JP2008088562A - Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor - Google Patents

Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor Download PDF

Info

Publication number
JP2008088562A
JP2008088562A JP2006266859A JP2006266859A JP2008088562A JP 2008088562 A JP2008088562 A JP 2008088562A JP 2006266859 A JP2006266859 A JP 2006266859A JP 2006266859 A JP2006266859 A JP 2006266859A JP 2008088562 A JP2008088562 A JP 2008088562A
Authority
JP
Japan
Prior art keywords
sea
island
component
fiber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266859A
Other languages
Japanese (ja)
Inventor
Miyuki Senda
みゆき 千田
Mitsue Kamiyama
三枝 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006266859A priority Critical patent/JP2008088562A/en
Publication of JP2008088562A publication Critical patent/JP2008088562A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide superfine fibers which have strength capable of resisting to practical uses and have a deep black color, and to provide a method for producing the fibers at a low cost. <P>SOLUTION: This method for producing black superfine fibers, which provides the black superfine fibers having a diameter of 10 to 1,000 nm, a fiber strength of 1.0 to 6.0 cN/dtex and an L value of 10-40 includes subjecting a fiber-forming polymer having a Tg of ≥60°C and containing carbon black having an average primary particle diameter of 5-50 nm in an amount of 1-20 wt.% as an island component and a polymer solved easier than the island component as a sea component at a rate of a sea component to island component melt viscosity ratio (sea/island) of 1.1-2.0 to a conjugate fiber-spinning treatment to form sea-island type conjugate fibers having a composite weight ratio (sea:island) of sea component to island component of 40:60 to 5:95 and having a number of island of ≥100, and then dissolving off the sea component of the conjugated fibers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カーボンブラックにより黒色に着色された極細繊維及びその製造方法、並びに該極細繊維製造用の複合繊維に関するものである。さらに詳しくは、実用に耐えうる強度を持ち、濃色に着色された黒色極細繊維及びその製造方法並びに該極細繊維の製造に用いる海島型複合繊維に関するものである。   The present invention relates to an ultrafine fiber colored black with carbon black, a method for producing the same, and a composite fiber for producing the ultrafine fiber. More specifically, the present invention relates to a black extra fine fiber having a strength that can be practically used and colored in dark color, a method for producing the same, and a sea-island type composite fiber used for producing the extra fine fiber.

従来、ポリエステル(特にポリエチレンテレフタレート)は、耐熱性、耐薬品性などに優れており、合成繊維、ビデオやオーディオ用の2軸延伸テープ、そして食品容器としての透明ボトルなどに広く用いられている。合成繊維では、衣料繊維用途、そしてタイヤコードなどの産業資材用途がある。特に衣料繊維用途では、ウオッシュ・アンド・ウェア(W&W)性、形状記憶安定性などに優れるため、大きいシェアを占めている。しかし、ポリエステル繊維は屈折率が非常に高いため、繊維表面での表面反射率が高く、染色性が良好とはいえないという問題点があった。   Conventionally, polyester (especially polyethylene terephthalate) is excellent in heat resistance and chemical resistance, and is widely used in synthetic fibers, biaxially stretched tapes for video and audio, and transparent bottles as food containers. Synthetic fibers can be used for clothing fibers and industrial materials such as tire cords. Especially for apparel textiles, it has a large market share because of its excellent wash and wear (W & W) properties and shape memory stability. However, since the polyester fiber has a very high refractive index, there is a problem that the surface reflectance on the fiber surface is high and the dyeability is not good.

ポリエステルの染色性改良の目的で、ポリエステルポリマーの改質により染色性を向上させる方法は数多く提案されている。その1つに表面反射率を低下させるために、繊維表面に極細凹凸を形成させる技術がある。例えば特許文献1にはポリエステル繊維に粒子径10ミクロン〜150ミクロンのシリカを含有せしめ、後に減量加工で繊維表面に凹凸を形成させる技術が提案されている。しかし、繊維径の非常に小さい極細繊維(微細繊維とも呼ばれる)の場合は、繊維径に比べて粒子径が大きくなることが多く、また、粒径が繊維径よりも小さい場合でも粒子の凝集などによって紡糸工程が不安定となる可能性が高いため、実用性に乏しい。   For the purpose of improving the dyeability of polyester, many methods for improving the dyeability by modifying the polyester polymer have been proposed. One of them is a technique for forming ultra-fine irregularities on the fiber surface in order to reduce the surface reflectance. For example, Patent Document 1 proposes a technique in which a polyester fiber is made to contain silica having a particle diameter of 10 to 150 microns, and then unevenness is formed on the fiber surface by weight reduction processing. However, in the case of very fine fibers (also called fine fibers) having a very small fiber diameter, the particle diameter is often larger than the fiber diameter, and even when the particle diameter is smaller than the fiber diameter, the particles are aggregated. Therefore, there is a high possibility that the spinning process becomes unstable.

また、繊維が細くなるほど表面積が大きくなるため、濃色の極細繊維を得るためには、染料あるいは顔料の極細繊維に対する含有率を通常繊度の繊維と比べて相当大きくする必要がある。
しかしながら、極細繊維において上記のように染料又は顔料の含有率を増やすと、1dtex以上の繊度を有する繊維と比べて強度が極端に低下し、用途によっては実用に十分耐えられないという問題がある。例えば、島成分のポリエチレンテレフタレートにカーボンブラックを1%添加した海島型複合繊維が特許文献2に提案されているが、この繊維はポリエステル繊維の発色が十分ではなかった。
Further, since the surface area increases as the fibers become thinner, in order to obtain dark ultrafine fibers, it is necessary to make the content of the dye or pigment with respect to the ultrafine fibers considerably larger than that of the normal fineness fibers.
However, when the content of the dye or pigment in the ultrafine fiber is increased as described above, the strength is extremely lowered as compared with a fiber having a fineness of 1 dtex or more, and there is a problem that it cannot be sufficiently put into practical use depending on the application. For example, Patent Document 2 proposes a sea-island type composite fiber in which 1% carbon black is added to polyethylene terephthalate, which is an island component, but this fiber is not sufficiently colored with polyester fiber.

また、特許文献3には、カーボンブラックの含有率が多く濃色性であるにもかかわらず高い強度を有する原着極細繊維として、ナイロン6又はポリエチレンテレフタレートを島成分としポリエチレンを海成分とする海島型複合繊維をポリエチレンの溶媒である熱トルエンで処理して海成分を除去したものが提案されているが、これは島成分の分散に限りがある上、製造コストが高くなるという問題がさけられない。   Patent Document 3 discloses a sea island containing nylon 6 or polyethylene terephthalate as an island component and polyethylene as a sea component as an original ultrafine fiber having a high strength despite a high carbon black content and a dark color. A type of composite fiber that has been treated with hot toluene, which is a solvent for polyethylene, to remove the sea component has been proposed, but this is limited in terms of dispersion of island components and the problem of increased manufacturing costs. Absent.

特公昭45−39055号公報Japanese Examined Patent Publication No. 45-39055 特公昭48−11925号公報Japanese Patent Publication No. 48-11925 特開2002−146624号公報JP 2002-146624 A

本発明は、上記背景技術に鑑みなされたもので、その主な目的は、実用に耐えうる強度を持ち、濃い黒色を有する極細繊維並びにそれを低コストで製造する方法を提供することにあり、さらには、このような極細繊維を製造するための海島型複合繊維を提供することにある。   The present invention has been made in view of the above-mentioned background art, and its main purpose is to provide an ultrafine fiber having a dark black color having a strength that can withstand practical use, and a method for producing it at low cost, Furthermore, it is providing the sea island type composite fiber for manufacturing such an ultrafine fiber.

本発明者らは、上記目的を達成するために鋭意検討した結果、海成分及び島成分として特定のポリマーの組合せからなり、且つ海成分と島成分の複合重量比率(海:島)が40:60〜5:95、島数が100以上である海島型複合繊維であって、該島成分に平均1次粒径が5〜50nmのカーボンブラックが島成分重量に対して1〜20重量%含有されている海島型複合繊維から海成分を溶解除去することにより、直径10〜1000nmのファイバーの強度が1.0〜6.0cN/dtex、L値が10〜40の実用に耐えうる強度を持ち、且つ、濃い黒色の極細繊維を提供し得ることを見出し本発明に到達した。   As a result of intensive studies to achieve the above object, the present inventors have a combination of a specific polymer as a sea component and an island component, and the combined weight ratio of the sea component and the island component (sea: island) is 40: 60-5: 95, a sea-island type composite fiber having an island number of 100 or more, and the island component contains 1 to 20% by weight of carbon black having an average primary particle size of 5 to 50 nm with respect to the island component weight By dissolving and removing sea components from the sea-island type composite fiber, the strength of the fiber having a diameter of 10 to 1000 nm is 1.0 to 6.0 cN / dtex, and the L value is 10 to 40. In addition, the present inventors have found that a dark black extra fine fiber can be provided, and have reached the present invention.

かくして本発明によれば、以下の黒色極細繊維及びその製造方法、さらには黒色極細繊維製造用の海島型複合繊維が提供される。
(1)ガラス転移点(Tg)が60℃以上の繊維形成性ポリマーを島成分とし、該島成分よりも易溶解性のポリマーを海成分とする海島型複合構造を有し、海成分と島成分との複合重量比率(海:島)が40:60〜5:95、島数が100以上であり、且つ島成分には平均1次粒径が5〜50nmのカーボンブラックが島成分重量に対して1〜20重量%含有されている海島型複合繊維から、海成分を溶解除去して得られる、直径10〜1000nmの極細繊維であって、強度が1.0〜6.0cN/dtex、L値が10〜40であることを特徴とする黒色極細繊維。
(2)海島型複合繊維を形成する島成分が、芳香族ポリエステル系ポリマーであることを特徴とする上記(1)の黒色極細繊維。
(3)複合繊維を形成する海成分が、5−ナトリウムスルホン酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを1〜5重量%共重合したポリエチレンテレフタレートであることを特徴とする上記(1)又は(2)の黒色極細繊維。
(4)島成分として平均1次粒径が5〜50nmのカーボンブラックが島成分重量に対して1〜20重量%含有されているガラス転移点(Tg)60℃以上の繊維形成性ポリマーを用い、海成分として該島成分よりも易溶解性のポリマーであって海成分と島成分との溶融粘度比(海/島)が1.1〜2.0であるポリマーを用いて複合紡糸し、海成分と島成分との複合重量比率(海:島)が40:60〜5:95、島数が100以上である海島型複合繊維を形成した後、該複合繊維の海成分を溶解除去して、極細繊維とすることを特徴とする黒色極細繊維の製造方法。
(5)海島型複合繊維を形成する島成分が、芳香族ポリエステル系ポリマーであることを特徴とする上記(4)の黒色極細繊維の製造方法。
(6)複合繊維を形成する海成分として5−ナトリウムスルホン酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを1〜5重量%共重合したポリエチレンテレフタレートを用いることを特徴とする上記(4)又は(5)の黒色極細繊維の製造方法。
(7)複合繊維の海成分を水酸化ナトリウム水溶液で処理して溶解除去することを特徴とする上記(6)の黒色極細繊維の製造方法。
(8) 島成分が平均1次粒径5〜50nmのカーボンブラックを島成分重量に対して1〜20重量%含有するガラス転移点60℃以上の芳香族ポリエステル系ポリマーからなり、海成分が5−ナトリウムスルホン酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを1〜5重量%共重合したポリエチレンテレフタレートからなり、且つ海成分と島成分の溶融紡糸温度における溶融粘度比(海/島)が1.1〜2.0の範囲にあるポリマーで構成された海島型複合繊維であって、海成分と島成分との複合重量比率(海:島)が40:60〜5:95であり、且つ島数が100以上であることを特徴とする黒色極細繊維製造用の海島型複合繊維。
Thus, according to the present invention, the following black extra fine fibers and the production method thereof, as well as the sea-island type composite fibers for producing the black extra fine fibers are provided.
(1) It has a sea-island type composite structure in which a fiber-forming polymer having a glass transition point (Tg) of 60 ° C. or higher is an island component and a sea component is a polymer that is more soluble than the island component. Carbon black having a compound-to-component weight ratio (sea: island) of 40:60 to 5:95, an island number of 100 or more, and an average primary particle size of 5 to 50 nm is the island component weight. On the other hand, it is an ultrafine fiber having a diameter of 10 to 1000 nm obtained by dissolving and removing sea components from a sea-island type composite fiber contained in an amount of 1 to 20% by weight, and has a strength of 1.0 to 6.0 cN / dtex, A black extra fine fiber having an L value of 10 to 40.
(2) The black ultrafine fiber according to (1) above, wherein the island component forming the sea-island type composite fiber is an aromatic polyester polymer.
(3) The sea component forming the composite fiber is polyethylene terephthalate copolymerized with 5 to 12% by weight of 5-sodium sulfonic acid and 1 to 5% by weight of polyethylene glycol having a molecular weight of 4000 to 12000. The black extra fine fiber of (1) or (2).
(4) A fiber-forming polymer having a glass transition point (Tg) of 60 ° C. or higher containing 1 to 20% by weight of carbon black having an average primary particle size of 5 to 50 nm based on the weight of the island component as the island component. , Using a polymer that is more soluble than the island component as the sea component and having a melt viscosity ratio (sea / island) between the sea component and the island component of 1.1 to 2.0, After forming a sea-island type composite fiber having a composite weight ratio of sea component and island component (sea: island) of 40:60 to 5:95 and an island number of 100 or more, the sea component of the composite fiber is dissolved and removed. A method for producing black ultrafine fibers, characterized in that the fibers are ultrafine fibers.
(5) The method for producing black ultrafine fibers according to (4) above, wherein the island component forming the sea-island type composite fiber is an aromatic polyester polymer.
(6) Polyethylene terephthalate obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfonic acid and 1 to 5 wt% of polyethylene glycol having a molecular weight of 4000 to 12000 is used as a sea component forming the composite fiber. 4) or the manufacturing method of the black extra fine fiber of (5).
(7) The method for producing black ultrafine fibers according to (6) above, wherein the sea component of the composite fiber is dissolved and removed by treatment with an aqueous sodium hydroxide solution.
(8) The island component is composed of an aromatic polyester-based polymer having a glass transition point of 60 ° C. or higher and containing 1 to 20% by weight of carbon black having an average primary particle size of 5 to 50 nm based on the weight of the island component. A melt viscosity ratio of sea component and island component at the melt spinning temperature (sea / island) comprising polyethylene terephthalate copolymerized with 6 to 12% by weight of sodium sulfonic acid and 1 to 5% by weight of polyethylene glycol having a molecular weight of 4000 to 12000 ) Is a sea-island type composite fiber composed of a polymer in the range of 1.1 to 2.0, and the composite weight ratio (sea: island) of the sea component and the island component is 40:60 to 5:95 A sea-island composite fiber for producing black ultrafine fibers, wherein the number of islands is 100 or more.

本発明によれば、特定の海島型複合繊維の海成分を溶解除去することにより、容易に実用に耐えうる十分な強度のある、濃い黒色の極細繊度の単糸(極細繊維)からなるハイマルチフィラメント糸が提供される。また、本発明の方法によれば、海島型複合繊維から容易にカーボンブラックの分散均一性に優れた黒色極細繊維からなるハイマルチフィラメント糸を、生産性よく且つ低コストで製造することができる。したがって、本発明による黒色極細繊維は、従来さらなる低コスト化、あるいは、さらなる極細化や濃色化が要求されている各種用途分野に好適に使用することができる。   According to the present invention, by dissolving and removing a sea component of a specific sea-island type composite fiber, a high multi-layer composed of a dark black extra fineness single yarn (extra fine fiber) that has sufficient strength to withstand practical use. A filament yarn is provided. Further, according to the method of the present invention, a high multifilament yarn made of black ultrafine fibers excellent in carbon black dispersion uniformity can be easily produced from sea-island type composite fibers with high productivity and at low cost. Therefore, the black extra fine fiber according to the present invention can be suitably used in various fields of application that have been required to be further reduced in cost or further refined or darkened.

本発明では、繊維断面においてマトリックスとなる海成分ポリマー中に極細繊維を構成する島成分ポリマーが多数の島となって繊維軸方向に連続して存在する海島型複合繊維から、極細繊維の単糸からなるハイマルチフィラメント糸が製造される。   In the present invention, from the sea-island type composite fiber in which the island component polymer constituting the ultrafine fiber is continuously formed in the fiber axis direction in the sea component polymer serving as a matrix in the fiber cross section, the single fiber of the ultrafine fiber is present. A high multifilament yarn consisting of

本発明において海島型複合繊維を構成するポリマーの組合せは、海成分ポリマーの溶解性が島成分ポリマーの溶解性よりも高いことが必要であり、本発明では、特に海成分/島成分の溶解速度比が200以上である組合せが好ましい。かかる溶解速度比が200未満の場合には、繊維断面中央部の海成分を溶解させている間に繊維断面表層部の島成分の一部も溶解されるため、海成分を完全に溶解除去するためには、島成分の何割かも減量されてしまうことになり、島成分の太さ斑や溶剤浸食による強度劣化が発生して、色むらなどの品位に問題が生じやすくなる。   In the present invention, the combination of the polymers constituting the sea-island type composite fiber requires that the solubility of the sea component polymer is higher than the solubility of the island component polymer. In the present invention, in particular, the dissolution rate of the sea component / island component A combination having a ratio of 200 or more is preferred. When the dissolution rate ratio is less than 200, part of the island component of the fiber cross-section surface layer portion is dissolved while the sea component of the fiber cross-section central portion is dissolved, so the sea component is completely dissolved and removed. For this reason, the island component is reduced by a percentage, and the thickness of the island component is deteriorated and the strength is deteriorated due to solvent erosion.

本発明における島成分のポリマーは、繊維形成性の良好なポリマーであって、且つそのガラス転移点(Tg)が60℃以上であることが、本発明の目的を達成する上で重要である。かかるポリマーの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどの芳香族ポリエステル系ポリマーがあげられる。   In order to achieve the object of the present invention, the island component polymer in the present invention is a polymer having a good fiber-forming property and has a glass transition point (Tg) of 60 ° C. or higher. Specific examples of such polymers include aromatic polyester polymers such as polyethylene terephthalate and polybutylene terephthalate.

島成分ポリマーのガラス転移点(Tg)が60℃以上であることは、海島両成分の溶融粘度の関係が、後述のごとく海>島成分である場合に特に重要となる。海成分の溶融粘度が高い場合、海成分は島成分よりも固化しやすい傾向にあるが、島成分ポリマーのガラス転移点(Tg)が60℃未満である場合は、溶融紡糸時に海成分が先に固化するために島成分の結晶配向が進まず、その結果、島成分の強度が弱くなり、海島型複合繊維の強度も低くなる。一方、ガラス転移点(Tg)が60℃以上であれば、海成分が固化すると同時に島成分の結晶配向も進むので、島成分の強度が保たれ、海島海島型複合繊維及びそれから得られる極細繊維の強度も保たれることとなる。   That the glass transition point (Tg) of the island component polymer is 60 ° C. or more is particularly important when the relationship of the melt viscosity of both sea and island components is sea> island component as described later. When the melt viscosity of the sea component is high, the sea component tends to solidify more easily than the island component. However, when the glass transition point (Tg) of the island component polymer is less than 60 ° C., the sea component is first in melt spinning. The crystal orientation of the island component does not progress due to solidification, and as a result, the strength of the island component is weakened and the strength of the sea-island type composite fiber is also lowered. On the other hand, if the glass transition point (Tg) is 60 ° C. or higher, the sea component is solidified and the crystal orientation of the island component also advances, so that the strength of the island component is maintained, and the sea-island sea-island composite fiber and the ultrafine fiber obtained therefrom The strength of the material is also maintained.

本発明では、島成分にはカーボンブラックが添加される。添加するカーボンブラックとしては、平均1次粒径が5〜50nmのものを使用する必要がある。カーボンブラックの平均1次粒径が5nm未満の場合は充分な濃色性が得られないという問題があり、50nmを超える場合はカーボンブラックが均一に分散されず、色むらが発現するという問題があるので、本発明の目的を達成し得ない。島成分に含まれるカーボンブラックの量は、島成分重量を基準にして1〜20重量%とすべきである。カーボンブラックの量が1重量%より少ないと有用な濃色の黒色繊維となり難く、20重量%を上回ると紡糸調子が不良となるという問題が生じる。なお、島成分には上記カーボンブラックのほかに、必要に応じて、安定剤、難燃剤などの添加剤を添加しても差し支えない。   In the present invention, carbon black is added to the island component. As carbon black to be added, it is necessary to use carbon black having an average primary particle size of 5 to 50 nm. When the average primary particle size of the carbon black is less than 5 nm, there is a problem that sufficient darkness cannot be obtained, and when it exceeds 50 nm, the carbon black is not uniformly dispersed and color unevenness is developed. Therefore, the object of the present invention cannot be achieved. The amount of carbon black contained in the island component should be 1-20% by weight based on the island component weight. If the amount of carbon black is less than 1% by weight, it becomes difficult to obtain a useful dark black fiber, and if it exceeds 20% by weight, the spinning condition becomes poor. In addition to the above-mentioned carbon black, additives such as stabilizers and flame retardants may be added to the island component as necessary.

一方、本発明における海成分ポリマーは、上記の島成分ポリマーに比べて易溶解性のポリマーであれば特に制限されないが、海島断面形成性とアルカリ易溶解性とを両立させるため、5−ナトリウムスルホイソフタル酸6〜12モル%と分子量4000〜12000のポリエチレングルコール(PEG)1〜5重量%とを共重合させた固有粘度が0.4〜0.6のポリエチレンテレフタレート系共重合ポリエステルを用いるのが好ましい。ここで、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。なお、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加効果が大きくなるが、反応性が悪くなってブレンド系になるため、耐熱性・紡糸安定性などの点から分子量4000〜12000が好ましい。また、5−ナトリウムスルホイソフタル酸の共重合量が5重量%を超えると、海成分の溶融粘度低下作用が大きくなり、紡糸調子が不良となるために、本発明の目的を達成することが困難になる。したがって、上記の範囲で、両成分を共重合することが好ましい。   On the other hand, the sea component polymer in the present invention is not particularly limited as long as it is a polymer that is more easily soluble than the above-mentioned island component polymer. However, in order to achieve both sea-island cross-sectional formability and alkali easy solubility, 5-sodium sulfo A polyethylene terephthalate copolymer polyester having an intrinsic viscosity of 0.4 to 0.6 obtained by copolymerizing 6 to 12 mol% of isophthalic acid and 1 to 5 wt% of polyethylene glycol (PEG) having a molecular weight of 4000 to 12000 is used. Is preferred. Here, 5-sodium sulfoisophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. The higher the molecular weight of PEG, the greater the effect of increasing hydrophilicity, which is thought to be due to its higher order structure. However, since the reactivity becomes worse and a blend system is formed, the molecular weight is increased in terms of heat resistance and spinning stability. 4000-12000 is preferred. On the other hand, when the copolymerization amount of 5-sodium sulfoisophthalic acid exceeds 5% by weight, the melt viscosity lowering action of the sea component becomes large and the spinning condition becomes poor, so that it is difficult to achieve the object of the present invention. become. Therefore, it is preferable to copolymerize both components within the above range.

さらに、本発明における海島型複合繊維では、溶融紡糸時における海成分の溶融粘度が島成分ポリマーの溶融粘度よりも大きく、溶融粘度比(海/島)が1.1〜2.0であることが必要であり、特に1.2〜1.8の範囲であることが好ましい。溶融粘度がかかる関係にある場合には、海成分の複合重量比率が40%以下と少なくなっても、複合繊維断面における個々の島が独立したものとなる。すなわち、島数が100以上のように多くなっても、島同士の一部が接合したり島の大部分が接合することがなく、海島断面形成性が良好である。ところが、この比が1.1倍未満の場合には溶融紡糸時に島同士が接合しやすくなり、一方、2.0倍を越える場合には、粘度差が大きすぎるために紡糸調子低下・強度低下を招きやすい。   Furthermore, in the sea-island type composite fiber in the present invention, the melt viscosity of the sea component during melt spinning is larger than the melt viscosity of the island component polymer, and the melt viscosity ratio (sea / island) is 1.1 to 2.0. Is required, and is particularly preferably in the range of 1.2 to 1.8. When the melt viscosity is in such a relationship, even if the composite weight ratio of the sea component is reduced to 40% or less, individual islands in the cross section of the composite fiber become independent. That is, even if the number of islands is increased to 100 or more, a part of the islands are not joined or most of the islands are not joined, and the sea-island cross-section formability is good. However, if this ratio is less than 1.1 times, islands can be easily joined at the time of melt spinning. On the other hand, if it exceeds 2.0 times, the difference in viscosity is too large, resulting in lower spinning tone and lower strength. It is easy to invite.

本発明では、複合繊維断面における島の数は多いほど、カーボンブラック含有島成分を複合繊維断面中に均一に分散できること及び海成分を溶解除去して極細繊維を製造する場合の生産性が高くなることから好ましく、しかも、得られる極細繊維の細さも顕著となって超極細繊維特有の柔らかさ、滑らかさ、光沢感などを表現することができるので、複合繊維断面における島の数は100以上、好ましくは500以上であることが重要である。ここで島数が100未満の場合には、海成分を溶解除去しても極細繊度の単糸からなるハイマルチフィラメント糸を得ることができず、本発明の目的を達成することができない。ただし、島数があまりに多くなりすぎると紡糸口金の製造コストが高くなるだけでなく、加工精度自体も低下しやすくなるので1000以下とするのが好ましい。   In the present invention, as the number of islands in the composite fiber cross section increases, the carbon black-containing island component can be uniformly dispersed in the composite fiber cross section, and the productivity in the case of producing ultrafine fibers by dissolving and removing sea components is increased. It is preferable from the above, and the fineness of the obtained ultrafine fibers is also remarkable, so that the softness, smoothness, glossiness, etc. specific to the ultrafine fibers can be expressed, so the number of islands in the composite fiber cross section is 100 or more, It is important that it is preferably 500 or more. Here, when the number of islands is less than 100, even if the sea component is dissolved and removed, a high multifilament yarn composed of a single yarn having a very fineness cannot be obtained, and the object of the present invention cannot be achieved. However, if the number of islands is too large, not only the manufacturing cost of the spinneret increases, but also the processing accuracy itself tends to decrease.

複合繊維断面における島の径は、製品繊維(延伸・熱セット後)の段階で10〜1000nm、好ましくは100〜700nmの範囲とする必要がある。該径が10nm未満の場合には現時点で実際に本発明で使用できるカーボンブラックが存在せず、且つ繊維構造自身が不安定で物性や繊維形態が不安定で好ましくない。一方、1000nmを越える場合には超極細繊維特有の柔らかさや風合いが得られないので好ましくない。また、複合繊維断面内の各島は、その径が均一であるほど海成分を除去して得られる極細繊維からなるハイマルチフィラメント糸の品位や耐久性が向上するので好ましい。   The diameter of the island in the cross section of the composite fiber needs to be in the range of 10 to 1000 nm, preferably 100 to 700 nm at the stage of the product fiber (after drawing and heat setting). When the diameter is less than 10 nm, there is no carbon black that can actually be used in the present invention at present, and the fiber structure itself is unstable, and the physical properties and fiber form are unstable, which is not preferable. On the other hand, when the thickness exceeds 1000 nm, the softness and texture peculiar to ultrafine fibers cannot be obtained, which is not preferable. Further, each island in the cross section of the composite fiber is more preferable as the diameter is uniform because the quality and durability of the high multifilament yarn made of ultrafine fibers obtained by removing the sea component is improved.

さらに、本発明における海島型複合繊維は、その海島複合重量比率(海:島)は、40:60〜5:95の範囲とすることが必要であり、特に30:70〜10:90の範囲が好ましい。かかる範囲であれば、カーボンブラックを含む多数の島成分を海成分中に均一に分散した状態で配置させることが可能となる。また、島間の海成分の厚みを薄くすることができ、海成分の溶解除去が容易となり、島成分の極細繊維への転換が容易になるので好ましい。ここで海成分の割合が40重量%を越える場合には海成分の厚みが大きくなりすぎるためカーボンブラック含有島成分が複合繊維断面で均一に分散されない。一方、海成分の割合が5重量%未満の場合には海成分の量が少なくなりすぎて、複合繊維断面における島間に接合が発生しやすくなる。   Further, the sea-island composite fiber in the present invention needs to have a sea-island composite weight ratio (sea: island) in the range of 40:60 to 5:95, particularly in the range of 30:70 to 10:90. Is preferred. Within such a range, it becomes possible to arrange a large number of island components including carbon black in a state of being uniformly dispersed in the sea component. Further, the thickness of the sea component between the islands can be reduced, the sea component can be easily dissolved and removed, and the conversion of the island component into ultrafine fibers is facilitated. Here, when the proportion of the sea component exceeds 40% by weight, the thickness of the sea component becomes too large, and the carbon black-containing island component is not uniformly dispersed in the composite fiber cross section. On the other hand, when the proportion of the sea component is less than 5% by weight, the amount of the sea component is too small, and bonding between islands in the composite fiber cross section is likely to occur.

以上に説明した本発明の極細繊維製造用の海島型複合繊維は、例えば以下の方法により容易に製造することができる。すなわち、まず溶融粘度が高く且つ易溶解性であるポリマーと溶融粘度が低く且つ難溶解性で特定のTgをもつポリマーとを、前者が海で後者が島となるように溶融紡糸する。すでに述べたとおり、海成分と島成分の融粘度の関係は重要で、海成分の比率が小さくなって島間の厚みが小さくなると、海成分の溶融粘度が小さい場合には島間の一部の流路を海成分が高速流動するようになり、島間に接合が起こりやすくなるので好ましくない。   The sea-island type composite fiber for producing ultrafine fibers of the present invention described above can be easily produced by the following method, for example. That is, first, a polymer having a high melt viscosity and an easily soluble polymer and a polymer having a low melt viscosity and a hardly soluble polymer having a specific Tg are melt-spun so that the former is an ocean and the latter is an island. As already mentioned, the relationship between the melt viscosity of the sea component and the island component is important.If the sea component ratio decreases and the inter-island thickness decreases, if the melt viscosity of the sea component is small, a part of the flow between the islands This is not preferable because sea components flow at high speed along the road and joining between islands is likely to occur.

溶融紡糸に用いられる紡糸口金としては、多数の島を形成するための中空ピン群や極細孔群を有するものなど任意のものを用いることができる。例えば中空ピンや極細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面形成がなされるいかなる紡糸口金でもよい。好ましく用いられる紡糸口金例を図1及び図2に示すが、必ずしもこれらに限定されるものではない。なお、図1は、中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式であり、図2は、中空ピンのかわりに極細孔方式で島を形成する方法である。これらの図1及び図2において、1は分配前島成分ポリマー溜め部分、2は島成分分配用導入孔、3は海成分導入孔、4は分配前海成分ポリマー溜め部分、5は個別の海/島構造(鞘/芯構造)形成部、6は海島全体合流絞であり、このような構造の紡糸口金より海成分と島線成分を溶融吐出することによって、繊維横断面における海成分中に島成分が長さ方向に連続した島となって多数配置された海島型複合繊維が形成される。   As the spinneret used for melt spinning, any one such as a hollow pin group for forming a large number of islands or a group having extremely fine pores can be used. For example, any spinneret that can form a cross section of the sea island by joining the island component extruded from the hollow pin or the extremely small pore and the sea component flow that is designed to fill the gap between them is compressed. . Examples of spinnerets that are preferably used are shown in FIGS. 1 and 2, but are not necessarily limited thereto. FIG. 1 shows a method in which a hollow pin is discharged into a sea component resin reservoir portion and is joined and compressed. FIG. 2 shows a method in which islands are formed by a very fine pore method instead of a hollow pin. 1 and 2, 1 is a pre-distribution island component polymer reservoir portion, 2 is an island component distribution introduction hole, 3 is a sea component introduction hole, 4 is a pre-distribution sea component polymer reservoir portion, and 5 is an individual sea / The island structure (sheath / core structure) formation part 6 is the sea island whole constriction, and the sea component and the island line component are melted and discharged from the spinneret of such a structure, so that the island is contained in the sea component in the fiber cross section. A sea-island type composite fiber in which a large number of components are arranged as islands continuous in the length direction is formed.

そして、かかる紡糸口金から吐出された海島型断面複合繊維は、冷却風によって固化され、好ましくは400〜6000m/分で溶融紡糸された後に巻き取られる。より好ましくは1000〜3500m/分である。紡糸速度が400m/分以下では生産性が悪く、6000m/分以上では紡糸安定性が悪いので好ましくない。   The sea-island type cross-section composite fiber discharged from the spinneret is solidified by cooling air, and is preferably wound after being melt-spun at 400 to 6000 m / min. More preferably, it is 1000-3500 m / min. If the spinning speed is 400 m / min or less, the productivity is poor, and if it is 6000 m / min or more, the spinning stability is poor.

得られた複合繊維未延伸糸は一旦巻き取り、別途延伸工程にて延伸・熱セットし、所望の強伸度・熱収縮特性などを有する複合繊維とするか、あるいは、一旦巻き取ることなく一定速度でローラーに引き取り、引き続いて延伸工程をとおした後に巻き取って所望の強伸度・熱収縮特性などを有する複合繊維とする方法のいずれも適用することが出来る。具体的には、該未延伸糸を60〜190℃、好ましくは75℃〜180℃の予熱ローラー上で予熱し、延伸倍率1.2〜6.0倍、好ましくは2.0〜5.0倍で延伸し、セットローラー120〜220℃、好ましくは130〜200℃で熱セットを実施することが好ましい。予熱温度不足の場合には目的とする高倍率延伸を達成することができなくなる。セット温度が低すぎると収縮率が高すぎるため好ましくない。また、セット温度が高すぎると該繊維の物性が著しく低下するため好ましくない。   The obtained unstretched composite fiber yarn is wound up once and then drawn and heat set separately in a drawing process to obtain a composite fiber having desired strength and elongation properties, heat shrinkage characteristics, or the like without being wound up once. Any method can be applied in which the fiber is taken up by a roller at a speed, and subsequently wound through a drawing step to obtain a composite fiber having desired strength and heat shrinkage characteristics. Specifically, the undrawn yarn is preheated on a preheating roller of 60 to 190 ° C, preferably 75 ° C to 180 ° C, and a draw ratio of 1.2 to 6.0 times, preferably 2.0 to 5.0. It is preferable that the film is stretched at a magnification and the heat setting is performed at a set roller of 120 to 220 ° C, preferably 130 to 200 ° C. In the case where the preheating temperature is insufficient, the desired high magnification stretching cannot be achieved. If the set temperature is too low, the shrinkage rate is too high, which is not preferable. On the other hand, if the set temperature is too high, the physical properties of the fibers are remarkably lowered.

得られた複合繊維の海成分を溶解除去して極細繊維とするには、海成分ポリマーを溶解除去し得る液体で海成分を選択的に溶解させる方法であればいかなる方法も採用できる。海成分が、5−ナトリウムスルホイソフタル酸6〜12モル%と分子量4000〜12000のポリエチレングルコールを1〜5重量%共重合させた固有粘度が0.4〜0.6のポリエチレンテレフタレート系共重合ポリエステルである場合は、水酸化ナトリウム(NaOH)濃度1〜10重量%のアルカリ水溶液中で好ましくは温度80〜105℃にて処理して海成分を溶解除去するのが好ましい。
海成分の溶解除去は、織編物などの布帛の段階で行うのがよいが、糸、紐、綿の段階や二次製品の段階で行っても差し支えない。
In order to dissolve and remove the sea component of the obtained composite fiber into ultrafine fibers, any method can be adopted as long as the sea component is selectively dissolved with a liquid capable of dissolving and removing the sea component polymer. Polyethylene terephthalate copolymer having an intrinsic viscosity of 0.4 to 0.6, which is obtained by copolymerizing 1 to 5% by weight of 6 to 12 mol% of 5-sodium sulfoisophthalic acid and polyethylene glycol having a molecular weight of 4000 to 12000. In the case of polyester, it is preferable to dissolve and remove sea components by treatment in an aqueous alkali solution having a sodium hydroxide (NaOH) concentration of 1 to 10% by weight, preferably at a temperature of 80 to 105 ° C.
The sea component is preferably dissolved and removed at the stage of a fabric such as woven or knitted fabric, but it may be carried out at the stage of yarn, string, cotton, or secondary product.

本発明の海島型複合繊維から海成分を溶解除去して得られる直径10〜1000nmの極細繊維(ファイバー)の強度は1.0〜6.0cN/dtexで、L値が10〜40であることが重要である。直径がこの範囲外或いは強度がこれよりも低いと用途が限定されてしまう。また、L値がこの範囲外では充分な濃色性が得られない場合があるという問題がある。本発明では、とりわけ、繊維直径10〜1000nm、強度1.0〜6.0cN/dtexで、L値が10〜40であって、且つ伸度が15〜60%、乾熱収縮率が5〜15%であるものが好ましい。これらの特性を全て兼ね備えるものは従来の極細繊維の製造方法で得られておらず、本発明の製造方法によって初めて製造し得るものである。   The strength of the ultrafine fiber (fiber) having a diameter of 10 to 1000 nm obtained by dissolving and removing the sea component from the sea-island composite fiber of the present invention is 1.0 to 6.0 cN / dtex, and the L value is 10 to 40. is important. If the diameter is out of this range or the strength is lower than this range, the application is limited. Further, there is a problem that sufficient darkness may not be obtained when the L value is outside this range. In the present invention, in particular, the fiber diameter is 10 to 1000 nm, the strength is 1.0 to 6.0 cN / dtex, the L value is 10 to 40, the elongation is 15 to 60%, and the dry heat shrinkage is 5 to 5. What is 15% is preferable. What has all these characteristics is not obtained by the conventional method for producing ultrafine fibers, but can be produced for the first time by the production method of the present invention.

以上の如き本発明によれば、濃い黒色の極細繊維で、様々な用途に応用展開可能な十分な強度を持ち、且つ従来にない特徴、例えば繊維の繊度が細くても充分な濃色性を示し、且つ強度が低下しない、などの特性をもつ極細のファイバーを低コストで得ることができる。   According to the present invention as described above, it is a dark black extra fine fiber, has sufficient strength that can be applied and developed for various uses, and has unprecedented characteristics, for example, sufficient darkness even if the fineness of the fiber is thin. It is possible to obtain an ultrafine fiber having characteristics such as the strength and the strength that does not decrease.

かかる本発明の黒色極細繊維を少なくとも一部に有する繊維製品は、糸、組み紐状糸、短繊維からなる紡績状糸、織物、編物、フェルト、不織布、人工皮革などの中間製品とすることができる。これらをジャケット、スカート、パンツ、下着などの衣料、スポーツ衣料、衣料資材、カーペット、ソファー、カーテンなどのインテリア製品、カーシートなどの車両内装品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用途に使うことができる。   Such a fiber product having at least a portion of the black ultrafine fiber of the present invention can be an intermediate product such as yarn, braided yarn, spun yarn made of short fibers, woven fabric, knitted fabric, felt, non-woven fabric, artificial leather and the like. . Living items such as clothing such as jackets, skirts, pants and underwear, sports clothing, clothing materials, interior products such as carpets, sofas and curtains, vehicle interiors such as car seats, cosmetics, cosmetic masks, wiping cloths, health products, etc. Can be used for applications.

以下、実施例及び比較例をあげて本発明をさらに具体的に説明するが、本発明はこれらによって何ら限定されるものではない。なお、各例中に示す各評価項目は下記の方法で測定した値である。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited at all by these. Each evaluation item shown in each example is a value measured by the following method.

(1)溶融粘度
乾燥処理後のポリマーを、275℃に設定したオリフィスにセットして5分間溶融保持した後、数水準の荷重をかけて押し出し、そのときの剪断速度と溶融粘度をプロットした。そのプロットをなだらかに繋いで、剪断速度−溶融粘度曲線を作成し、剪断速度が1000秒−1の時の溶融粘度を見積った。なお、島成分はカーボンブラックを含む状態で測定した。
(1) Melt Viscosity The polymer after drying treatment was set in an orifice set at 275 ° C. and melted and held for 5 minutes, then extruded under a load of several levels, and the shear rate and melt viscosity at that time were plotted. The plot was gently connected to create a shear rate-melt viscosity curve, and the melt viscosity at a shear rate of 1000 sec-1 was estimated. The island component was measured in a state containing carbon black.

(2)ガラス転移点(Tg)
ペレット約10mgを測定用のアルミニウム製パンに封入してTA−instrument社製の示差走査熱量計を使用し、昇温速度20℃/分で測定した。
(2) Glass transition point (Tg)
About 10 mg of the pellet was sealed in an aluminum pan for measurement, and measured using a differential scanning calorimeter manufactured by TA-instrument at a heating rate of 20 ° C./min.

(3)海島型複合繊維の島数及び海成分/島成分の比率
透過型電子顕微鏡TEMで倍率30000倍にて撮影した海島型複合繊維の断面写真を観察し、測定した。
(3) Number of islands of sea-island type composite fiber and ratio of sea component / island component A cross-sectional photograph of sea-island type composite fiber taken with a transmission electron microscope TEM at a magnification of 30000 was observed and measured.

(4)海溶解後の極細繊維(ファイバー)の強伸度
海島型複合繊維を用いて重量1g以上の筒編みを作成し、海成分を溶解除去した。その後筒編みをほどき、室温で初期試料長=100mm、引っ張り速度200m/分の条件で荷重−伸長曲線を求めた。繊度はJIS−1015に記載の方法に準拠して測定した。強度は破断時の荷重値を算出した繊度で割った値、伸度は破断時の伸長値から求めた。
(4) Strong elongation of ultrafine fibers (fibers) after sea dissolution Using sea-island type composite fibers, a tubular braid having a weight of 1 g or more was prepared, and sea components were dissolved and removed. Thereafter, the tubular knitting was unwound, and a load-elongation curve was obtained at room temperature under conditions of initial sample length = 100 mm and pulling speed 200 m / min. The fineness was measured according to the method described in JIS-1015. The strength was obtained by dividing the load value at break by the calculated fineness, and the elongation was obtained from the elongation value at break.

(5)海溶解後の極細繊維(ファイバー)径
海島型複合繊維を用いて重量1g以上の筒編みを作成し、海成分を溶解除去した後、表面をSEM観察、10点について繊維径測定し、平均値を算出した。
(5) Ultrafine fiber (fiber) diameter after dissolution in the sea Create a cylindrical braid with a weight of 1 g or more using sea-island type composite fibers, dissolve and remove the sea components, then observe the surface with SEM and measure the fiber diameter at 10 points. The average value was calculated.

(6)明度(L値)
マクベス カラーアイ(Macbeth COLOR―EYE)モデルM―2020PLを使用し、JIS Z 8729−1980に規定された、国際照明委員会(CIE)推奨のL*a*b*系色表示により表される明度L値を測定した。
(6) Lightness (L value)
Lightness represented by the L * a * b * color system recommended by the International Commission on Illumination (CIE) as defined in JIS Z 8729-1980, using Macbeth COLOR-EYE model M-2020PL L value was measured.

(7)海溶解後布帛の色むら
カーボンブラックの分散性の指標として、色むらがあるかどうか目視で確認し、色むらがあるものを×、色むらがないものを○と判定した。
(7) Uneven color of fabric after sea dissolution As an indicator of the dispersibility of carbon black, it was visually confirmed whether there was any uneven color.

[実施例1〜4、比較例1〜4]
海島型複合繊維の製造に当り、島成分ポリマー及び海成分ポリマーとして、それぞれ表1に示す各ポリマーのうちから、表2に記載のポリマーの組合せを選び、表2に示す島数の海島型複合未延伸繊維を、紡糸温度280℃で溶融紡糸して、1000m/分の巻取り速度で一旦巻き取った。この際、島成分ポリマーには、表2に示す平均粒径のカーボンブラック(CB)を表2に示す量添加した。その結果を表2に示す。
[Examples 1-4, Comparative Examples 1-4]
In the production of the sea-island type composite fiber, the combination of polymers shown in Table 2 is selected from the polymers shown in Table 1 as the island component polymer and the sea component polymer, and the sea-island type composite having the number of islands shown in Table 2 is selected. The undrawn fiber was melt-spun at a spinning temperature of 280 ° C. and once wound at a winding speed of 1000 m / min. At this time, carbon black (CB) having an average particle diameter shown in Table 2 was added to the island component polymer in an amount shown in Table 2. The results are shown in Table 2.

Figure 2008088562
Figure 2008088562

Figure 2008088562
Figure 2008088562

上記のごとく紡糸して得られた複合繊維未延伸糸を、表3記載の延伸温度及び倍率でローラー延伸し、次いで150℃で熱セットして巻き取った。
なお、実施例1〜4、比較例1〜4については、いずれも、得られる延伸糸が44dtex/10filとなるように、紡糸吐出量及び延伸倍率を調整した。
得られた海島型複合繊維及びこれを筒編みにして4%NaOH水溶液で95℃にて30
%減量して海成分を溶解除去した極細繊維の評価結果を表3に示す。
The unstretched composite fiber yarn obtained by spinning as described above was roller-drawn at the drawing temperature and magnification shown in Table 3, and then heat-set at 150 ° C. and wound.
In Examples 1 to 4 and Comparative Examples 1 to 4, the spinning discharge amount and the draw ratio were adjusted so that the drawn yarn obtained would be 44 dtex / 10 fil.
The obtained sea-island type composite fiber and this were knitted into a cylinder, and 30% at 95 ° C. with 4% NaOH aqueous solution.
Table 3 shows the evaluation results of the ultrafine fibers in which the sea component is dissolved and removed by weight reduction.

Figure 2008088562
Figure 2008088562

実施例1は、PET1と島成分のベースポリマーとし改質PET2海成分として、島:海=70:30の比率で複合紡糸したものである。この海島型複合繊維の1フィラメント当りの島数は800個であり、島成分(PET1)には平均一次粒径が20nmのカーボンブラックを島成分重量に対して8重量%含有させた。得られた海島型複合繊維は、島成分直径が均一な海島断面形成を達成していた。これを表2記載の延伸温度、延伸倍率でローラー延伸して得られた延伸糸を用いて筒編みを作成し、4%NaOH水溶液で95℃にて30重量%減量して海成分を溶解除去して得たハイマルチフィラメント糸の断面を観察したところ、PET1からなる極細繊維中にカーボンブラックが均一に分散されており、色むらは観察されなかった。海成分除去後のファイバー(極細繊維)のL値は26で、強度は2.9cN/dtex、伸度は21.5%であった。   In Example 1, the base polymer of PET1 and the island component was used, and the composite PET2 sea component was composite-spun at a ratio of island: sea = 70: 30. The number of islands per filament of this sea-island type composite fiber was 800, and the island component (PET1) contained 8% by weight of carbon black having an average primary particle size of 20 nm with respect to the island component weight. The obtained sea-island type composite fiber achieved sea-island cross-section formation with a uniform island component diameter. A cylindrical knitting was made using the drawn yarn obtained by roller drawing at the drawing temperature and draw ratio shown in Table 2, and the sea component was dissolved and removed by reducing the weight by 30% at 95 ° C with 4% NaOH aqueous solution. When the cross section of the high multifilament yarn obtained in this manner was observed, carbon black was uniformly dispersed in the ultrafine fiber made of PET1, and no uneven color was observed. The fiber (ultrafine fiber) after removal of the sea component had an L value of 26, a strength of 2.9 cN / dtex, and an elongation of 21.5%.

実施例2では、島成分として同じカーボンブラックを島成分重量に対して5%含有させたPET1を使用したこと以外は実施例1と同じ条件で海島型複合繊維を製造した。この繊維も均一な島直径をもつ海島断面形成を達成していた。これを表2記載の延伸温度、延伸倍率でローラー延伸して得られた延伸糸を用いて筒編みを作成し、4%NaOH水溶液で95℃にて30重量%減量して海成分を溶解除去した後の糸の断面を観察したところ、カーボンブラックが均一に分散されており、色むらは観察されなかった。海成分を除去後のファイバーのL値は29で、強度は3.3cN/dtex、伸度は24.5%であった。   In Example 2, sea-island type composite fibers were produced under the same conditions as in Example 1 except that PET 1 containing 5% of the same carbon black as the island component was used with respect to the island component weight. This fiber also achieved sea-island cross-section formation with a uniform island diameter. A cylindrical knitting was made using the drawn yarn obtained by roller drawing at the drawing temperature and draw ratio shown in Table 2, and the sea component was dissolved and removed by reducing the weight by 30% at 95 ° C with 4% NaOH aqueous solution. When the cross section of the yarn was observed, carbon black was uniformly dispersed, and uneven color was not observed. The L value of the fiber after removing the sea component was 29, the strength was 3.3 cN / dtex, and the elongation was 24.5%.

実施例3では、PET2と改質PET2をそれぞれ島成分のベースポリマーと海成分とし、島:海=80:20の比率で用いた。複合繊維の1フィラメント当りの島数は500個であり、島成分には、平均一次粒径が25nmのカーボンブラックを島成分重量に対して10重量%含有させた。得られた海島型複合繊維は、均一な島直径をもつ海島断面形成を達成していた。これを表2記載の延伸温度、延伸倍率でローラー延伸して得られた延伸糸を用いて筒編みを作成し、4%NaOH水溶液で95℃にて20%減量して海成分を溶解除去した後、糸の断面を観察したところ、カーボンブラックが均一に分散されており、色むらは観察されなかった。海成分の減量・除去後のファイバーのL値は20で、強度は2.8cN/dtex、伸度は29.5%であった。   In Example 3, PET2 and modified PET2 were used as the base polymer of the island component and the sea component, respectively, and used at a ratio of island: sea = 80: 20. The number of islands per filament of the composite fiber was 500, and the island component contained 10% by weight of carbon black having an average primary particle size of 25 nm with respect to the island component weight. The obtained sea-island type composite fiber achieved sea-island cross-section formation with a uniform island diameter. A cylindrical knitting was made using the drawn yarn obtained by roller drawing at the drawing temperature and draw ratio shown in Table 2, and the sea component was dissolved and removed by reducing it by 20% at 95 ° C. with a 4% NaOH aqueous solution. Later, when the cross section of the yarn was observed, carbon black was uniformly dispersed, and no uneven color was observed. The L value of the fiber after weight loss / removal of the sea component was 20, the strength was 2.8 cN / dtex, and the elongation was 29.5%.

実施例4は、PET2を島成分のベースポリマーとしNy−6を海成分として、島:海=80:20の重量比率で複合紡糸したものである。繊維1フィラメント当りの島数は500個であり、島成分には平均一次粒径が15nmのカーボンブラックを島成分重量に対して6重量%含有させた。得られた海島型複合繊維は、均一な島直径をもつ海島断面形成を実現していた。これを表2記載の延伸温度、延伸倍率でローラー延伸して得られた延伸糸を用いて筒編みを作成し、4%NaOH水溶液で95℃にて20重量%減量して海成分を溶解除去した糸の断面を観察したところ、カーボンブラックが均一に分散されており、色むらは観察されなかった。海成分減量・除去後のファイバーのL値は21で、強度は2.4cN/dtex、伸度は45.8%であった。   In Example 4, PET2 was used as the base polymer of the island component, Ny-6 was used as the sea component, and composite spinning was performed at a weight ratio of island: sea = 80: 20. The number of islands per filament was 500, and the island component contained 6% by weight of carbon black having an average primary particle size of 15 nm with respect to the island component weight. The obtained sea-island type composite fiber realized sea-island cross-section formation with a uniform island diameter. A cylindrical knitting was made using drawn yarn obtained by roller drawing at the drawing temperature and draw ratio shown in Table 2, and the sea component was dissolved and removed by reducing the weight by 20% at 95 ° C with 4% NaOH aqueous solution. When the cross section of the yarn was observed, carbon black was uniformly dispersed, and uneven color was not observed. The L value of the fiber after weight loss / removal of the sea component was 21, the strength was 2.4 cN / dtex, and the elongation was 45.8%.

これに対し、比較例1では、実施例1の海成分ポリマーを変更したために海/島溶融粘度比が0.81となり、島成分の90%以上が互いに接合して個々には存在せず、接合した島の周囲を海成分が取り囲むような断面を形成していた。したがって、海成分をアルカリ減量で除去しても極細繊維群を形成することができなかったために、色むらが観察された。   On the other hand, in Comparative Example 1, since the sea component polymer of Example 1 was changed, the sea / island melt viscosity ratio was 0.81, and 90% or more of the island components were joined to each other and were not present individually. A cross section was formed in which the sea component surrounds the joined islands. Therefore, even if the sea component was removed by alkali weight reduction, the ultrafine fiber group could not be formed, and color unevenness was observed.

比較例2は、PET1と改質PET2とをそれぞれ島成分のベースポリマーと海成分に50:50の比率で用いたものである。複合繊維1フィラメント当りの島数は1000個であり、島成分として、平均一次粒径が400nmのカーボンブラックを島成分重量に対して0.5重量%含有させた。得られた海島型複合繊維は、均一な島直径をもつ海島断面形成を達成していた。しかし、表2記載の延伸温度、延伸倍率でローラー延伸して得られた延伸糸を用いて筒編みを作成し、4%NaOH水溶液で95℃にて50%減量して海成分を溶解した糸の断面を観察したところ、ファイバーの単糸径に対するカーボンブラックの粒径が大きすぎるために、カーボンブラックが均一に分散されず、色むらが観察された。また、繊維径が細く、カーボンブラックが不均一分散し且つ添加量が少ないために海減量後のファイバーのL値は42と不十分であった。さらに、海成分が多いために、延伸倍率を上げることができず、海成分減量・除去後のファイバー強度は0.6cN/dtex、伸度は13.5%と低強度であり、実用に耐え難い繊維であった。   In Comparative Example 2, PET1 and modified PET2 were used in a ratio of 50:50 to the base polymer of the island component and the sea component, respectively. The number of islands per filament of the composite fiber was 1000, and as an island component, carbon black having an average primary particle size of 400 nm was contained by 0.5% by weight with respect to the island component weight. The obtained sea-island type composite fiber achieved sea-island cross-section formation with a uniform island diameter. However, a yarn in which a cylindrical knitting was made using drawn yarn obtained by roller drawing at the drawing temperature and draw ratio shown in Table 2, and the sea component was dissolved by reducing 50% at 95 ° C. with 4% NaOH aqueous solution. When the cross section of the carbon black was observed, the carbon black particle size was too large relative to the single yarn diameter of the fiber, so that the carbon black was not uniformly dispersed, and uneven color was observed. Further, since the fiber diameter was small, the carbon black was dispersed non-uniformly and the amount added was small, the L value of the fiber after sea loss was 42, which was insufficient. Furthermore, since there are many sea components, the draw ratio cannot be increased, the fiber strength after sea component weight loss / removal is 0.6 cN / dtex, the elongation is 13.5%, and the strength is low, making it difficult to withstand practical use. It was a fiber.

比較例3は、PTTと改質PET2とをそれぞれ島成分と海成分として、島:海=80:20の比率で用いたものである。複合繊維1フィラメント当りの島数は700個であり、島成分として、平均一次粒径が15nmのカーボンブラックを島成分重量に対して6%含有させた。得られた海島型複合繊維は、均一な島直径をもつ海島断面形成を達成していた。表2記載の延伸温度、延伸倍率でローラー延伸して得られた延伸糸を用いて筒編みを作成し、4%NaOH水溶液で95℃にて20重量%減量して海成分を溶解除去した糸の断面を観察したところ、カーボンブラックが均一に分散されており、色むらは観察されなかった。しかし、島成分のベースポリマーのガラス転移点(Tg)が45℃と低いために、強度は0.8cN/dtex、伸度は53.4%と実用に耐えられないほど低い強度を示した。   In Comparative Example 3, PTT and modified PET2 are used as an island component and a sea component, respectively, at a ratio of island: sea = 80: 20. The number of islands per filament of the composite fiber was 700, and 6% of carbon black having an average primary particle size of 15 nm was contained as an island component with respect to the island component weight. The obtained sea-island type composite fiber achieved sea-island cross-section formation with a uniform island diameter. A yarn in which a tubular knitting was made using drawn yarn obtained by roller drawing at the drawing temperature and draw ratio shown in Table 2, and the sea component was dissolved and removed by reducing the weight by 20% by weight with a 4% NaOH aqueous solution at 95 ° C. As a result of observing the cross section, carbon black was uniformly dispersed, and uneven color was not observed. However, since the glass transition point (Tg) of the base polymer of the island component is as low as 45 ° C., the strength was 0.8 cN / dtex and the elongation was 53.4%, which was low enough to withstand practical use.

比較例4は、Ny−6を島成分に用いPET2を海成分に用いて80:20の比率で用いたものである。島成分として、平均一次粒径が15nmのカーボンブラックを島成分重量に対して2重量%含有させた。比較例1と同様に、海/島溶融粘度比が0.88であるために、島成分の90%以上が互いに接合して個々には存在せず、接合した島の周囲を海成分が取り囲むような断面を形成していた。したがって、海成分を4%NaOH水溶液によるアルカリ減量で海成分を除去しても極細繊維群を形成することができなかったために、色むらが観察された。   In Comparative Example 4, Ny-6 is used as an island component and PET2 is used as a sea component at a ratio of 80:20. As the island component, 2% by weight of carbon black having an average primary particle size of 15 nm was contained with respect to the weight of the island component. As in Comparative Example 1, since the sea / island melt viscosity ratio is 0.88, 90% or more of the island components are joined together and do not exist individually, and the sea component surrounds the joined islands. Such a cross section was formed. Therefore, even if the sea component was removed by alkali weight reduction with a 4% NaOH aqueous solution, the ultrafine fiber group could not be formed, and color unevenness was observed.

本発明の海島型複合繊維によれば、容易にカーボンブラックの均一性に優れた黒色極細繊維からなるハイマルチフィラメント糸を、生産性よく且つ低コストで提供することができる。したがって、従来さらなる低コスト化、あるいは、さらなる極細化且つ濃染化が要求されている各種用途分野に好適に使用することができる。   According to the sea-island type composite fiber of the present invention, it is possible to easily provide a high multifilament yarn composed of black ultrafine fibers excellent in carbon black uniformity with high productivity and at low cost. Therefore, it can be suitably used in various application fields that have been conventionally required to be further reduced in cost or further reduced in thickness and density.

本発明の海島型複合繊維を溶融紡糸するために用いられる紡糸口金の構造を例示する一概略断面図である。It is one schematic sectional drawing which illustrates the structure of the spinneret used in order to melt-spin the sea-island type composite fiber of this invention. 本発明の海島型複合繊維を溶融紡糸するために用いられる紡糸口金の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the spinneret used in order to melt-spin the sea-island type composite fiber of this invention.

符号の説明Explanation of symbols

1:分配前島成分ポリマー溜め部分
2:島成分分配用導入孔
3:海成分導入孔
4:分配前海成分ポリマー溜め部分
5:個別海/島=鞘/芯構造形成部
6:海島全体合流絞り部
1: pre-distribution island component polymer reservoir portion 2: island component distribution introduction hole 3: sea component introduction hole 4: pre-distribution sea component polymer reservoir portion 5: individual sea / island = sheath / core structure forming portion 6: entire sea island confluence Part

Claims (8)

ガラス転移点が60℃以上の繊維形成性ポリマーを島成分とし、該島成分よりも易溶解性のポリマーを海成分とする海島型複合構造を有し、海成分と島成分との複合重量比率(海:島)が40:60〜5:95、島数が100以上であり、且つ島成分には平均1次粒径5〜50nmのカーボンブラックが島成分重量に対して1〜20重量%含有されている海島型複合繊維から、海成分を溶解除去して得られる、直径10〜1000nmの極細繊維であって、強度が1.0〜6.0cN/dtex、L値が10〜40であることを特徴とする黒色極細繊維。   It has a sea-island type composite structure in which a fiber-forming polymer having a glass transition point of 60 ° C. or more is an island component, and a sea component is a polymer that is more soluble than the island component, and the composite weight ratio of the sea component and the island component (Sea: Island) is 40:60 to 5:95, the number of islands is 100 or more, and the island component has an average primary particle size of 5 to 50 nm of carbon black with respect to the island component weight of 1 to 20% by weight. It is an ultrafine fiber having a diameter of 10 to 1000 nm obtained by dissolving and removing sea components from the contained sea-island type composite fiber, and has an intensity of 1.0 to 6.0 cN / dtex and an L value of 10 to 40 A black extra fine fiber characterized by being. 海島型複合繊維を形成する島成分が、芳香族ポリエステル系ポリマーであることを特徴とする請求項1に記載の黒色極細繊維。   The black ultrafine fiber according to claim 1, wherein the island component forming the sea-island type composite fiber is an aromatic polyester-based polymer. 海島型複合繊維を形成する海成分が、5−ナトリウムスルホン酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを1〜5重量%共重合したポリエチレンテレフタレートであることを特徴とする請求項1又は請求項2に記載の黒色極細繊維。   The sea component forming the sea-island type composite fiber is polyethylene terephthalate copolymerized with 5 to 12% by weight of polyethylene glycol of 6 to 12 mol% of 5-sodium sulfonic acid and 4000 to 12000 of molecular weight. The black extra fine fiber of Claim 1 or Claim 2. 島成分として平均1次粒径5〜50nmのカーボンブラックを島成分重量に対して1〜20重量%含有するガラス転移点60℃以上の繊維形成性ポリマーを用い、海成分として該島成分よりも易溶解性のポリマーであって、海成分と島成分との溶融紡糸温度における溶融粘度比(海/島)が1.1〜2.0であるポリマーを用いて、複合紡糸し、海成分と島成分との複合重量比率(海:島)が40:60〜5:95、島数が100以上である海島型複合繊維を形成した後、該複合繊維の海成分を溶解除去して、極細繊維とすることを特徴とする黒色極細繊維の製造方法。   A fiber-forming polymer having a glass transition point of 60 ° C. or higher containing 1 to 20% by weight of carbon black having an average primary particle size of 5 to 50 nm as an island component with respect to the weight of the island component is used as a sea component than the island component. Using an easily soluble polymer having a melt viscosity ratio (sea / island) of 1.1 to 2.0 at the melt spinning temperature of the sea component and the island component, composite spinning is performed. After forming a sea-island type composite fiber having a composite weight ratio with the island component (sea: island) of 40:60 to 5:95 and the number of islands of 100 or more, the sea component of the composite fiber is dissolved and removed, A method for producing black ultrafine fibers, characterized in that the fibers are fibers. 海島型複合繊維を形成する島成分が、芳香族ポリエステル系ポリマーであることを特徴とする請求項4に記載の黒色極細繊維の製造方法。   The method for producing a black extra fine fiber according to claim 4, wherein the island component forming the sea-island type composite fiber is an aromatic polyester polymer. 複合繊維を形成する海成分として5−ナトリウムスルホン酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを1〜5重量%共重合したポリエチレンテレフタレートを用いることを特徴とする請求項4又は請求項5に記載の黒色極細繊維の製造方法。   5. The polyethylene terephthalate obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfonic acid and 1 to 5 wt% of polyethylene glycol having a molecular weight of 4000 to 12000 is used as a sea component forming the composite fiber. Item 6. A method for producing a black extra fine fiber according to Item 5. 複合繊維の海成分を水酸化ナトリウム水溶液で処理して溶解除去することを特徴とする請求項6に記載の黒色極細繊維の製造方法。   The method for producing a black extra fine fiber according to claim 6, wherein the sea component of the composite fiber is treated with a sodium hydroxide aqueous solution and dissolved and removed. 島成分が平均1次粒径5〜50nmのカーボンブラックを島成分重量に対して1〜20重量%含有するガラス転移点60℃以上の芳香族ポリエステル系ポリマーからなり、海成分が5−ナトリウムスルホン酸を6〜12モル%及び分子量4000〜12000のポリエチレングリコールを1〜5重量%共重合したポリエチレンテレフタレートからなり、且つ海成分と島成分の溶融紡糸温度における溶融粘度比(海/島)が1.1〜2.0の範囲にあるポリマーで構成された海島型複合繊維であって、海成分と島成分との複合重量比率(海:島)が40:60〜5:95であり、且つ島数が100以上であることを特徴とする黒色極細繊維製造用の海島型複合繊維。   The island component is composed of an aromatic polyester-based polymer having a glass transition point of 60 ° C. or higher and containing 1 to 20% by weight of carbon black having an average primary particle size of 5 to 50 nm with respect to the island component weight, and the sea component is 5-sodium sulfone. It consists of polyethylene terephthalate copolymerized with 6 to 12 mol% of acid and 1 to 5 wt% of polyethylene glycol having a molecular weight of 4000 to 12000, and the melt viscosity ratio (sea / island) at the melt spinning temperature of the sea component and the island component is 1. A sea-island type composite fiber composed of a polymer in the range of 1 to 2.0, wherein the composite weight ratio of the sea component to the island component (sea: island) is 40:60 to 5:95, and A sea-island type composite fiber for producing black ultrafine fibers, characterized in that the number of islands is 100 or more.
JP2006266859A 2006-09-29 2006-09-29 Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor Pending JP2008088562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266859A JP2008088562A (en) 2006-09-29 2006-09-29 Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266859A JP2008088562A (en) 2006-09-29 2006-09-29 Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor

Publications (1)

Publication Number Publication Date
JP2008088562A true JP2008088562A (en) 2008-04-17

Family

ID=39373003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266859A Pending JP2008088562A (en) 2006-09-29 2006-09-29 Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor

Country Status (1)

Country Link
JP (1) JP2008088562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605455A (en) * 2011-10-31 2012-07-25 龙福环能科技股份有限公司 Method for producing dacron FDY (Fully Drawn Yarn) filaments in large scale by utilizing recycled PET (Poly Ethylene Terephthalate) bottle chips
JP2014095170A (en) * 2012-11-12 2014-05-22 Teijin Ltd Spun-dyed ultra fine fiber
CN114687008A (en) * 2022-04-02 2022-07-01 深圳大学 Superfine denier functional nanofiber and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146624A (en) * 2000-11-06 2002-05-22 Teijin Ltd Spun-dyed ultrafine fiber and method for producing the same
WO2005095686A1 (en) * 2004-03-30 2005-10-13 Teijin Fibers Limited Composite fabric of island-in-sea type and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146624A (en) * 2000-11-06 2002-05-22 Teijin Ltd Spun-dyed ultrafine fiber and method for producing the same
WO2005095686A1 (en) * 2004-03-30 2005-10-13 Teijin Fibers Limited Composite fabric of island-in-sea type and process for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605455A (en) * 2011-10-31 2012-07-25 龙福环能科技股份有限公司 Method for producing dacron FDY (Fully Drawn Yarn) filaments in large scale by utilizing recycled PET (Poly Ethylene Terephthalate) bottle chips
JP2014095170A (en) * 2012-11-12 2014-05-22 Teijin Ltd Spun-dyed ultra fine fiber
CN114687008A (en) * 2022-04-02 2022-07-01 深圳大学 Superfine denier functional nanofiber and preparation method thereof
CN114687008B (en) * 2022-04-02 2023-05-23 深圳大学 Superfine denier functional nanofiber and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4473867B2 (en) Sea-island type composite fiber bundle and manufacturing method thereof
TWI541399B (en) Composite fiber
JP2007262610A (en) Combined filament yarn
JP6097527B2 (en) Production method of original fine fiber
JP4134829B2 (en) Nanofiber mixed yarn
KR20100102601A (en) Process for production of fabrics, fabrics and textile goods
JP2007247127A (en) Textured composite yarn
JP2014101613A (en) Ultra fine fiber
JP2008088562A (en) Black superfine fiber, method for producing the same, and sea-island type conjugate fiber used therefor
JP5034412B2 (en) Fabric comprising nanofiber and method for producing the same
JP4315009B2 (en) Blended yarn and textile products comprising the same
JP4705451B2 (en) Manufacturing method of sea-island type composite fiber
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JP5735844B2 (en) Cationic dyeable polyester fibers and fiber aggregates with excellent dyeability
JP2016172945A (en) Ultrafine polyester fiber having convexoconcave surface, and sea-island type conjugate fiber
JP2005133250A (en) Core-sheath conjugate fiber
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JP4922668B2 (en) Permeability woven and knitted fabric, production method thereof and textile
JP4995523B2 (en) False twisted yarn and method for producing the same
JP4292893B2 (en) Polymer alloy crimped yarn
JP4315002B2 (en) High elongation polymer alloy fiber and method for producing the same
JP2021188243A (en) Composite fiber
JP5644587B2 (en) Nanofiber mixed yarn
JP2011132636A (en) Deodorant sewing machine thread
JP2012021254A (en) Multi-layered structure woven or knitted fabric and clothing using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025