とビフェニルテトラカルボン酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
D.ジアミノジフェニルエーテル骨格を有する芳香族ジアミン類とフェニレンジアミン骨格を有する芳香族ジアミン類とピロメリット酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
さらに上記のABCの一種以上の組み合わせが好ましい。
The polyimide film in the present invention is a polyimide film obtained by polycondensation of aromatic diamines and aromatic tetracarboxylic acids, and is not particularly limited, but preferably the following aromatic diamines and Combinations with aromatic tetracarboxylic acids (anhydrides) are preferred examples.
A. A combination of an aromatic diamine having a benzoxazole structure and an aromatic tetracarboxylic acid.
B. A combination of an aromatic diamine having a diaminodiphenyl ether skeleton and an aromatic tetracarboxylic acid having a pyromellitic acid skeleton.
C. A combination of an aromatic diamine having a phenylenediamine skeleton and an aromatic tetracarboxylic acid having a biphenyltetracarboxylic acid skeleton.
D. A combination of an aromatic diamine having a diaminodiphenyl ether skeleton, an aromatic diamine having a phenylenediamine skeleton, and an aromatic tetracarboxylic acid having a pyromellitic acid skeleton.
Further, a combination of one or more of the above ABCs is preferred.

前記芳香族ジアミン類と、芳香族テトラカルボン酸(無水物)類とを反応(重合)させてポリアミド酸を得るときに用いる溶媒は、原料となるモノマー及び生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N−メチル−2−ピロリドン、N−アセチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等があげられる。これらの溶媒は、単独あるいは混合して使用することができる。溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、モノマーを溶解した溶液に占めるモノマーの質量が、通常5〜40質量%、好ましくは10〜30質量%となるような量が挙げられる。   The solvent used when the polyamic acid is obtained by reacting (polymerizing) the aromatic diamine and the aromatic tetracarboxylic acid (anhydride) dissolves both the monomer as a raw material and the polyamic acid to be produced. Although it will not specifically limit if it is a thing, A polar organic solvent is preferable, for example, N-methyl- 2-pyrrolidone, N-acetyl- 2-pyrrolidone, N, N- dimethylformamide, N, N- diethylformamide, N, N -Dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, halogenated phenols and the like. These solvents can be used alone or in combination. The amount of the solvent used may be an amount sufficient to dissolve the monomer as a raw material. As a specific amount used, the mass of the monomer in the solution in which the monomer is dissolved is usually 5 to 40% by mass, The amount is preferably 10 to 30% by mass.

ポリアミド酸を得るための重合反応の条件は従来公知の条件を適用すればよく、具体例として、有機溶媒中、0〜80℃の温度範囲で、10分〜30時間連続して撹拌及び/又は混合することが挙げられる。必要により重合反応を分割するなどして、温度を上下させてもかまわない。この場合に、両モノマーの添加順序には特に制限はないが、芳香族ジアミン類の溶液中に芳香族テトラカルボン酸無水物類を添加するのが好ましい。重合反応によって得られるポリアミド酸溶液に占めるポリアミド酸の質量は、好ましくは5〜40質量%、より好ましくは10〜30質量%であり、前記溶液の粘度はブルックフィールド粘度計による測定(25℃)で、送液の安定性の点から、好ましくは10〜2000Pa・sであり、より好ましくは100〜1000Pa・sである。本発明におけるポリアミド酸の還元粘度(ηsp/C)は、特に限定するものではないが3.0dl/g以上が好ましく、4.0dl/g以上がさらに好ましい。   The polymerization reaction conditions for obtaining the polyamic acid may be conventionally known conditions. As a specific example, stirring and / or continuous in an organic solvent at a temperature range of 0 to 80 ° C. for 10 minutes to 30 hours. Mixing may be mentioned. If necessary, the temperature may be increased or decreased by dividing the polymerization reaction. In this case, the order of adding both monomers is not particularly limited, but it is preferable to add aromatic tetracarboxylic acid anhydrides to the solution of aromatic diamines. The mass of the polyamic acid in the polyamic acid solution obtained by the polymerization reaction is preferably 5 to 40% by mass, more preferably 10 to 30% by mass, and the viscosity of the solution is measured with a Brookfield viscometer (25 ° C.). From the viewpoint of the stability of liquid feeding, it is preferably 10 to 2000 Pa · s, and more preferably 100 to 1000 Pa · s. The reduced viscosity (ηsp / C) of the polyamic acid in the present invention is not particularly limited, but is preferably 3.0 dl / g or more, and more preferably 4.0 dl / g or more.

得られたポリアミド酸を支持体に流延して乾燥などして、自己支持性の前駆体フィルムとし、200〜500℃程度の温度でイミド化するか化学的イミド化剤によるイミド化をしてポリイミドフィルムとなす。
高温処理によるイミド化方法としては、従来公知のイミド化反応を適宜用いることが可能である。例えば、閉環触媒や脱水剤を含まないポリアミド酸溶液を用いて、加熱処理に供することでイミド化反応を進行させる方法(所謂、熱閉環法)やポリアミド酸溶液に閉環触媒及び脱水剤を含有させておいて、上記閉環触媒及び脱水剤の作用によってイミド化反応を行わせる、化学閉環法を挙げることができる。
化学的イミド化閉環法では、ポリアミド酸溶液を、イミド化反応を一部進行させて自己支持性を有する前駆体複合体を形成した後に、加熱によってイミド化を完全に行わせることができる。
The obtained polyamic acid is cast on a support and dried to obtain a self-supporting precursor film, which is imidized at a temperature of about 200 to 500 ° C. or imidized with a chemical imidizing agent. It becomes a polyimide film.
As an imidization method by high-temperature treatment, a conventionally known imidation reaction can be appropriately used. For example, using a polyamic acid solution that does not contain a ring-closing catalyst or a dehydrating agent, the imidization reaction proceeds by subjecting it to a heat treatment (so-called thermal ring-closing method), or a polycyclic acid solution containing a ring-closing catalyst and a dehydrating agent. In particular, a chemical ring closing method in which an imidization reaction is performed by the action of the above ring closing catalyst and a dehydrating agent can be given.
In the chemical imidization ring closure method, imidation can be completely performed by heating after forming a precursor complex having self-supporting property by partially proceeding imidization reaction of the polyamic acid solution.

以下、本発明の有効性について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。実施例における内部異物検査手法の手順を下記する。
本発明の、レーザー光の波長が光透過性のある高分子フィルムに透過可能な150〜2000nmであるレーザーを使用して、高分子フィルムの表面異物及び内部異物の情報を含む画像をレーザー顕微鏡で観察して得られる画像データXと、高分子フィルムの表面異物のみの情報を含む画像をレーザー顕微鏡で観察して得られる画像データYを得て、(X−Y)の画像処理を行うことで内部異物のみの情報を得る高分子フィルムの内部異物検査方法において、好ましく採用し得る方法を下記に示す。
(1)使用する装置
超深度形状測定顕微鏡(レーザー顕微鏡)VK−8510、株式会社キーエンス製。
解析ソフトウェア:KEYENCE社製、VK形状解析アプリケーション
(2)サンプル
高分子フィルムロールから、目的に応じサンプル箇所を決定する。サンプリングする箇所は、フィルム長手方向に500mm間隔、フィルム幅方向には中心から200mm間隔の計9箇所とする(図1参照)。各々のサンプリングサイズは35mm×5mmである。
(3)測定方法(手順)
(a)レーザー顕微鏡用のサンプル台に切り出したサンプル片のA面側(前駆体フィルム製膜時の空気面側)を上にして、水平に固定する。サンプルの固定台は、表面が滑らかでありかつレーザー光を吸収するような黒色の物を使用する。
(b)切り出したフィルムの任意の位置に油性マジックペンで直径2mm程度の丸印をマーキングし、その印内を測定点とする。
(c)前記装置の測定ソフトに内蔵された膜厚測定モードにて、マーキングしたサンプル位置の膜厚を測定する。
(d)フィルム内部の画像データを採取する方法を次に示す。
i)サンプル片のB面側(前駆体フィルム製膜時の基材側)にレーザー光の焦点を合わせる。この焦点位置がレーザー光走査下限であり、測定ソフトの専用ボタンで認識させる。
ii) i)で焦点を合わせたレーザー光をサンプル片の厚さの2/3に相当する高さまで上昇させる。この高さ位置がレーザー光走査上限であり、測定ソフトの専用ボタンで認識させる。
iii) i), ii)で走査範囲を設定後、測定ボタンを押すことによりオート走査にてレーザー光が走査され、画像情報(1)(B面側の表面及び内部の情報)が得られる。
iv)サンプル片を裏返し、B面側の可視光画像を観察し、その画像情報(2)(B面側の表面の情報)を得る。
v)画像情報(1)及び画像情報(2)の背景色と異なる点状物フィルム異物とし、それぞれに観察される異物数を目視で求め、画像情報(1)の異物数から画像情報(2)の異物数を差し引いた値をB面側の内部異物量として定義した。
(e)(a)〜(d)の操作において、A面とB面を入れ替えて同様に実施することで、A面側の内部異物量を評価した。
(f)(a)〜(e)の操作において今回は目視により実施したが、より好ましくは目的とする異物を識別/カウント可能な画像処理ソフトを利用することであり、これによって人為的差異の発生を抑制できる。
(g)上記のレーザー顕微鏡観察は、23℃、50%RHの雰囲気で行う。
Hereinafter, the effectiveness of the present invention will be described with reference to examples, but the present invention is not limited thereto. The procedure of the internal foreign matter inspection method in the embodiment will be described below.
Using the laser of the present invention having a laser beam wavelength of 150 to 2000 nm that can be transmitted through a light-transmitting polymer film, an image including information on the surface foreign matter and internal foreign matter of the polymer film is obtained with a laser microscope. By obtaining image data X obtained by observing the image data X obtained by observing with a laser microscope an image containing only information on the surface foreign matter of the polymer film, and performing image processing (XY). In the internal foreign matter inspection method for a polymer film that obtains information on only internal foreign matter, methods that can be preferably employed are shown below.
(1) Apparatus to be used Ultra-deep shape measuring microscope (laser microscope) VK-8510, manufactured by Keyence Corporation.
Analysis software: KEYENCE, VK shape analysis application (2) Sample A sample location is determined from a polymer film roll according to the purpose. Sampling locations are a total of 9 locations at intervals of 500 mm in the film longitudinal direction and 200 mm intervals from the center in the film width direction (see FIG. 1). Each sampling size is 35 mm × 5 mm.
(3) Measuring method (procedure)
(A) A sample piece cut out on a sample stage for a laser microscope is fixed horizontally with the A side (the air side when the precursor film is formed) facing upward. As the sample fixing base, a black object having a smooth surface and absorbing laser light is used.
(B) A round mark having a diameter of about 2 mm is marked with an oil-based magic pen at an arbitrary position on the cut out film, and the inside of the mark is used as a measurement point.
(C) The film thickness at the marked sample position is measured in the film thickness measurement mode built in the measurement software of the apparatus.
(D) A method for collecting image data inside the film will be described below.
i) The laser beam is focused on the B side of the sample piece (the substrate side when the precursor film is formed). This focal position is the laser beam scanning lower limit, and is recognized by a dedicated button of the measurement software.
ii) The laser beam focused in i) is raised to a height corresponding to 2/3 of the thickness of the sample piece. This height position is the upper limit of the laser beam scanning and is recognized by a dedicated button of the measurement software.
iii) After setting the scanning range in i) and ii), by pressing the measurement button, the laser beam is scanned by automatic scanning, and image information (1) (surface on the B side and information on the inside) is obtained.
iv) Turn over the sample piece and observe the visible light image on the B side to obtain image information (2) (information on the surface on the B side).
v) A point-like film foreign matter different from the background color of the image information (1) and the image information (2) is obtained, and the number of foreign matters observed in each is obtained visually, and the image information (2) is calculated from the number of foreign matters in the image information (1). The value obtained by subtracting the number of foreign matters in () was defined as the amount of internal foreign matter on the B side.
(E) In the operations (a) to (d), the amount of internal foreign matter on the A side was evaluated by exchanging the A side and the B side in the same manner.
(F) In the operations of (a) to (e), this time was performed visually, but it is more preferable to use image processing software capable of identifying / counting the target foreign matter, thereby reducing the artificial difference. Generation can be suppressed.
(G) The above laser microscope observation is performed in an atmosphere of 23 ° C. and 50% RH.

(実施例1)
窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後,5−アミノ−2−(p−アミノフェニル)ベンゾオキサゾール(p−DAMBO)300質量部を仕込み、次いで,N,N−ジメチルアセトアミド4400質量部を加えて完全に溶解させた後,ピロメリット酸二無水物300質量部を加え,25℃の反応温度で17時間攪拌すると,褐色で粘調なポリアミド酸溶液(ドープ)が得られた。このもののηsp/Cは4.1dl/gであった。
フィルタ網目径が3μmの異物除去フィルタを通したポリアミド酸溶液を用い、このポリアミド酸溶液をステンレスベルトに、スキージ/ベルト間のギャップを調節してコーティングし、110℃にて15分間乾燥した。乾燥後に自己支持性となったポリアミド酸フィルムをステンレスベルトから剥離しグリーンフィルムを得た。このときのグリーンフィルムの残溶媒量は39%であった。得られたグリーンフィルムを、連続式の乾燥炉に通し、150℃にて3分間熱処理し、続いて200℃にて2分間熱処理した後、499℃にて5分間熱処理し、5分間かけて室温まで冷却、褐色の20μm厚さのポリイミドフィルムP(以下IMPとも略記する)を得た。
(Example 1)
The inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer and a stirring rod was purged with nitrogen, and then charged with 300 parts by mass of 5-amino-2- (p-aminophenyl) benzoxazole (p-DAMBO), then N, After 4400 parts by mass of N-dimethylacetamide was added and completely dissolved, 300 parts by mass of pyromellitic dianhydride was added and stirred at a reaction temperature of 25 ° C. for 17 hours. )was gotten. Ηsp / C of this product was 4.1 dl / g.
Using a polyamic acid solution that passed through a foreign matter removing filter having a filter mesh diameter of 3 μm, this polyamic acid solution was coated on a stainless steel belt while adjusting the gap between the squeegee / belt and dried at 110 ° C. for 15 minutes. The polyamic acid film that became self-supporting after drying was peeled from the stainless steel belt to obtain a green film. The residual solvent amount of the green film at this time was 39%. The obtained green film was passed through a continuous drying furnace, heat-treated at 150 ° C. for 3 minutes, subsequently heat-treated at 200 ° C. for 2 minutes, then heat-treated at 499 ° C. for 5 minutes and room temperature over 5 minutes. Then, a brown polyimide film P having a thickness of 20 μm (hereinafter also abbreviated as IMP) was obtained.

得られたポリイミドフィルムPを使って内部異物観察を上記手順で実施した。サンプルは図1に示すように9箇所から採取し、マーキングした観察箇所を500倍に拡大した。
1測定当たりの観察範囲は214×284μmであり、この範囲で確認できた内部異物を平方センチメートル当たりの個数に換算した。9箇所の測定データ値の取扱いについては、最大値とその次に大きい値、及び最小値とその次に小さい値の計4個を切り捨て、真ん中の5つの値の平均を取ったものとした。その結果を表1に示す。
Using the obtained polyimide film P, internal foreign matter observation was performed according to the above procedure. As shown in FIG. 1, samples were collected from 9 locations, and the marked observation locations were magnified 500 times.
The observation range per measurement was 214 × 284 μm, and the internal foreign matter confirmed in this range was converted into the number per square centimeter. Regarding the handling of the measurement data values at nine locations, the maximum value and the next largest value, and the minimum value and the next smallest value were rounded down, and the average of the middle five values was taken. The results are shown in Table 1.

(実施例2〜6)
実施例1とほぼ同様に、実施例2ではポリアミド酸ドープに対する異物除去フィルタに関してフィルタ網目径が5μmの条件で製膜したポリイミドフィルムP(IMP)を用い、実施例3では異物除去フィルタを使用しない条件で製膜したポリイミドフィルムU(IMU)、さらに実施例4〜6ではフィルタ網目径が5μmのフィルタを使用する条件で製膜したアラミドフィルム(AR)、ポリエチレンテレフタレートフィルム(PET)、及び6ナイロンフィルム(NY)を得て、先に記述した手順により内部異物検査を実施した。
結果を表1に示す。従来のフィルム表面の異物のみの測定ではなく、フィルムの内部にある異物の測定ができる。
なお、実施例1の内部異物個数<1645個/cmは、本装置、本条件における下限の測定限界値である。
(Examples 2 to 6)
In substantially the same manner as in Example 1, in Example 2, a polyimide film P (IMP) formed with a filter mesh diameter of 5 μm was used for the foreign matter removal filter for the polyamic acid dope, and in Example 3, no foreign matter removal filter was used. Polyimide film U (IMU) formed under conditions, and in Examples 4 to 6, aramid film (AR), polyethylene terephthalate film (PET), and 6 nylon formed under the conditions of using a filter having a filter mesh diameter of 5 μm A film (NY) was obtained and an internal foreign matter inspection was performed according to the procedure described above.
The results are shown in Table 1. In addition to the conventional measurement of foreign matter on the surface of a film, foreign matter in the film can be measured.
In addition, the number of internal foreign matters <1645 / cm 2 in Example 1 is the lower limit measurement limit value in this apparatus and these conditions.

本発明の、レーザー光の波長がポリイミドフィルムなどに透過可能な150〜2000nmであるレーザーを使用して、ポリイミドフィルムなどの表面異物及び内部異物の情報を含む画像をレーザー顕微鏡で撮像して得られる画像データXと、ポリイミドフィルムなどの表面異物のみの情報を含む画像をレーザー顕微鏡で撮像して得られる画像データYを得て、(X−Y)の画像処理をすることで内部異物のみのデータを得るポリイミドフィルムなど光透過性材料の内部異物検査方法は、比較的簡便にポリイミドフィルムなどの内部異物を検査でき、工業的に広く精密な分野に使用されるポリイミドフィルムなどの品質を予め知ることができ、製造上の品質管理などに有効的に使用でき工業的意義は大きく、ポリイミドに限らず、透明性ある不溶不融の耐熱性フィルム、石英ガラス基板、及び透過性薄膜フォトマスク用防塵カバーとして使用されるペリクル材の内部異物検査にも有効に使用できる。   Using the laser of the present invention having a laser beam wavelength of 150 to 2000 nm that can be transmitted through a polyimide film or the like, an image containing information on surface foreign matters and internal foreign matters such as polyimide films can be obtained with a laser microscope. Image data X and image data Y obtained by taking an image including information only on surface foreign matters such as polyimide film with a laser microscope are obtained, and data of only internal foreign matters is obtained by performing (XY) image processing. The internal foreign matter inspection method for light transmissive materials such as polyimide film can inspect internal foreign matter such as polyimide film relatively easily, and know the quality of polyimide film used in industrially wide and precise fields in advance Can be used effectively for quality control in manufacturing, and has great industrial significance. Heat-resistant film of 溶不 fusion, quartz glass substrate, and can be effectively used for internal particle inspection of pellicle materials that are used as dust-proof cover permeable film photomask.

フィルムサンプル取得場所の説明図である。It is explanatory drawing of a film sample acquisition place. フィルムとレーザーの位置関係を示す概略図である。It is the schematic which shows the positional relationship of a film and a laser.

符号の説明Explanation of symbols

(1)高分子フィルム
(2)フィルム長手方向
(3)サンプル採取箇所
(4)長手方向のサンプル採取間隔
(5)フィルム幅方向のサンプル採取間隔
(6)レーザー入射光
(7)入射光に対する測定範囲
(8)フィルム
(1) Polymer film (2) Longitudinal direction of film (3) Sample sampling location (4) Sample sampling interval in longitudinal direction (5) Sample sampling interval in film width direction (6) Laser incident light (7) Measurement for incident light Range (8) Film

Claims (4)

光透過性材料の表面異物及び内部異物の情報を含む画像をレーザー顕微鏡で観察して得られる画像データXと、光透過材料の表面異物のみの情報を含む画像をレーザー顕微鏡で観察して得られる画像データYを得て、(X−Y)の画像処理を行うことで内部異物のみの情報を得ることを特徴とする光透過性材料の内部異物検査方法。   Image data X obtained by observing an image including information on the surface foreign matter and internal foreign matter of the light transmissive material with a laser microscope, and an image including information on only the surface foreign matter of the light transmissive material obtained by observing with a laser microscope An internal foreign matter inspection method for a light-transmitting material, characterized in that image data Y is obtained and information on only internal foreign matter is obtained by performing (XY) image processing. レーザー顕微鏡のレーザー光の波長が光透過性材料に透過可能な150〜2000nmである請求項1記載の光透過性材料の内部異物検査方法。   2. The method for inspecting foreign matter in a light transmissive material according to claim 1, wherein the wavelength of the laser beam of the laser microscope is 150 to 2000 nm that can be transmitted through the light transmissive material. 光透過性材料が有色透明高分子フィルムである請求項1又は2のいずれかに記載の内部異物検査方法。   The internal foreign matter inspection method according to claim 1, wherein the light transmissive material is a colored transparent polymer film. 光透過性材料がポリイミドフィルムである請求項1〜3のいずれかに記載の内部異物検査方法。   The internal foreign matter inspection method according to claim 1, wherein the light transmissive material is a polyimide film.
JP2006335463A 2006-12-13 2006-12-13 Method for inspecting internal contamination of optically transparent material Pending JP2008145366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335463A JP2008145366A (en) 2006-12-13 2006-12-13 Method for inspecting internal contamination of optically transparent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335463A JP2008145366A (en) 2006-12-13 2006-12-13 Method for inspecting internal contamination of optically transparent material

Publications (1)

Publication Number Publication Date
JP2008145366A true JP2008145366A (en) 2008-06-26

Family

ID=39605694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335463A Pending JP2008145366A (en) 2006-12-13 2006-12-13 Method for inspecting internal contamination of optically transparent material

Country Status (1)

Country Link
JP (1) JP2008145366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165368A1 (en) * 2011-05-27 2012-12-06 電気化学工業株式会社 Pressure-sensitive adhesive sheet
CN110125534A (en) * 2018-02-08 2019-08-16 斯甘索尼克咪有限公司 Method for monitoring protection glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165368A1 (en) * 2011-05-27 2012-12-06 電気化学工業株式会社 Pressure-sensitive adhesive sheet
JPWO2012165368A1 (en) * 2011-05-27 2015-02-23 電気化学工業株式会社 Adhesive sheet
CN110125534A (en) * 2018-02-08 2019-08-16 斯甘索尼克咪有限公司 Method for monitoring protection glass
CN110125534B (en) * 2018-02-08 2022-08-23 斯甘索尼克咪有限公司 Method for monitoring a protective glass

Similar Documents

Publication Publication Date Title
KR101968720B1 (en) Film, method for evaluating optical homogeneity of film, and film production method
CN102634022B (en) Colorless highly-transparent polyimide film as well as preparation method and application thereof
KR101880328B1 (en) Polyamic acid, polyimide, polyamic acid solution, polyimide solution, polyimide films obtained from these solutions, and use of polyimide films
JP4396160B2 (en) Foreign film inspection method for transparent film
CN101738401A (en) Defect inspection device and defect inspection method
Fang et al. A bio-enabled maximally mild layer-by-layer Kapton surface modification approach for the fabrication of all-inkjet-printed flexible electronic devices
JP2010071845A (en) Inspection device
WO2013031511A1 (en) Biaxially oriented polyester film for mold-releasing film for polarizing plate, laminated body using same, and method for producing polarizing plate
JP2008074991A (en) Polyimide, polyamide imide, and film comprising the same
KR20200089287A (en) Polyimide resin, polyimide varnish and polyimide film
JP2008145366A (en) Method for inspecting internal contamination of optically transparent material
WO2009069813A1 (en) Method for inspecting coating film defect in resin-coated film
JP2010134116A (en) Positive photosensitive resin composition
CN111073283B (en) Cross-linked polyimide film, optical film and preparation method thereof
CN111040156B (en) Solvent-resistant and high-dimensional-stability cross-linked polyimide film
JP2008106141A (en) Polyimide film and method for producing the same
JP2011075377A (en) Standard test piece for measuring instrument of nonmetallic inclusion in steel
JP5556349B2 (en) Defect inspection apparatus for transparent substrate and defect inspection method for transparent substrate
TWI791761B (en) laminate
JP5104542B2 (en) Manufacturing method of surface-treated polyimide film
JP2010016244A (en) Method of manufacturing wiring circuit board
JP2010204087A (en) Drift correction sample for fluorescent x-ray analysis, fluorescent x-ray analysis method using the same, and method of manufacturing the same
JP2008106140A (en) Polyimide film and method for producing the same
CN111766256A (en) Method for inspecting white dots on surface of circuit board substrate
JP2008106138A (en) Polyimide film and method for producing the same