JP2008145327A - Additional type x-ray ct scanner - Google Patents
Additional type x-ray ct scanner Download PDFInfo
- Publication number
- JP2008145327A JP2008145327A JP2006334348A JP2006334348A JP2008145327A JP 2008145327 A JP2008145327 A JP 2008145327A JP 2006334348 A JP2006334348 A JP 2006334348A JP 2006334348 A JP2006334348 A JP 2006334348A JP 2008145327 A JP2008145327 A JP 2008145327A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- rotary stage
- stage
- jig
- scanning mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、X線CT断層撮像装置に関するものである。 The present invention relates to an X-ray CT tomographic imaging apparatus.
X線CT装置は医用・工業用に実用化され、工業用途においては、高い分解能を有する非破壊検査、計測装置として広く用いられている。また、X線を用いた透視画像装置は、医用・工業用で簡便に非侵襲、非破壊で対象を観察できる装置として実用化されている。 X-ray CT apparatuses have been put to practical use for medical and industrial purposes, and are widely used in industrial applications as non-destructive inspection and measurement apparatuses having high resolution. Further, a fluoroscopic image apparatus using X-rays has been put into practical use as an apparatus that can easily and non-destructively observe an object for medical and industrial purposes.
しかし、工業用X線CT装置はX線透視画像装置に比較して高価であり、X線透視画像装置の普及台数に比較して、その実用性が評価されているにもかかわらず、導入は大企業、研究所などに限られているものであった。 However, the industrial X-ray CT apparatus is more expensive than the X-ray fluoroscopic image apparatus, and its practicality is evaluated in comparison with the number of X-ray fluoroscopic image apparatuses spread. It was limited to large companies and research institutes.
X線CT装置主要部品は、X線管、X線検出器、撮像を行うための回転・移動ステージ、画像収集、処理を行うコンピュータからなるが、X線管・X線検出器・回転・移動ステージの幾何学的位置関係を厳密に調整する必要がある。 The main components of the X-ray CT system consist of an X-ray tube, an X-ray detector, a rotation / movement stage for imaging, and a computer that performs image acquisition and processing, but the X-ray tube / X-ray detector / rotation / movement It is necessary to strictly adjust the geometric positional relationship of the stage.
X線透視装置は、X線管、X線検出器、検査体撮影位置を決めるための移動ステージからなっており、X線CT断層装置を構成する部品として、回転ステージ、コンピュータを追加すれば、すべての主要部品はそろうことになる。 The X-ray fluoroscopy device consists of an X-ray tube, an X-ray detector, and a moving stage for determining the inspection object imaging position. If a rotary stage and a computer are added as components constituting the X-ray CT tomography device, All major parts will be aligned.
解決しようとする課題は、既存X線透視装置に、本発明の付加型スキャン機構ならびにコンピュータを部品として追加、さらにまた付加型スキャン機構とX線管、X線検出器に対する幾何学的位置を自動測定する冶具、計測ソフトウエアを追加することで、X線CT装置を構成することができるようにすることで、安価にX線CT断層撮像装置を実現するものである。 The problem to be solved is that the additional scanning mechanism and computer of the present invention are added as parts to the existing X-ray fluoroscopy device, and the geometric positions of the additional scanning mechanism, the X-ray tube, and the X-ray detector are automatically set. An X-ray CT tomographic imaging apparatus is realized at low cost by making it possible to configure an X-ray CT apparatus by adding jigs and measurement software for measurement.
本発明は、回転機構を含むコンピュータ制御付加型スキャン機構、位置測定冶具、位置計測ソフトウエアならびにコンピュータからなる。 The present invention includes a computer-controlled additional scanning mechanism including a rotation mechanism, a position measurement jig, position measurement software, and a computer.
本発明を用いることで、既存X線透視装置を用いて、必要に応じて本発明の付加型スキャン機構を追加、3次元断層画像を得ることができる。 By using the present invention, it is possible to obtain a three-dimensional tomographic image by using the existing X-ray fluoroscope and adding the additional scanning mechanism of the present invention as necessary.
X線管、X線検出器、回転ステージの幾何学的位置関係は特殊な計測用冶具を用意し、計測ソフトウエアとの組み合わせで、付加型スキャン機構の厳密な位置調整がなくともCT断層画像を得ることができるようにした。 A special measurement jig is prepared for the geometric positional relationship of the X-ray tube, X-ray detector, and rotary stage. In combination with measurement software, CT tomographic images can be obtained without strict position adjustment of the additional scanning mechanism. To be able to get.
図1は、本発明装置実施例の付加型スキャン機構である。コンピュータで制御された回転ステージを含むスキャン機構が支持機構により保持されている。本実施例では回転ステージが垂直に取り付けられており、X線管、X線検出器は垂直に位置、X線は検査体に対して垂直に放射される。断層画像を得る検査体は回転ステージに取り付けられたチャックなどを用いて回転ステージに固定される。支持機構には、冶具を図3で示す冶具を固定するための位置決めピンがある。 FIG. 1 shows an additional type scanning mechanism according to an embodiment of the present invention. A scanning mechanism including a rotation stage controlled by a computer is held by a support mechanism. In this embodiment, the rotary stage is mounted vertically, the X-ray tube and the X-ray detector are positioned vertically, and the X-ray is radiated perpendicularly to the inspection object. An inspection object for obtaining a tomographic image is fixed to the rotary stage using a chuck or the like attached to the rotary stage. The support mechanism has a positioning pin for fixing the jig shown in FIG.
図2は付加型スキャン機構の回転ステージに取り付けるX線管、X線検出器、回転ステージ間の幾何学的位置関係を測定するための冶具であり、回転ステージに取り付けて透過データを収集、計測ソフトウエアを用いて、X線管、X線検出器、回転ステージの幾何学的位置関係を計測する。冶具は、X線をよく透過するプラスチックなどの軽くて丈夫な材質でできたパイプと、X線を透過しにくいタングステン、鉄などでできた球からなる。球はパイプに既知の3次元位置、たとえば、等間隔などで固定されている。 Fig. 2 shows the X-ray tube, X-ray detector, and jig used to measure the geometric positional relationship between the rotary stage of the add-on scanning mechanism. Using software, the geometric positional relationship of the X-ray tube, X-ray detector, and rotary stage is measured. The jig is composed of a pipe made of a light and strong material such as plastic that transmits X-rays well, and a sphere made of tungsten, iron, or the like that does not easily transmit X-rays. The spheres are fixed to the pipe at a known three-dimensional position, for example, at equal intervals.
図3は付加型スキャン機構に取り付ける冶具で、既知の間隔でパターン1、およびパターン2がプレートにある。X線を透過しにくい金属でできたプレートに既知の位置、たとえば等間隔でパターン1、およびパターン2をエッチングなどの処理で穴をあける。逆に透過しやすいプラステックプレートなどの材質に透過しにくいパターン1、パターン2をエッチング処理で生成してもよい。パターン2は、プレート中心が計測できるようパターン1とは異なったパターンである。パターン1はプレートの位置関係が計測できるよう、プレートでは非対称になっている。パターン形状はいかなる形でもよいが、プレート中心ならびにプレート位置関係が計測できるようなパターンである。 FIG. 3 shows a jig that is attached to an additional type scanning mechanism. Patterns 1 and 2 are located on a plate at known intervals. Holes are drilled in a known position, for example, pattern 1 and pattern 2 at a regular interval in a plate made of a metal that is difficult to transmit X-rays by a process such as etching. Conversely, patterns 1 and 2 that are difficult to transmit through a material such as a plastic plate that is easily transmitted may be generated by etching. Pattern 2 is a different pattern from pattern 1 so that the plate center can be measured. Pattern 1 is asymmetric on the plate so that the positional relationship of the plate can be measured. The pattern shape may be any shape, but the pattern is such that the plate center and the plate positional relationship can be measured.
X線透視装置の検査台に図1付加型スキャン機構を搭載する。検査台はX線を透過しやすく丈夫なプレートでできている。回転ステージが容易に移動しないよう、また、検査台を傷つけないよう、図1付加型スキャンの支持機構下部には、ゲル状の板がつけてあり、これで検査台に一時的に接着する。 1 is mounted on the examination table of the fluoroscopic apparatus. The inspection table is made of a strong plate that easily transmits X-rays. In order to prevent the rotating stage from moving easily and to damage the inspection table, a gel-like plate is attached to the lower portion of the support mechanism of the additional scanning shown in FIG.
本発明のコンピュータには、回転ステージを制御するためのサーボ制御ボード、X線検出器からのX線透過信号を受け取るためのインタフェーズボードがある。 The computer of the present invention includes a servo control board for controlling the rotary stage and an interphase board for receiving an X-ray transmission signal from the X-ray detector.
図1付加型スキャン機構を検査台に搭載した後、本発明のコンピュータに含まれるX線検出器インターフェースにX線検出器信号を接続する。 1 After the additional scanning mechanism is mounted on the examination table, an X-ray detector signal is connected to an X-ray detector interface included in the computer of the present invention.
回転ステージに検査体を取り付け、X線透視画像を見ながら検査台を移動し検査体透視画像が適切に得られる位置に回転ステージを移動する。 The inspection body is attached to the rotary stage, the inspection stage is moved while viewing the X-ray fluoroscopic image, and the rotary stage is moved to a position where the inspection body fluoroscopic image is appropriately obtained.
検査体を取り外し、図3冶具を付加型スキャン機構回転ステージ支持機構に用意された位置決めピンに取り付け、データ収集を行なった後、図2冶具を回転ステージに取り付けデータ収集を行い、回転ステージのX線管、X線検出器との幾何学的位置関係を計測する。 The inspection object is removed, and the jig shown in FIG. 3 is attached to the positioning pin prepared in the additional scanning mechanism rotary stage support mechanism, and after data collection, the jig shown in FIG. 2 is attached to the rotary stage and data is collected. The geometric positional relationship with the tube and X-ray detector is measured.
一度、幾何学的位置関係を計測すれば、付加型スキャン機構の位置が変わらない限り、さまざまな検査体のX線断層画像を撮像することができる。 Once the geometric positional relationship is measured, X-ray tomographic images of various inspection objects can be taken as long as the position of the additional scanning mechanism does not change.
図4の実施例は、X線管、X線検出器が水平に取り付けられたX線透視装置に付加するための実施例で、回転ステージは水平に設置された検査台に搭載されるが、回転ステージ面は水平になる。 The embodiment of FIG. 4 is an embodiment for adding to an X-ray fluoroscopy apparatus in which an X-ray tube and an X-ray detector are horizontally mounted, and the rotary stage is mounted on an inspection table installed horizontally, The rotating stage surface is horizontal.
図5の実施例は、付加型スキャン機構に回転ステージならびに垂直ステージを含むもので、断層画像撮像位置をコンピュータで自由に設定できる。 The embodiment of FIG. 5 includes a rotary stage and a vertical stage in the additional scanning mechanism, and the tomographic image capturing position can be freely set by a computer.
図6は、図3冶具を用いて検出器位置を補正するアルゴリズム実施例である。 FIG. 6 is an example of an algorithm that corrects the detector position using the jig of FIG.
図3冶具は補正データ収集時、付加型スキャン機構の位置決めピンに取り付けられ、投影データを測定する。投影データから、各パターン位置を測定、各パターンの既知位置と検出した各パターン位置との関係を示す2次元多項式を求める。この多項式から、検出した各パターンが本来の位置になるよう補正計算を行う。 When the correction data is collected, the jig shown in FIG. 3 is attached to a positioning pin of the additional scanning mechanism and measures projection data. From the projection data, each pattern position is measured, and a two-dimensional polynomial indicating the relationship between the known position of each pattern and each detected pattern position is obtained. From this polynomial, correction calculation is performed so that each detected pattern is in its original position.
図7は、図2冶具を用いて、回転ステージ中心、スキャン基準面、回転ステージ、X線管、X線検出器位置関係を計算するアルゴリズムである。 FIG. 7 shows an algorithm for calculating the positional relationship between the rotation stage center, the scan reference plane, the rotation stage, the X-ray tube, and the X-ray detector using the jig shown in FIG.
図2冶具を回転ステージに取り付け、回転ステージを回転しながら投影データを各角度で得る。各角度での投影データでボール位置、ボール直径を計測する。回転ステージ位置と各ボール中心の軌跡を求め、軌跡を示す楕円関数を得る。楕円関数の中心、短軸を求め、短軸が0になる位置をスキャン基準面とする。スキャン基準面でのボール直径を回転ステージ回転位置に応じて計算し、その最大値、最小値から回転ステージ中心、X線管、X線検出器位置関係を計算する。ボール軌跡中心から回転ステージ中心を求める。 FIG. 2 A jig is attached to a rotary stage, and projection data is obtained at various angles while rotating the rotary stage. The ball position and the ball diameter are measured with projection data at each angle. The rotation stage position and the trajectory of each ball center are obtained, and an elliptic function indicating the trajectory is obtained. The center and minor axis of the elliptic function are obtained, and the position where the minor axis becomes 0 is defined as the scan reference plane. The ball diameter on the scan reference plane is calculated according to the rotational position of the rotary stage, and the positional relationship between the rotary stage center, the X-ray tube, and the X-ray detector is calculated from the maximum and minimum values. Find the center of the rotating stage from the center of the ball trajectory.
既設X線透視装置に付加することで、簡便にX線CT断層撮像装置を構成することができるため、安価に3次元計測、検査を非破壊で行うことができる。容易に取り付け、取り外しができるため、X線断層画像が必要ない場合は、既存のX線透視装置として使用できる。 By adding to an existing X-ray fluoroscopy apparatus, an X-ray CT tomographic imaging apparatus can be configured easily, so that three-dimensional measurement and inspection can be performed non-destructively at low cost. Since it can be easily attached and detached, it can be used as an existing X-ray fluoroscopic apparatus when an X-ray tomographic image is not required.
1 回転ステージ
2 ボール
3 支持パイプ
4 パターン1
5 パターン2(プレート中心検出用)
6 位置決めピン穴
7 水平取り付け支持機構
8 冶具取り付け足
9 スキャン位置選択機構
1 Rotating stage 2 Ball 3 Support pipe 4 Pattern 1
5 Pattern 2 (for plate center detection)
6 Positioning pin hole 7 Horizontal mounting support mechanism 8 Jig mounting foot 9 Scan position selection mechanism
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006334348A JP2008145327A (en) | 2006-12-12 | 2006-12-12 | Additional type x-ray ct scanner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006334348A JP2008145327A (en) | 2006-12-12 | 2006-12-12 | Additional type x-ray ct scanner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008145327A true JP2008145327A (en) | 2008-06-26 |
Family
ID=39605661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006334348A Pending JP2008145327A (en) | 2006-12-12 | 2006-12-12 | Additional type x-ray ct scanner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008145327A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017032401A (en) * | 2015-07-31 | 2017-02-09 | Toto株式会社 | Heating device for x-ray ct device |
JP2017032400A (en) * | 2015-07-31 | 2017-02-09 | Toto株式会社 | Heating device for x-ray ct device |
-
2006
- 2006-12-12 JP JP2006334348A patent/JP2008145327A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017032401A (en) * | 2015-07-31 | 2017-02-09 | Toto株式会社 | Heating device for x-ray ct device |
JP2017032400A (en) * | 2015-07-31 | 2017-02-09 | Toto株式会社 | Heating device for x-ray ct device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6123984B2 (en) | Method and apparatus for generating a three-dimensional model of a target area using an image forming system | |
US9625257B2 (en) | Coordinate measuring apparatus and method for measuring an object | |
JP7164524B2 (en) | X-ray CT device | |
JP5444718B2 (en) | Inspection method, inspection device, and inspection program | |
JP2006509554A (en) | C-arm X-ray device with calibration means | |
JP6471151B2 (en) | X-ray inspection system and method for rotating a test object using such an X-ray inspection system | |
JP6711410B2 (en) | Imaging magnification calibration method for radiation tomography apparatus | |
JP2012112790A (en) | X-ray ct apparatus | |
JP3694833B2 (en) | Eucentric tilted 3D X-ray CT and 3D image imaging method using the same | |
JP5060862B2 (en) | Tomography equipment | |
JP5045134B2 (en) | X-ray CT system | |
JP2006162335A (en) | X-ray inspection device, x-ray inspection method and x-ray inspection program | |
JP6661391B2 (en) | Radiation imaging equipment | |
JP2009063387A (en) | X-ray tomographic imaging device and x-ray tomographic imaging method | |
US7245693B2 (en) | X-ray inspection system having on-axis and off-axis sensors | |
JP2021050937A (en) | Calibration method of x-ray ct scanner for measurement, measurement method, and x-ray ct scanner for measurement | |
JP2008145327A (en) | Additional type x-ray ct scanner | |
JP2012042340A (en) | X-ray ct equipment | |
CN104644195A (en) | Angiographic examination method to implement rotational angiography for an examination subject | |
JP2009162596A (en) | Method of supporting image confirmation work and substrate inspection apparatus utilizing x ray using the same | |
JP2009047424A (en) | Radiographic inspection device and piping inspection method using the device | |
JP2004037267A (en) | Computed tomography | |
JP7251602B2 (en) | X-ray CT device | |
JP2010169647A (en) | Ct system | |
JP4636258B2 (en) | X-ray equipment |