JP5427361B2 - Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition - Google Patents

Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition Download PDF

Info

Publication number
JP5427361B2
JP5427361B2 JP2008075818A JP2008075818A JP5427361B2 JP 5427361 B2 JP5427361 B2 JP 5427361B2 JP 2008075818 A JP2008075818 A JP 2008075818A JP 2008075818 A JP2008075818 A JP 2008075818A JP 5427361 B2 JP5427361 B2 JP 5427361B2
Authority
JP
Japan
Prior art keywords
fuel
fuel composition
less
volume
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008075818A
Other languages
Japanese (ja)
Other versions
JP2008266618A (en
Inventor
智史 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2008075818A priority Critical patent/JP5427361B2/en
Publication of JP2008266618A publication Critical patent/JP2008266618A/en
Application granted granted Critical
Publication of JP5427361B2 publication Critical patent/JP5427361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)

Description

本発明は、燃料用酸化防止剤及び該酸化防止剤を含有する燃料組成物に関し、とりわけ低硫黄燃料用酸化防止剤該酸化防止剤を含有するディーゼルエンジンなどの内燃機関の燃料となる低硫黄燃料組成物、及び、燃料組成物の製造方法に関する。
The present invention relates to fuel compositions containing the fuel for antioxidant and the antioxidant, especially low sulfur fuel antioxidants, low sulfur as a fuel for an internal combustion engine such as a diesel engine containing antioxidant The present invention relates to a fuel composition and a method for producing the fuel composition .

軽油、ガソリン、灯油、重油等の石油製品はディーゼルエンジンやガソリンエンジン用燃料及び暖房用燃料等として使用されている。これらの石油製品は酸化すると変色、沈澱性の重合物(スラッジ)の生成、粘度上昇等が認められ、また、酸化によって生じた過酸化物(ペルオキシド)は燃料系統の部材(ゴム等)を劣化させることが知られている。そのため、酸化安定性は石油製品の品質安定性を評価する上で重要な指標の一つとなっており、高い酸化安定性を有するのが望ましい。   Petroleum products such as light oil, gasoline, kerosene, and heavy oil are used as fuel for diesel engines and gasoline engines, fuel for heating, and the like. When these petroleum products are oxidized, discoloration, formation of precipitateable polymer (sludge), increase in viscosity, etc. are observed, and peroxides (peroxide) generated by oxidation deteriorate the members of the fuel system (rubber, etc.). It is known to let Therefore, oxidation stability is one of the important indexes for evaluating the quality stability of petroleum products, and it is desirable to have high oxidation stability.

また、排気ガス浄化触媒の被毒防止から硫黄分が殆どない、いわゆるサルファーフリーの燃料油が2005年1月から市場に投入されている。また、燃費規制や二酸化炭素排出量低減、排ガス中の有毒物低減を背景に、ガソリン及び軽油の硫黄分は10質量ppmよりもさらに低下することが要求されている。   In addition, so-called sulfur-free fuel oil, which has almost no sulfur content to prevent poisoning of the exhaust gas purification catalyst, has been put on the market since January 2005. Moreover, the sulfur content of gasoline and light oil is required to be further reduced to less than 10 mass ppm against the background of fuel consumption regulations, reduction of carbon dioxide emissions, and reduction of toxic substances in exhaust gas.

硫黄分を除去するためには高温高圧にした燃料油に水素を吹き込んで固体触媒に接触させ、水素化分解反応によって硫黄分を硫化水素として除去する水素化脱硫処理が一般に行われる。しかしながら、硫黄分を高度に除去する過程において高温で熱負荷を受けることにより、燃料中に不安定な物質が生成されやすく、酸化安定性が悪化する場合がある。また、燃料中に元来含まれているアミンやフェノールといった酸化防止剤も除去される。更には、有機硫黄化合物等の硫黄分自体が燃料の酸化抑制効果を有するという側面もあり、硫黄分の低減自体が直接的に燃料の酸化安定性を低下させる要因にもなっている。   In order to remove the sulfur content, hydrodesulfurization treatment is generally performed in which hydrogen is blown into a high-temperature and high-pressure fuel oil and brought into contact with a solid catalyst, and the sulfur content is removed as hydrogen sulfide by a hydrocracking reaction. However, when subjected to a heat load at a high temperature in the process of highly removing sulfur, unstable substances are likely to be generated in the fuel, and oxidation stability may deteriorate. Also, antioxidants such as amines and phenols originally contained in the fuel are removed. Furthermore, there is also an aspect that the sulfur content of the organic sulfur compound itself has an effect of suppressing the oxidation of the fuel, and the reduction of the sulfur content itself is a factor that directly decreases the oxidation stability of the fuel.

そこで、硫黄分を低減しながらも酸化安定性に優れた燃料油を得ようとする試みがこれまでに幾つもなされている。その中で、燃料組成物中に含まれる特定の芳香族分に着目し、酸化安定性の悪いナフテンベンゼン類、フルオレン類又は2環ナフテン類に対して酸化安定性が良好なナフタレン類の比率を高くすることで、燃料組成物の酸化安定性の向上を図ったものが存在する。   Thus, many attempts have been made so far to obtain a fuel oil excellent in oxidation stability while reducing the sulfur content. Among them, paying attention to a specific aromatic component contained in the fuel composition, the ratio of naphthalenes having good oxidation stability to naphthenebenzenes, fluorenes or bicyclic naphthenes having poor oxidation stability is determined. There are those that are intended to improve the oxidation stability of the fuel composition by increasing the value.

特開2006−137919号公報(特許文献1)には、硫黄分の含有量が50質量ppm以下であり、ナフテンベンゼン類とフルオレン類の含有量の和が8.0容量%以下であり、ナフタレン類の含有量が0.5容量%以上3.0容量%以下であり、下記式(I)で表される酸化安定度指数Yが3以下であり、フルオレン類とナフタレン類の含有量の比が1以下であることを特徴とする軽油組成物が記載されている。
Y=2.9×〔フルオレン類含有量(容量%)〕+0.016×〔ナフテンベンゼン類含有量(容量%)〕−0.73×〔ナフタレン類含有量(容量%)〕‥‥‥式(1)
JP-A-2006-137919 (Patent Document 1) discloses that the sulfur content is 50 ppm by mass or less, the sum of the contents of naphthenebenzenes and fluorenes is 8.0% by volume or less, and naphthalene. The content of benzene is 0.5 volume% or more and 3.0 volume% or less, the oxidation stability index Y represented by the following formula (I) is 3 or less, and the ratio of the content of fluorenes and naphthalenes A gas oil composition characterized in that is 1 or less is described.
Y = 2.9 × [fluorene content (volume%)] + 0.016 × [naphthenebenzene content (volume%)] − 0.73 × [naphthalene content (volume%)] Formula (1)

特開2006−233087号公報(特許文献2)には芳香族分含有量が25容量%以下であり、その内2環芳香族分含有量が2.5容量%以下、3環以上芳香族分含有量が0.5容量%以下であり、下記の式(I)で表される酸化安定性指数Yが10以下であることを特徴とする灯油組成物が記載されている。
Y=1.63×〔ナフテンベンゼン類含有量(容量%)〕+0.30×〔2環ナフテン類含有量(容量%)〕−0.57×〔ナフタレン類含有量(容量%)〕‥‥‥式(1)
Japanese Patent Application Laid-Open No. 2006-233087 (Patent Document 2) has an aromatic content of 25% by volume or less, of which a 2-ring aromatic content is 2.5% by volume or less, a tricyclic or higher aromatic content. A kerosene composition having a content of 0.5% by volume or less and an oxidation stability index Y represented by the following formula (I) of 10 or less is described.
Y = 1.63 × [naphthenebenzene content (volume%)] + 0.30 × [bicyclic naphthene content (volume%)] − 0.57 × [naphthalene content (volume%)] Formula (1)

特開2006−137919号公報JP 2006-137919 A 特開2006−233087号公報JP 2006-233087 A

先行技術のように、ナフタレン類の酸化安定性効果に期待して燃料組成物中に含有される芳香族成分の組成を制御する方法は有効であるが、燃料組成自体を調節する場合には燃料の製造段階での調製が基本となるため、酸化安定性が悪い燃料組成物の酸化安定性を向上させるようなことはできず、燃料用添加剤という形態の方が利便性が高い。   As in the prior art, a method for controlling the composition of the aromatic component contained in the fuel composition in anticipation of the oxidation stability effect of naphthalenes is effective, but in the case of adjusting the fuel composition itself, the fuel Therefore, the oxidation stability of a fuel composition having poor oxidation stability cannot be improved, and the form of a fuel additive is more convenient.

また、従来はナフタレン類やナフテンベンゼン類といった一定の化合物群が有する共通的性質として酸化安定性への影響を論じるに止まり、個々の化合物の寄与については詳細に検討されてこなかった。芳香族成分は一般に着火性が悪いものが多く、燃焼性が悪化することから粒子状物質の生成が増加する可能性があるので、酸化安定性を向上させる芳香族成分であったとしても、ディーゼル燃料への適用を考える上ではその含有量は少ない方が好ましい。   Conventionally, the influence on oxidation stability as a common property of certain compound groups such as naphthalenes and naphthenebenzenes has only been discussed, and the contribution of individual compounds has not been studied in detail. In general, aromatic components often have poor ignitability, and since the combustibility deteriorates, the production of particulate matter may increase, so even if it is an aromatic component that improves oxidation stability, diesel In consideration of application to fuel, it is preferable that the content is small.

そこで本発明は、芳香族成分に着目しつつも、燃料に対して特に酸化安定性向上効果の高い芳香族化合物を提供することを課題とし、更には該芳香族化合物を含む燃料組成物を提供することを課題とし、また、燃料組成物の製造方法を提供することをも課題とする
Accordingly, the present invention has an object to provide an aromatic compound having a particularly high effect of improving oxidation stability for a fuel while paying attention to an aromatic component, and further provides a fuel composition containing the aromatic compound. It is another object of the present invention to provide a method for producing a fuel composition .

本発明者は、鋭意研究を進めた結果、芳香環数の他、側鎖の数及び種類が酸化防止能に大きく関与し、特定の分子構造を有する芳香族化合物が特に高い酸化防止能を有することを見出した。   As a result of diligent research, the present inventor has found that the number and type of side chains in addition to the number of aromatic rings are greatly involved in antioxidant ability, and aromatic compounds having a specific molecular structure have particularly high antioxidant ability. I found out.

本発明者の研究成果によれば、芳香環同士が縮合した化合物に酸化安定性の向上効果が大きく見られ、縮合していない場合(例:ビフェニル)にはほとんど見られない。ナフタレン類であってもその分子構造によって向上効果に顕著に差が生じる。ナフタレン類のような2環芳香族化合物よりもアントラセン類のような3環芳香族化合物の方がより高い酸化安定性を示す傾向にある。そして、アントラセン類の中でもアントラセンが最も効果的である。但し、ジメチルナフタレンに代表されるジアルキルナフタレンはナフタレン類の中でも格別の酸化安定性向上効果を示し、その効果はアントラセン類と遜色ないものである。   According to the research result of the present inventor, the effect of improving the oxidative stability is greatly seen in a compound in which aromatic rings are condensed with each other, and it is hardly seen when the compound is not condensed (for example, biphenyl). Even in the case of naphthalenes, there is a significant difference in the improvement effect depending on the molecular structure. A tricyclic aromatic compound such as anthracene tends to exhibit higher oxidative stability than a bicyclic aromatic compound such as naphthalene. And among anthracene, anthracene is the most effective. However, dialkylnaphthalene typified by dimethylnaphthalene exhibits a remarkable effect of improving oxidative stability among naphthalenes, and the effect is comparable to anthracene.

以上を基礎として完成した本発明は以下のように特定することができる。   The present invention completed on the basis of the above can be specified as follows.

本発明は一側面において、アントラセン類及びジメチルナフタレンよりなる群から選択される1種以上の多環芳香族化合物を含有する燃料用酸化防止剤である。

The present invention in one aspect, a fuel antioxidants containing anthracene and one or more polycyclic aromatic selected from the group consisting of di-methylation naphthalene compound.

本発明に係る燃料用酸化防止剤の一実施形態においては、前記アントラセン類にはアントラセン及びアルキル置換アントラセンが包含される。   In one embodiment of the antioxidant for fuel according to the present invention, the anthracene includes anthracene and alkyl-substituted anthracene.

本発明は別の一側面において、鎖状パラフィンが80容量%以上である炭化水素留分と前記の燃料用酸化防止剤を含有し、上記多環芳香族化合物を合計で0.05質量%以上含有する燃料組成物である。   Another aspect of the present invention includes a hydrocarbon fraction having 80% by volume or more of chain paraffin and the above antioxidant for fuel, and 0.05% by mass or more in total of the polycyclic aromatic compound. It is a fuel composition to contain.

本発明に係る燃料組成物は一実施形態において、上記多環芳香族化合物以外の多環芳香族化合物の含有量が合計で1容量%以下である。   In one embodiment, the fuel composition according to the present invention has a total content of polycyclic aromatic compounds other than the polycyclic aromatic compound of 1% by volume or less.

本発明に係る燃料組成物は別の一実施形態において、ISO12205の酸化安定性試験において、試料温度を115℃とし、試料300mL中に、酸素を供給量3L/h、供給圧98kPaにて、16時間供給して試料を酸化した後の全酸価と酸化前の全酸価の差が0.5mgKOH/g以下である。   In another embodiment of the fuel composition according to the present invention, in an oxidation stability test of ISO12205, a sample temperature is 115 ° C., oxygen is supplied in 300 mL of a sample at a supply amount of 3 L / h, and a supply pressure of 98 kPa. The difference between the total acid value after oxidizing the sample by supplying for a time and the total acid value before oxidation is 0.5 mgKOH / g or less.

本発明は更に別の一側面において、鎖状パラフィンが80容量%以上である炭化水素留分に、上記燃料用酸化防止剤を配合することを含む燃料組成物の製造方法であって、燃料組成物の質量に対する上記多環芳香族化合物の合計が0.05質量%以上になるように配合を実施する方法である。   In another aspect of the present invention, there is provided a method for producing a fuel composition, comprising blending the above-mentioned antioxidant for fuel with a hydrocarbon fraction containing 80% by volume or more of chain paraffin. This is a method of blending so that the total of the polycyclic aromatic compounds is 0.05% by mass or more with respect to the mass of the product.

アントラセン類及びジアルキルナフタレンは、芳香族化合物の中でもとりわけ酸化安定性向上効果が高く、微量の添加で所望の酸化安定性を達成することができる。そのため、燃料油中に芳香族成分が含有することによる燃焼性や揮発性の悪化を最小限に抑えながら優れた酸化防止効果を得ることが可能となる。   Anthracene and dialkylnaphthalene are particularly effective in improving oxidative stability among aromatic compounds, and can achieve desired oxidative stability with a small amount of addition. Therefore, it is possible to obtain an excellent antioxidant effect while minimizing deterioration in combustibility and volatility due to the aromatic component contained in the fuel oil.

(酸化防止剤)
本発明に係る燃料用酸化防止剤は一実施形態において、アントラセン類及びジアルキルナフタレンよりなる群から選択される1種以上の多環芳香族化合物を含有する。
(Antioxidant)
In one embodiment, the antioxidant for fuel according to the present invention contains one or more polycyclic aromatic compounds selected from the group consisting of anthracenes and dialkylnaphthalenes.

本発明において、アントラセン類とはアントラセン核を有する炭化水素のことを指し、
例えばアントラセンの他、アルキル置換アントラセンが挙げられる。アルキル置換アントラセンとは、1個以上のアルキル基で置換されたアントラセンである。置換基の数には特に制限はないが、典型的には1〜4個、より典型的には1〜2個である。アルキル基の種類には特に制限はないが、典型的には1〜8個の炭素原子をもつ直鎖状又は分枝鎖状のアルキル基が挙げられ、具体的にはメチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル及びオクチル基等が挙げられる。
In the present invention, anthracene refers to a hydrocarbon having an anthracene nucleus,
For example, in addition to anthracene, alkyl-substituted anthracene can be mentioned. Alkyl substituted anthracene is an anthracene substituted with one or more alkyl groups. The number of substituents is not particularly limited, but is typically 1 to 4, more typically 1 to 2. The type of the alkyl group is not particularly limited, but typically includes a linear or branched alkyl group having 1 to 8 carbon atoms, specifically, methyl, ethyl, propyl, Examples include isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, hexyl and octyl groups.

より典型的には、アルキル置換アントラセンとしてメチル置換アントラセンが使用される。メチル置換アントラセンには、限定的ではないが、1−メチルアントラセン、2−メチルアントラセン、9−メチルアントラセンのようなメチルアントラセン;2,3−ジメチルアントラセン、9,10−ジメチルアントラセン、1,5−ジメチルアントラセンのようなジメチルアントラセン;及び1,4,9−トリメチルアントラセン、2,7,9−トリメチルアントラセンのようなトリメチルアントラセンが挙げられる。   More typically, methyl substituted anthracene is used as the alkyl substituted anthracene. Methyl-substituted anthracene includes, but is not limited to, methylanthracene such as 1-methylanthracene, 2-methylanthracene, 9-methylanthracene; 2,3-dimethylanthracene, 9,10-dimethylanthracene, 1,5- And dimethylanthracene such as dimethylanthracene; and trimethylanthracene such as 1,4,9-trimethylanthracene and 2,7,9-trimethylanthracene.

アントラセン類の中でもアントラセンが特に好ましい。アントラセンは特に優れた酸化安定性向上効果を奏する。   Of the anthracenes, anthracene is particularly preferable. Anthracene has a particularly excellent oxidation stability improving effect.

アントラセン類は任意の公知の製造方法によって製造することができる。例えば、アントラセンは、コールタールからとれるアントラセン油を分離・精製することで得ることができる。アルキル置換アントラセンは、無水塩化アルミニウム、三フッ化ホウ素、酸化鉄等を触媒として液晶反応によりアルキル化するフリーデルクラフツ反応や、固体シリカ・アルミナ触媒を使用する気相反応により得ることができる。
アントラセン類は市販されているのでそれを使用してもよい。
Anthracene can be produced by any known production method. For example, anthracene can be obtained by separating and refining anthracene oil taken from coal tar. The alkyl-substituted anthracene can be obtained by a Friedel-Crafts reaction in which alkylation is performed by a liquid crystal reaction using anhydrous aluminum chloride, boron trifluoride, iron oxide or the like as a catalyst, or a gas phase reaction using a solid silica / alumina catalyst.
Anthracenes are commercially available and may be used.

ジアルキルナフタレンは、ナフタレン類の1種ではあるが、アントラセン類と遜色ない酸化安定性向上効果を奏する。2個のアルキル基の配置は特に制限はない。アルキル基の種類には特に制限はないが、典型的には1〜8個の炭素原子をもつ直鎖状又は分枝鎖状のアルキル基が挙げられ、具体的にはメチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル及びオクチル基等が挙げられる。アルキル基としては、メチル基が好ましく、このようなジメチルナフタレンとしては、1,2-ジメチルナフタレン、1,3-ジメチルナフタレン、1,6-ジメチルナフタレン、1,4-ジメチルナフタレン、1,5-ジメチルナフタレン、1,7-ジメチルナフタレン、1,8-ジメチルナフタレン、2,3-ジメチルナフタレン、2,6-ジメチルナフタレン、2,7-ジメチルナフタレンが挙げられ、これらは単独で又は混合して使用することができる。典型的には、ジメチルナフタレンはこれらの混合物として与えられる。   Although dialkylnaphthalene is a kind of naphthalene, it has an effect of improving oxidative stability comparable to anthracene. The arrangement of the two alkyl groups is not particularly limited. The type of the alkyl group is not particularly limited, but typically includes a linear or branched alkyl group having 1 to 8 carbon atoms, specifically, methyl, ethyl, propyl, Examples include isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, hexyl and octyl groups. As the alkyl group, a methyl group is preferable, and as such dimethylnaphthalene, 1,2-dimethylnaphthalene, 1,3-dimethylnaphthalene, 1,6-dimethylnaphthalene, 1,4-dimethylnaphthalene, 1,5- Examples include dimethylnaphthalene, 1,7-dimethylnaphthalene, 1,8-dimethylnaphthalene, 2,3-dimethylnaphthalene, 2,6-dimethylnaphthalene, and 2,7-dimethylnaphthalene. These may be used alone or in combination. can do. Typically, dimethylnaphthalene is provided as a mixture of these.

ジメチルナフタレンの混合物は液体であるが、アントラセン類は常温で固体であるため、アントラセン類を使用する場合には予めトルエンやキシレン等の溶剤に溶解させてから燃料組成物に添加してもよい。溶剤としては、トルエンやキシレン等の単化合物のみではなく、石油精製工程で得られる石油留分のような複数の化合物の混合物を用いることもできる。   The mixture of dimethylnaphthalene is a liquid, but anthracenes are solid at room temperature. Therefore, when anthracenes are used, they may be dissolved in a solvent such as toluene or xylene before being added to the fuel composition. As the solvent, not only a single compound such as toluene or xylene, but also a mixture of a plurality of compounds such as petroleum fraction obtained in the petroleum refining process can be used.

燃料組成物中に含まれるアントラセン類及びジメチルナフタレンはガスクロマトグラフィーやガスクロマトグラフ−質量分析等の方法によって定量分析することができる。   Anthracene and dimethylnaphthalene contained in the fuel composition can be quantitatively analyzed by a method such as gas chromatography or gas chromatography-mass spectrometry.

また、本発明に係る燃料用酸化防止剤は、前記多環芳香族化合物を単体で使用してもよいし、該多環芳香族化合物を含んだ石油精製工程で得られる石油基材を利用することもできる。燃料用酸化防止剤は、上述の多環芳香族化合物を合計で1重量%以上、特には5重量%以上、更には20重量%以上含有していることが好ましい。   Moreover, the antioxidant for fuels according to the present invention may use the polycyclic aromatic compound alone or use a petroleum base material obtained in a petroleum refining process containing the polycyclic aromatic compound. You can also. The antioxidant for fuel preferably contains the above-mentioned polycyclic aromatic compounds in a total amount of 1% by weight or more, particularly 5% by weight or more, and more preferably 20% by weight or more.

(燃料組成物)
上述した本発明に係る多環芳香族化合物をガソリン、軽油、灯油、重油等の燃料組成物に添加することで、燃料組成物の酸化安定性を向上することができる。添加量は微量でよく、燃料組成物の全重量に対して上述の多環芳香族化合物を合計で0.05質量%程度添加すれば充分な酸化安定性向上効果が得られる。
(Fuel composition)
The oxidation stability of the fuel composition can be improved by adding the above-described polycyclic aromatic compound according to the present invention to a fuel composition such as gasoline, light oil, kerosene, or heavy oil. The addition amount may be small, and if the total polycyclic aromatic compound is added in an amount of about 0.05% by mass with respect to the total weight of the fuel composition, a sufficient oxidation stability improving effect can be obtained.

燃料組成物中に含まれる該多環芳香族化合物の量が多くなるほど酸化安定性向上効果も上昇するが、やがて向上効果が飽和し、また、多量添加は燃焼時のスス生成、着火性低下、揮発性悪化につながる。
従って、本発明に係る燃料組成物は該多環芳香族化合物を合計で0.05質量%〜5.0質量%含有するのが好ましく、合計で0.1質量%〜3.0質量%含有するのがより好ましく、合計で0.2質量%〜2.0質量%含有するのが最も好ましい。
As the amount of the polycyclic aromatic compound contained in the fuel composition increases, the oxidation stability improvement effect also increases, but the improvement effect eventually saturates, and addition of a large amount results in soot formation during combustion, ignitability reduction, It leads to deterioration of volatility.
Therefore, the fuel composition according to the present invention preferably contains 0.05 to 5.0% by mass of the polycyclic aromatic compound, and contains 0.1 to 3.0% by mass in total. It is more preferable that the total content is 0.2 to 2.0% by mass.

芳香族化合物の中には、上述した本発明に係る多環芳香族化合物以外にも、燃料組成物の酸化安定性を向上する効果を有するものもある。しかしながら、4環、5環と環数が増加するにつれて燃料油への溶解性が低下するため、低温で析出し易い等の問題が生じ、実用性に劣る。このため、上述の該多環芳香族化合物以外の多環芳香族化合物の含有量が合計で5容量%以下、特には3容量%以下であることが好ましい。   Some aromatic compounds have the effect of improving the oxidative stability of the fuel composition in addition to the polycyclic aromatic compound according to the present invention described above. However, since the solubility in fuel oil decreases as the number of rings increases, such as four rings and five rings, problems such as easy precipitation at low temperatures occur, resulting in poor practicality. For this reason, it is preferable that content of polycyclic aromatic compounds other than the said polycyclic aromatic compound is 5 volume% or less in total, and especially 3 volume% or less.

燃料組成物中の芳香族化合物、特に多環芳香族の増加は着火性や揮発性の悪化につながるため、ディーゼル燃料への適用には適さない。
そこで、本発明に係る多環芳香族化合物以外の芳香族化合物を可能な限り燃料組成物から排除し、燃料組成物中に含まれる芳香族化合物のほとんどを本発明に係る多環芳香族化合物で占めることによって、燃料組成物中には所望の酸化安定性向上効果を発揮するための必要最小限の芳香族化合物しか含まない状態となる。その結果、芳香族化合物全体の含有量も抑えられることとなり、燃料組成物の着火性や揮発性の悪化も最小限に抑えられる。
An increase in aromatic compounds, particularly polycyclic aromatics, in the fuel composition leads to deterioration in ignitability and volatility, and is not suitable for application to diesel fuel.
Therefore, aromatic compounds other than the polycyclic aromatic compound according to the present invention are excluded from the fuel composition as much as possible, and most of the aromatic compounds contained in the fuel composition are the polycyclic aromatic compound according to the present invention. By occupying the fuel composition, the fuel composition is in a state of containing only a minimum amount of an aromatic compound necessary for exhibiting a desired oxidation stability improving effect. As a result, the content of the entire aromatic compound can be suppressed, and deterioration of the ignitability and volatility of the fuel composition can be minimized.

従って、本発明に係る燃料組成物は一実施形態において、本発明に係る多環芳香族化合物以外の多環芳香族化合物の含有量が合計で1容量%以下であり、好ましくは0.1容量%以下、さらに好ましくは0.01容量%以下、もっとも好ましくは0.001容量%以下である。本発明においては多環芳香族化合物とは石油学会の定める高速液体クロマトグラフ法(JPI-5S-49-97)に従って分析される多環芳香族化合物をいう。
これにより検出される多環芳香族化合物としては、例えば、ペンタレン、テトラリン、ナフタレン、インデン、フルオレン、アントラセン、フェナントン、及びピレン並びにこれらの誘導体が挙げられる。
Therefore, in one embodiment of the fuel composition according to the present invention, the total content of polycyclic aromatic compounds other than the polycyclic aromatic compound according to the present invention is 1% by volume or less, preferably 0.1 volume. % Or less, more preferably 0.01% by volume or less, and most preferably 0.001% by volume or less. In the present invention, the polycyclic aromatic compound refers to a polycyclic aromatic compound analyzed according to a high performance liquid chromatography method (JPI-5S-49-97) defined by the Petroleum Institute of Japan.
Examples of the polycyclic aromatic compound thus detected include pentalene, tetralin, naphthalene, indene, fluorene, anthracene, phenanthone, pyrene, and derivatives thereof.

また、本発明に係る燃料組成物は別の一実施形態において、単環芳香族化合物の含有量が合計で15容量%以下であり、好ましくは10容量%以下であり、より好ましくは1容量%以下であり、更により好ましくは0.1容量%以下であり、もっとも好ましくは0.01容量%以下である。本発明においては単環芳香族化合物とは石油学会の定める高速液体クロマトグラフ法(JPI-5S-49-97)に従って分析される単環芳香族化合物をいう。
これにより検出される単環芳香族化合物としては、例えば、ベンゼン、トルエン、キシレン及びクメンが挙げられる。
In another embodiment of the fuel composition according to the present invention, the total content of monocyclic aromatic compounds is 15% by volume or less, preferably 10% by volume or less, more preferably 1% by volume. Or less, still more preferably 0.1% by volume or less, and most preferably 0.01% by volume or less. In the present invention, the monocyclic aromatic compound refers to a monocyclic aromatic compound analyzed according to a high performance liquid chromatography method (JPI-5S-49-97) defined by the Petroleum Institute of Japan.
As a monocyclic aromatic compound detected by this, benzene, toluene, xylene, and cumene are mentioned, for example.

このような、本発明に係る多環芳香族化合物以外の芳香族化合物を実質的に含有しない燃料組成物の調製は、例えば、天然ガス、石炭、バイオマスといったエネルギー資源からFT(フィッシャートロプシェ)合成により製造される芳香族分をほとんど含まないGTL燃料に対して本発明に係る多環芳香族化合物を添加することにより行うことができる。
また、石油留分に含まれる芳香族分を、ニッケルや白金等を含有する触媒を用いて核水添する方法によって調製することもできる。より典型的には、このようにして得られる鎖状パラフィンが80容量%以上、好ましくは90容量%以上、より好ましくは95容量%以上である炭化水素留分に対して本発明に係る多環芳香族化合物を添加することにより燃料組成物を調製することができる。
Preparation of such a fuel composition substantially free of an aromatic compound other than the polycyclic aromatic compound according to the present invention is performed by, for example, FT (Fischer-Tropsch) synthesis from energy resources such as natural gas, coal, and biomass. Can be carried out by adding the polycyclic aromatic compound according to the present invention to a GTL fuel containing almost no aromatic component.
Moreover, it can also prepare by the method of carrying out the nuclear hydrogenation using the catalyst containing nickel, platinum, etc. for the aromatic component contained in a petroleum fraction. More typically, the polycyclic ring according to the present invention with respect to a hydrocarbon fraction in which the chain paraffin thus obtained is 80% by volume or more, preferably 90% by volume or more, more preferably 95% by volume or more. A fuel composition can be prepared by adding an aromatic compound.

本発明の燃料組成物においては、硫黄分はディーゼルエンジンの燃費及び排ガス浄化の観点から10質量ppm以下であることが好ましい。硫黄分は5質量ppm以下であることがより好ましく、1質量ppm以下であることが特に好ましい。硫黄分の除去は水素化脱硫、アルカリ洗浄、溶剤脱硫、ガス化脱硫等の公知の脱硫方法を使用して構わない。また、GTL燃料を使用した場合には、硫黄分は本来的にほとんど含まれない。
従って、本発明の一実施形態では、硫黄分が10質量ppm以下となるまで充分に脱硫した燃料組成物に対して本発明に係る添加剤を添加することが望ましい。
In the fuel composition of the present invention, the sulfur content is preferably 10 ppm by mass or less from the viewpoint of diesel engine fuel efficiency and exhaust gas purification. The sulfur content is more preferably 5 ppm by mass or less, and particularly preferably 1 ppm by mass or less. The removal of the sulfur content may use a known desulfurization method such as hydrodesulfurization, alkali cleaning, solvent desulfurization, gasification desulfurization and the like. Moreover, when GTL fuel is used, sulfur content is essentially hardly contained.
Therefore, in one embodiment of the present invention, it is desirable to add the additive according to the present invention to a fuel composition sufficiently desulfurized until the sulfur content becomes 10 mass ppm or less.

本発明の燃料組成物は、飽和炭化水素の含有量が80容量%以上であること、また、鎖状パラフィン(鎖状飽和炭化水素)の含有量が15容量%以上であることが好ましい。鎖状パラフィンは、燃料の燃焼性指標の一つであるセタン価を維持するために必要な成分であり、好ましくは20容量%以上、より好ましくは25容量%以上、さらにより好ましくは50容量%以上、最も好ましくは90容量%以上含有することが望ましい。15容量%未満では、燃焼させる際の良好な着火性を維持することが困難となる可能性がある。   The fuel composition of the present invention preferably has a saturated hydrocarbon content of 80% by volume or more, and a chain paraffin (chain saturated hydrocarbon) content of 15% by volume or more. The chain paraffin is a component necessary for maintaining the cetane number, which is one of the fuel combustibility indicators, and is preferably 20% by volume or more, more preferably 25% by volume or more, and even more preferably 50% by volume. As mentioned above, it is desirable to contain 90% by volume or more most preferably. If it is less than 15% by volume, it may be difficult to maintain good ignitability during combustion.

本発明の燃料組成物は、通常の軽油、灯油に相当することが好ましい。具体的な好ましい範囲は、90%留出温度が250℃〜350℃、特には260℃〜340℃であり、10%留出温度が180℃〜270℃、特には200℃〜260℃であり、また、セタン指数は40〜90、特には50〜80である。   The fuel composition of the present invention preferably corresponds to ordinary light oil and kerosene. Specific preferred ranges are 90% distillation temperature of 250 ° C. to 350 ° C., particularly 260 ° C. to 340 ° C., 10% distillation temperature of 180 ° C. to 270 ° C., particularly 200 ° C. to 260 ° C. The cetane index is 40 to 90, particularly 50 to 80.

また、本発明の燃料組成物は一実施形態において、充分に酸化した後の全酸価と酸化前の全酸価の差が0.5mgKOH/g以下である。酸化前後の全酸価の差は、車両部品の腐食性低減から好ましくは0.4mgKOH/g以下、更に好ましくは0.3mgKOH/g以下、更により好ましくは0.2mgKOH/g以下、最も好ましくは0.1mgKOH/g以下である。また、燃料組成物の全酸価は、酸化処理する前の全酸価が0.05mgKOH/g以下、より好ましくは0.03mgKOH/g以下、更に好ましくは0.01mgKOH/g以下であり、充分に酸化した後の全酸価が0.5mgKOH/g以下、好ましくは0.4mgKOH/g以下、更に好ましくは0.3mgKOH/g以下、更により好ましくは0.2mgKOH/g以下、特には0.1mgKOH/g以下であることが望ましい。   In one embodiment of the fuel composition of the present invention, the difference between the total acid value after sufficient oxidation and the total acid value before oxidation is 0.5 mgKOH / g or less. The difference between the total acid values before and after oxidation is preferably 0.4 mgKOH / g or less, more preferably 0.3 mgKOH / g or less, still more preferably 0.2 mgKOH / g or less, most preferably from the viewpoint of reducing the corrosiveness of vehicle parts. It is 0.1 mgKOH / g or less. The total acid value of the fuel composition is 0.05 mgKOH / g or less, more preferably 0.03 mgKOH / g or less, and still more preferably 0.01 mgKOH / g or less. The total acid value after oxidation to 0.5 mgKOH / g or less, preferably 0.4 mgKOH / g or less, more preferably 0.3 mgKOH / g or less, still more preferably 0.2 mgKOH / g or less, particularly preferably 0. 1 mgKOH / g or less is desirable.

ここでいう「充分に酸化した」とは、ISO12205の酸化安定性試験において、試験温度を95℃から115℃に変更し、試料300mL中に、酸素を供給量3L/h、供給圧98kPaにて、16時間供給する酸化試験を実施したことを指す。酸化試験終了後は、高温での保持時間による酸化が進行することを防止するために氷にて急冷する。   The term “sufficiently oxidized” as used herein means that the test temperature is changed from 95 ° C. to 115 ° C. in an oxidation stability test of ISO12205, and oxygen is supplied into a 300 mL sample at a supply amount of 3 L / h and a supply pressure of 98 kPa. , Indicates that an oxidation test was performed for 16 hours. After the oxidation test is completed, the sample is quenched with ice in order to prevent the oxidation due to the holding time at a high temperature from proceeding.

また、本発明中の燃料用添加剤又は燃料組成物には、本発明の目的が損なわれない範囲で、通常の液体炭化水素のほかに炭素数5以上の脂肪酸エステル、高級アルコールを含有することもできる。また、所望により流動性向上剤、潤滑性向上剤、流動点降下剤、セタン価向上剤、酸化防止剤、金属不活性化剤、清浄剤、腐食防止剤、氷結防止剤、微生物殺菌剤、助燃剤、耐電防止剤、着色剤等の他の燃料用添加剤を含有しても良い。その種類、添加量に関して特に制限は無いが、効果及び経済性のバランスなどの面から通常1〜3000質量ppmの範囲であることが好ましい。   In addition, the fuel additive or fuel composition in the present invention contains a fatty acid ester having 5 or more carbon atoms and a higher alcohol in addition to the usual liquid hydrocarbon, as long as the object of the present invention is not impaired. You can also. In addition, fluidity improvers, lubricity improvers, pour point depressants, cetane number improvers, antioxidants, metal deactivators, detergents, corrosion inhibitors, antifreeze agents, microbial disinfectants, assistants, if desired. You may contain other fuel additives, such as a flame retardant, an antistatic agent, and a coloring agent. Although there is no restriction | limiting in particular regarding the kind and addition amount, Usually, it is preferable that it is the range of 1-3000 mass ppm from surfaces, such as a balance of an effect and economical efficiency.

なお、本発明に用いる物性測定方法及び評価方法は、次に示した方法で測定されるものである。
1)密度:JIS K2249「原油及び石油製品密度試験方法」に規定された方法により、15℃で測定した。
2)蒸留性状:JIS K2254「蒸留試験方法」に規定された方法。
3)動粘度:JIS K2283「動粘度試験方法」に規定された方法により、30℃で測定した。
4)硫黄分:JIS K2541-6「硫黄分試験方法(紫外蛍光法)」に規定された方法。
5)窒素分:JIS K2609「窒素分試験方法(化学発光法)」に規定された方法。
6)セタン指数:JIS K2280「セタン指数算出方法」に規定された方法により算出した。
7)芳香族分:JPI-5S-49-97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に規定された方法
8)全酸価:JIS K2501「石油製品及び潤滑油−中和価試験方法」に規定された方法。
9)酸化試験:ISO12205の酸化安定性試験において、試料温度を95℃から115℃に変更し、試料350mL中に、酸素を供給量3L/h、供給圧98kPaにて、16時間供給した後、試料を氷で冷却して室温に戻す方法。
The physical property measurement method and evaluation method used in the present invention are measured by the following methods.
1) Density: Measured at 15 ° C. by the method defined in JIS K2249 “Crude oil and petroleum product density test method”.
2) Distillation property: A method defined in JIS K2254 “Distillation Test Method”.
3) Kinematic viscosity: Measured at 30 ° C. by the method defined in JIS K2283 “Kinematic viscosity test method”.
4) Sulfur content: A method defined in JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”.
5) Nitrogen content: A method defined in JIS K2609 “Nitrogen content test method (chemiluminescence method)”.
6) Cetane index: Calculated by the method defined in JIS K2280 “Method for calculating cetane index”.
7) Aromatic content: Method specified in JPI-5S-49-97 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatographic method” 8) Total acid number: JIS K2501 “Petroleum products and lubricants— The method specified in “Price Testing Method”.
9) Oxidation test: In the oxidation stability test of ISO12205, the sample temperature was changed from 95 ° C. to 115 ° C., and oxygen was supplied to 350 mL of the sample at a supply amount of 3 L / h and a supply pressure of 98 kPa for 16 hours. A method in which the sample is cooled to ice and returned to room temperature.

以下に本発明の内容を実施例及び比較例により更に詳しく説明するが、本発明はこれらによって制限されるものではない。   The content of the present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited thereto.

(ベース燃料)
ベース燃料として、表1に記載の性状を有する市販軽油1(MOSSGAS製GTL軽油)を使用した。
(Base fuel)
As the base fuel, commercially available light oil 1 (GTL light oil manufactured by MOSSGAS) having the properties shown in Table 1 was used.

Figure 0005427361
Figure 0005427361

例1
上記ベース燃料に、酸化防止剤としてアントラセン又はジメチルナフタレンを0〜0.4質量%添加し、表2に記載の10種類の燃料組成物を調製した。これらの燃料組成物について前記酸化試験方法にて酸化試験を実施し、試験前後での全酸価を測定した。表2の結果から、上記酸化防止剤を添加することによって燃料の酸化が有意に抑制されたことが分かる。また、アントラセンとジメチルナフタレンはその効果が拮抗していることも分かる。例えば、アントラセンを0.10質量%添加しただけで、全酸価の上昇を約90%抑制することが可能であった。
Example 1
Ten types of fuel compositions described in Table 2 were prepared by adding 0 to 0.4 mass% of anthracene or dimethylnaphthalene as an antioxidant to the base fuel. These fuel compositions were subjected to an oxidation test by the oxidation test method, and the total acid value before and after the test was measured. From the results in Table 2, it can be seen that the oxidation of the fuel was significantly suppressed by adding the antioxidant. It can also be seen that anthracene and dimethylnaphthalene have antagonistic effects. For example, the addition of 0.10% by mass of anthracene can suppress the increase in total acid value by about 90%.

Figure 0005427361
Figure 0005427361

例2
芳香族化合物の分子構造によって燃料の酸化安定性に与える効果が有意に異なることを示すための実験を行った。上記ベース燃料に表3に記載の各化合物を0.1質量%添加し、酸化試験後の全酸価を測定した。表3の結果から、3環芳香族化合物であるアントラセン類は燃料の酸化安定性効果が2環芳香族化合物であるナフタレン類よりも高い傾向にあることが分かる。また、アントラセン類においては、側鎖の違いによって酸化防止効果に大きな差は見られないが、ナフタレン類においては酸化防止効果にかなり差が見られる。
2-メチルナフタレンや1-エチルナフタレンは酸化防止効果がほとんど見られない一方で、ジメチルナフタレンの酸化防止効果は顕著である。
Example 2
An experiment was conducted to show that the effect on the oxidative stability of the fuel differs significantly depending on the molecular structure of the aromatic compound. 0.1% by mass of each compound shown in Table 3 was added to the base fuel, and the total acid value after the oxidation test was measured. From the results in Table 3, it can be seen that anthracenes, which are tricyclic aromatic compounds, tend to have a higher oxidative stability effect of fuel than naphthalenes, which are bicyclic aromatic compounds. In anthracenes, there is no significant difference in the antioxidant effect due to the difference in side chains, but in the naphthalenes, a considerable difference is observed in the antioxidant effect.
While 2-methylnaphthalene and 1-ethylnaphthalene have almost no antioxidant effect, dimethylnaphthalene has a remarkable antioxidant effect.

Figure 0005427361
Figure 0005427361

Claims (6)

アントラセン類及びジメチルナフタレンよりなる群から選択される1種以上の多環芳香族化合物を含有する燃料用酸化防止剤。 Anthracenes and one or more polycyclic aromatic fuel antioxidants containing compound selected from the group consisting of di-methylation naphthalene. 鎖状パラフィンが80容量%以上である炭化水素留分と請求項1に記載の燃料用酸化防止剤を含有し、請求項1に記載の多環芳香族化合物を合計で0.05質量%以上含有する燃料組成物。   It contains a hydrocarbon fraction whose chain paraffin is 80% by volume or more and the antioxidant for fuel according to claim 1, and the total amount of the polycyclic aromatic compound according to claim 1 is 0.05% by mass or more. Containing fuel composition. 請求項1に記載の多環芳香族化合物以外の多環芳香族化合物の含有量が合計で1容量%以下である請求項2に記載の燃料組成物。   The fuel composition according to claim 2, wherein the total content of polycyclic aromatic compounds other than the polycyclic aromatic compound according to claim 1 is 1% by volume or less. ISO12205の酸化安定性試験において、試料温度を115℃とし、試料300mL中に、酸素を供給量3L/h、供給圧98kPaにて、16時間供給して試料を酸化した後の全酸価と酸化前の全酸価の差が0.5mgKOH/g以下である、請求項2又は3に記載の燃料組成物。   In the oxidation stability test of ISO12205, the sample temperature was set to 115 ° C., and the total acid number and oxidation after oxidation of the sample by supplying oxygen into 300 mL of the sample at a supply amount of 3 L / h and a supply pressure of 98 kPa for 16 hours. The fuel composition according to claim 2 or 3, wherein the difference in the previous total acid number is 0.5 mgKOH / g or less. 硫黄分が10質量ppm以下である請求項2〜4の何れか一項に記載の燃料組成物。   The fuel composition according to any one of claims 2 to 4, wherein the sulfur content is 10 mass ppm or less. 鎖状パラフィンが80容量%以上である炭化水素留分に、請求項1に記載の燃料用酸化防止剤を配合することを含む燃料組成物の製造方法であって、燃料組成物の質量に対する請求項1に記載の多環芳香族化合物の合計が0.05質量%以上になるように配合を実施する方法。   A method for producing a fuel composition comprising blending the antioxidant for fuel according to claim 1 into a hydrocarbon fraction having a chain paraffin content of 80% by volume or more, wherein the claim is based on the mass of the fuel composition. The method of mix | blending so that the sum total of the polycyclic aromatic compound of claim | item 1 may be 0.05 mass% or more.
JP2008075818A 2007-03-22 2008-03-24 Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition Active JP5427361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075818A JP5427361B2 (en) 2007-03-22 2008-03-24 Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007075333 2007-03-22
JP2007075333 2007-03-22
JP2008075818A JP5427361B2 (en) 2007-03-22 2008-03-24 Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition

Publications (2)

Publication Number Publication Date
JP2008266618A JP2008266618A (en) 2008-11-06
JP5427361B2 true JP5427361B2 (en) 2014-02-26

Family

ID=40046519

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008075807A Expired - Fee Related JP5227626B2 (en) 2007-03-22 2008-03-24 Fuel composition containing a fuel oil base produced by Fischer-Tropsch synthesis
JP2008075818A Active JP5427361B2 (en) 2007-03-22 2008-03-24 Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008075807A Expired - Fee Related JP5227626B2 (en) 2007-03-22 2008-03-24 Fuel composition containing a fuel oil base produced by Fischer-Tropsch synthesis

Country Status (1)

Country Link
JP (2) JP5227626B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5227626B2 (en) * 2007-03-22 2013-07-03 Jx日鉱日石エネルギー株式会社 Fuel composition containing a fuel oil base produced by Fischer-Tropsch synthesis
JP2010098460A (en) 2008-10-15 2010-04-30 Yamaha Corp Audio signal processing device
JP2010150479A (en) 2008-12-26 2010-07-08 Showa Shell Sekiyu Kk Gas oil fuel composition
JP5730006B2 (en) * 2010-12-24 2015-06-03 昭和シェル石油株式会社 Light oil composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050192184A1 (en) * 2001-11-29 2005-09-01 Wu Margaret M. Alkylated naphthalenes as synthetic lubricant base stocks
JP2004225000A (en) * 2003-01-27 2004-08-12 Idemitsu Kosan Co Ltd Fuel oil composition for diesel engine
JP4482467B2 (en) * 2004-10-12 2010-06-16 コスモ石油株式会社 Method for producing light oil composition
JP4482470B2 (en) * 2004-10-12 2010-06-16 コスモ石油株式会社 Method for producing light oil composition
JP5054488B2 (en) * 2006-11-13 2012-10-24 Jx日鉱日石エネルギー株式会社 Method for producing light oil composition
JP5227626B2 (en) * 2007-03-22 2013-07-03 Jx日鉱日石エネルギー株式会社 Fuel composition containing a fuel oil base produced by Fischer-Tropsch synthesis

Also Published As

Publication number Publication date
JP2008266618A (en) 2008-11-06
JP2008266617A (en) 2008-11-06
JP5227626B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5054487B2 (en) Light oil composition
DK2371931T3 (en) The fuel compositions comprising biodiesel and Fischer-Tropsch diesel
JP5427361B2 (en) Antioxidant for fuel, fuel composition containing the antioxidant, and method for producing fuel composition
JP5520101B2 (en) Light oil composition
ZA200408311B (en) Diesel fuel compositions
AU2004200235A1 (en) Stable olefinic, low sulfur diesel fuels
JP2009167257A (en) Gas oil composition
JP2007002237A (en) Abrasion-resistant gasoline composition
JP2008214369A (en) Fuel composition for diesel engine
US20120046506A1 (en) Diesel fuel composition
JP5317605B2 (en) Light oil composition
JP2011213888A (en) Gas oil composition
JP2007002236A (en) Gasoline composition
WO2014133012A1 (en) Fuel oil
JP5191146B2 (en) Fuel oil composition
JP5105853B2 (en) Low sulfur fuel composition
JP5068976B2 (en) Fuel additive and fuel composition containing the additive
JP2010070731A (en) Gas oil composition
JP5684184B2 (en) Light oil composition
JP5684181B2 (en) Light oil composition
JP5205642B2 (en) Fuel oil composition
JP4746826B2 (en) Fuel oil composition
JP5048982B2 (en) Fuel additive and fuel composition containing the additive
JP2010070733A (en) Gas oil composition
JP2010070730A (en) Gas oil composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250