JP2008145034A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008145034A
JP2008145034A JP2006331547A JP2006331547A JP2008145034A JP 2008145034 A JP2008145034 A JP 2008145034A JP 2006331547 A JP2006331547 A JP 2006331547A JP 2006331547 A JP2006331547 A JP 2006331547A JP 2008145034 A JP2008145034 A JP 2008145034A
Authority
JP
Japan
Prior art keywords
refrigerant
path
outlet
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006331547A
Other languages
Japanese (ja)
Inventor
Tomiyuki Noma
富之 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006331547A priority Critical patent/JP2008145034A/en
Publication of JP2008145034A publication Critical patent/JP2008145034A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger, maintaining a stable refrigerant separation to improve the performance of an evaporator even when a difference in quantity of gas for heat transfer is caused by a difference in number of number of heat transfer pipes or blowers due to structural restrictions in the heat exchanger in which a refrigerant flows to a plurality of refrigerant path branches. <P>SOLUTION: This heat exchanger 1 having the plurality of refrigerant paths is connected to a refrigerant flow divider 6 through heat exchanger inlet pipes 111, 112, and divided flows are combined through heat exchanger outlet pipes 121, 122. Some of refrigerant is guided from refrigerant delivery pipes 81, 82 drawn from a refrigerant flow divider inlet pipe 13 on the upstream side of the refrigerant divider 6 to refrigerant path outlet heating value detectors 91, 92. In the refrigerant path outlet heating value detectors 91, 92, refrigerant which makes heat exchange with the heat exchanger outlet pipes 121, 122, returns to the side surface of the refrigerant flow divider 6 through refrigerant introduction pipes 101, 102. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和機等に用いられる熱交換器に関するものである。   The present invention relates to a heat exchanger used for an air conditioner or the like.

従来、この種の熱交換器は、特に空気調和機の用途に使用されるものでは、図8に示すように一定間隔で平行に並んで配置されて伝熱用の気体が流送される複数のフィンに、所定の段ピッチおよび列ピッチでフィンに直角に挿入された複数の伝熱管から構成されている。この熱交換器を蒸発器として作用させる場合、単一の冷媒パスで構成すると冷媒の流動抵抗が大きくなり蒸発圧力が低くなるため、冷凍サイクル性能が低下する等の問題が発生する。それを回避するために、1本の入口から複数の冷媒パスに分岐させて冷媒を流す形態を採用するのが一般的である。   Conventionally, when this type of heat exchanger is used particularly for an air conditioner, a plurality of heat exchangers are arranged and arranged in parallel at regular intervals as shown in FIG. These fins are composed of a plurality of heat transfer tubes inserted at right angles to the fins at a predetermined step pitch and row pitch. When this heat exchanger is operated as an evaporator, if it is configured with a single refrigerant path, the flow resistance of the refrigerant increases and the evaporation pressure decreases, causing problems such as a reduction in refrigeration cycle performance. In order to avoid this, it is common to adopt a configuration in which the refrigerant flows through a plurality of refrigerant paths branched from one inlet.

しかし、熱交換器を冷凍サイクルに実装する場合、構造上の制約により、伝熱管本数や送風機等による伝熱用の気体の量に差が生じることを余儀なくされる場合がある。この場合には、各冷媒パスの熱交換量の差から流動抵抗の変化割合が異なることにより、冷媒分配に偏りが生じる。冷媒分配の偏りにより冷媒が不足気味となった冷媒パスでは、出口において過熱冷媒となり熱伝達性能が著しく低下する。また冷媒が多量に流れる冷媒パスにおいては、出口においても未蒸発の冷媒が多量に存在するため、結露や圧縮機損傷といった悪影響が危惧される。   However, when the heat exchanger is mounted in the refrigeration cycle, there may be a case where a difference occurs in the amount of heat transfer gas by the number of heat transfer tubes or the blower due to structural restrictions. In this case, the refrigerant distribution is biased due to the change rate of the flow resistance being different from the difference in the heat exchange amount of each refrigerant path. In the refrigerant path where the refrigerant becomes insufficient due to the uneven distribution of the refrigerant, the refrigerant becomes superheated refrigerant at the outlet, and the heat transfer performance is significantly reduced. Further, in the refrigerant path through which a large amount of refrigerant flows, a large amount of non-evaporated refrigerant exists at the outlet, which may cause adverse effects such as condensation and compressor damage.

そこで各冷媒パスには、熱交換器の伝熱面積を有効に作用させるため、各冷媒パスに応じた適正な冷媒量を流す手段として、冷媒分流器の筐体内部に移動可能なように開口板を入れ、開口板の端部に冷媒パスの冷媒圧力を導入し、冷媒パスの冷媒圧力差によって開口板を移動させるものが提案されている(例えば、特許文献1参照)。   Therefore, in order to effectively act the heat transfer area of the heat exchanger in each refrigerant path, an opening is provided so as to be able to move inside the casing of the refrigerant distributor as a means for flowing an appropriate amount of refrigerant according to each refrigerant path. It has been proposed to insert a plate, introduce the refrigerant pressure of the refrigerant path to the end of the opening plate, and move the opening plate by the refrigerant pressure difference of the refrigerant path (see, for example, Patent Document 1).

図9は特許文献1に記載された従来の熱交換器を示すものである。図9において、熱交換器1は、フィン2および伝熱管3で構成される。複数の伝熱管を仮に2本の冷媒パスになるように、リターンベンド4で接続し、冷媒パスの出口近傍(圧力検出位置)の冷媒配管41、42に圧力管51および52を備えている。冷媒分流器6には、冷媒の入口部61と出口部62、および冷媒パス数に応じた圧力導入部631、632が設けられ、中空空間を有する筐体6Aと、冷媒の流動する開口部71を有する開口板7とから構成され、筐体6Aの中空空間内には前記開口板7が移動可能に収納されている。複数の出口近傍に接続した圧力管51、52を、冷媒分流器の圧力導入部631、632と連通させるように構成されている。   FIG. 9 shows a conventional heat exchanger described in Patent Document 1. In FIG. In FIG. 9, the heat exchanger 1 is composed of fins 2 and heat transfer tubes 3. A plurality of heat transfer pipes are connected by a return bend 4 so as to form two refrigerant paths, and pressure pipes 51 and 52 are provided in refrigerant pipes 41 and 42 in the vicinity of the outlet of the refrigerant path (pressure detection position). The refrigerant shunt 6 is provided with an inlet portion 61 and an outlet portion 62 for the refrigerant, and pressure introducing portions 631 and 632 corresponding to the number of refrigerant paths, and includes a housing 6A having a hollow space and an opening 71 through which the refrigerant flows. The opening plate 7 is movably accommodated in the hollow space of the housing 6A. The pressure pipes 51 and 52 connected in the vicinity of the plurality of outlets are configured to communicate with the pressure introducing portions 631 and 632 of the refrigerant flow divider.

図10は、冷媒分流器内の冷媒の流れ方と分流器の動作についての説明図であり、横軸に冷媒の流動長さ(伝熱管本数に対応)を示し、最も左側が冷媒分流器6の位置で、右側は再度合流する位置を示している。縦軸はその位置における冷媒温度と冷媒圧力とをそれぞれ2本の冷媒パスA,Bをパラメータとして示している。図10(a)は冷媒パスA、Bの2本で冷媒温度および冷媒圧力が等しく冷媒の分配が良好の場合を示している。図10(b)は、冷媒流動に偏流が生じ各冷媒パスで冷媒の過不足がある場合の特性を示している。   FIG. 10 is an explanatory diagram of how the refrigerant flows in the refrigerant flow divider and the operation of the flow divider. The horizontal axis indicates the flow length of the refrigerant (corresponding to the number of heat transfer tubes), and the leftmost is the refrigerant flow divider 6. On the right side, the right side shows the position where it joins again. The vertical axis indicates the refrigerant temperature and the refrigerant pressure at that position with two refrigerant paths A and B as parameters, respectively. FIG. 10A shows a case where the refrigerant temperature and the refrigerant pressure are equal in the two refrigerant paths A and B and the refrigerant distribution is good. FIG. 10B shows characteristics in the case where drift occurs in the refrigerant flow and there is excess or deficiency of refrigerant in each refrigerant path.

まず、図10(a),(b)共に、冷媒分流器の入口部分と出口部分は冷媒パスA、冷媒パスB共に冷媒の圧力と温度とは同一である。次に、図10(a)の冷媒の分配が良好の場合には、冷媒は空気と熱交換しながら伝熱管3内を流動し、冷媒の圧力、温度が2本の冷媒パスA、Bで共に減少しながら熱交換器1の出口である冷媒の合流位置に向かって
流れる。出口部では入口部と同様に連通するため、冷媒温度と圧力とは完全に同一となる。一方、図10(b)に示すように偏流が生じた場合は、冷媒パスと熱交換器1の出口部分では同一の圧力になるように各冷媒パスの冷媒流量と冷媒乾き度が自然に、かつ、安定な量の関係で定まる。このとき、著しい冷媒の偏流が起こると、熱交換器1の出口近傍では液冷媒の不足により枯渇した冷媒パスに温度上昇(過熱)が生じる(図では冷媒パスAに液冷媒不足があることを示している)。また、このとき液冷媒が必要以上に存在する冷媒パスBでは、冷媒圧力に差が生じることになる。
First, in both FIGS. 10A and 10B, the refrigerant pressure and temperature are the same in both the refrigerant path A and the refrigerant path B in the inlet part and the outlet part of the refrigerant distributor. Next, when the distribution of the refrigerant in FIG. 10A is good, the refrigerant flows in the heat transfer tube 3 while exchanging heat with air, and the refrigerant pressure and temperature are two refrigerant paths A and B. While decreasing together, the refrigerant flows toward the refrigerant merging position which is the outlet of the heat exchanger 1. Since the outlet portion communicates in the same manner as the inlet portion, the refrigerant temperature and pressure are completely the same. On the other hand, when a drift occurs as shown in FIG. 10B, the refrigerant flow rate and the dryness of each refrigerant path are naturally set so that the refrigerant path and the outlet portion of the heat exchanger 1 have the same pressure. And it is determined by the relationship of a stable amount. At this time, if a significant drift of the refrigerant occurs, a temperature rise (overheating) occurs in the refrigerant path that is depleted due to the lack of liquid refrigerant in the vicinity of the outlet of the heat exchanger 1 (in the figure, there is a lack of liquid refrigerant in the refrigerant path A). Shown). At this time, in the refrigerant path B where liquid refrigerant is present more than necessary, a difference occurs in refrigerant pressure.

この差圧は、図10(a)に示した冷媒分流器6に接続された圧力管51、52により冷媒分流器内部に導かれ、空間64と開口板7とで構成される圧力室Aよりも他方の圧力室Bの圧力が高いため開口板7を圧力室Aの方向に移動させる力として作用する。この作用により、図10(b)に示すように、開口板7と冷媒出口部621、622とで構成される冷媒の流動開口部の面積が各冷媒パスで異なる。その結果、冷媒流量が十分な冷媒パスBの開口面積が狭められ冷媒の流動が制限される。他方、冷媒が枯渇している冷媒パスAでは開口面積が広がり冷媒が多く流れる。冷媒パスの状態が逆の場合には、上述とは逆の動作により各冷媒パスに常に望ましい冷媒量を流すことができるように構成されている。
特開2002−303468号公報
This differential pressure is introduced into the refrigerant flow divider by the pressure pipes 51 and 52 connected to the refrigerant flow divider 6 shown in FIG. 10A, and from the pressure chamber A constituted by the space 64 and the opening plate 7. Since the pressure in the other pressure chamber B is high, it acts as a force for moving the aperture plate 7 in the direction of the pressure chamber A. Due to this action, as shown in FIG. 10B, the area of the refrigerant flow opening formed by the opening plate 7 and the refrigerant outlets 621 and 622 differs in each refrigerant path. As a result, the opening area of the refrigerant path B having a sufficient refrigerant flow rate is narrowed and the flow of the refrigerant is limited. On the other hand, in the refrigerant path A where the refrigerant is depleted, the opening area is widened and a large amount of refrigerant flows. When the state of the refrigerant path is opposite, a desirable amount of refrigerant can be always supplied to each refrigerant path by the operation opposite to that described above.
JP 2002-303468 A

しかしながら、前記従来の構成では、冷媒パスの出口近傍の冷媒圧力が冷媒分流器内部の冷媒圧力よりも低いために、冷媒分流器の筐体と開口板との隙間から冷媒パス出口近傍の圧力検出位置へ向かって冷媒の流れが生じるために、意図した差圧による動作が行われない、あるいは差圧が極めて微小であるために、冷媒分流器の筐体と開口板との摩擦抵抗により開口板が意図した動作をしないといった理由で、冷媒分流の改善による蒸発器性能の向上が図れないという課題を有していた。   However, in the conventional configuration, since the refrigerant pressure near the refrigerant path outlet is lower than the refrigerant pressure inside the refrigerant distributor, the pressure detection near the refrigerant path outlet is detected from the gap between the casing of the refrigerant distributor and the opening plate. Since the refrigerant flows toward the position, the operation due to the intended differential pressure is not performed, or the differential pressure is extremely small, so that the opening plate is caused by the frictional resistance between the casing of the refrigerant flow divider and the opening plate. However, there is a problem that the evaporator performance cannot be improved by improving the refrigerant diversion because the intended operation is not performed.

本発明は、前記従来の課題を解決するもので、熱交換器出口における各冷媒パス内の冷媒の状態に応じて、冷媒分流器での冷媒分流を自律的に調整することで蒸発器性能の向上を図ることが可能な熱交換器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and the evaporator performance is improved by autonomously adjusting the refrigerant diversion in the refrigerant diverter according to the state of the refrigerant in each refrigerant path at the outlet of the heat exchanger. It aims at providing the heat exchanger which can aim at improvement.

前記従来の課題を解決するために、本発明の熱交換器は、冷媒分流器の上流側から一部の冷媒を導出する複数の冷媒導出管と、冷媒パス出口各々に備えられ、冷媒導出管により導かれた冷媒と冷媒パス内を流れる冷媒を熱交換する冷媒パス出口熱量検出器と、冷媒パス出口熱量検出器の冷媒導出管により導かれた側の冷媒を冷媒分流器へ導く冷媒導入管を備え、冷媒分流器の内部は、冷媒導入管から戻される冷媒を冷媒パスへ流入する流路に沿って噴射し、流速に応じて主たる冷媒の流れを誘引するように構成することで、冷媒パス出口における冷媒の単位流量あたりの熱量に応じて冷媒分流を自律調整するように構成したものである。   In order to solve the above-described conventional problems, the heat exchanger of the present invention is provided with a plurality of refrigerant outlet pipes for extracting a part of the refrigerant from the upstream side of the refrigerant distributor, and at each of the refrigerant path outlets. A refrigerant path outlet heat quantity detector for exchanging heat between the refrigerant guided by the refrigerant and the refrigerant flowing in the refrigerant path, and a refrigerant introduction pipe for guiding the refrigerant on the side led by the refrigerant outlet pipe of the refrigerant path outlet heat quantity detector to the refrigerant shunt The refrigerant shunt is configured to inject the refrigerant returned from the refrigerant introduction pipe along the flow path flowing into the refrigerant path, and to induce the main refrigerant flow according to the flow velocity. The refrigerant branch flow is configured to autonomously adjust according to the amount of heat per unit flow rate of the refrigerant at the pass outlet.

これによって、冷媒分流器の上流側から導出した一部の冷媒を媒体として各冷媒パス出口における冷媒の熱量を検出し、乾き度の変化に伴って流量の異なる冷媒を冷媒分流器へ戻し、各冷媒パスへ流入する冷媒流路に沿って噴射し、主たる冷媒の流れを誘引することで、その冷媒パスへの流入量を調整することができるので、従来の構成と比較して、高い圧力の冷媒を媒体としているので、微差圧のために冷媒分流器内で意図した動作が行なわれないことがなくなるともに、機械的に可動する構成要素を有さないことから、摩擦抵抗により意図した動作をしないといった課題も解決することが可能となる。   This detects the amount of heat of the refrigerant at each refrigerant path outlet using a part of the refrigerant derived from the upstream side of the refrigerant distributor as a medium, and returns the refrigerant having a different flow rate to the refrigerant distributor according to the change in dryness. By injecting along the refrigerant flow path flowing into the refrigerant path and attracting the main refrigerant flow, the amount of inflow into the refrigerant path can be adjusted. Since the refrigerant is used as a medium, the intended operation is not performed in the refrigerant shunt due to the slight differential pressure, and there is no mechanically movable component. It is possible to solve the problem of not doing.

本発明の熱交換器は、冷媒流路を複数に分割した冷媒パスと、前記複数の冷媒パス各々に冷媒を分配する冷媒分流器と、前記冷媒分流器の上流側から一部の冷媒を導出する複数の冷媒導出管と、前記冷媒パス出口各々に備えられ、前記冷媒導出管により導かれた冷媒と前記冷媒パス内を流れる冷媒を熱交換する冷媒パス出口熱量検出器と、前記冷媒パス出口熱量検出器の前記冷媒導出管により導かれた側の冷媒を前記冷媒分流器へ導く冷媒導入管を備え、前記冷媒分流器の内部は、前記冷媒導入管から戻される冷媒を前記冷媒パスへ流入する流路に沿って噴射し、流速に応じて主たる冷媒の流れを誘引するように構成することで、前記冷媒パス出口における冷媒の単位流量あたりの熱量に応じて冷媒分流を自律調整するように構成されているので、高い圧力の冷媒を媒体とし微差圧のために冷媒分流器内で意図した動作が行なわれないことがなくなるともに、機械的な可動部を有さず、摩擦抵抗により意図した動作をしないといった課題なく、各冷媒パス出口の冷媒の状態に応じて、冷媒分流器での冷媒分流を自律的に調整することが可能で、蒸発器性能の向上を図ることが可能な熱交換器を提供することができる。   The heat exchanger according to the present invention includes a refrigerant path obtained by dividing a refrigerant flow path into a plurality of refrigerant paths, a refrigerant flow distributor that distributes the refrigerant to each of the plurality of refrigerant paths, and a part of the refrigerant from the upstream side of the refrigerant flow distributor. A plurality of refrigerant outlet pipes, a refrigerant path outlet heat quantity detector provided at each of the refrigerant path outlets, for exchanging heat between the refrigerant guided by the refrigerant outlet pipes and the refrigerant flowing in the refrigerant path, and the refrigerant path outlet A refrigerant introduction pipe for guiding the refrigerant guided by the refrigerant lead-out pipe of the calorimeter to the refrigerant distributor, and the refrigerant diverter flows the refrigerant returned from the refrigerant introduction pipe into the refrigerant path. So that the refrigerant flow is autonomously adjusted according to the amount of heat per unit flow rate of the refrigerant at the refrigerant path outlet by injecting the main refrigerant flow according to the flow velocity. It is configured Therefore, the intended operation is not performed in the refrigerant shunt due to the high pressure refrigerant as a medium, and there is no mechanical moving part, and the intended operation is not performed due to frictional resistance. Provided a heat exchanger that can autonomously adjust the refrigerant diversion in the refrigerant diverter according to the state of the refrigerant at each refrigerant path outlet and improve the evaporator performance without any problem can do.

第1の発明は、冷媒流路を複数に分割した冷媒パスと、前記複数の冷媒パス各々に冷媒を分配する冷媒分流器と、前記冷媒分流器の上流側から一部の冷媒を導出する複数の冷媒導出管と、前記冷媒パス出口各々に備えられ、前記冷媒導出管により導かれた冷媒と前記冷媒パス内を流れる冷媒を熱交換する冷媒パス出口熱量検出器と、前記冷媒パス出口熱量検出器の前記冷媒導出管により導かれた側の冷媒を前記冷媒分流器へ導く冷媒導入管を備え、前記冷媒分流器の内部は、前記冷媒導入管から戻される冷媒を前記冷媒パスへ流入する流路に沿って噴射し、流速に応じて主たる冷媒の流れを誘引するように構成することで、前記冷媒パス出口における冷媒の単位流量あたりの熱量に応じて冷媒分流を自律調整するように構成したことにより、高い圧力の冷媒を媒体とし微差圧のために冷媒分流器内で意図した動作が行なわれないことがなくなるともに、機械的な可動部を有さず、摩擦抵抗により意図した動作をしないといった課題なく、各冷媒パス出口の冷媒の状態に応じて、冷媒分流器での冷媒分流を自律的に調整することが可能で、蒸発器性能の向上を図ることが可能な熱交換器を提供することができる。   A first aspect of the present invention is a refrigerant path in which a refrigerant flow path is divided into a plurality of refrigerant paths, a refrigerant flow distributor that distributes the refrigerant to each of the plurality of refrigerant paths, and a plurality of parts that derive a part of the refrigerant from the upstream side of the refrigerant flow distributor. A refrigerant outlet pipe, a refrigerant path outlet calorimeter provided at each of the refrigerant path outlets, for exchanging heat between the refrigerant guided by the refrigerant outlet pipe and the refrigerant flowing in the refrigerant path, and the refrigerant path outlet calorific value detection A refrigerant introduction pipe for guiding the refrigerant on the side led by the refrigerant outlet pipe of the condenser to the refrigerant distributor, and the inside of the refrigerant distributor is a flow for flowing the refrigerant returned from the refrigerant introduction pipe into the refrigerant path Injected along the path, and configured to induce the main refrigerant flow according to the flow velocity, configured to autonomously adjust the refrigerant shunt according to the amount of heat per unit flow rate of the refrigerant at the refrigerant path outlet By The problem is that the intended operation is not performed in the refrigerant distributor due to the slight differential pressure using the medium pressure refrigerant, and there is no mechanical moving part, and the intended operation is not performed due to frictional resistance. And a heat exchanger capable of autonomously adjusting the refrigerant diversion in the refrigerant diverter according to the state of the refrigerant at each refrigerant path outlet and capable of improving the evaporator performance. Can do.

第2の発明は、特に、第1の発明の冷媒分流器を、冷媒分流器出口部と冷媒分流器入口部で構成し、冷媒分流器入口部に冷媒導入管を介して冷媒パス出口熱量検出器から戻された冷媒を噴射する冷媒噴射穴を備えたことで、冷媒分流器の加工が容易でありながら、第一の発明と同等の作用を実現することができる。   In the second invention, in particular, the refrigerant flow divider of the first invention is constituted by a refrigerant flow divider outlet and a refrigerant flow divider inlet, and a refrigerant path outlet calorific value is detected via a refrigerant introduction pipe at the refrigerant flow divider inlet. By providing the refrigerant injection hole for injecting the refrigerant returned from the vessel, the operation equivalent to that of the first invention can be realized while the processing of the refrigerant flow divider is easy.

第3の発明は、特に、第1の発明の冷媒分流器の上流側に整流タンクを備え、冷媒導出管は整流タンク下部に接続され、各冷媒導出管へ導出される冷媒量を均等に配分するように構成することで、各冷媒パス出口熱量検出器へ流入する冷媒量を均等にして冷媒パス出口における冷媒の単位流量あたりの熱量をより正確に検出することで、第一の発明と同等の作用をより正確に実現することができる。   In particular, the third invention is provided with a rectifying tank upstream of the refrigerant flow divider of the first invention, the refrigerant outlet pipe is connected to the lower part of the rectifier tank, and the amount of refrigerant led out to each refrigerant outlet pipe is evenly distributed. By configuring so that the amount of refrigerant flowing into each refrigerant path outlet calorimeter is equalized, and the amount of heat per unit flow rate of refrigerant at the refrigerant path outlet is detected more accurately, equivalent to the first invention The action of can be realized more accurately.

第4の発明は、特に、第1の発明の冷媒パス出口熱量検出器を、冷媒パス出口管を内側に配し、周囲に冷媒導出管より導かれた冷媒を流す2重管構造としたことで、冷媒パス出口の熱量を的確に検出して第1の発明の作用を実現することができる。   In the fourth invention, in particular, the refrigerant path outlet calorie detector of the first invention has a double pipe structure in which the refrigerant path outlet pipe is arranged on the inner side and the refrigerant guided from the refrigerant outlet pipe flows around. Thus, it is possible to accurately detect the amount of heat at the outlet of the refrigerant path and realize the operation of the first invention.

第5の発明は、特に、第1の発明の冷媒パス出口熱量検出器を、冷媒パス出口管と平行に冷媒導出管より導かれた冷媒を流す管を配し、熱伝導するように接合したことで、冷媒パス出口熱量検出器が簡易な構造でありながら、第1の発明と同等の作用を実現することができる。   In the fifth aspect of the invention, in particular, the refrigerant path outlet heat quantity detector of the first aspect of the invention is arranged so as to conduct heat by arranging a pipe for flowing the refrigerant guided from the refrigerant outlet pipe in parallel with the refrigerant path outlet pipe. As a result, the refrigerant path outlet heat quantity detector has a simple structure, and can achieve an operation equivalent to that of the first invention.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における熱交換器の構成図を示すものである。図1において、熱交換器1は、フィン2および伝熱管3で構成される。複数の伝熱管は仮に2本の冷媒パスになるように、リターンベンド4で接続し、各々の冷媒パスは熱交入口管111、112を介して冷媒分流器6へ接続されるとともに、熱交出口管121、122を介して合流するように構成される。冷媒分流器6の上流側は冷媒分流器入口管13が接続され、途中に冷媒導出管81、82が接続されており、一部の冷媒を冷媒パス出口熱量検出器91、92へ導く。冷媒パス出口熱量検出器91、92において、熱交出口管121、122と熱交換した冷媒が、冷媒導入管101、102を介して冷媒分流器6の側面へ戻るように構成されている。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat exchanger according to a first embodiment of the present invention. In FIG. 1, the heat exchanger 1 is composed of fins 2 and heat transfer tubes 3. The plurality of heat transfer tubes are connected by a return bend 4 so as to form two refrigerant paths, and each refrigerant path is connected to the refrigerant flow divider 6 via the heat exchange inlet pipes 111 and 112 and heat exchange. The outlet pipes 121 and 122 are configured to merge. A refrigerant flow divider inlet pipe 13 is connected to the upstream side of the refrigerant flow divider 6, and refrigerant outlet pipes 81 and 82 are connected in the middle, and a part of the refrigerant is guided to the refrigerant path outlet heat quantity detectors 91 and 92. In the refrigerant path outlet heat quantity detectors 91 and 92, the refrigerant exchanged heat with the heat exchange outlet pipes 121 and 122 is configured to return to the side surface of the refrigerant distributor 6 through the refrigerant introduction pipes 101 and 102.

図2(a)は、本発明の第1の実施の形態における冷媒パス出口熱量検出器の断面図を示し、図2(b)は同冷媒パス出口熱量検出器の斜視一部断面図示す。図2(a)において、冷媒導出管8より流入した冷媒は、熱交出口管12内を流れる冷媒と管壁を介して熱交換し、冷媒導入管10より流出する様に構成されている。   FIG. 2A shows a cross-sectional view of the refrigerant path outlet heat quantity detector according to the first embodiment of the present invention, and FIG. 2B shows a partial perspective view of the refrigerant path outlet heat quantity detector. In FIG. 2A, the refrigerant flowing in from the refrigerant outlet pipe 8 is configured to exchange heat with the refrigerant flowing in the heat exchange outlet pipe 12 through the pipe wall and out of the refrigerant introduction pipe 10.

図3(a)は、本発明の第1の実施の形態における冷媒分流器の断面図を示し、図3(b)は冷媒パス数を増やした場合の斜視図を示す。図3(a)において、冷媒分流器6内部では、冷媒分流器入口管13から流入した冷媒が小孔部14を介して分流空間15へ至り、分流空間15内での攪拌作用により略均等に分配され、熱交入口管111、112へ流出する。冷媒導入管101、102は、先端部が分流空間15内で熱交入口管111、112の延長線方向に沿う形に配され、先端部から噴射される冷媒の流速により、分流空間15内の冷媒を誘引して熱交入口管111、112へ流出する冷媒量を調整する様に構成されている。図3(b)においては、冷媒パス数を4とした場合の斜視図を示すが、内部断面構造は図3(a)と同等である。   FIG. 3 (a) shows a cross-sectional view of the refrigerant flow divider in the first embodiment of the present invention, and FIG. 3 (b) shows a perspective view when the number of refrigerant paths is increased. In FIG. 3A, in the refrigerant flow divider 6, the refrigerant flowing from the refrigerant flow divider inlet pipe 13 reaches the flow dividing space 15 through the small hole portion 14, and is substantially evenly distributed by the stirring action in the flow dividing space 15. It is distributed and flows out to the heat inlet pipes 111 and 112. The refrigerant introduction pipes 101 and 102 are arranged such that the tip portions thereof extend along the direction of the extension lines of the heat exchange pipes 111 and 112 in the shunt space 15, and the flow rate of the refrigerant injected from the tip parts is within the shunt space 15. The refrigerant is attracted to adjust the amount of the refrigerant flowing out to the heat exchange inlet pipes 111 and 112. FIG. 3B shows a perspective view when the number of refrigerant passes is 4, but the internal cross-sectional structure is the same as FIG.

以上のように構成された熱交換器について、以下その動作、作用を説明する。図4は、本発明の第1の実施の形態における熱交換器の動作説明図である。図4(a)は、冷媒パスへ流入する冷媒量が当該冷媒パスの熱交換量に対して過少であり、結果として冷媒パス出口において過熱気味となった状態をp−h線図上に示したものであり、図4(b)は、逆に冷媒パスへ流入する冷媒量が当該冷媒パスの熱交換量に対して過多であり、結果として冷媒パス出口において未蒸発冷媒が残った状態をp−h線図上に示したものである。   About the heat exchanger comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. FIG. 4 is an operation explanatory diagram of the heat exchanger according to the first embodiment of the present invention. FIG. 4A shows a state where the amount of refrigerant flowing into the refrigerant path is too small with respect to the heat exchange amount of the refrigerant path, resulting in overheating at the refrigerant path outlet, on the ph diagram. FIG. 4B shows that the refrigerant amount flowing into the refrigerant path is excessive with respect to the heat exchange amount of the refrigerant path, and as a result, the state where the unevaporated refrigerant remains at the refrigerant path outlet is shown. This is shown on the ph diagram.

図4(a)において、P1a点は過熱ガス冷媒であり、図1における熱交出口管121内部の冷媒の状態を示している。P1a点の冷媒は、図1における冷媒パス出口熱量検出器91により冷媒導出管81を介して流入してきたP2a点の2相冷媒と熱交換するが、過熱ガス冷媒であるため体積当たりの熱量が小さく、P2a点の2相冷媒を僅かに冷却しP3a点の冷媒状態とする。P3a点の冷媒は、図1における冷媒導入管101を介して冷媒分流器6へ戻り、図3(a)における冷媒導入管101の先端部より、分流空間15内へ噴射されP4a点の状態となる。   4A, point P1a is the superheated gas refrigerant, and shows the state of the refrigerant inside the heat exchange outlet pipe 121 in FIG. The refrigerant at the point P1a exchanges heat with the two-phase refrigerant at the point P2a that has flowed in via the refrigerant outlet pipe 81 by the refrigerant path outlet calorific value detector 91 in FIG. The two-phase refrigerant at point P2a is slightly cooled to a refrigerant state at point P3a. The refrigerant at the point P3a returns to the refrigerant distributor 6 through the refrigerant introduction pipe 101 in FIG. 1, and is injected into the diversion space 15 from the tip of the refrigerant introduction pipe 101 in FIG. Become.

図4(b)においては、P1b点は未蒸発液冷媒を含んだ冷媒であり、図1における熱交出口管122内部の冷媒の状態を示している。P1b点の冷媒は、図1における冷媒パス出口熱量検出器92により冷媒導出管82を介して流入してきたP2b点の2相冷媒と熱交換するが、未蒸発液冷媒を含むため体積当たりの熱量が大きく、P2b点の2相冷媒を大きく冷却しP3b点の冷媒状態とする。冷却され乾き度が低下したP3b点の冷媒は、圧力が低下しP3bD点の冷媒となった後、図1における冷媒導入管102を介して冷
媒分流器6へ戻り、図3(a)における冷媒導入管102の先端部より、分流空間15内へ噴射されP4b点の状態となる。
In FIG. 4 (b), the point P1b is a refrigerant containing the non-evaporated liquid refrigerant, and shows the state of the refrigerant inside the heat exchange outlet pipe 122 in FIG. The refrigerant at the point P1b exchanges heat with the two-phase refrigerant at the point P2b flowing in via the refrigerant outlet pipe 82 by the refrigerant path outlet calorie detector 92 in FIG. Is large, the two-phase refrigerant at the point P2b is greatly cooled to the refrigerant state at the point P3b. The refrigerant at point P3b, which has been cooled and has decreased in dryness, is reduced in pressure to become refrigerant at point P3bD, and then returns to the refrigerant distributor 6 via the refrigerant introduction pipe 102 in FIG. 1, and the refrigerant in FIG. From the front end portion of the introduction pipe 102, it is injected into the diversion space 15 and becomes the state of the point P4b.

上述のP3a点の冷媒とP3bD点の冷媒の状態の違いから、冷媒導入管101の先端部から噴出される冷媒の流速と、冷媒導入管102の先端部から噴出される冷媒の流速を比較した場合、前者の方が後者に対して高速となる。したがって、図3(a)における冷媒分流器6の分流空間15内においては、冷媒導入管101の先端部から噴出される高速の冷媒流が、分流空間15内の冷媒をより多く誘引し、熱交入口管111へ流出する冷媒量を増加させる。逆に冷媒導入管102の先端部から噴出される低速の冷媒流は、分流空間15内の冷媒を比較的少なく誘引し、熱交入口管112へ流出する冷媒量を減少させる。以上のような作用を繰り返すことで、2つの冷媒パスへ流入する冷媒量を自律的に調整することが可能となる。   Based on the difference in the state of the refrigerant at point P3a and the refrigerant at point P3bD, the flow rate of the refrigerant ejected from the tip of the refrigerant introduction tube 101 was compared with the flow rate of the refrigerant ejected from the tip of the refrigerant introduction tube 102. In this case, the former is faster than the latter. Therefore, in the flow dividing space 15 of the refrigerant flow divider 6 in FIG. 3A, the high-speed refrigerant flow ejected from the front end of the refrigerant introduction pipe 101 attracts more refrigerant in the flow dividing space 15, and heat The amount of refrigerant flowing out to the inlet / outlet pipe 111 is increased. On the contrary, the low-speed refrigerant flow ejected from the tip of the refrigerant introduction pipe 102 attracts a relatively small amount of refrigerant in the shunt space 15 and reduces the amount of refrigerant flowing out to the heat exchange inlet pipe 112. By repeating the above operation, the amount of refrigerant flowing into the two refrigerant paths can be adjusted autonomously.

また、本実施の形態においては、冷媒パス数を2とした場合を例に説明したが、冷媒導出管、冷媒パス出口熱量検出器、冷媒導入管の要素は、各冷媒パス毎に独立して構成されることから、図3(b)に示す例のとおり、さらに複数の冷媒パスへの展開も容易に実施することが可能である。   In the present embodiment, the case where the number of refrigerant paths is set to 2 has been described as an example. However, the elements of the refrigerant outlet pipe, the refrigerant path outlet heat quantity detector, and the refrigerant inlet pipe are independently provided for each refrigerant path. Since it is configured, as shown in the example shown in FIG. 3 (b), it is possible to easily deploy to a plurality of refrigerant paths.

以上のように、本実施の形態においては、冷媒分流器の上流側から導出した一部の冷媒を媒体として各冷媒パス出口における冷媒の熱量を検出し、乾き度の変化に伴って流量の異なる冷媒を冷媒分流器へ戻し、各冷媒パスへ流入する冷媒流路に沿って噴射し、主たる冷媒の流れを誘引することで、その冷媒パスへの流入量を調整することができるので、各冷媒パス出口の冷媒の状態に応じて、冷媒分流器での冷媒分流を自律的に調整することが可能となり、蒸発器性能の向上を図ることが可能な熱交換器を提供することができる。   As described above, in the present embodiment, the amount of refrigerant heat at each refrigerant path outlet is detected using a part of the refrigerant derived from the upstream side of the refrigerant distributor as a medium, and the flow rate varies with changes in dryness. Since the refrigerant is returned to the refrigerant flow divider, injected along the refrigerant flow path flowing into each refrigerant path, and the flow of the main refrigerant is attracted, the amount of inflow into the refrigerant path can be adjusted. According to the state of the refrigerant at the path outlet, it is possible to autonomously adjust the refrigerant diversion in the refrigerant diverter, and it is possible to provide a heat exchanger capable of improving the evaporator performance.

また、本実施の形態の冷媒分流器は、図5に示すように冷媒分流器出口部6B、冷媒分流器入口部6Cの2部品で構成し、冷媒分流器入口部6Cに冷媒噴射穴6Dの穴加工を施した構成とすることで、冷媒分流器の加工が容易でありながら、本実施の形態の作用を実現することができる。   Further, as shown in FIG. 5, the refrigerant flow divider of the present embodiment is composed of two parts, a refrigerant flow divider outlet 6B and a refrigerant flow divider inlet 6C, and a refrigerant injection hole 6D is formed in the refrigerant flow divider inlet 6C. With the configuration in which the hole processing is performed, the operation of the present embodiment can be realized while the processing of the refrigerant flow distributor is easy.

また、本実施の形態の冷媒分流器上流側に、図6に示すように整流タンク16を備え、整流タンク16の下部に冷媒導出管81、82を接続することで、冷媒流速が低下した状態で下部に滞留した液状態の冷媒を導出することで、冷媒パス出口熱量検出器91、92へ流入する冷媒量を均等でき、より正確に本実施の形態の作用を実現することができる。   In addition, as shown in FIG. 6, the rectifying tank 16 is provided on the upstream side of the refrigerant flow divider of the present embodiment, and the refrigerant outlet pipes 81 and 82 are connected to the lower part of the rectifying tank 16, thereby reducing the refrigerant flow rate. By deriving the refrigerant in the liquid state staying in the lower part, the amount of refrigerant flowing into the refrigerant path outlet heat quantity detectors 91 and 92 can be equalized, and the operation of the present embodiment can be realized more accurately.

また、本実施の形態の冷媒パス出口熱量検出器は、図7に示すように冷媒導出管8と冷媒導入管10を1部品で構成し、熱交換用接合部93を介して熱交出口管12と熱交換するように構成することで、冷媒パス出口熱量検出器が簡易な構造でありながら、本実施の形態の作用を実現することができる。   In the refrigerant path outlet calorie detector of the present embodiment, as shown in FIG. 7, the refrigerant outlet pipe 8 and the refrigerant inlet pipe 10 are composed of one part, and the heat exchange outlet pipe is connected via the heat exchange joint 93. By configuring so as to exchange heat with 12, the refrigerant path outlet heat quantity detector can have the simple structure, but the operation of the present embodiment can be realized.

以上のように、本発明にかかる熱交換器は、高い圧力の冷媒を媒体とし、かつ機械的な可動部を有さず、冷媒パス出口の冷媒の状態に応じて、冷媒分流器での冷媒分流を自律的に調整することが可能なるので、空気調和機以外の冷凍サイクル装置においても、構造上の制約により、伝熱管本数や送風機等による伝熱用の気体の量に差が生じることを余儀なくされる複数の冷媒パスを備えた熱交換器の性能向上の手段に適用できる。   As described above, the heat exchanger according to the present invention uses a high-pressure refrigerant as a medium, does not have a mechanical movable part, and changes the refrigerant in the refrigerant distributor according to the state of the refrigerant at the refrigerant path outlet. Since the diversion can be adjusted autonomously, even in the refrigeration cycle apparatus other than the air conditioner, there is a difference in the amount of heat transfer gas due to the number of heat transfer tubes or the blower due to structural restrictions. The present invention can be applied to a means for improving the performance of a heat exchanger having a plurality of refrigerant paths that are inevitable.

本発明の実施の形態1における熱交換器の構成図The block diagram of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における熱交換器の、(a)冷媒パス出口熱量検出器の断面図、(b)斜視部分断面図(A) Cross-sectional view of refrigerant path outlet heat quantity detector, (b) Perspective partial cross-sectional view of heat exchanger in Embodiment 1 of the present invention 本発明の実施の形態1における熱交換器の、(a)冷媒分流器の断面図、(b)冷媒分流器の斜視図(A) Cross-sectional view of refrigerant flow divider, (b) Perspective view of refrigerant flow divider of heat exchanger in Embodiment 1 of the present invention 本発明の実施の形態1における熱交換器の状態説明図((a)流入冷媒過小状態、(b)流入冷媒過多状態)State explanatory drawing of the heat exchanger in Embodiment 1 of this invention ((a) Inflow refrigerant | coolant understate, (b) Inflow refrigerant | coolant excess state) 本発明の実施の形態1における熱交換器の冷媒分流器の断面図Sectional drawing of the refrigerant | coolant shunt of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における熱交換器の整流タンクの断面図Sectional drawing of the rectification tank of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1における熱交換器の冷媒パス出口熱量検出器の斜視図The perspective view of the refrigerant | coolant path | pass exit heat amount detector of the heat exchanger in Embodiment 1 of this invention 従来の熱交換器の斜視図A perspective view of a conventional heat exchanger 従来の熱交換器の構成図Configuration diagram of conventional heat exchanger 従来の熱交換器の状態説明図State explanatory diagram of conventional heat exchanger

符号の説明Explanation of symbols

1 熱交換器
2 フィン
3 伝熱管
4 リターンベンド
6 冷媒分流器
6A 筐体
6B 冷媒分流器出口部
6C 冷媒分流器入口部
6D 冷媒噴射穴
7 開口板
8,81,82 冷媒導出管
9,91,92 冷媒パス出口熱量検出器
93 熱交換用接合部
10,101,102 冷媒導入管
12,121,122 熱交出口管
13 冷媒分流器入口管
14 小孔部
15 分流空間
16 整流タンク
111 熱交入口管
112 熱交入口管
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Fin 3 Heat exchanger tube 4 Return bend 6 Refrigerant flow divider 6A Housing 6B Refrigerant flow divider outlet 6C Refrigerant flow divider inlet 6D Refrigerant injection hole 7 Opening plate 8, 81, 82 Refrigerant outlet tube 9, 91, 92 Refrigerant path outlet heat quantity detector 93 Heat exchange joint 10, 101, 102 Refrigerant introduction pipe 12, 121, 122 Heat exchange outlet pipe 13 Refrigerant distributor inlet pipe 14 Small hole part 15 Dividing space 16 Rectification tank 111 Heat exchange inlet Tube 112 Heat exchange inlet tube

Claims (5)

冷媒流路を複数に分割した冷媒パスと、前記複数の冷媒パス各々に冷媒を分配する冷媒分流器と、前記冷媒分流器の上流側から一部の冷媒を導出する複数の冷媒導出管と、前記冷媒パス出口各々に備えられ、前記冷媒導出管により導かれた冷媒と前記冷媒パス内を流れる冷媒を熱交換する冷媒パス出口熱量検出器と、前記冷媒パス出口熱量検出器の前記冷媒導出管により導かれた側の冷媒を前記冷媒分流器へ導く冷媒導入管を備え、前記冷媒分流器の内部は、前記冷媒導入管から戻される冷媒を前記冷媒パスへ流入する流路に沿って噴射し、流速に応じて主たる冷媒の流れを誘引するように構成することで、前記冷媒パス出口における冷媒の単位流量あたりの熱量に応じて冷媒分流を自律調整するように構成したことを特徴とする熱交換器。 A refrigerant path that divides the refrigerant flow path into a plurality of parts, a refrigerant distributor that distributes the refrigerant to each of the plurality of refrigerant paths, and a plurality of refrigerant outlet pipes that derive a part of the refrigerant from the upstream side of the refrigerant distributor; A refrigerant path outlet calorific value detector that exchanges heat between the refrigerant guided by the refrigerant outlet pipe and the refrigerant flowing in the refrigerant path, and the refrigerant outlet pipe of the refrigerant path outlet heat quantity detector. A refrigerant introduction pipe that guides the refrigerant on the side led by the refrigerant to the refrigerant distributor, and the inside of the refrigerant distributor ejects the refrigerant returned from the refrigerant introduction pipe along a flow path that flows into the refrigerant path. The heat is characterized in that it is configured so as to induce the main refrigerant flow according to the flow velocity, so that the refrigerant diversion is autonomously adjusted according to the amount of heat per unit flow rate of the refrigerant at the refrigerant path outlet. Exchanger. 冷媒分流器は、冷媒分流器出口部と冷媒分流器入口部で構成され、冷媒分流器入口部は、冷媒導入管を介して冷媒パス出口熱量検出器から戻された冷媒を噴射する冷媒噴射穴を備えた請求項1に記載の熱交換器。 The refrigerant diverter includes a refrigerant diverter outlet and a refrigerant diverter inlet, and the refrigerant diverter inlet is a refrigerant injection hole for injecting the refrigerant returned from the refrigerant path outlet calorimeter through the refrigerant introduction pipe. The heat exchanger according to claim 1, comprising: 冷媒分流器の上流側に接続された整流タンクを備え、冷媒導出管は前記整流タンク下部に接続され、各冷媒導出管へ導出される冷媒量を均等に配分するように構成した請求項1又は2に記載の熱交換器。 A rectifying tank connected to an upstream side of the refrigerant flow divider, and a refrigerant outlet pipe connected to a lower portion of the rectifying tank, wherein the refrigerant amount led out to each refrigerant outlet pipe is evenly distributed. 2. The heat exchanger according to 2. 冷媒パス出口熱量検出器は、冷媒パス出口管を内側に配し、周囲に冷媒導出管より導かれた冷媒を流す2重管構造とした請求項1から3のうちいずれか一項に記載の熱交換器。 4. The refrigerant path outlet heat quantity detector according to claim 1, wherein the refrigerant path outlet pipe has a double pipe structure in which a refrigerant path outlet pipe is arranged on the inner side and a refrigerant guided from the refrigerant outlet pipe flows around the refrigerant path outlet pipe. Heat exchanger. 冷媒パス出口熱量検出器は、冷媒パス出口管と平行に冷媒導出管より導かれた冷媒を流す管を配し、熱伝導するように接合した請求項1から3のうちいずれか一項に記載の熱交換器。 4. The refrigerant path outlet heat quantity detector according to claim 1, wherein a pipe through which a refrigerant guided from the refrigerant outlet pipe flows in parallel with the refrigerant path outlet pipe and is joined so as to conduct heat. 5. Heat exchanger.
JP2006331547A 2006-12-08 2006-12-08 Heat exchanger Pending JP2008145034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331547A JP2008145034A (en) 2006-12-08 2006-12-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331547A JP2008145034A (en) 2006-12-08 2006-12-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2008145034A true JP2008145034A (en) 2008-06-26

Family

ID=39605414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331547A Pending JP2008145034A (en) 2006-12-08 2006-12-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008145034A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659305A (en) * 2022-03-25 2022-06-24 青岛海尔空调器有限总公司 Control method and control system for air conditioner refrigerant circulation, electronic equipment and medium
WO2022247329A1 (en) * 2021-05-26 2022-12-01 青岛海尔空调器有限总公司 Control method and device for air-conditioning refrigerant shunting, and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022247329A1 (en) * 2021-05-26 2022-12-01 青岛海尔空调器有限总公司 Control method and device for air-conditioning refrigerant shunting, and air conditioner
CN114659305A (en) * 2022-03-25 2022-06-24 青岛海尔空调器有限总公司 Control method and control system for air conditioner refrigerant circulation, electronic equipment and medium
CN114659305B (en) * 2022-03-25 2024-03-19 青岛海尔空调器有限总公司 Control method and control system for air conditioner refrigerant circulation, electronic equipment and medium

Similar Documents

Publication Publication Date Title
US9557121B2 (en) Heat exchanger
US20110240276A1 (en) Heat exchanger having an inlet distributor and outlet collector
US20150362222A1 (en) Refrigerant distribution device and a heat pump apparatus using the same refrigerant distribution device
KR20040047614A (en) Heat exchanger
US8943854B2 (en) Heat exchanger and air condition system
KR101520675B1 (en) Co_2 heat pump water heater
JP6089340B2 (en) Finned tube heat exchanger
JP6239159B2 (en) Refrigeration cycle equipment
KR20180095501A (en) Heat exchanger for refrigerator and refrigerator with refrigerator
CN101772687B (en) Parallel flow heat exchanger with connectors
JP2008145034A (en) Heat exchanger
CN101886891B (en) Refrigerant guiding device and heat exchanger with same
JP5202666B2 (en) Refrigeration system
Yoshioka et al. Performance evaluation and optimization of a refrigerant distributor for air conditioner
US10429106B2 (en) Asymmetric evaporator
JP2012172918A (en) Refrigerant liquid forced circulation type refrigeration system
US10197312B2 (en) Heat exchanger with reduced length distributor tube
US20110024083A1 (en) Heat exchanger
JP2011185549A (en) Heat exchanger
JP6551251B2 (en) Header distributor, outdoor unit equipped with header distributor, and air conditioner
JP2010223464A (en) Evaporator
JP2008039361A (en) Heat exchanger and air conditioner using the same
JP2008164217A (en) Heat exchanger
JP2021148389A (en) Heat exchanger
JP2009168383A (en) Heat exchanger and heat pump type water heater using the same