JP2008144158A - Method for producing gas oil composition - Google Patents

Method for producing gas oil composition Download PDF

Info

Publication number
JP2008144158A
JP2008144158A JP2007294640A JP2007294640A JP2008144158A JP 2008144158 A JP2008144158 A JP 2008144158A JP 2007294640 A JP2007294640 A JP 2007294640A JP 2007294640 A JP2007294640 A JP 2007294640A JP 2008144158 A JP2008144158 A JP 2008144158A
Authority
JP
Japan
Prior art keywords
mass
light oil
less
oil composition
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007294640A
Other languages
Japanese (ja)
Other versions
JP5054488B2 (en
Inventor
Eiji Tanaka
英治 田中
Tomohito Furuta
智史 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2007294640A priority Critical patent/JP5054488B2/en
Publication of JP2008144158A publication Critical patent/JP2008144158A/en
Application granted granted Critical
Publication of JP5054488B2 publication Critical patent/JP5054488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-sulfur gas oil composition by finding out other substances remarkably affecting the oxidation stability of gas oil and controlling the contents of the substances within specific ranges. <P>SOLUTION: The method for producing the gas oil composition having ≤0.5 oxidation index IO represented by the following formula: IO=(C10LST)+3×(C17HDI)-(R2A)-5×(R3A) (wherein, C10LST is the content, mass% of a ≤10C styrenes compound; C17HDI is the content, mass% of a ≥17C dienes compound; R2A is the content, mass% of a bicyclic compound in condensed polycyclic aromatic hydrocarbons; and R3A is the content, mass% of a tricyclic compound in the condensed polycyclic aromatic hydrocarbons) is carried out as follows: At least one base material A having >0.5 oxidation index IO is mixed with at least one base material B having ≤0.5 oxidation index IO to produce the gas oil composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、軽油組成物の製造方法に関し、特には極めて低い硫黄含有量の軽油組成物の製造方法に関する。   The present invention relates to a method for producing a light oil composition, and more particularly to a method for producing a light oil composition having a very low sulfur content.

ディーゼルエンジン用燃料等に使用される軽油は、酸化すると変色、沈澱性の重合物(スラッジ)の生成、粘度上昇等が認められ、また、酸化によって生じた過酸化物(ペルオキシド)は燃料系統の部材(ゴムや金属等)を劣化させることが知られている。そのため、酸化安定性は軽油の品質安定性を評価する上で重要な指標の一つとなっており、高い酸化安定性を有する軽油が望まれる。近年では、ディーゼルエンジンは排気ガス規制強化により、コモンレールによる燃料噴射の高圧化が一段と進むことで軽油への熱負荷が増大し、従来以上に軽油の酸化安定性を高めることが求められている。   Light oil used for diesel engine fuel, etc. is discolored when oxidized, the formation of precipitated polymer (sludge), increased viscosity, etc. Also, the peroxide generated by oxidation (peroxide) is the fuel system It is known to deteriorate members (rubber, metal, etc.). Therefore, oxidation stability is one of the important indices for evaluating the quality stability of light oil, and a light oil having high oxidation stability is desired. In recent years, diesel engines have been required to increase the heat load on light oil as the pressure of fuel injection by the common rail further increases due to stricter exhaust gas regulations, and to improve the oxidation stability of light oil more than before.

また、排気ガス浄化触媒の被毒防止から硫黄分が殆どない、いわゆるサルファーフリーの燃料油が2005年1月から市場に投入されている。また、燃費規制や二酸化炭素排出量低減、排ガス中の環境負荷物質低減を背景に、軽油の硫黄分は10質量ppmよりもさらに低下することが要求されている。硫黄分を除去するためには、高温高圧にした軽油に水素を吹き込んで固体触媒に接触させ、水素化分解反応によって硫黄分を硫化水素として除去する水素化脱硫処理が一般に行われる。しかしながら、硫黄分を高度に除去する過程において高温で熱負荷を受けることにより、軽油中に不安定な物質が生成されやすく、酸化安定性が悪化する場合が多い。   In addition, so-called sulfur-free fuel oil, which has almost no sulfur content to prevent poisoning of the exhaust gas purification catalyst, has been put on the market since January 2005. In addition, against the background of fuel efficiency regulations, carbon dioxide emission reduction, and reduction of environmentally hazardous substances in exhaust gas, the sulfur content of light oil is required to be further reduced from 10 mass ppm. In order to remove the sulfur content, a hydrodesulfurization treatment is generally performed in which hydrogen is blown into light oil at a high temperature and pressure and brought into contact with a solid catalyst, and the sulfur content is removed as hydrogen sulfide by a hydrocracking reaction. However, when subjected to a heat load at a high temperature in the process of highly removing sulfur, unstable substances are likely to be generated in light oil, and oxidation stability often deteriorates.

そこで、軽油の硫黄分を除去する反応において温度を下げて、酸素に対して不安定な炭化水素構造をもつ物質の生成を抑えることが考えられるが、水素化脱硫の触媒活性が低下してくると硫黄分除去が困難になり、また一般に原料油に用いられる接触分解軽油や熱分解軽油等に多く含まれるインドール類のような含窒素化合物が水素化脱硫後も製品に残留しやすくなり、やはり酸化安定性を悪化させる。   Therefore, it is conceivable to lower the temperature in the reaction to remove the sulfur content of the gas oil to suppress the production of substances having a hydrocarbon structure unstable to oxygen, but the catalytic activity of hydrodesulfurization will be reduced. It is difficult to remove the sulfur content, and nitrogen-containing compounds such as indoles, which are generally contained in catalytically cracked diesel oil and pyrolysis diesel oil, which are generally used in feedstock oil, tend to remain in the product after hydrodesulfurization. Deteriorates oxidation stability.

そこで、軽油の酸化安定性を向上させるために、古くからアミン系及びフェノール系の種々の酸化防止剤等を軽油に添加することが行われている。硫黄分を10質量ppm以下に低減した軽油に酸化防止剤を添加した例としては、特開2004−225000号公報(特許文献1)が挙げられる。ここではアミン系酸化防止剤としてN,N’−ジイソプロピル−p−フェニレンジアミン等が、フェノール系酸化防止剤として2,6−ジ−tert−ブチル−4−メチルフェノール等の使用が可能であることが記載されている。
しかし、特にディーゼルエンジンの高圧噴射化に伴う軽油への熱負荷増大により、軽油に対する酸化安定性要求レベルが上がり、これに伴い酸化安定性評価試験温度も高くなっている。所望の効果を得るために必要な酸化防止剤の量は、酸化安定性の悪い軽油組成物ほど多くなり、製造コストを引き上げることとなる。更に、酸化防止剤の量が多くなるにつれて、温度低下により酸化防止剤が析出し易くなる。逆に、添加剤の添加量が少ないと酸化時に添加剤の酸化防止効果が消耗された後は、顕著に軽油の酸化安定性が悪化してエンジン清浄性や金属材料を腐食させる等の悪影響を及ぼす。
Therefore, in order to improve the oxidation stability of light oil, various amine-based and phenol-based antioxidants have been added to light oil for a long time. JP, 2004-225000, A (patent documents 1) is mentioned as an example which added antioxidant to light oil which reduced sulfur content to 10 mass ppm or less. Here, N, N′-diisopropyl-p-phenylenediamine or the like can be used as an amine-based antioxidant, and 2,6-di-tert-butyl-4-methylphenol or the like can be used as a phenol-based antioxidant. Is described.
However, the demand for oxidation stability for diesel oil has increased due to an increase in the thermal load on diesel oil, especially with the high-pressure injection of diesel engines. Accordingly, the oxidation stability evaluation test temperature has also increased. The amount of the antioxidant necessary to obtain the desired effect increases as the light oil composition with poor oxidation stability increases the production cost. Furthermore, as the amount of the antioxidant increases, the antioxidant is likely to precipitate due to the temperature decrease. On the other hand, if the additive amount is small, after the antioxidant effect of the additive is exhausted during oxidation, the oxidation stability of the light oil will deteriorate significantly, causing adverse effects such as engine cleanliness and corrosion of metal materials. Effect.

そのため、酸化防止用添加剤を添加しないで軽油の酸化安定性を維持することが提案されている(特許文献2)。具体的には、酸化安定性の悪い物質としてフルオレン類とナフテンベンゼン類に着目し、これらの含有量と酸化安定性が良好な物質であるナフタレン類含有量とのバランスをとって特定の範囲とし、酸化安定性を得ている。
特開2004−225000号公報 特開2006−137922号公報
Therefore, it has been proposed to maintain the oxidation stability of light oil without adding an antioxidant additive (Patent Document 2). Specifically, we focus on fluorenes and naphthenebenzenes as substances with poor oxidation stability, and balance these contents with the contents of naphthalene, which is a substance with good oxidation stability, to achieve a specific range. Has obtained oxidation stability.
JP 2004-225000 A JP 2006-137922 A

本発明者の研究によれば、特許文献2に記載の発明の通りにフルオレン類、ナフテンベンゼン類及びナフタレン類の含有量を特定範囲にした場合でも、充分な酸化安定性を示さない場合があることが判明し、上記成分以外にも顕著に酸化安定性に影響を与える成分の存在が予想された。
そこで、本発明は軽油の酸化安定性に顕著に影響を及ぼすその他の物質を突き止め、その物質の含有量を特定範囲に制御した低硫黄軽油組成物の製造方法を提供することを課題とする。
According to the research of the present inventor, even when the content of fluorenes, naphthenebenzenes and naphthalenes is in a specific range as in the invention described in Patent Document 2, sufficient oxidation stability may not be exhibited. As a result, it was predicted that components other than the above components significantly affect the oxidative stability.
Accordingly, an object of the present invention is to provide a method for producing a low sulfur gas oil composition in which other substances that significantly affect the oxidation stability of gas oil are identified and the content of the substances is controlled within a specific range.

本発明者は上記課題を解決すべく鋭意研究したところ、軽油中の不飽和化合物に着目するに至り、その結果、酸化安定性の悪化が原料油(又は基材)中に微量含まれるスチレン類及びジエン類の残留、或いは軽油中の硫黄分を高度に低減する過程で起こる微量のスチレン類及びジエン類の生成や微量のナフタレン類の減少に起因することを見出した。そして、軽油中に見出されるのは、スチレン類の中でも特に炭素数10以下のスチレン類化合物で、ジエン類の中でも特に炭素数15以上のジエン類化合物であり、これらの化合物が軽油の酸化安定性に顕著に悪影響を及ぼす蓋然性が高いことを突き止め、これらの化合物の含有量を制御することで軽油の酸化安定性の向上が可能であることを確認した。
また、縮合多環芳香族炭化水素、中でも2環及び3環の縮合多環芳香族炭化水素は軽油の酸化過程で発生する活性種を安定化させる効果があるため、ジエン類やスチレン類による酸化安定性の悪影響を中和することが可能であり、スチレン類、ジエン類、及び縮合多環芳香族炭化水素の量を特定範囲内に制限することにより、酸化安定性の悪化を抑制できることを見出した。
具体的には、次式で表される酸化指数IOが0.5以下となる範囲である。
IO=(C10LST)+3×(C17HDI)−(R2A)−5×(R3A)
(C10LST:炭素数10以下のスチレン類化合物含有量、質量%、C17HDI:炭素数17以上のジエン類化合物含有量、質量%、R2A:縮合多環芳香族炭化水素の中で2環の化合物含有量、質量%、R3A:縮合多環芳香族炭化水素の中で3環の化合物含有量、質量%)
The present inventor has intensively studied to solve the above problems, and has come to focus on unsaturated compounds in light oil. As a result, styrenes whose deterioration in oxidation stability is contained in a trace amount in raw material oil (or base material). And dienes, or the formation of trace amounts of styrenes and dienes and the reduction of trace amounts of naphthalenes that occur in the process of highly reducing the sulfur content in light oil. Among the styrenes, styrene compounds having 10 or less carbon atoms are found, and among the dienes, particularly diene compounds having 15 or more carbon atoms, and these compounds are oxidative stability of light oil. It was confirmed that the oxidation stability of light oil could be improved by controlling the content of these compounds.
In addition, condensed polycyclic aromatic hydrocarbons, especially bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons, have the effect of stabilizing active species generated during the oxidation process of light oil, so they are oxidized by dienes and styrenes. It has been found that it is possible to neutralize the adverse effects of stability, and by limiting the amount of styrenes, dienes, and condensed polycyclic aromatic hydrocarbons within a specific range, deterioration of oxidation stability can be suppressed. It was.
Specifically, it is a range in which the oxidation index IO expressed by the following formula is 0.5 or less.
IO = (C10LST) + 3 × (C17HDI) − (R2A) −5 × (R3A)
(C10LST: C10 or less styrene compound content, mass%, C17HDI: Diene compound content of 17 or more carbon atoms, mass%, R2A: Bicyclic compound contained in condensed polycyclic aromatic hydrocarbons Amount, mass%, R3A: tricyclic compound content in condensed polycyclic aromatic hydrocarbon, mass%)

従って、軽油組成物を製造する際には、最終的にIOが上記のような範囲になるように幾つかの基材を組み合わせればよいのであって、低硫黄化により軽油基材のIOが0.5を超えていることを考えれば、IOが0.5以下の基材のみを用いて軽油組成物全体のIOを0.5以下の軽油組成物を製造するよりも、IOが0.5を超える軽油基材にIOが0.5以下である基材を混合して、IOが0.5以下となる軽油組成物を製造するのが実用的であり、簡便である。   Therefore, when producing a light oil composition, it is only necessary to combine several base materials so that the final IO is in the above range. Considering that it exceeds 0.5, IO is less than that of producing a light oil composition having an IO of 0.5 or less using only a base material having an IO of 0.5 or less. It is practical and simple to produce a light oil composition having an IO of 0.5 or less by mixing a light oil base of more than 5 with a base having an IO of 0.5 or less.

すなわち、本発明は一側面において、次式で表される酸化指数IOが0.5を越える少なくとも1種の基材Aと、酸化指数IOが0.5以下である少なくとも1種の基材Bとを混合し、酸化指数IOが0.5以下である軽油組成物を製造する軽油組成物の製造方法である。
IO=(C10LST)+3×(C17HDI)−(R2A)−5×(R3A)
(C10LST:炭素数10以下のスチレン類化合物含有量、質量%、C17HDI:炭素数17以上のジエン類化合物含有量、質量%、R2A:縮合多環芳香族炭化水素の中で2環の化合物含有量、質量%、R3A:縮合多環芳香族炭化水素の中で3環の化合物含有量、質量%)
That is, in one aspect of the present invention, at least one substrate A having an oxidation index IO represented by the following formula exceeding 0.5 and at least one substrate B having an oxidation index IO of 0.5 or less. And a light oil composition for producing a light oil composition having an oxidation index IO of 0.5 or less.
IO = (C10LST) + 3 × (C17HDI) − (R2A) −5 × (R3A)
(C10LST: C10 or less styrene compound content, mass%, C17HDI: Diene compound content of 17 or more carbon atoms, mass%, R2A: Bicyclic compound contained in condensed polycyclic aromatic hydrocarbons Amount, mass%, R3A: tricyclic compound content in condensed polycyclic aromatic hydrocarbon, mass%)

また、本発明に係る軽油組成物の製造方法は一実施形態において、基材Aの酸化指数IOが1.0以上であり、基材Bの酸化指数IOが0.0以下である。   Moreover, the manufacturing method of the light oil composition which concerns on this invention WHEREIN: The oxidation index IO of the base material A is 1.0 or more, and the oxidation index IO of the base material B is 0.0 or less.

本発明の軽油組成物の製造方法は、従来検討されていなかった軽油中の酸化安定性阻害物質の存在に着目して、その悪影響を抑制するように、所定の酸化指数IOをもつ軽油基材を混合して酸化安定性の向上した軽油組成物を製造するものである。
従って、酸化安定性の改善に用いていた酸化防止剤を減量、更には排除することができるので、製造コストを低減できることにもつながる。
The method for producing a light oil composition of the present invention is based on a light oil base material having a predetermined oxidation index IO so as to suppress adverse effects by paying attention to the presence of an oxidative stability inhibitor in light oil, which has not been studied in the past. Are mixed to produce a light oil composition with improved oxidation stability.
Accordingly, the antioxidant used for improving the oxidation stability can be reduced and further eliminated, leading to a reduction in manufacturing cost.

酸化指数
本発明者は種々の実験結果に基づいて、炭素数10以下のスチレン類及び炭素数17以上のジエン類が軽油組成物の酸化安定性に与える悪影響と、2環及び3環の縮合多環芳香族炭化水素による酸化安定性向上効果との大小関係は、概ね次式によって表すことができ、これにより軽油組成物の酸化安定性をより定量的に評価できることを見出した。
IO(酸化指数)=(C10LST)+3×(C17HDI)−(R2A)−5×(R3A)
(C10LST:炭素数10以下のスチレン類化合物含有量、質量%、C17HDI:炭素数17以上のジエン類化合物含有量、質量%、R2A:縮合多環芳香族炭化水素の中で2環の化合物含有量、質量%、R3A:縮合多環芳香族炭化水素の中で3環の化合物含有量、質量%)
前記各成分については後述するガスクロマトグラフィーによりその含有量を測定することができる。
本発明による軽油組成物は、酸化指数IOが0.5以下、酸化安定性向上から好ましくは0.0以下、さらに好ましくは−0.5以下、特には−1.0以下である。但し、酸化指数IOが低くなり過ぎると縮合多環芳香族炭化水素の存在による燃焼性の悪化が見られるので、酸化指数IOは好ましくは−5.0以上、さらに好ましくは−3.0以上、特には−2.0以上である。
Oxidation index Based on the results of various experiments, the present inventor has found that styrenes having 10 or less carbon atoms and dienes having 17 or more carbon atoms have an adverse effect on the oxidation stability of gas oil compositions, and that polycyclic and tricyclic condensed polymers. It has been found that the magnitude relationship with the effect of improving the oxidative stability by cyclic aromatic hydrocarbons can be generally expressed by the following formula, whereby the oxidative stability of the light oil composition can be more quantitatively evaluated.
IO (oxidation index) = (C10LST) + 3 x (C17HDI)-(R2A)-5 x (R3A)
(C10LST: C10 or less styrene compound content, mass%, C17HDI: Diene compound content of 17 or more carbon atoms, mass%, R2A: Bicyclic compound contained in condensed polycyclic aromatic hydrocarbons Amount, mass%, R3A: tricyclic compound content in condensed polycyclic aromatic hydrocarbon, mass%)
About each said component, the content can be measured by the gas chromatography mentioned later.
The light oil composition according to the present invention has an oxidation index IO of 0.5 or less, preferably 0.0 or less, more preferably −0.5 or less, particularly −1.0 or less in view of improvement in oxidation stability. However, if the oxidation index IO is too low, deterioration in combustibility due to the presence of the condensed polycyclic aromatic hydrocarbon is seen, so the oxidation index IO is preferably −5.0 or more, more preferably −3.0 or more, In particular, it is -2.0 or more.

このような軽油組成物を製造する際には、最終的にIOが上記のような範囲になるように幾つかの基材を組み合わせればよいのであって、低硫黄化により軽油基材のIOが0.5を超えていることを考えれば、IOが0.5以下の基材のみを用いて軽油組成物全体のIOを0.5以下の軽油組成物を製造するよりも、IOが0.5を超える軽油基材にIOが0.5以下である基材を混合して、IOが上記範囲となる軽油組成物を製造するのが実用的であり、簡便である。   When producing such a light oil composition, it is only necessary to combine several base materials so that the IO finally falls within the above range. Is less than 0.5, IO is less than that of producing a light oil composition having an IO of 0.5 or less using only a base material having an IO of 0.5 or less. It is practical and simple to produce a light oil composition in which IO is in the above range by mixing a base material having an IO of 0.5 or less with a light oil base material exceeding 0.5.

本発明の一実施形態によれば、基材Aの酸化指数IOが1.0以上であり、基材Bの酸化指数IOが0.0以下とすることができる。基材B自体のIOは特に下限はなく、例えば基材Bの100質量%をR2AとしてIOを−100とすることもでき、基材Bの100質量%をR3AとしてIOを−500とすることも可能である。   According to one embodiment of the present invention, the oxidation index IO of the substrate A can be 1.0 or more, and the oxidation index IO of the substrate B can be 0.0 or less. The IO of the base material B itself is not particularly limited. For example, 100% by mass of the base material B can be set to R2A and IO can be set to −100, and 100% by mass of the base material B can be set to R3A and IO can be set to −500. Is also possible.

硫黄分
本発明による軽油組成物は、硫黄分が10質量ppm以下であるのが好ましい。硫黄分が10質量ppm以下であるので、燃焼によって生ずる亜硫酸ガス等に基づく悪臭や環境負荷が低減される。硫黄分は、環境負荷物質及び燃費低減の観点からより好ましくは5質量ppm以下、さらにより好ましくは1質量ppm以下である。
よって、基材A及び基材Bは、これらを混合したときに得られる軽油組成物中の硫黄分含有量が上記範囲となるように選定するのが望ましく、基材A及び基材B中の硫黄分含有量は共に上記範囲であるのがより望ましい。
Sulfur content The gas oil composition according to the present invention preferably has a sulfur content of 10 mass ppm or less. Since the sulfur content is 10 mass ppm or less, malodor and environmental load due to sulfurous acid gas and the like generated by combustion are reduced. The sulfur content is more preferably 5 ppm by mass or less, and even more preferably 1 ppm by mass or less, from the viewpoint of environmental load substances and fuel consumption reduction.
Therefore, it is desirable to select the base material A and the base material B so that the sulfur content in the light oil composition obtained when they are mixed is within the above range. The sulfur content is more preferably within the above range.

スチレン類
軽油組成物には一般に多種多様な成分が混在しており、スチレン類だけ取り上げたとしても何種類もの種類が混在している可能性があるが、本発明者は、軽油中に含まれるスチレン類に関しては、炭素数10以下のものがほとんど又はすべてであることを見出した。
炭素数11以上のスチレン類化合物であっても酸化安定性に対して悪影響を与える可能性はあるが、軽油組成物中には通常は検出されず、検出されたとしても無視できる量である。
そのため、スチレン類による酸化安定性への影響に関しては、炭素数10以下のスチレン類の含有量のみを追跡することで軽油組成物中の酸化安定性を評価することができ、炭素数10以下のスチレン類を制御することによって軽油組成物の酸化安定性を向上させることができる。
以上の知見に基づき、本発明に係る軽油組成物は一実施形態において、炭素数10以下のスチレン類化合物含有量が合計で0.15質量%以下が好ましく、酸化安定性からより好ましくは0.10質量%以下であり、さらに好ましくは0.08質量%以下、特に好ましくは0.05質量%以下、最も好ましくは0.01質量%以下である。
従って、少なくとも基材B中のスチレン類化合物含有量を上記範囲とし、基材A及び基材Bを混合したときに得られる軽油組成物中のスチレン類化合物含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。
In general, a wide variety of components are mixed in a styrene gas oil composition, and even if only styrenes are taken up, there are various types of types, but the present inventor is included in light oil. It has been found that most or all of the styrenes have 10 or less carbon atoms.
Even a styrene compound having 11 or more carbon atoms may have an adverse effect on oxidation stability, but it is usually not detected in a light oil composition and is an amount that can be ignored even if detected.
Therefore, regarding the effect on the oxidation stability by styrenes, the oxidation stability in the light oil composition can be evaluated by tracking only the content of styrenes having 10 or less carbon atoms. By controlling the styrenes, the oxidation stability of the light oil composition can be improved.
Based on the above knowledge, in one embodiment, the light oil composition according to the present invention preferably has a total content of styrene compounds having 10 or less carbon atoms of 0.15% by mass or less, and more preferably from the viewpoint of oxidation stability. It is 10 mass% or less, More preferably, it is 0.08 mass% or less, Especially preferably, it is 0.05 mass% or less, Most preferably, it is 0.01 mass% or less.
Therefore, at least the styrene compound content in the base material B is in the above range, and the styrene compound content in the light oil composition obtained when the base material A and the base material B are mixed is in the above range. It is desirable to select the mixing ratio of material A and substrate B.

軽油組成物中に見出される炭素数10以下のスチレン類化合物の具体例としては、スチレン、メチルスチレン、ジメチルスチレン等が挙げられるが、軽油に主に含有されるスチレン類としてはジメチルスチレンである。
従って、更に推し進めると、スチレン類に関しては、ジメチルスチレン、典型的には2,4−ジメチルスチレンの含有量のみ追跡することでも軽油組成物中の酸化安定性を評価することができ、ジメチルスチレン、典型的には2,4−ジメチルスチレンの含有量を制御することによって軽油組成物の酸化安定性を向上させることができる。
従って、本発明に係る軽油組成物は、典型的な一実施形態において、ジメチルスチレンの含有量が合計で0.15質量%以下が好ましく、より好ましくは0.1質量%以下、さらに好ましくは0.08質量%以下、特に好ましくは0.05質量%以下、最も好ましくは0.01質量%以下であり、更に典型的な実施形態において、2,4−ジメチルスチレンの含有量が合計で0.15質量%以下が好ましく、より好ましくは0.1質量%以下、さらに好ましくは0.08質量%以下、特に好ましくは0.05質量%以下、最も好ましくは0.01質量%以下である。
以上より、少なくとも基材B中のジメチルスチレン、典型的には2,4−ジメチルスチレンの含有量を上記範囲とし、基材A及び基材Bを混合したときに得られる軽油組成物中のジメチルスチレン含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。
Specific examples of the styrene compound having 10 or less carbon atoms found in the light oil composition include styrene, methylstyrene, dimethylstyrene, and the like, and dimethylstyrene is mainly contained in the light oil.
Therefore, in further progress, with regard to styrenes, it is possible to evaluate the oxidative stability in a light oil composition by following only the content of dimethyl styrene, typically 2,4-dimethyl styrene. Typically, the oxidation stability of the light oil composition can be improved by controlling the content of 2,4-dimethylstyrene.
Therefore, in a typical embodiment, the light oil composition according to the present invention preferably has a total content of dimethylstyrene of 0.15% by mass or less, more preferably 0.1% by mass or less, and still more preferably 0. 0.08% by mass or less, particularly preferably 0.05% by mass or less, and most preferably 0.01% by mass or less. In a more typical embodiment, the total content of 2,4-dimethylstyrene is 0.00. 15 mass% or less is preferable, More preferably, it is 0.1 mass% or less, More preferably, it is 0.08 mass% or less, Especially preferably, it is 0.05 mass% or less, Most preferably, it is 0.01 mass% or less.
From the above, at least the content of dimethylstyrene in the base material B, typically 2,4-dimethylstyrene, is in the above range, and the dimethyl in the light oil composition obtained when the base material A and the base material B are mixed. It is desirable to select the mixing ratio of the base material A and the base material B so that the styrene content falls within the above range.

ジエン類
上述したように、軽油組成物には一般に多種多様な成分が混在しているため、ジエン類であったとしても、やはり多様な種類が混在していると考えられる。しかしながら、本発明者の研究結果によれば、軽油中に含まれるジエン類は、炭素数15以上のものがほとんどであり、また、軽油の酸化処理前後の各含有量変化から、炭素数17以上のジエン類化合物が酸化反応性に富んでおり、特に酸化安定性に悪影響が大きいと考えられるのは炭素数17以上のものである。炭素数14以下のジエン類であっても酸化安定性に対して悪影響を与える可能性はあるが、軽油組成物中には通常は検出されず、検出されたとしても無視できる量である。
そのため、ジエン類による酸化安定性への影響に関しては、炭素数15以上のジエン類の含有量のみ、更には炭素数17以上のジエン類のみを追跡することで軽油組成物中の酸化安定性を評価することができ、炭素数15以上、更には炭素数17以上のジエン類を制御することによって軽油組成物の酸化安定性を向上させることができる。
以上の知見に基づき、本発明に係る軽油組成物は一実施形態において、炭素数15以上のジエン類化合物含有量が合計で2.00質量%以下、酸化安定性向上から好ましくは1.50質量%以下、さらに好ましくは1.00質量%以下、特には0.80質量%以下である。
従って、少なくとも基材B中の炭素数15以上のジエン類化合物の含有量を上記範囲とし、基材A及び基材Bを混合したときに得られる軽油組成物中の炭素数15以上のジエン類化合物の含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。
また、本発明に係る軽油組成物は別の一実施形態において、炭素数17以上のジエン類化合物含有量が合計で1.00質量%以下、酸化安定性向上から好ましくは0.80質量%以下、さらに好ましくは0.50質量%以下、特には0.10質量%以下である。
従って、少なくとも基材B中の炭素数17以上のジエン類化合物の含有量を上記範囲とし、基材A及び基材Bを混合したときに得られる軽油組成物中の炭素数17以上のジエン類化合物の含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。
また、軽油組成物中に見出される炭素数17以上のジエン類は主として炭素数17〜20、より典型的には炭素数17及び18であるから、本発明に係る軽油組成物は更に別の一実施形態において、炭素数17〜20のジエン類化合物含有量が合計で1.00質量%以下、酸化安定性向上から好ましくは0.80質量%以下、さらに好ましくは0.50質量%以下、特には0.10質量%以下であり、典型的には、炭素数17及び18のジエン類化合物が合計で1.00質量%以下、酸化安定性向上から好ましくは0.80質量%以下、さらに好ましくは0.50質量%以下、特には0.10質量%以下である。
従って、少なくとも基材B中の炭素数17〜20のジエン類化合物、典型的には炭素数17及び18のジエン類化合物の含有量を上記範囲とし、基材A及び基材Bを混合したときに得られる軽油組成物中の炭素数17〜20のジエン類化合物、典型的には炭素数17及び18のジエン類化合物の含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。
Dienes As mentioned above, since various components are generally mixed in the light oil composition, even if it is a diene, it is considered that various types are also mixed. However, according to the research results of the present inventors, most of the dienes contained in light oil are those having 15 or more carbon atoms, and from the content changes before and after the oxidation treatment of light oil, 17 or more carbon atoms. These diene compounds are rich in oxidation reactivity, and those having 17 or more carbon atoms are considered to have a particularly bad influence on oxidation stability. Even dienes having 14 or less carbon atoms may adversely affect oxidation stability, but they are not usually detected in light oil compositions, and even if detected, they are negligible amounts.
Therefore, regarding the effect of dienes on the oxidation stability, the oxidation stability in the light oil composition can be improved by tracking only the content of dienes having 15 or more carbon atoms, and also only dienes having 17 or more carbon atoms. The oxidation stability of the light oil composition can be improved by controlling dienes having 15 or more carbon atoms, and further 17 or more carbon atoms.
Based on the above findings, in one embodiment, the light oil composition according to the present invention has a total content of diene compounds having 15 or more carbon atoms of 2.00% by mass or less, preferably 1.50% by mass because of improved oxidation stability. % Or less, more preferably 1.00% by mass or less, and particularly 0.80% by mass or less.
Therefore, the content of the diene compound having 15 or more carbon atoms in the base material B is in the above range, and the dienes having 15 or more carbon atoms in the light oil composition obtained when the base material A and the base material B are mixed. It is desirable to select the mixing ratio of the base material A and the base material B so that the content of the compound falls within the above range.
In another embodiment of the light oil composition according to the present invention, the total content of diene compounds having 17 or more carbon atoms is 1.00% by mass or less, preferably 0.80% by mass or less from the viewpoint of improving oxidation stability. More preferably, it is 0.50% by mass or less, particularly 0.10% by mass or less.
Therefore, the content of the diene compound having 17 or more carbon atoms in the base material B is in the above range, and the diene compounds having 17 or more carbon atoms in the light oil composition obtained when the base material A and the base material B are mixed. It is desirable to select the mixing ratio of the base material A and the base material B so that the content of the compound falls within the above range.
In addition, since the dienes having 17 or more carbon atoms found in the light oil composition mainly have 17 to 20 carbon atoms, and more typically 17 and 18 carbon atoms, the light oil composition according to the present invention is still another one. In the embodiment, the total content of diene compounds having 17 to 20 carbon atoms is 1.00% by mass or less, preferably 0.80% by mass or less, more preferably 0.50% by mass or less, particularly preferably 0.50% by mass or less. Is typically 1.00% by mass or less, preferably from 0.80% by mass or less, more preferably 0.80% by mass or less, and more preferably 0.80% by mass or less. Is 0.50% by mass or less, particularly 0.10% by mass or less.
Therefore, when the content of the diene compound having 17 to 20 carbon atoms in the base material B, typically the diene compound having 17 and 18 carbon atoms is within the above range, and the base material A and base material B are mixed The base A and the base B are mixed so that the content of the diene compound having 17 to 20 carbon atoms, typically the diene compound having 17 and 18 carbon atoms, in the light oil composition obtained in the above is within the above range. It is desirable to select a ratio.

炭素数15以上のジエン類化合物として軽油組成物中に見出されるのは主として、ヒマカラ−2,4−ジエン(C1524)、オクタデカジエン(例:ビシクロ[10.6.0]オクタデカ−1(12),15−ジエン(C1830))及び、テトラメチル−フェニルビシクロヘプタジエン(例:1,5,6,7−テトラメチル−3−フェニルビシクロ[3.2.0]ヘプタ−2,6−ジエン(C1720))等であり、特にビシクロ構造を有する炭素数17以上、典型的には炭素数17〜20、より典型的には炭素数17及び18のジエン類が見出されることが多い。従って、更に推し進めると、ジエン類に関しては、ビシクロ構造を有する炭素数17以上、典型的には炭素数17〜20、より典型的には炭素数17及び18のジエン類の含有量のみを追跡することでも軽油組成物中の酸化安定性を評価することができ、斯かるビシクロ構造を有するジエン類の含有量を制御することによって軽油組成物の酸化安定性を向上させることができる。
従って、本発明に係る軽油組成物は、更に典型的な一実施形態において、ビシクロ構造を有する炭素数17以上、典型的には炭素数17〜20、より典型的には炭素数17及び18のジエン類の含有量が合計で1.00質量%以下、酸化安定性向上から好ましくは0.80質量%以下、さらに好ましくは0.50質量%以下、特には0.10質量%以下である。
以上より、少なくとも基材B中のビシクロ構造を有する炭素数17以上、典型的には炭素数17〜20、より典型的には炭素数17及び18のジエン類の含有量を上記範囲とし、基材A及び基材Bを混合したときに得られる軽油組成物中のビシクロ構造を有する炭素数17以上、典型的には炭素数17〜20、より典型的には炭素数17及び18のジエン類の含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。
The diene compounds having 15 or more carbon atoms are mainly found in light oil compositions such as Himakara-2,4-diene (C 15 H 24 ), octadecadiene (eg, bicyclo [10.6.0] octadeca- 1 (12), 15-diene (C 18 H 30 )) and tetramethyl-phenylbicycloheptadiene (eg, 1,5,6,7-tetramethyl-3-phenylbicyclo [3.2.0] hepta -2,6-dienes (C 17 H 20 )) and the like, in particular, dienes having a bicyclo structure of 17 or more carbon atoms, typically 17 to 20 carbon atoms, more typically 17 and 18 carbon atoms. Is often found. Therefore, to go further, with respect to dienes, only the content of dienes having a bicyclo structure of 17 or more carbon atoms, typically 17 to 20 carbon atoms, more typically 17 and 18 carbon atoms is traced. In particular, the oxidation stability in the light oil composition can be evaluated, and the oxidation stability of the light oil composition can be improved by controlling the content of the diene having such a bicyclo structure.
Accordingly, the gas oil composition according to the present invention, in a more typical embodiment, has 17 or more carbon atoms having a bicyclo structure, typically 17 to 20 carbon atoms, more typically 17 and 18 carbon atoms. The total content of dienes is 1.00% by mass or less, preferably 0.80% by mass or less, more preferably 0.50% by mass or less, and particularly 0.10% by mass or less, from the viewpoint of improving oxidation stability.
From the above, the content of the diene having at least 17 carbon atoms, typically 17 to 20 carbon atoms, more typically 17 and 18 carbon atoms having a bicyclo structure in the substrate B is in the above range, Dienes having 17 or more carbon atoms, typically 17 to 20 carbon atoms, and more typically 17 and 18 carbon atoms having a bicyclo structure in a light oil composition obtained by mixing material A and base material B It is desirable to select the mixing ratio of the base material A and the base material B so that the content of is within the above range.

縮合多環芳香族炭化水素
縮合多環芳香族炭化水素は軽油の酸化過程で発生する活性種を安定化させる効果があるため、ジエン類やスチレン類による酸化安定性の悪影響を中和することができる。特に2環及び3環の縮合多環芳香族炭化水素はその効果が大きいため、縮合多環芳香族炭化水素に関しては、2環及び3環の縮合多環芳香族炭化水素のみを追跡することで軽油組成物中の酸化安定性を評価することができ、2環及び3環の縮合多環芳香族炭化水素を増やすことによって軽油組成物の酸化安定性を向上させることができる。なお、本発明において、2環及び3環の縮合多環芳香族炭化水素とは分子中にナフタレン環、アントラセン環及びフェナントレン環、フェナレン環、の何れかを1個有する炭化水素のことを指す。但し、分子中に縮合又は非縮合の飽和環(例:テトラリン環、シクロアルカン環)を有するもの(例:9,10−ジヒドロアントラセン)は酸化安定性の向上に寄与しないことからナフタレン環、アントラセン環又はフェナントレン環を有していたとしても2環及び3環の縮合多環芳香族炭化水素から除外する。
Condensed polycyclic aromatic hydrocarbons Condensed polycyclic aromatic hydrocarbons have the effect of stabilizing the active species generated during the oxidation process of light oil, so they can neutralize the negative effects of oxidation stability due to dienes and styrenes. it can. In particular, since condensed polycyclic aromatic hydrocarbons of 2 and 3 rings have a large effect, with regard to the condensed polycyclic aromatic hydrocarbons, it is possible to trace only the condensed polycyclic aromatic hydrocarbons of 2 and 3 rings. The oxidation stability in the light oil composition can be evaluated, and the oxidation stability of the light oil composition can be improved by increasing the bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons. In the present invention, the bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons refer to hydrocarbons having one naphthalene ring, anthracene ring, phenanthrene ring, or phenalene ring in the molecule. However, those having a saturated or non-condensed saturated ring (eg, tetralin ring, cycloalkane ring) in the molecule (eg, 9,10-dihydroanthracene) do not contribute to the improvement of oxidation stability. Even if it has a ring or a phenanthrene ring, it is excluded from the bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons.

従って、本発明による軽油組成物は一実施形態において、2環及び3環の縮合多環芳香族炭化水素の含有量が合計で0.10質量%以上、酸化安定性向上から好ましくは0.40質量%以上、さらに好ましくは0.70質量%以上、特には0.90質量%以上である。
ただし、上記多環芳香族炭化水素化合物含有量は、多すぎると今度は燃焼性が悪化して、ディーゼル車両排気ガスの窒素酸化物や粒子状物質量増加するため、合計で好ましくは3.5質量%以下、より好ましくは3.0質量%以下、さらに好ましくは2.5質量%以下、特には2.0質量%以下である。
よって、基材A及び基材Bを混合したときに得られる軽油組成物中の2環及び3環の縮合多環芳香族炭化水素の含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。この場合、基材B自体に含まれる2環及び3環の縮合多環芳香族炭化水素の含有量に上限はなく、100質量%が2環及び3環の縮合多環芳香族炭化水素であってもよい。
Therefore, in one embodiment, the light oil composition according to the present invention has a total content of bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons of 0.10% by mass or more, preferably 0.40 from the viewpoint of improving oxidation stability. It is 0.7% by mass or more, more preferably 0.70% by mass or more, and particularly 0.90% by mass or more.
However, if the content of the polycyclic aromatic hydrocarbon compound is too large, the combustibility deteriorates this time, and the amount of nitrogen oxides and particulate matter in diesel vehicle exhaust gas increases, so the total content is preferably 3.5. It is at most 3.0% by mass, more preferably at most 2.5% by mass, particularly preferably at most 2.0% by mass.
Therefore, the base material A and the base material so that the content of the bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons in the light oil composition obtained when the base material A and the base material B are mixed are within the above range. It is desirable to select the mixing ratio of B. In this case, there is no upper limit to the content of the bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons contained in the substrate B itself, and 100% by mass is the bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons. May be.

更には2環及び3環の縮合多環芳香族炭化水素の中でも、酸化安定性の効果が大きいのは側鎖のアルキル置換基の数が0〜2のものであることから、本発明による軽油組成物は好ましい一実施形態において、側鎖のアルキル置換基の数が0〜2である2環及び3環の縮合多環芳香族炭化水素の含有量が合計で0.10質量%以上、酸化安定性向上から好ましくは0.40質量%以上、さらに好ましくは0.70質量%以上、特には0.90質量%以上である。また、先と同様の理由により、合計で好ましくは3.0質量%以下、さらに好ましくは2.5質量%以下、特には2.0質量%以下である。
よって、基材A及び基材Bを混合したときに得られる軽油組成物中、側鎖のアルキル置換基の数が0〜2である2環及び3環の縮合多環芳香族炭化水素の含有量が上記範囲となるように基材Aと基材Bの混合比を選定するのが望ましい。この場合、基材B自体に含まれる2環及び3環の縮合多環芳香族炭化水素の含有量に上限はなく、100質量%が側鎖のアルキル置換基の数が0〜2である2環及び3環の縮合多環芳香族炭化水素であってもよい。
Furthermore, among the condensed polycyclic aromatic hydrocarbons of 2 and 3 rings, the effect of oxidative stability is that the number of alkyl substituents in the side chain is 0 to 2, so the light oil according to the present invention In a preferred embodiment of the composition, the total content of bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons having 0 to 2 alkyl substituents in the side chain is 0.10% by mass or more in total. From the viewpoint of stability improvement, it is preferably 0.40% by mass or more, more preferably 0.70% by mass or more, and particularly 0.90% by mass or more. Further, for the same reason as above, the total is preferably 3.0% by mass or less, more preferably 2.5% by mass or less, and particularly 2.0% by mass or less.
Therefore, in the light oil composition obtained when the base material A and the base material B are mixed, the inclusion of bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons in which the number of alkyl substituents in the side chain is 0 to 2 It is desirable to select the mixing ratio of the base material A and the base material B so that the amount is in the above range. In this case, there is no upper limit to the content of the bicyclic and tricyclic condensed polycyclic aromatic hydrocarbons contained in the base material B itself, and 100% by mass of the number of side chain alkyl substituents is 0 to 2. It may be a ring or a tricyclic condensed polycyclic aromatic hydrocarbon.

縮合多環芳香族炭化水素の中で2環の化合物の代表例は、ナフタレン及びアルキル置換基を側鎖に有するナフタレンであり、軽油に主に含有される化合物として、側鎖のアルキル置換基の数が0であるナフタレン、側鎖のアルキル置換基の数が1である1−メチルナフタレン、2−(1−メチルエチル)ナフタレン、側鎖のアルキル置換基の数が2である2,6−ジメチルナフタレン、1,7−ジメチルナフタレン、2−メチル−1−プロピルナフタレン、側鎖のアルキル置換基の数が3である2,3,5−トリメチルナフタレン、1,4,6−トリメチルナフタレン、2,3,6−トリメチルナフタレン、側鎖のアルキル置換基の数が4である1,2,3,4−テトラメチルナフタレン等が挙げられる。
また、縮合多環芳香族炭化水素の中で3環の化合物の代表例として、アントラセン、フェナントレン、アルキル置換基を側鎖に有するアントラセン、アルキル置換フェナントレンが挙げられるが、軽油に主に含有されるアントラセン化合物は殆どが水素化されており、軽油に主に含有される縮合多環芳香族炭化水素の中で3環の化合物は側鎖のアルキル置換基の数が0であるフェナントレンの他、アルキル置換基を側鎖に有するフェナントレンであり、例えば側鎖のアルキル置換基の数が2である2,5−ジメチルフェナントレン、側鎖のアルキル置換基の数が3である2,3,5−トリメチルフェナントレンがガスクロマトグラフにより検出される。
Among condensed polycyclic aromatic hydrocarbons, typical examples of bicyclic compounds are naphthalene and naphthalene having an alkyl substituent in the side chain. As a compound mainly contained in light oil, Naphthalene having a number of 0, 1-methylnaphthalene, 2- (1-methylethyl) naphthalene having a number of side chain alkyl substituents of 1, 2,6- Dimethylnaphthalene, 1,7-dimethylnaphthalene, 2-methyl-1-propylnaphthalene, 2,3,5-trimethylnaphthalene, 1,4,6-trimethylnaphthalene having 2, 3 side chain alkyl substituents, , 3,6-trimethylnaphthalene, 1,2,3,4-tetramethylnaphthalene having 4 side chain alkyl substituents, and the like.
Also, representative examples of tricyclic compounds among condensed polycyclic aromatic hydrocarbons include anthracene, phenanthrene, anthracene having an alkyl substituent in the side chain, and alkyl-substituted phenanthrene, which are mainly contained in light oil. Most of the anthracene compounds are hydrogenated, and among the condensed polycyclic aromatic hydrocarbons mainly contained in light oil, tricyclic compounds are phenanthrenes with 0 side chain alkyl substituents as well as alkyls. Phenanthrene having a substituent in the side chain, for example, 2,5-dimethylphenanthrene having 2 side chain alkyl substituents, 2,3,5-trimethyl having 3 side chain alkyl substituents Phenanthrene is detected by a gas chromatograph.

これらの縮合多環芳香族炭化水素の中で2環及び3環の各物質は、環数、側鎖数及び化学構造により酸化反応速度が夫々異なり、また水素化処理条件や沸点の違いにより、軽油中の含有率が異なること等の理由から0.01質量%以上、好ましくは0.05質量%以上、特には0.10質量%以上の含有量が好ましい。また、先述したとおり、ディーゼル車両排気ガスの窒素酸化物や粒子状物質量増加の観点から、各含有量が0.20質量%以下、好ましくは0.18質量%以下、特には0.15質量%以下が好ましい。   Among these condensed polycyclic aromatic hydrocarbons, the bicyclic and tricyclic substances have different oxidation reaction rates depending on the number of rings, the number of side chains, and the chemical structure, and due to differences in hydrotreating conditions and boiling points, A content of 0.01% by mass or more, preferably 0.05% by mass or more, particularly preferably 0.10% by mass or more is preferable because the content in the light oil is different. Further, as described above, from the viewpoint of increasing the amount of nitrogen oxides and particulate matter in diesel vehicle exhaust gas, each content is 0.20% by mass or less, preferably 0.18% by mass or less, particularly 0.15% by mass. % Or less is preferable.

本発明に係る軽油組成物に対しては、当業者に知られた任意の酸化防止剤を必要に応じて添加してもよい。酸化防止剤を添加する場合の添加量は当業者であれば目的とする酸化安定性に応じて適宜調整することができるが、例えば、炭素数10以上のスチレン類及び炭素数15以上のジエン類を夫々0.01質量%以上含有する場合は、酸化安定性を維持する為に酸化防止剤を添加することも有効であり、例えばその添加量は1〜10質量ppmであり、10質量ppm以上としてもよい。   To the light oil composition according to the present invention, any antioxidant known to those skilled in the art may be added as necessary. A person skilled in the art can appropriately adjust the addition amount in the case of adding the antioxidant according to the target oxidation stability. For example, styrenes having 10 or more carbon atoms and dienes having 15 or more carbon atoms can be used. In an amount of 0.01% by mass or more, it is also effective to add an antioxidant in order to maintain oxidation stability. For example, the addition amount is 1 to 10 ppm by mass, and 10 ppm by mass or more. It is good.

酸化防止剤としては、フェノール系、アミン系の中で特に制限なく使用できるが、例えば2,6−ジ−t−ブチルフェノール、2,6−ジ−t−ブチル−4−メチルフェノール、2,4−ジメチル−6−t−ブチルフェノール、2,4,6−トリ−t−ブチルフェノール、2−t−ブチル−4,6−ジメチルフェノール、2−t−ブチルフェノール等のフェノール系酸化防止剤や、N,N’−ジイソプロピル−p−フェニレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン等のアミン系酸化防止剤、及びこれらの混合物が挙げられる。フェノール系及びアミン系の化合物以外にも酸化防止効果を有する物質が考えられるが、区別を明確にするために、本発明においてはフェノール系及びアミン系の化合物のみを酸化防止剤として取扱い、酸化防止効果を有するその他の化合物を添加する場合は軽油基材として取り扱う。   The antioxidant can be used without particular limitation among phenols and amines. For example, 2,6-di-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 2,4 -Phenolic antioxidants such as dimethyl-6-t-butylphenol, 2,4,6-tri-t-butylphenol, 2-t-butyl-4,6-dimethylphenol, 2-t-butylphenol, N, Examples thereof include amine-based antioxidants such as N′-diisopropyl-p-phenylenediamine and N, N′-di-sec-butyl-p-phenylenediamine, and mixtures thereof. In addition to phenolic and amine compounds, substances with an antioxidative effect are conceivable, but for the sake of clarity, in the present invention, only phenolic and amine compounds are treated as antioxidants to prevent oxidation. When other compounds having an effect are added, they are handled as a light oil base.

また、その他、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤等の公知の燃料添加剤を添加しても良い。低温流動性向上剤としてはエチレン共重合体などを用いることが出来るが、特には酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐磨耗性向上剤としては、例えば長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好ましく用いられる。10〜500ppm、好ましくは50〜100ppmの添加量で十分に耐摩耗性が向上する。   In addition, known fuel additives such as a low-temperature fluidity improver, an abrasion resistance improver, and a cetane number improver may be added. An ethylene copolymer or the like can be used as the low-temperature fluidity improver, and vinyl esters of saturated fatty acids such as vinyl acetate, vinyl propionate and vinyl butyrate are particularly preferably used. As the wear resistance improver, for example, long chain fatty acids (carbon number 12 to 24) or fatty acid esters thereof are preferably used. The wear resistance is sufficiently improved by the addition amount of 10 to 500 ppm, preferably 50 to 100 ppm.

本発明の軽油組成物の製造方法は、上述したとおり、前記で定義される酸化指数IOが0.5を越える少なくとも1種の基材と、酸化指数IOが0.5以下である少なくとも1種の基材とを混合することにより、酸化指数IOが0.5以下となるように軽油組成物を製造するものである。硫黄分を低減することにより酸化指数IOを高める成分の含有量が増加するため、硫黄分を低くし、かつ酸化安定性を維持する方法として、各基材の酸化安定性の軽重をつけることが効果的で、酸化指数IOが0.5を越える基材の酸化指数IOとしては1.0以上であり、酸化指数IOが0.5以下である基材の酸化指数IOとしては0.0以下であることが好ましい。
基材としては、石油精製工程から得られる軽油留分などの留分のほか、1種または2種以上の化合物の混合物も使用することができる。
As described above, the method for producing a light oil composition of the present invention includes at least one base material having an oxidation index IO defined above of more than 0.5, and at least one base material having an oxidation index IO of 0.5 or less. By mixing the base material, a light oil composition is produced so that the oxidation index IO is 0.5 or less. Since the content of the component that increases the oxidation index IO increases by reducing the sulfur content, as a method of reducing the sulfur content and maintaining the oxidation stability, the weight of the oxidation stability of each substrate may be added. Effective, the oxidation index IO of a substrate having an oxidation index IO exceeding 0.5 is 1.0 or more, and the oxidation index IO of a substrate having an oxidation index IO of 0.5 or less is 0.0 or less. It is preferable that
As a base material, the mixture of 1 type, or 2 or more types of compounds other than fractions, such as a light oil fraction obtained from a petroleum refining process, can also be used.

原料油として、例えば、常圧蒸留装置、接触分解装置、熱分解装置等から得られる軽油留分、すなわち沸点が140〜400℃の範囲で留出する留分を用いて、水素化脱硫することにより得られるが、酸化安定性に悪影響を及ぼすスチレン類化合物や、ジエン類化合物の含有量を抑える為、水素化脱硫する原料油にこれらの化合物を多く含まない原料油、例えばアスファルトを熱分解した油の混合比率を抑えたり、原料油を選択したりすることが有効である。また、これら化合物の生成を抑える為に反応温度を低めとし、水素分圧を上げたり、水素/オイル比を高くしたりすることも有効である。なお、水素分圧を上げたり、水素/オイル比を高くしたりすることにより、酸化安定性向上効果を持つ縮合多環芳香族炭化水素含有量が減少することとなる為、これら2環及び3環の含有量を増加させる為に、これら縮合多環芳香族成分を多く含有する接触分解軽油等のスチレン類化合物や、ジエン類化合物の含有量が比較的少ない重質留分を原料油に多く混合することも有効である。なお、これらの基材は難脱硫成分も多く含有することから、水素化脱硫にあたっては硫黄分を選択的に除去する触媒を用いる必要がある。また、縮合多環芳香族分を多く含有し、硫黄分の少ない基材を、軽油水素化脱硫後に混合することも有効である。この基材として接触改質装置から留出される炭素数11以上の成分が挙げられる。   Hydrodesulfurization using, for example, a light oil fraction obtained from an atmospheric distillation apparatus, a catalytic cracking apparatus, a thermal cracking apparatus, or the like, that is, a fraction distilled at a boiling point of 140 to 400 ° C. However, in order to reduce the content of styrene compounds and diene compounds that adversely affect oxidation stability, raw oils that do not contain many of these compounds, such as asphalt, were pyrolyzed in order to suppress the content of hydrodesulfurized raw materials. It is effective to suppress the mixing ratio of the oil or to select the raw material oil. In order to suppress the formation of these compounds, it is also effective to lower the reaction temperature, increase the hydrogen partial pressure, or increase the hydrogen / oil ratio. It should be noted that by increasing the hydrogen partial pressure or increasing the hydrogen / oil ratio, the content of condensed polycyclic aromatic hydrocarbons having an effect of improving oxidation stability is reduced. In order to increase the ring content, styrene compounds such as catalytic cracking gas oil containing a large amount of these condensed polycyclic aromatic components and heavy fractions with relatively low content of diene compounds are used in the feedstock. Mixing is also effective. In addition, since these base materials also contain many difficult desulfurization components, it is necessary to use a catalyst that selectively removes sulfur in hydrodesulfurization. It is also effective to mix a base material containing a large amount of condensed polycyclic aromatics and low sulfur content after light oil hydrodesulfurization. Examples of the substrate include components having 11 or more carbon atoms distilled from the catalytic reformer.

その水素化脱硫は、水素化脱硫触媒として、Co、Mo及びNiの1種以上を含有し、又所望によりPを担持したものを用い、反応温度270〜380℃、好ましくは295〜360℃、反応圧力2.5〜8.5MPa、好ましくは2.7〜7.0MPa、LHSV0.9〜6.0h-1、好ましくは0.9〜5.4h-1、水素/オイル比130〜300(±5程度の変動は許容される。)Nm3/kLの条件の範囲で適宜選択して、上述した本発明の軽油組成物が得られるようにする。特には、LHSV、水素分圧、水素/オイル比は大きい方が良いが、あまり大きいと縮合多環芳香族成分が水素化される為、許容上限を超えない様にする。また反応温度は酸化安定性の悪いスチレン類化合物やジエン類化合物の生成を抑える為に、低めにするとよい。
なお、上記方法で得られた軽油組成物は、低温流動性を改善するために酸化安定性が良好な灯油組成物や、縮合多環芳香族を多く含有する接触改質装置からの留出油である炭素数11以上の成分と適宜の割合で混合することができる。
The hydrodesulfurization uses one or more of Co, Mo and Ni as a hydrodesulfurization catalyst, and optionally carries P, and the reaction temperature is 270 to 380 ° C., preferably 295 to 360 ° C., Reaction pressure 2.5 to 8.5 MPa, preferably 2.7 to 7.0 MPa, LHSV 0.9 to 6.0 h −1 , preferably 0.9 to 5.4 h −1 , hydrogen / oil ratio 130 to 300 ( Fluctuations of about ± 5 are permissible.) Appropriate selection is made within the range of Nm 3 / kL so that the above-described light oil composition of the present invention can be obtained. In particular, the LHSV, the hydrogen partial pressure, and the hydrogen / oil ratio are preferably large, but if it is too large, the condensed polycyclic aromatic component is hydrogenated, so that the allowable upper limit is not exceeded. The reaction temperature is preferably lowered in order to suppress the formation of styrene compounds and diene compounds having poor oxidation stability.
The light oil composition obtained by the above method is a kerosene composition having good oxidation stability to improve low-temperature fluidity, and distillate oil from a catalytic reformer containing a large amount of condensed polycyclic aromatics. And a component having 11 or more carbon atoms can be mixed at an appropriate ratio.

本発明の軽油組成物について具体的に実施例により説明する。なお、本発明は、以下の実施例のように実施すれば実現できるが、本実施例に限定されるものではない。   The light oil composition of the present invention will be specifically described with reference to examples. In addition, although this invention is realizable if it implements like the following examples, it is not limited to a present Example.

本発明に用いる物性測定方法及び評価方法は、次に示した方法で測定されるものである。
1)密度:JIS K2249「原油及び石油製品密度試験方法」に規定された方法。
2)引火点:JIS K2265「原油及び石油製品引火点試験方法」に規定されたタグ密閉式引火点試験方法。
3)蒸留性状:JIS K2254「蒸留試験方法」に規定された方法。
4)硫黄分:JIS K2541−6「硫黄分試験方法(紫外蛍光法)」に規定された方法。
5)芳香族分:JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に規定された方法。
6)全酸価:JIS K2276「航空燃料油試験方法」に規定された方法で、試料1g中に含まれる全酸性成分を中和するのに要する水酸化カリウムのミリグラム数。
7)セタン指数:JIS K2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」に規定された方法。
8)成分:2つの極性が異なるガスクロカラムを、モジュレータを介して直列に接続したガスクロマトグラフィーを用いて測定した。詳細条件は次の通りである。
GCシステム:一次カラムへの通油後にモジュレータにより物質移動制御を行い、続けて二次カラムを通油させて極性の違い等により分離を行う。本分析装置システム構成としては、Agilent Technologies社製HP−6890N型FID検出器付きGC、日本電子社製AccuTOF JMS−T100GC飛行時間型質量分析計からなる。
1次カラム:無極性または微極性カラム(例えば、Supelco社製PTE−5、長さ30m、内径0.25mm、フィルム厚0.25μm)
モジュレータ中空カラム:長さ2m、内径0.1mm
2次カラム:高極性カラム(例えば、Supelco社製SpelcoWAX10、長さ2m、内径0.25mm、フィルム厚0.25μm)
昇温条件:50℃(5分保持)to 280℃(27分保持)at 10℃/分
注入口温度:280℃
注入量:1.0μl
スプリット比:100:1
キャリアガス:He、1.0ml/分
モジュレータ温度:下記のコールド温度、ホット温度を繰り返す。
ホットジェットガス温度:150℃(5分保持)to 320℃(33分保持)at 10℃/分
コールドジェットガス温度:約−140℃
モジュレータ頻度:6秒間で0.3秒間ホット温度、その後5.7秒間コールド温度
インターフェイス中空カラム:長さ0.5m、内径0.25mm
FIDガス条件:水素(45mL/分)、空気(450mL/分)、メークアップヘリウム(25mL/分、一定)
The physical property measurement method and evaluation method used in the present invention are measured by the following methods.
1) Density: The method specified in JIS K2249 “Crude oil and petroleum product density test method”.
2) Flash point: Tag sealed flash point test method specified in JIS K2265 “Crude oil and petroleum product flash point test method”.
3) Distillation property: A method defined in JIS K2254 “Distillation test method”.
4) Sulfur content: A method defined in JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”.
5) Aromatic content: The method specified in JPI-5S-49-97 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method”.
6) Total acid value: The number of milligrams of potassium hydroxide required to neutralize all acidic components contained in 1 g of a sample according to the method defined in JIS K2276 “Test method for aviation fuel oil”.
7) Cetane index: A method defined in JIS K2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”.
8) Component: Two gas chromatography columns having different polarities were measured using gas chromatography connected in series via a modulator. Detailed conditions are as follows.
GC system: After passing through the primary column, mass transfer control is performed by the modulator, and then the secondary column is passed through and separation is performed based on the difference in polarity. The analyzer system configuration includes an HP-6890N type FID detector GC manufactured by Agilent Technologies and an AccuTOF JMS-T100GC time-of-flight mass spectrometer manufactured by JEOL.
Primary column: nonpolar or slightly polar column (for example, PTE-5 manufactured by Supelco, length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Modulator hollow column: length 2m, inner diameter 0.1mm
Secondary column: High polarity column (for example, SpelcoWAX10 manufactured by Supelco, length 2 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Temperature rising conditions: 50 ° C. (5 minutes hold) to 280 ° C. (27 minutes hold) at 10 ° C./minute Inlet temperature: 280 ° C.
Injection volume: 1.0 μl
Split ratio: 100: 1
Carrier gas: He, 1.0 ml / min Modulator temperature: The following cold temperature and hot temperature are repeated.
Hot jet gas temperature: 150 ° C. (5 min hold) to 320 ° C. (33 min hold) at 10 ° C./min Cold jet gas temperature: about −140 ° C.
Modulator frequency: 0.3 seconds hot temperature for 6 seconds, then cold temperature for 5.7 seconds Interface hollow column: 0.5 m length, 0.25 mm inner diameter
FID gas conditions: hydrogen (45 mL / min), air (450 mL / min), make-up helium (25 mL / min, constant)

軽油組成物の調製
供試軽油1(基材A):常圧蒸留装置から留出した沸点範囲140〜370℃の留分を、Co、Mo、Pを担持した市販触媒を用い、反応温度350℃、反応圧力7.2MPa、水素/オイル比300±5Nm3/kL、LHSV1.0h-1、水素純度94%の条件下で水素化精製して得た(酸化指数IO=1.36)。
DMN(基材B):関東化学(株)製の純度94%ジメチルナフタレンを用いた(酸化指数IO=約−100)。
TMBz(基材B):関東化学(株)製の純度97%以上鹿特級グレードの1,2,4−トリメチルベンゼンを用いた(酸化指数IO=約0)。
C12O(基材B):関東化学(株)製の純度97%以上鹿1級グレードの1−ドデセンを用いた(酸化指数IO=約0)。
Styrene(基材A):関東化学(株)製の純度99%以上鹿1級グレードのスチレンを用いた(酸化指数IO=約100)。
これらの基材を用いて、軽油組成物を調製した。
Preparation of gas oil composition Test gas oil 1 (base material A): a fraction having a boiling range of 140 to 370 ° C. distilled from an atmospheric distillation apparatus was used with a commercially available catalyst supporting Co, Mo, P, and a reaction temperature of 350 It was obtained by hydrorefining under the conditions of ° C., reaction pressure 7.2 MPa, hydrogen / oil ratio 300 ± 5 Nm 3 / kL, LHSV 1.0 h −1 , hydrogen purity 94% (oxidation index IO = 1.36).
DMN (base material B): 94% purity dimethylnaphthalene manufactured by Kanto Chemical Co., Ltd. was used (oxidation index IO = about −100).
TMBz (base material B): 1,2,4-trimethylbenzene having a purity of 97% or more, manufactured by Kanto Chemical Co., Ltd., was used (oxidation index IO = about 0).
C12O (Substrate B): 1-dodecene having a purity of 97% or more and deer grade 1 manufactured by Kanto Chemical Co., Ltd. was used (oxidation index IO = about 0).
Styrene (Substrate A): Styrene grade 1 or higher grade styrene manufactured by Kanto Chemical Co., Ltd. was used (oxidation index IO = about 100).
A gas oil composition was prepared using these base materials.

これらを用いて、BDF混合軽油に適用される品質確保法の酸化安定性試験方法に準じ、各供試軽油300mLを耐圧容器に入れ、酸素を3L/hr吹き込みながら、115℃の恒温槽で16時間保持して強制的に軽油を劣化させた。その後、恒温槽から取り出し、室温にまで降温して劣化前後の全酸価を上記の方法によって測定した。その結果を表2及び表3に併せて示した。
また、供試軽油1について酸化前及び酸化後の各成分を測定した結果を、表1に示した。
Using these, according to the oxidative stability test method of the quality assurance method applied to BDF mixed gas oil, 300 mL of each sample gas oil was put in a pressure vessel and oxygen was blown at 3 L / hr in a constant temperature bath at 115 ° C. The gas oil was forcibly deteriorated by holding for a time. Then, it took out from the thermostat, cooled to room temperature, and measured the total acid value before and behind deterioration by said method. The results are shown in Tables 2 and 3.
Table 1 shows the results of measuring the components before and after oxidation of the test light oil 1.

Figure 2008144158
Figure 2008144158

Figure 2008144158
Figure 2008144158

Figure 2008144158
Figure 2008144158

表1から、特に酸化安定性の悪いジエン類化合物が酸化処理時に減少し、一方酸化安定性が良好な、縮合多環芳香族炭化水素の中で2環芳香族類化合物が消費されていることがわかる。これ以外に、酸化処理により、オレフィン類化合物及びナフテンベンゼン類化合物が減少し、また1環芳香族類化合物も消費された。これらの化合物は酸化反応に少なからず影響を及ぼしていると考えられるが、表2からオレフィン類化合物及び1環芳香族類化合物の酸化安定性影響はスチレン類化合物に比較して小さく、またナフテンベンゼン類化合物のテトラリンは酸化安定性を良好にする効果があるが不充分であることがわかる。また、表3から、比較例1に対して実施例1は、酸化処理前後の全酸価増加量が殆どなく、酸化安定性が良好であることがわかる。   From Table 1, diene compounds with particularly poor oxidation stability are reduced during the oxidation treatment, while bicyclic aromatic compounds are consumed in the condensed polycyclic aromatic hydrocarbons with good oxidation stability. I understand. In addition, the olefin compounds and naphthenebenzene compounds were reduced by the oxidation treatment, and monocyclic aromatic compounds were also consumed. Although these compounds are thought to have a considerable influence on the oxidation reaction, Table 2 shows that the oxidative stability effects of olefin compounds and monocyclic aromatic compounds are small compared to styrene compounds, and naphthenebenzene. It can be seen that tetralin, a similar compound, has the effect of improving oxidative stability but is insufficient. Table 3 also shows that Example 1 has little increase in total acid value before and after the oxidation treatment and good oxidation stability relative to Comparative Example 1.

Claims (2)

次式で表される酸化指数IOが0.5を越える少なくとも1種の基材Aと、酸化指数IOが0.5以下である少なくとも1種の基材Bとを混合し、酸化指数IOが0.5以下である軽油組成物を製造する軽油組成物の製造方法。
IO=(C10LST)+3×(C17HDI)−(R2A)−5×(R3A)
(C10LST:炭素数10以下のスチレン類化合物含有量、質量%、C17HDI:炭素数17以上のジエン類化合物含有量、質量%、R2A:縮合多環芳香族炭化水素の中で2環の化合物含有量、質量%、R3A:縮合多環芳香族炭化水素の中で3環の化合物含有量、質量%)
The oxidation index IO represented by the following formula is mixed with at least one substrate A having an oxidation index IO exceeding 0.5, and at least one substrate B having an oxidation index IO of 0.5 or less. The manufacturing method of the light oil composition which manufactures the light oil composition which is 0.5 or less.
IO = (C10LST) + 3 × (C17HDI) − (R2A) −5 × (R3A)
(C10LST: C10 or less styrene compound content, mass%, C17HDI: Diene compound content of 17 or more carbon atoms, mass%, R2A: Bicyclic compound contained in condensed polycyclic aromatic hydrocarbons Amount, mass%, R3A: tricyclic compound content in condensed polycyclic aromatic hydrocarbon, mass%)
基材Aの酸化指数IOが1.0以上であり、基材Bの酸化指数IOが0.0以下である、請求項1記載の軽油組成物の製造方法。   The manufacturing method of the light oil composition of Claim 1 whose oxidation index IO of the base material A is 1.0 or more, and whose oxidation index IO of the base material B is 0.0 or less.
JP2007294640A 2006-11-13 2007-11-13 Method for producing light oil composition Active JP5054488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294640A JP5054488B2 (en) 2006-11-13 2007-11-13 Method for producing light oil composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006306622 2006-11-13
JP2006306622 2006-11-13
JP2007294640A JP5054488B2 (en) 2006-11-13 2007-11-13 Method for producing light oil composition

Publications (2)

Publication Number Publication Date
JP2008144158A true JP2008144158A (en) 2008-06-26
JP5054488B2 JP5054488B2 (en) 2012-10-24

Family

ID=39604668

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2007294635A Active JP5106057B2 (en) 2006-11-13 2007-11-13 Light oil composition
JP2007294640A Active JP5054488B2 (en) 2006-11-13 2007-11-13 Method for producing light oil composition
JP2007294637A Active JP5054487B2 (en) 2006-11-13 2007-11-13 Light oil composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007294635A Active JP5106057B2 (en) 2006-11-13 2007-11-13 Light oil composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007294637A Active JP5054487B2 (en) 2006-11-13 2007-11-13 Light oil composition

Country Status (1)

Country Link
JP (3) JP5106057B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144156A (en) * 2006-11-13 2008-06-26 Japan Energy Corp Gas oil composition
JP2008266618A (en) * 2007-03-22 2008-11-06 Japan Energy Corp Antioxidant for fuel and fuel composition containing the antioxidant
JP2012007023A (en) * 2010-06-22 2012-01-12 Jx Nippon Oil & Energy Corp Light oil composition
EP2468841A1 (en) 2010-12-24 2012-06-27 Shell Internationale Research Maatschappij B.V. Diesel oil composition containing fluorenes and acenaphthylenes
WO2012161018A1 (en) * 2011-05-26 2012-11-29 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing same
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon
US10087376B2 (en) 2010-01-20 2018-10-02 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352057B2 (en) * 2007-03-13 2013-11-27 Jx日鉱日石エネルギー株式会社 Method for producing fuel oil base material
JP5615214B2 (en) * 2011-03-22 2014-10-29 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing the same
JP5615216B2 (en) * 2011-03-22 2014-10-29 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing the same
JP5615215B2 (en) * 2011-03-22 2014-10-29 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing the same
JP6097062B2 (en) * 2012-11-27 2017-03-15 出光興産株式会社 Light oil composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199783A (en) * 2005-01-19 2006-08-03 Japan Energy Corp Fuel composition
JP2008144157A (en) * 2006-11-13 2008-06-26 Japan Energy Corp Gas oil composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4223656B2 (en) * 2000-04-20 2009-02-12 新日本石油株式会社 Light oil composition
JP4268373B2 (en) * 2002-05-31 2009-05-27 新日本石油株式会社 Light oil composition (2)
JP4580152B2 (en) * 2003-06-12 2010-11-10 出光興産株式会社 Fuel oil for diesel engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199783A (en) * 2005-01-19 2006-08-03 Japan Energy Corp Fuel composition
JP2008144157A (en) * 2006-11-13 2008-06-26 Japan Energy Corp Gas oil composition
JP2008144156A (en) * 2006-11-13 2008-06-26 Japan Energy Corp Gas oil composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144156A (en) * 2006-11-13 2008-06-26 Japan Energy Corp Gas oil composition
JP2008144157A (en) * 2006-11-13 2008-06-26 Japan Energy Corp Gas oil composition
JP2008266618A (en) * 2007-03-22 2008-11-06 Japan Energy Corp Antioxidant for fuel and fuel composition containing the antioxidant
JP2008266617A (en) * 2007-03-22 2008-11-06 Japan Energy Corp Fuel composition containing fuel oil base material produced by fischer-tropsch synthesis
US10087376B2 (en) 2010-01-20 2018-10-02 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbons
JP2012007023A (en) * 2010-06-22 2012-01-12 Jx Nippon Oil & Energy Corp Light oil composition
EP2468841A1 (en) 2010-12-24 2012-06-27 Shell Internationale Research Maatschappij B.V. Diesel oil composition containing fluorenes and acenaphthylenes
US8920629B2 (en) 2010-12-24 2014-12-30 Shell Oil Company Diesel oil composition
WO2012161018A1 (en) * 2011-05-26 2012-11-29 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing same
JP2012246355A (en) * 2011-05-26 2012-12-13 Jx Nippon Oil & Energy Corp Light oil composition and method for producing the same
US9200217B2 (en) 2011-05-26 2015-12-01 Jx Nippon Oil & Energy Corporation Gas oil composition and method for producing same
US9862897B2 (en) 2013-02-21 2018-01-09 Jx Nippon Oil & Energy Corporation Method for producing monocyclic aromatic hydrocarbon

Also Published As

Publication number Publication date
JP2008144156A (en) 2008-06-26
JP5054487B2 (en) 2012-10-24
JP5054488B2 (en) 2012-10-24
JP5106057B2 (en) 2012-12-26
JP2008144157A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP5054488B2 (en) Method for producing light oil composition
JP5520101B2 (en) Light oil composition
JP2006137922A (en) Light oil composition
JP2009167257A (en) Gas oil composition
JP5317605B2 (en) Light oil composition
JP2006137921A (en) Light oil composition
JP5427361B2 (en) Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition
JP2006137920A (en) Light oil composition
JP6609749B2 (en) Method for producing light oil composition
JP2013107964A (en) Light oil fuel composition
JP5684184B2 (en) Light oil composition
JP2010070731A (en) Gas oil composition
JP5352057B2 (en) Method for producing fuel oil base material
JP5684181B2 (en) Light oil composition
JP2006137919A (en) Light oil composition
JP5068976B2 (en) Fuel additive and fuel composition containing the additive
JP2010070733A (en) Gas oil composition
JP2010070730A (en) Gas oil composition
JP5684183B2 (en) Light oil composition
JP5684182B2 (en) Light oil composition
JP5684180B2 (en) Light oil composition
JP5436079B2 (en) Light oil composition
JP2021152097A (en) Gasoline base material
JP5684179B2 (en) Light oil composition
JP2010065070A (en) Fuel oil composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Ref document number: 5054488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250