JP2008144045A - Fibrous electrically conductive filler and electrically conductive resin composition and electrically conductive structure - Google Patents

Fibrous electrically conductive filler and electrically conductive resin composition and electrically conductive structure Download PDF

Info

Publication number
JP2008144045A
JP2008144045A JP2006333147A JP2006333147A JP2008144045A JP 2008144045 A JP2008144045 A JP 2008144045A JP 2006333147 A JP2006333147 A JP 2006333147A JP 2006333147 A JP2006333147 A JP 2006333147A JP 2008144045 A JP2008144045 A JP 2008144045A
Authority
JP
Japan
Prior art keywords
conductive
resin composition
fibrous
conductive filler
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006333147A
Other languages
Japanese (ja)
Inventor
Makoto Azuma
誠 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006333147A priority Critical patent/JP2008144045A/en
Publication of JP2008144045A publication Critical patent/JP2008144045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fibrous electrically conductive filler capable of forming a soft electrically conductive structure, to provide an electrically conductive resin composition containing the fibrous electrically conductive filler, to provide such an electrically conductive structure comprising the electrically conductive resin composition, and to provide an antenna and an electromagnetic shielding material each using the electrically conductive structure. <P>SOLUTION: The fibrous electrically conductive filler, with its length L falling within the range of 0.5-100 μm, comprises organic fibers and an electrically conductive substance coated on the surfaces thereof. The electrically conductive resin composition containing the fibrous electrically conductive filler, the electrically conductive structure comprising the electrically conductive resin composition, and the antenna and the electromagnetic shielding material each using the electrically conductive structure, are provided, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性樹脂組成物に配合して用いられる繊維状導電性フィラー、および該繊維状導電性フィラーを配合した導電性樹脂組成物、および該導電性樹脂組成物を含む導電性構造体に関する。   The present invention relates to a fibrous conductive filler used by blending in a conductive resin composition, a conductive resin composition blended with the fibrous conductive filler, and a conductive structure including the conductive resin composition About.

従来、導電性樹脂組成物に配合して用いられる導電性フィラーとしては、カーボン繊維、金属ウイスカーなどの無機系繊維状導電性フィラーや、カーボン微粒子などの粉末からなる導電性フィラーが提案されている(例えば、特許文献1〜4参照)。しかしながら、無機系繊維状導電性フィラーを含む導電性樹脂組成物を基材に塗布して導電性構造体を得ると、無機系繊維状導電性フィラーの剛性が大きいため、得られた導電性構造体が硬いという問題があった。一方、粉末からなる導電性フィラーでは、良好な導電性を得るためには大量の導電性フィラーを使用する必要があった。   Conventionally, as the conductive filler used by blending in the conductive resin composition, inorganic fibrous conductive fillers such as carbon fibers and metal whiskers, and conductive fillers composed of powders such as carbon fine particles have been proposed. (For example, refer to Patent Documents 1 to 4). However, when a conductive structure is obtained by applying a conductive resin composition containing an inorganic fibrous conductive filler to a base material, the rigidity of the inorganic fibrous conductive filler is so great that the resulting conductive structure is obtained. There was a problem that the body was hard. On the other hand, in a conductive filler made of powder, it was necessary to use a large amount of conductive filler in order to obtain good conductivity.

特開2004−224829号公報JP 2004-224829 A 特開2003−187638号公報JP 2003-187638 A 特開2003−187639号公報Japanese Patent Laid-Open No. 2003-187639 特開2004−189938号公報JP 2004-189938 A

本発明は上記の背景に鑑みなされたものであり、その目的は、柔らかい導電性構造体を得ることが可能な、繊維状導電性フィラー、および該繊維状導電性フィラーを含む導電性樹脂組成物、および該導電性樹脂組成物を含む導電性構造体を提供することにある。   The present invention has been made in view of the above background, and the object thereof is a fibrous conductive filler capable of obtaining a soft conductive structure, and a conductive resin composition containing the fibrous conductive filler. And providing a conductive structure containing the conductive resin composition.

本発明者は上記の課題を達成するため鋭意検討した結果、有機系繊維に金属被覆することにより所望の導電性フィラーが得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that a desired conductive filler can be obtained by metal coating on organic fibers, and the present invention is completed by further intensive studies. It came.

かくして、本発明によれば「長さLが0.5〜100μmの範囲内である繊維状導電性フィラーであって、該繊維状導電性フィラーが、有機系繊維と該有機系繊維の表面に被覆された導電性物質とを含むことを特徴とする繊維状導電性フィラー。」が提供される。   Thus, according to the present invention, “a fibrous conductive filler having a length L in the range of 0.5 to 100 μm, and the fibrous conductive filler is formed on the surface of the organic fiber and the organic fiber. A fibrous conductive filler characterized in that it comprises a coated conductive material.

その際、繊維状導電性フィラーの直径Dが0.1〜2μmの範囲内であることが好ましい。また、前記長さLと直径Dとの比L/Dが5以上であることが好ましい。前記有機系繊維としてはポリエステル繊維であることが好ましい。特に、前記ポリエステル繊維が、海成分と島成分とからなる海島型複合繊維の海成分を溶解除去することにより得られたポリエステル繊維であることが好ましい。   In that case, it is preferable that the diameter D of a fibrous conductive filler exists in the range of 0.1-2 micrometers. Moreover, it is preferable that ratio L / D of the said length L and the diameter D is 5 or more. The organic fiber is preferably a polyester fiber. In particular, the polyester fiber is preferably a polyester fiber obtained by dissolving and removing a sea component of a sea-island composite fiber composed of a sea component and an island component.

本発明の繊維状導電性フィラーにおいて、導電性物質が金属または金属酸化物であることが好ましい。また、かかる金属被覆がめっきによるものであることが好ましい。   In the fibrous conductive filler of the present invention, the conductive material is preferably a metal or a metal oxide. Moreover, it is preferable that this metal coating is by plating.

また、本発明によれば、「樹脂バインダーと導電性フィラーと溶剤を含む導電性樹脂組成物であって、導電性フィラーとして前記の繊維状導電性フィラーを含む導電性樹脂組成物。」が提供される。その際、前記導電性樹脂組成物に他成分として導電性微粉末が含まれることが好ましい。   In addition, according to the present invention, there is provided “a conductive resin composition containing a resin binder, a conductive filler, and a solvent, the conductive resin composition containing the fibrous conductive filler as a conductive filler”. Is done. In that case, it is preferable that electroconductive fine powder is contained in the said conductive resin composition as another component.

また、本発明によれば、「基材と該基材に塗布された導電性樹脂組成物とで構成され、導電性樹脂組成物が前記の導電性樹脂組成物である導電性構造体。」が提供される。その際、前記基材としては布帛またはフィルムであることが好ましい。   According to the present invention, “a conductive structure comprising a base material and a conductive resin composition applied to the base material, wherein the conductive resin composition is the conductive resin composition”. Is provided. At that time, the substrate is preferably a fabric or a film.

また、本発明によれば、前記の導電性構造体を用いてなる、アンテナおよび電磁波シールド材が提供される。   Moreover, according to this invention, the antenna and electromagnetic wave shielding material which use the said electroconductive structure are provided.

本発明によれば、柔らかい導電性構造体を得ることが可能な、繊維状導電性フィラー、および該繊維状導電性フィラーを含む導電性樹脂組成物、該導電性樹脂組成物を含む導電性構造体、および該導電性構造体を用いてなる、アンテナおよび電磁波シールド材が提供される。   According to the present invention, a fibrous conductive filler capable of obtaining a soft conductive structure, a conductive resin composition including the fibrous conductive filler, and a conductive structure including the conductive resin composition And an antenna and an electromagnetic wave shielding material using the conductive structure.

以下、本発明の実施の形態について詳細に説明する。
まず、本発明の繊維状導電性フィラーにおいて、その長さLが0.5〜100μm(好ましくは1〜10μm)の範囲内にあることが肝要である。該長さLが0.5μmよりも小さいと、該繊維状導電性を用いて導電性構造体を得た際、導電性構造体の導電性が損われ好ましくない。逆に該長さが100μmよりも大きいと、該繊維状導電性を用いて導電性構造体を得た際、導電性構造体が硬くなるため好ましくない。また、該長さLがグラビア印刷版のセルよりも大きいと、グラビア印刷用のインキとして使用できないおそれがある。なお、該長さはn数10でランダムにサンプリングしその平均値を求めるものとする。
Hereinafter, embodiments of the present invention will be described in detail.
First, in the fibrous conductive filler of the present invention, it is important that the length L is in the range of 0.5 to 100 μm (preferably 1 to 10 μm). When the length L is less than 0.5 μm, when the conductive structure is obtained using the fibrous conductivity, the conductivity of the conductive structure is impaired, which is not preferable. Conversely, when the length is greater than 100 μm, it is not preferable because the conductive structure becomes hard when the conductive structure is obtained using the fibrous conductivity. Further, if the length L is larger than the cell of the gravure printing plate, there is a possibility that it cannot be used as an ink for gravure printing. It is assumed that the length is randomly sampled with an n number of 10, and the average value is obtained.

また、繊維状導電性フィラーの直径Dが0.1〜2μm(より好ましくは0.1〜1μm)の範囲内であることが好ましい。該直径Dが2μmよりも大きいと、該繊維状導電性を用いて導電性構造体を得た際、導電性構造体が硬くなるおそれがある。また、該直径Dがグラビア印刷版のセルよりも大きいと、グラビア印刷用のインキとして使用できないおそれがある。なお、繊維状導電性フィラーの断面形状が真円でない場合には、直径は、長径(最も長い直径)と短径(最も短い直径)との平均値を求めるものとする。   Moreover, it is preferable that the diameter D of a fibrous conductive filler exists in the range of 0.1-2 micrometers (more preferably 0.1-1 micrometer). When the diameter D is larger than 2 μm, the conductive structure may become hard when the conductive structure is obtained using the fibrous conductivity. Moreover, when the diameter D is larger than the cells of the gravure printing plate, there is a possibility that it cannot be used as an ink for gravure printing. When the cross-sectional shape of the fibrous conductive filler is not a perfect circle, the average value of the long diameter (longest diameter) and the short diameter (shortest diameter) is obtained as the diameter.

本発明において、有機系繊維としては、前記のような超極細の繊維径を得る上で、繊維形成性のポリエチレンテレフタレートやポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、第3成分を共重合させたポリエステルなどのポリエステルからなるポリエステル繊維が好ましい。該ポリマー中には、本発明の目的を損なわない範囲内で必要に応じて、微細孔形成剤、カチオン染料可染剤、着色防止剤、熱安定剤、蛍光増白剤、艶消し剤、着色剤、吸湿剤、無機微粒子が1種または2種以上含まれていてもよい。   In the present invention, the organic fiber is obtained by copolymerizing a fiber-forming polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polylactic acid, and a third component in order to obtain the above ultrafine fiber diameter. Polyester fibers made of polyester such as polyester are preferred. In the polymer, a fine pore forming agent, a cationic dye dyeing agent, an anti-coloring agent, a heat stabilizer, a fluorescent whitening agent, a matting agent, a coloring agent may be added as necessary within the range not impairing the object of the present invention. 1 type (s) or 2 or more types of an agent, a hygroscopic agent, and inorganic fine particles may be contained.

特に、前記ポリエステル繊維が、海成分と島成分とからなる海島型複合繊維の海成分を溶解除去することにより得られたポリエステル繊維であることが好ましい。このようなポリエステル繊維は、例えば以下の方法で製造することができる。   In particular, the polyester fiber is preferably a polyester fiber obtained by dissolving and removing a sea component of a sea-island composite fiber composed of a sea component and an island component. Such a polyester fiber can be produced, for example, by the following method.

まず、島成分ポリマーとしては前記のようなポリエステルを使用する。一方、海成分ポリマーは、好ましくは島成分との溶解速度比が200以上であればいかなるポリマーであってもよいが、特に繊維形成性の良好なポリエステル、ポリアミド、ポリスチレン、ポリエチレンなどが好ましい。例えば、アルカリ水溶液易溶解性ポリマーとしては、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリエチレングルコール系化合物共重合ポリエステル、ポリエチレングリコール系化合物と5−ナトリウムスルホン酸イソフタル酸の共重合ポリエステルが好適である。また、ナイロン6は、ギ酸溶解性があり、ポリスチレン・ポリエチレンはトルエンなど有機溶剤に非常によく溶ける。なかでも、アルカリ易溶解性と海島断面形成性とを両立させるため、ポリエステル系のポリマーとしては、5−ナトリウムスルホイソフタル酸6〜12モル%と分子量4000〜12000のポリエチレングルコールを3〜10重量%共重合させた固有粘度が0.4〜0.6のポリエチレンテレフタレート系共重合ポリエステルが好ましい。ここで、5−ナトリウムイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。なお、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加効果が大きくなるが、反応性が悪くなってブレンド系になるため、耐熱性・紡糸安定性などの点から好ましくなくなる。   First, the above polyester is used as the island component polymer. On the other hand, the sea component polymer may be any polymer as long as the dissolution rate ratio with respect to the island component is 200 or more, but polyester, polyamide, polystyrene, polyethylene, and the like having good fiber forming properties are particularly preferable. For example, as an easily soluble polymer in an alkaline aqueous solution, polylactic acid, an ultra-high molecular weight polyalkylene oxide condensation polymer, a polyethylene glycol compound copolymer polyester, a copolymer polyester of polyethylene glycol compound and 5-sodium sulfonic acid isophthalic acid may be used. Is preferred. Nylon 6 is soluble in formic acid, and polystyrene and polyethylene are very well soluble in organic solvents such as toluene. Among them, in order to achieve both easy alkali solubility and sea-island cross-section formability, the polyester-based polymer is 3 to 10% by weight of polyethylene glycol having 6 to 12 mol% of 5-sodium sulfoisophthalic acid and a molecular weight of 4000 to 12000. % Copolymerized polyethylene terephthalate copolymer polyester having an intrinsic viscosity of 0.4 to 0.6 is preferred. Here, 5-sodium isophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. PEG has a higher hydrophilicity effect, which is thought to be due to its higher order structure, as the molecular weight increases, but it is preferable from the viewpoints of heat resistance and spinning stability because the reactivity becomes poor and a blend system is formed. Disappear.

次に島数は、多いほど海成分を溶解除去して極細繊維を製造する場合の生産性が高くなり、しかも得られる極細繊維の細さも細くすることが可能となるので100以上(より好ましくは300〜1000)であることが好ましい。なお、島数があまりに多くなりすぎると紡糸口金の製造コストが高くなるだけでなく、加工精度自体も低下しやすくなるので10000以下とするのが好ましい。   Next, the larger the number of islands, the higher the productivity in producing ultrafine fibers by dissolving and removing sea components, and the fineness of the resulting ultrafine fibers can also be reduced to 100 or more (more preferably 300-1000). If the number of islands is too large, not only the production cost of the spinneret increases, but also the processing accuracy itself tends to decrease.

次に、島成分の径は、50〜1000nmの範囲とすることが好ましい。かかる海島型複合繊維において、その海島複合重量比率(海:島)は、40:60〜5:95の範囲が好ましく、特に30:70〜10:90の範囲が好ましい。かかる範囲であれば、島間の海成分の厚みを薄くすることができ、海成分の溶解除去が容易となり、島成分の極細繊維への転換が容易になるので好ましい。ここで海成分の割合が40%を越える場合には海成分の厚みが厚くなりすぎ、一方5%未満の場合には海成分の量が少なくなりすぎて、島間に接合が発生しやすくなる。   Next, the diameter of the island component is preferably in the range of 50 to 1000 nm. In such sea-island type composite fibers, the sea-island composite weight ratio (sea: island) is preferably in the range of 40:60 to 5:95, particularly preferably in the range of 30:70 to 10:90. Within such a range, the thickness of the sea component between the islands can be reduced, the sea component can be easily dissolved and removed, and the conversion of the island component into ultrafine fibers is facilitated. Here, when the proportion of the sea component exceeds 40%, the thickness of the sea component becomes too thick. On the other hand, when the proportion is less than 5%, the amount of the sea component becomes too small, and joining between the islands easily occurs.

溶融紡糸に用いられる紡糸口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面形成がなされるいかなる紡糸口金でもよい。   As the spinneret used for melt spinning, any one such as a hollow pin group for forming an island component or a group having a fine hole group can be used. For example, any spinneret that can form a cross section of the sea island by joining the island component extruded from the hollow pin or the fine hole and the sea component flow that is designed to fill the gap between them is compressed. .

吐出された海島型断面複合繊維は、冷却風によって固化され、好ましくは400〜6000m/分で溶融紡糸された後に巻き取られる。得られた未延伸糸は、別途延伸工程をとおして所望の強度・伸度・熱収縮特性を有する複合繊維とするか、あるいは、一旦巻き取ることなく一定速度でローラーに引き取り、引き続いて延伸工程をとおした後に巻き取る方法のいずれでも構わない。具体的には60〜100℃、好ましくは60〜80℃の範囲の温水バスに浸漬して均一加熱を施し、延伸倍率は10〜30倍、供給速度は1〜10m/分、巻取り速度は300m/分以下、特に10〜300m/分の範囲で実施することが好ましい。   The discharged sea-island type cross-section composite fiber is solidified by cooling air, and is preferably wound after being melt-spun at 400 to 6000 m / min. The obtained undrawn yarn is made into a composite fiber having desired strength, elongation, and heat shrinkage properties through a separate drawing process, or is taken up by a roller at a constant speed without being wound once, and subsequently drawn. Any of the methods of winding after passing through may be used. Specifically, it is immersed in a hot water bath in the range of 60 to 100 ° C., preferably 60 to 80 ° C., and uniformly heated, the draw ratio is 10 to 30 times, the supply speed is 1 to 10 m / min, and the winding speed is It is preferable to carry out in the range of 300 m / min or less, particularly 10 to 300 m / min.

かかる海島型複合繊維をボールミル等で前記の長さにカットした後、前記の海成分をアルカリ水溶液で溶解除去するとよい。   After the sea-island type composite fiber is cut to the above length with a ball mill or the like, the sea component may be dissolved and removed with an alkaline aqueous solution.

本発明の導電性フィラーは前記の有機系繊維の繊維表面に導電性物質を被覆したものである。被覆する金属としては、導電性の良好な銅、ニッケル、銀、クロム、金、錫、鉄、アルミニウム等の金属、およびこれら金属の金属酸化物などが好適に例示される。これらの金属または金属酸化物は2種類以上を混合して用いてもよく、これらの合金を使用することもできる。ただし、金は高価な材料であるので、多量の使用はコスト高を招くおそれがある。また、銅やアルミニウムは酸化しやすい材料であり、導電性の経時変化が認められるので、その用途が限られる。銀、ニッケル、およびこれらの合金が好ましく用いられる。特にニッケルやその合金は、化学的安定でコストも低く抑えられるので、好ましく使用することができる。   The conductive filler of the present invention is obtained by coating the surface of the organic fiber with a conductive substance. Preferred examples of the metal to be coated include metals such as copper, nickel, silver, chromium, gold, tin, iron, and aluminum having good conductivity, and metal oxides of these metals. Two or more kinds of these metals or metal oxides may be used in combination, or an alloy thereof may be used. However, since gold is an expensive material, a large amount of use may increase the cost. Further, copper and aluminum are materials that are easily oxidized, and their use is limited because changes in conductivity over time are recognized. Silver, nickel, and alloys thereof are preferably used. In particular, nickel and its alloys can be preferably used because they are chemically stable and low in cost.

有機系繊維に金属を被覆する方法としては、無電解めっき、真空蒸着、スパッタ、イオンプレーティング、金属容射またはメカノケミカル法、紛状体に薄膜成形する公知の方法を用いることができる。その際、被覆する導電性物質の厚みは0.05μm〜0.5μm(より好ましくは0.07〜0.15μm)であることが好ましい。   As a method of coating the metal on the organic fiber, electroless plating, vacuum deposition, sputtering, ion plating, metal spraying or mechanochemical method, or a known method of forming a thin film into a powder can be used. At that time, the thickness of the conductive material to be coated is preferably 0.05 μm to 0.5 μm (more preferably 0.07 to 0.15 μm).

次に、本発明の導電性樹脂組成物は、樹脂バインダーと前記の繊維状導電性フィラーと溶剤を含むものである。樹脂バインダーとしては、特に限定されないが、エポキシ樹脂、ポリエステル樹脂、ウレタン変性ポリエステル樹脂、エポキシ変性ポリエステル樹脂、アクリル変性ポリエステル樹脂などの各種変性ポリエステル樹脂、ポリエーテルウレタン樹脂、ポリカーボネートウレタン樹脂、塩化ビニル・酢酸ビニル共重合体、フェノール樹脂、アクリル樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ニトロセルロース、セルロース・アセテート・ブチレート(CAB)、セルロース・アセテート・プロピオネート(CAP)などの変性セルロース類などが挙げられる。
前記樹脂バインダーと前記繊維状導電性フィラーとの重量比率としては、樹脂バインダー100重量部に対して10〜60重量部の範囲内であることが好ましい。
Next, the conductive resin composition of the present invention contains a resin binder, the fibrous conductive filler, and a solvent. The resin binder is not particularly limited, but various modified polyester resins such as epoxy resin, polyester resin, urethane-modified polyester resin, epoxy-modified polyester resin, and acrylic-modified polyester resin, polyether urethane resin, polycarbonate urethane resin, vinyl chloride / acetic acid Vinyl copolymers, phenol resins, acrylic resins, polyamideimide resins, polyimide resins, polyamide resins, nitrocellulose, modified celluloses such as cellulose acetate acetate butyrate (CAB), cellulose acetate acetate propionate (CAP), etc. Is mentioned.
The weight ratio of the resin binder to the fibrous conductive filler is preferably in the range of 10 to 60 parts by weight with respect to 100 parts by weight of the resin binder.

また、溶剤としては、トルエンなど公知の溶剤でよく、前記樹脂バインダーと溶剤との重量比率としては、樹脂バインダー100重量部に対して50〜300重量部の範囲内であることが好ましい。   The solvent may be a known solvent such as toluene, and the weight ratio of the resin binder to the solvent is preferably in the range of 50 to 300 parts by weight with respect to 100 parts by weight of the resin binder.

また、かかる導電性樹脂組成物にフレーク状銀粉、球状銀粉、3次元高次構造の銀粉、樹枝状銀粉、グラファイト粉、カーボン粉、ニッケル粉、銅粉、金粉、パラジウム粉、アルミ粉、インジウム粉など導電性微粉末が他の成分として含まれていると導電性が向上し好ましい。その際、導電性微粉末の大きさとしては直径0.1μm〜10μmの範囲内であることが好ましい。また、前記樹脂バインダーと該導電性微粉末との重量比率としては、樹脂バインダー100重量部に対して10〜50重量部の範囲内であることが好ましい。なお、本発明の導電性樹脂組成物には、分散剤など通常の添加剤が含まれていてもさしつかえないが、無機系の繊維状導電性フィラーは含まれていないことが好ましい。   In addition, the conductive resin composition includes flaky silver powder, spherical silver powder, three-dimensional higher order silver powder, dendritic silver powder, graphite powder, carbon powder, nickel powder, copper powder, gold powder, palladium powder, aluminum powder, and indium powder. When the conductive fine powder is contained as other components, the conductivity is preferably improved. At that time, the size of the conductive fine powder is preferably in the range of 0.1 μm to 10 μm in diameter. The weight ratio between the resin binder and the conductive fine powder is preferably in the range of 10 to 50 parts by weight with respect to 100 parts by weight of the resin binder. The conductive resin composition of the present invention may contain a normal additive such as a dispersant, but preferably does not contain an inorganic fibrous conductive filler.

次に、本発明の導電性構造体は、基材と該基材に塗布された導電性樹脂組成物とで構成
される。基材としては、ポリエステル繊維などの合成繊維からなる、織物、編物、不織布などの布帛、ポリエステルフィルムなどが好適である。このような基材を採用することにより、柔らかい導電性構造体が得られる。
Next, the conductive structure of the present invention includes a base material and a conductive resin composition applied to the base material. As the base material, fabrics such as woven fabrics, knitted fabrics, and nonwoven fabrics, polyester films, and the like made of synthetic fibers such as polyester fibers are suitable. By adopting such a base material, a soft conductive structure can be obtained.

基材に導電性樹脂組成物を塗布する方法は特に限定されずグラビア印刷機などを使用するとよい。また、導電性樹脂組成物の塗布厚さとしては、2〜100μmの範囲内であることが好ましい。該塗布厚さが2μmよりも小さいと十分な導電性が得られないおそれがある。逆に、該塗布厚さが100μmよりも大きいと導電性構造体が硬くなるおそれがある。   The method for applying the conductive resin composition to the substrate is not particularly limited, and a gravure printing machine or the like may be used. Moreover, it is preferable that it is in the range of 2-100 micrometers as application | coating thickness of a conductive resin composition. If the coating thickness is less than 2 μm, sufficient conductivity may not be obtained. Conversely, if the coating thickness is greater than 100 μm, the conductive structure may be hardened.

本発明の導電性構造体には前記の導電性樹脂組成物が塗布されているので、カーボン繊維などの無機系繊維状導電性フィラーを含む導電性樹脂組成物が塗布された導電性構造体に比べて柔らかいという特徴を有する。   Since the conductive resin composition is applied to the conductive structure of the present invention, the conductive structure coated with the conductive resin composition containing an inorganic fibrous conductive filler such as carbon fiber is applied to the conductive structure. Compared with softness.

また、本発明によれば、前記の導電性構造体を用いてなる、アンテナおよび電磁波シールド材が提供される。   Moreover, according to this invention, the antenna and electromagnetic wave shielding material which use the said electroconductive structure are provided.

次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。
(1)繊維状導電性フィラーの長さL
n数10でランダムにサンプリングし透過型電子顕微鏡TEMで観察し長さを測定したのち、その平均値を求めた。
(2)繊維状導電性フィラーの直径D
n数10でランダムにサンプリングし透過型電子顕微鏡TEMで観察し直径を測定したのち、その平均値を求めた。
(3)厚みの測定
試料の断面を透過型電子顕微鏡TEMに観察し、厚みを測定した。
Next, although the Example and comparative example of this invention are explained in full detail, this invention is not limited by these. In addition, each measurement item in an Example was measured with the following method.
(1) Length L of fibrous conductive filler
After sampling at random with n number of 10 and observing with a transmission electron microscope TEM to measure the length, the average value was obtained.
(2) Diameter D of fibrous conductive filler
The sample was randomly sampled with an n number of 10 and observed with a transmission electron microscope TEM to measure the diameter, and then the average value was obtained.
(3) Measurement of thickness The cross section of the sample was observed with a transmission electron microscope TEM, and the thickness was measured.

[実施例1]
島成分としてポリエチレンテレフタレート、海成分として5−ナトリウムスルホイソフタル酸9モル%と数平均分子量4000のポリエチレングリコール3重量%を共重合したポリエチレンテレフタレートを用い(溶解速度比(海/島)=230)、海:島=30:70、島数=836の海島型複合未延伸繊維を、紡糸温度280℃、紡糸速度1500m/分で溶融紡糸して一旦巻き取った。得られた未延伸糸を、延伸温度80℃、延伸倍率2.5倍でローラー延伸し、次いで150℃で熱セットして巻き取った。得られた海島型複合延伸糸は56dtex/10filであり、透過型電子顕微鏡TEMによる繊維横断面を観察したところ、島の形状は丸形状でかつ島の径は600nmであった。
[Example 1]
Using polyethylene terephthalate as the island component, polyethylene terephthalate copolymerized with 9 mol% of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4000 as the sea component (dissolution rate ratio (sea / island) = 230), A sea-island type composite unstretched fiber having sea: island = 30: 70 and number of islands = 836 was melt-spun at a spinning temperature of 280 ° C. and a spinning speed of 1500 m / min, and wound up once. The obtained undrawn yarn was roller-drawn at a drawing temperature of 80 ° C. and a draw ratio of 2.5 times, and then heat-set at 150 ° C. and wound up. The obtained sea-island type composite drawn yarn was 56 dtex / 10 fil. When the fiber cross section was observed with a transmission electron microscope TEM, the shape of the island was round and the diameter of the island was 600 nm.

次いで、該海島型複合延伸糸を繊維切断装置により長さ1mmにショートカットし、アルカリ減量処理した。その後、この繊維をボールミルにてさらに短くカットし、繊維の直径が0.6μm、平均長さが5μmであるポリエステル短繊維を得た。   Subsequently, the sea-island type composite stretched yarn was shortcut-cut to a length of 1 mm by a fiber cutting device and subjected to alkali weight reduction treatment. Then, this fiber was further cut with a ball mill to obtain a polyester short fiber having a fiber diameter of 0.6 μm and an average length of 5 μm.

次いで、このポリエステル短繊維を無電解めっき法にて銀を繊維表面に被覆することにより繊維状導電性フィラーを得た。該繊維状導電性フィラーにおいて、金属めっき層の厚みは0.1μm、直径は0.8μm、長さが5μmであった。   Next, the polyester short fiber was coated with silver on the fiber surface by an electroless plating method to obtain a fibrous conductive filler. In the fibrous conductive filler, the thickness of the metal plating layer was 0.1 μm, the diameter was 0.8 μm, and the length was 5 μm.

次いで、高速ディゾルバー(井上製作所社製、型式DHV)中へ前記繊維状導電性フィラー(銀被覆ポリエステル繊維)15重量部、バインダー樹脂としてポリエステルウレタン樹脂(日本合成化学社製、型式UR−8200)20重量部、トルエン65重量部の配合で、5分間混合せしめることにより導電性樹脂組成物を得た。   Next, 15 parts by weight of the fibrous conductive filler (silver-coated polyester fiber) in a high-speed dissolver (Inoue Seisakusho, model DHV), polyester urethane resin (manufactured by Nippon Synthetic Chemicals, model UR-8200) 20 as a binder resin A conductive resin composition was obtained by mixing 5 parts by weight with a blend of parts by weight and 65 parts by weight of toluene.

次いで、厚さ125μmのアニール処理ポリエステルフィルム上に上記の導電性樹脂組成物(導電性ペースト)をグラビア印刷機(岩瀬機械社製)にて全面印刷することにより導電性樹脂構造体を得た。印刷特性は良好であった。このときの乾燥後の塗膜厚は2.5μmであった。   Next, a conductive resin structure was obtained by printing the entire surface of the above-described conductive resin composition (conductive paste) on a 125 μm-thickness-treated polyester film with a gravure printer (Iwase Kikai Co., Ltd.). The printing characteristics were good. The coating thickness after drying at this time was 2.5 μm.

表面抵抗値を、表面抵抗計(三菱油化(株)製、型番:MCP−TESTER、MODELHT−210)にて測定した。その結果、表面抵抗値は11mΩ/□であった。かかる導電性構造体をアンテナとして使用したところ、優れたアンテナ性能を有するものであった。また、該導電性構造体は柔らかいものであった。   The surface resistance value was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., model number: MCP-TESTER, MODELHT-210). As a result, the surface resistance value was 11 mΩ / □. When such a conductive structure was used as an antenna, it had excellent antenna performance. Further, the conductive structure was soft.

[実施例2]
実施例1と同じ繊維状導電性フィラーを使用し、高速ディソルパー中へ繊維状導電性フィラー(銀被覆ポリエステル繊維)15重量部、銀微粉末15重量部、バインダー樹脂としてポリエステルウレタン樹脂(日本合成化学社製、型式UR−8200)25重量部、トルエン60重量部を配合して回転数1200rpmで5分間攪拌混合せしめることにより導電性樹脂組成物を得た。
[Example 2]
Using the same fibrous conductive filler as in Example 1, 15 parts by weight of fibrous conductive filler (silver-coated polyester fiber), 15 parts by weight of silver fine powder in a high-speed dissolver, polyester urethane resin (Nippon Synthetic Chemical) as binder resin A conductive resin composition was obtained by blending 25 parts by weight of model UR-8200) and 60 parts by weight of toluene and stirring and mixing at 1200 rpm for 5 minutes.

次いで、厚さ125μmのアニール処理ポリエステルフィルム上に上記の導電性ペーストをグラビア印刷機にて全面印刷した。印刷特性は良好であった。このときの乾燥後の塗膜厚は2.5μmであった。
表面抵抗値を、表面抵抗計(三菱油化(株)製、型番:MCP-TESTER、MODELHT-210)にて測定した。その結果、表面抵抗値は3.3mΩ/□であった。
Next, the above conductive paste was printed on the entire surface of the annealed polyester film having a thickness of 125 μm with a gravure printer. The printing characteristics were good. The coating thickness after drying at this time was 2.5 μm.
The surface resistance value was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., model number: MCP-TESTER, MODELHT-210). As a result, the surface resistance value was 3.3 mΩ / □.

[比較例1]
高速ディソルパー中へ銀微粉末35重量部、繊維状導電性フィラー(銀被覆ポリエステル繊維)25重量部、トルエン60重量部を配合して回転数1200rpmで5分間攪拌混合せしめることにより導電性樹脂組成物を得た。
[Comparative Example 1]
A conductive resin composition prepared by mixing 35 parts by weight of fine silver powder, 25 parts by weight of a fibrous conductive filler (silver-coated polyester fiber), and 60 parts by weight of toluene into a high-speed dissolver and stirring and mixing at 1200 rpm for 5 minutes. Got.

次いで、厚さ125μmのアニール処理ポリエステルフィルム上に上記の導電性樹脂組成物(導電性ペースト)をグラビア印刷機にて全面印刷した。印刷特性は良好であった。このときの乾燥後の塗膜厚は2.5μmであった。
表面抵抗値を、表面抵抗計(三菱油化(株)製、型番:MCP-TESTER、MODELHT-210)にて測定した。その結果、表面抵抗値は42mΩ/□であった。
Next, the entire surface of the above-mentioned conductive resin composition (conductive paste) was printed on a 125 μm-thickness-treated polyester film with a gravure printing machine. The printing characteristics were good. The coating thickness after drying at this time was 2.5 μm.
The surface resistance value was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., model number: MCP-TESTER, MODELHT-210). As a result, the surface resistance value was 42 mΩ / □.

[比較例2]
実施例2において、繊維状導電性フィラーの長さを200μmに変更し、高速ディソルパー中へ銀微粉末35重量部、繊維状導電性フィラー(銀被覆ポリエステル繊維)(平均長さ200μm)、バインダー樹脂としてポリエステルウレタン樹脂(日本合成化学社製、型式UR−8200)25重量部、トルエン60重量部を配合して回転数1200rpmで5分間攪拌混合せしめることにより導電性樹脂組成物を得た。
[Comparative Example 2]
In Example 2, the length of the fibrous conductive filler was changed to 200 μm, and 35 parts by weight of silver fine powder into the high-speed dissolver, fibrous conductive filler (silver-coated polyester fiber) (average length of 200 μm), binder resin A conductive resin composition was obtained by blending 25 parts by weight of a polyester urethane resin (manufactured by Nippon Synthetic Chemical Co., Ltd., model UR-8200) and 60 parts by weight of toluene and stirring and mixing at 1200 rpm for 5 minutes.

次いで、厚さ125μmのアニール処理ポリエステルフィルム上に上記の導電性樹脂組成物(導電性ペースト)をグラビア印刷機にて全面印刷した。グラビアセルに導電性繊維が入らないために、出来上がった皮膜は表面の平滑性が悪く、外観状塗布できていない箇所があるむら印刷となった。
表面抵抗値を、表面抵抗計(三菱油化(株)製、型番:MCP-TESTER、MODELHT-210)にて測定した。その結果、表面抵抗値は測定箇所によるばらつきが大きく、その最大値は24Ω/□、最小値は2Ω/□であった。
Next, the entire surface of the above-mentioned conductive resin composition (conductive paste) was printed on a 125 μm-thickness-treated polyester film with a gravure printing machine. Since the conductive fiber did not enter the gravure cell, the resulting film had poor surface smoothness, and uneven printing was observed in some areas where the appearance was not applied.
The surface resistance value was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., model number: MCP-TESTER, MODELHT-210). As a result, the surface resistance value varied greatly depending on the measurement location, and the maximum value was 24Ω / □ and the minimum value was 2Ω / □.

[比較例3]
高速ディソルバー中へ銀微粉末15重量部、東邦テナックス(株)カーボン繊維(直径7μm、長さ6mm)15重量部、バインダー樹脂40部、トルエン110部を配合して回転数1200rpmで5分間攪拌混合せしめることにより導電性樹脂組成物を得た。
[Comparative Example 3]
Into a high-speed dissolver, 15 parts by weight of fine silver powder, 15 parts by weight of Toho Tenax Co., Ltd. carbon fiber (diameter 7 μm, length 6 mm), 40 parts of binder resin, and 110 parts of toluene were mixed and stirred at 1200 rpm for 5 minutes. The conductive resin composition was obtained by mixing.

次いで、厚さ125μmのアニール処理ポリエステルフィルム上に上記の導電性樹脂組成物をグラビア印刷機にて全面印刷した。グラビアセルに導電性繊維が入らないために、出来上がった皮膜は表面の平滑性が悪く、外観上塗布できていない箇所があるむら印刷となった。表面抵抗計(三菱油化(株)製、型番:MCP-TESTER、MODELHT-210)にて測定した。その結果、表面抵抗値は測定箇所によるばらつきが大きく、その最大値は110Ω/□、最小値は21Ω/□であった。   Next, the entire surface of the conductive resin composition was printed on an annealed polyester film having a thickness of 125 μm using a gravure printer. Since the conductive fiber did not enter the gravure cell, the finished film had poor surface smoothness, and was unevenly printed in some places that could not be applied in appearance. It was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd., model number: MCP-TESTER, MODELHT-210). As a result, the surface resistance value varied greatly depending on the measurement location, and the maximum value was 110Ω / □ and the minimum value was 21Ω / □.

本発明によれば、柔らかい導電性構造体を得ることが可能な、繊維状導電性フィラー、および該繊維状導電性フィラーを含む導電性樹脂組成物、該導電性樹脂組成物を含む導電性構造体、および該導電性構造体を用いてなる、アンテナおよび電磁波シールド材が提供され、その工業的価値は極めて大である。   According to the present invention, a fibrous conductive filler capable of obtaining a soft conductive structure, a conductive resin composition including the fibrous conductive filler, and a conductive structure including the conductive resin composition And an antenna and an electromagnetic wave shielding material using the conductive structure, and the industrial value thereof is extremely large.

Claims (13)

長さLが0.5〜100μmの範囲内である繊維状導電性フィラーであって、該繊維状導電性フィラーが、有機系繊維と該有機系繊維の表面に被覆された導電性物質とを含むことを特徴とする繊維状導電性フィラー。   A fibrous conductive filler having a length L in the range of 0.5 to 100 μm, the fibrous conductive filler comprising an organic fiber and a conductive material coated on the surface of the organic fiber. A fibrous conductive filler characterized by comprising. 繊維状導電性フィラーの直径Dが0.1〜2μmの範囲内である、請求項1に記載の繊維状導電性フィラー。   The fibrous conductive filler according to claim 1, wherein the diameter D of the fibrous conductive filler is in the range of 0.1 to 2 µm. 繊維状導電性フィラーにおいて、長さLと直径Dとの比L/Dが5以上である、請求項1または請求項2に記載の繊維状導電性フィラー。   The fibrous conductive filler according to claim 1 or 2, wherein in the fibrous conductive filler, a ratio L / D between the length L and the diameter D is 5 or more. 前記有機系繊維がポリエステル繊維である、請求項1〜3のいずれかに記載の繊維状導電性フィラー。   The fibrous conductive filler according to any one of claims 1 to 3, wherein the organic fiber is a polyester fiber. 前記ポリエステル繊維が、海成分と島成分とからなる海島型複合繊維の海成分を溶解除去することにより得られたポリエステル繊維である、請求項4に記載の繊維状導電性フィラー。   The fibrous conductive filler according to claim 4, wherein the polyester fiber is a polyester fiber obtained by dissolving and removing a sea component of a sea-island composite fiber composed of a sea component and an island component. 導電性物質が金属または金属酸化物である、請求項1〜5にいずれかに記載の繊維状導電性フィラー。   The fibrous conductive filler according to any one of claims 1 to 5, wherein the conductive substance is a metal or a metal oxide. 前記金属被覆がめっきによるものである、請求項1〜6のいずれかに記載の繊維状導電性フィラー。   The fibrous conductive filler according to any one of claims 1 to 6, wherein the metal coating is formed by plating. 樹脂バインダーと導電性フィラーと溶剤を含む導電性樹脂組成物であって、導電性フィラーとして請求項1〜7のいずれかに記載の繊維状導電性フィラーを含む導電性樹脂組成物。   A conductive resin composition comprising a resin binder, a conductive filler, and a solvent, wherein the conductive resin composition comprises the fibrous conductive filler according to claim 1 as a conductive filler. 前記導電性樹脂組成物に他成分として導電性微粉末が含まれる、請求項8に記載の導電性樹脂組成物。   The conductive resin composition according to claim 8, wherein the conductive resin composition contains conductive fine powder as another component. 基材と該基材に塗布された導電性樹脂組成物とで構成され、導電性樹脂組成物が請求項8または請求項9に記載の導電性樹脂組成物である導電性構造体。   The conductive structure which is comprised with the base material and the conductive resin composition apply | coated to this base material, and a conductive resin composition is the conductive resin composition of Claim 8 or Claim 9. 前記の基材が布帛またはフィルムである、請求項10に記載の導電性構造体。   The conductive structure according to claim 10, wherein the base material is a fabric or a film. 請求項10または請求項11に記載の導電性構造体を用いてなるアンテナ。   An antenna using the conductive structure according to claim 10 or 11. 請求項10または請求項11に記載の導電性構造体を用いてなる電磁波シールド材。   The electromagnetic wave shielding material which uses the electroconductive structure of Claim 10 or Claim 11.
JP2006333147A 2006-12-11 2006-12-11 Fibrous electrically conductive filler and electrically conductive resin composition and electrically conductive structure Pending JP2008144045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333147A JP2008144045A (en) 2006-12-11 2006-12-11 Fibrous electrically conductive filler and electrically conductive resin composition and electrically conductive structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333147A JP2008144045A (en) 2006-12-11 2006-12-11 Fibrous electrically conductive filler and electrically conductive resin composition and electrically conductive structure

Publications (1)

Publication Number Publication Date
JP2008144045A true JP2008144045A (en) 2008-06-26

Family

ID=39604582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333147A Pending JP2008144045A (en) 2006-12-11 2006-12-11 Fibrous electrically conductive filler and electrically conductive resin composition and electrically conductive structure

Country Status (1)

Country Link
JP (1) JP2008144045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248033A (en) * 2007-03-29 2008-10-16 Hitachi Ltd Fiber reinforced composite resin composition and its manufacturing method
WO2017110140A1 (en) * 2015-12-24 2017-06-29 昭和電工株式会社 Method for producing metal-carbon fiber composite material
JP2021047509A (en) * 2019-09-17 2021-03-25 富士フイルム株式会社 Conductive film, film sensor, touch panel, liquid crystal display device, manufacturing method of conductive film, and composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138620A (en) * 1978-03-09 1979-10-27 Toray Ind Inc Divided polyester composite fibers and their manufacture
JPS61228065A (en) * 1985-04-01 1986-10-11 Nippon Chem Ind Co Ltd:The Electrically conductive high polymer composition
JPH10219522A (en) * 1997-01-30 1998-08-18 Toray Ind Inc Polyester conjugated thick and thin yarn
JPH1158593A (en) * 1997-08-27 1999-03-02 Otsuka Chem Co Ltd Sheet for printing
JP2004285147A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Molding material and its molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54138620A (en) * 1978-03-09 1979-10-27 Toray Ind Inc Divided polyester composite fibers and their manufacture
JPS61228065A (en) * 1985-04-01 1986-10-11 Nippon Chem Ind Co Ltd:The Electrically conductive high polymer composition
JPH10219522A (en) * 1997-01-30 1998-08-18 Toray Ind Inc Polyester conjugated thick and thin yarn
JPH1158593A (en) * 1997-08-27 1999-03-02 Otsuka Chem Co Ltd Sheet for printing
JP2004285147A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Molding material and its molded article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248033A (en) * 2007-03-29 2008-10-16 Hitachi Ltd Fiber reinforced composite resin composition and its manufacturing method
WO2017110140A1 (en) * 2015-12-24 2017-06-29 昭和電工株式会社 Method for producing metal-carbon fiber composite material
CN108291290A (en) * 2015-12-24 2018-07-17 昭和电工株式会社 The manufacturing method of the composite material of metal and carbon fiber
JPWO2017110140A1 (en) * 2015-12-24 2018-10-18 昭和電工株式会社 Method for producing composite material of metal and carbon fiber
JP2021047509A (en) * 2019-09-17 2021-03-25 富士フイルム株式会社 Conductive film, film sensor, touch panel, liquid crystal display device, manufacturing method of conductive film, and composition
JP7190989B2 (en) 2019-09-17 2022-12-16 富士フイルム株式会社 Conductive film, film sensor, touch panel, liquid crystal display device, method for producing conductive film, and composition

Similar Documents

Publication Publication Date Title
EP1219734B1 (en) Core-sheath composite conductive fiber
JP2004162244A (en) Nano-fiber
CN110983764B (en) Conductive aromatic polyamide fiber with composite metal coating structure
JP2008144045A (en) Fibrous electrically conductive filler and electrically conductive resin composition and electrically conductive structure
JP4367038B2 (en) Fiber and fabric
JP2011047068A (en) Water-repelling polyester blended yarn
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
US20210189600A1 (en) Conductive fiber and method for fabricating the same
JP5504048B2 (en) Conductive composite fiber
Düzyer Different Methods of Fabricating Conductive Nanofibers
JP2013181251A (en) Antistatic fiber excellent in whiteness
EP4265828A1 (en) Composite fiber and multifilament
JP2005264419A (en) Conductive polyvinyl alcohol fiber
JP2008088562A (en) Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor
Bai et al. Highly conducting surface-silverized aromatic polysulfonamide (PSA) fibers with excellent performance prepared by nano-electroplating
JP4564322B2 (en) Method for producing conductive acrylic fiber
CN114438618B (en) Fiber and preparation method thereof
TW202124795A (en) Conductive fiber and method for fabricating the same
JPS61102474A (en) Production of conductive composite fiber
JP4332775B2 (en) Minimal metal composite fiber and method for producing the same
JP5724521B2 (en) Nanofiber mixed yarn
US6001475A (en) Silver-containing poly(p-phenylene terephthalamide)/sulfonated polyaniline composite fibers
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
JP2004211221A (en) Sheath-core type conjugated polyester monofilament for screen gauze and method for producing the same and mesh woven fabric for screen printing
Tezel et al. Copper-Electroplating of Biodegradable PCL Nanofiber Mats

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Effective date: 20110708

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129