JP2008142005A - Plant cultivating method - Google Patents

Plant cultivating method Download PDF

Info

Publication number
JP2008142005A
JP2008142005A JP2006332381A JP2006332381A JP2008142005A JP 2008142005 A JP2008142005 A JP 2008142005A JP 2006332381 A JP2006332381 A JP 2006332381A JP 2006332381 A JP2006332381 A JP 2006332381A JP 2008142005 A JP2008142005 A JP 2008142005A
Authority
JP
Japan
Prior art keywords
light
plant
flowering
red light
main stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006332381A
Other languages
Japanese (ja)
Other versions
JP4759746B2 (en
Inventor
Naoya Fukuda
直也 福田
Hiroshi Eomo
浩 江面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2006332381A priority Critical patent/JP4759746B2/en
Publication of JP2008142005A publication Critical patent/JP2008142005A/en
Application granted granted Critical
Publication of JP4759746B2 publication Critical patent/JP4759746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grass form controlling method freely promoting or suppressing flower formation according to a purpose while suppressing elongation of main stems. <P>SOLUTION: This grass form controlling method includes controlling flower formation while suppressing elongation of main stems through irradiating plants with red light (R; 600-700 nm) adjusted in optical power. Alternatively, the method includes controlling flower formation while suppressing main stem elongation of plants through irradiating the plants with red light (R; 600-700 nm) adjusted in optical power, and irradiating the plants with blue light so as to promote main stem elongation and flower formation. Alternatively, the method includes controlling flower formation while suppressing main stem elongation through irradiating plants with blue light to promote main stem elongation and flower formation, and irradiating the plants with red light (R; 600-700 nm) adjusted in optical power. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、植物の栽培技術に関する。より詳しくは、植物の主茎伸長、花芽分化、開花などを光質や光強度の調整によって制御する技術に関する。   The present invention relates to a plant cultivation technique. More specifically, the present invention relates to a technique for controlling plant stem elongation, flower bud differentiation, flowering, and the like by adjusting light quality and light intensity.

植物を栽培する場合において、花芽分化や開花を制御することが一般的に行われている。例えば、「暗期中断」は、長日植物あるいは短日植物などの光周期に特異的に反応する植物を対象とする花芽分化・開花制御技術としてよく知られている。   When cultivating a plant, it is generally performed to control flower bud differentiation and flowering. For example, “dark-period interruption” is well known as a technique for controlling flower bud differentiation and flowering for plants that react specifically with the photoperiod, such as long-day plants or short-day plants.

また、植物の形態(「草姿」ともいう。)は、商品価値に直結する。例えば、鉢花は、鉢と植物のバランスが重要視され、主茎が長過ぎる、いわゆる「徒長」ものは、商品価値が低減する。このため、植物の生長を抑制する技術が開発されており、例えば、「矮化剤」を葉面散布や土壌灌注を行うことによって、草姿を制御する技術が一般に普及している。しかし、この矮化剤は、環境負荷の側面から問題を抱えている。   In addition, the form of the plant (also referred to as “grass form”) is directly linked to commercial value. For example, in pot flowers, the balance between pots and plants is regarded as important, and so-called “captains” whose main stems are too long have a reduced commercial value. For this reason, techniques for suppressing the growth of plants have been developed. For example, techniques for controlling the appearance of plants by foliar spraying or soil irrigation with a “dwarfing agent” are widely used. However, this dwarfing agent has a problem from the aspect of environmental load.

また、太陽光の光質を被覆資材で変化させて、植物の生育、花芽形成、開花、結実時期などを調節する技術が提案されている。具体的には、特許文献1に、不織布に色素を含有させた被覆資材を用いて、赤色光と青色光との比(R/B)を所定値となるように制御した光を、所定期間、植物に照射する技術が開示されている。また、特許文献2には、透過光が標準光源D65を基準とする600〜700nmの赤色光の光量子束透過量(R)を、標準光源D65を基準とする700〜800nmの遠赤色光の光量子束透過量(FR)で除した値(R/FR)が所定レベル以上のフィルムやネットで植物を被覆する技術が開示されている。
特開2002−247919号公報。 特開2006−191862号公報。
In addition, a technique has been proposed in which the light quality of sunlight is changed with a coating material to control plant growth, flower bud formation, flowering, fruiting time, and the like. Specifically, in Patent Document 1, using a coating material containing a pigment in a nonwoven fabric, the light whose ratio (R / B) between red light and blue light is controlled to be a predetermined value is determined for a predetermined period. A technique for irradiating a plant is disclosed. Patent Document 2 discloses the amount of transmitted light (R) of red light having a wavelength of 600 to 700 nm based on the standard light source D65 and the light quantum of far red light having a wavelength of 700 to 800 nm based on the standard light source D65. A technique for covering a plant with a film or net having a value (R / FR) divided by a bundle transmission amount (FR) of a predetermined level or more is disclosed.
JP 2002-247919A. JP 2006-191862 A.

植物の栽培技術において、主茎の伸長を抑制したままで、目的に応じて自由に、花芽分化や開花を促進又は抑制できる、簡易で、汎用性があり、かつ、環境負荷の問題もない技術が求められている。そこで、本発明は、当該技術を提供することを主な目的とする。   A simple, versatile, and environmentally friendly technology that can promote or inhibit flower bud differentiation and flowering according to the purpose while suppressing the elongation of the main stem in plant cultivation technology Is required. Then, this invention makes it the main objective to provide the said technique.

本願発明者らは、光質、光強度、光照射の切換えタイミング等に着目し、これらの観点から鋭意研究を進めてきたところ、赤色光と青色光について、以下の事項を新規に見出した。   The inventors of the present application paid attention to light quality, light intensity, switching timing of light irradiation, and the like, and have made extensive studies from these viewpoints. As a result, the following matters were newly found for red light and blue light.

赤色光(R;600〜700nm)について。(1)赤色光は、光強度に関係なく、植物の主茎伸長を抑制する。(2)赤色光は、光強度の強弱によって、花芽分化や開花を促進(誘導)したり、反対に抑制(遅延)したりする。具体的には、光強度が所定値以上の強赤色光の場合は、主茎伸長の抑制を維持しながら、花芽分化や開花を促進させる効果を発揮する。一方、赤色光が、所定値未満の弱赤色光の場合は、主茎伸長の抑制を維持しながら、花芽分化や開花の抑制、側枝発達促進などの効果を発揮する。(3)弱赤色光は、青色光が混在した場合でも主茎伸長抑制効果や側枝発達効果などをそのまま維持する。   About red light (R; 600-700 nm). (1) The red light suppresses the main stem elongation of the plant regardless of the light intensity. (2) Red light promotes (induces) flower bud differentiation and flowering, or conversely suppresses (delays) the intensity of light. Specifically, in the case of strong red light with a light intensity of a predetermined value or more, the effect of promoting flower bud differentiation and flowering is exhibited while maintaining suppression of main stem elongation. On the other hand, when the red light is weak red light less than a predetermined value, effects such as suppression of flower bud differentiation and flowering and promotion of side branch development are exhibited while maintaining suppression of main stem elongation. (3) The weak red light maintains the main stem elongation suppressing effect and the side branch development effect as it is even when blue light is mixed.

青色光(B;400〜500nm)について。(1)青色光は、主茎伸長を促進する。(2)青色光は、花芽分化や開花を促進する。   About blue light (B; 400-500 nm). (1) Blue light promotes main stem elongation. (2) Blue light promotes flower bud differentiation and flowering.

本願発明者らは、以上のような赤色光や青色光のそれぞれに関する研究成果、並びに赤色光と青色光の照射時期の組み合わせによって得られた研究成果に基づいて、以下のような発明を提供する。   The inventors of the present application provide the following inventions based on the research results regarding each of the red light and the blue light as described above and the research results obtained by the combination of the irradiation times of the red light and the blue light. .

まず、本発明では、光強度が調整された赤色光(R;600〜700nm)を植物に対して照射することによって、該植物の主茎伸長を抑制しながら花成を制御する植物栽培方法を提供する。なお、「花成」とは、花芽分化から開花に至る反応を意味し、「制御」とは、人為的に促進又は抑制することを意味する。   First, in the present invention, a plant cultivation method for controlling flowering while irradiating a plant with red light (R; 600 to 700 nm) whose light intensity is adjusted while suppressing main stem elongation of the plant. provide. “Flowering” means a reaction from flower bud differentiation to flowering, and “control” means artificially promoting or suppressing.

例えば、光強度が150μmolm−2−1以上の光量子束密度に調整された赤色光を用いて、植物の主茎伸長を抑制しながら花成を促進する方法、あるいは、光強度が70〜100μmolm−2−1の光量子束密度に設定された赤色光を用いて、植物の主茎伸長を抑制しながら、花成を抑制する方法を提供する。 For example, using red light adjusted to a photon flux density of 150 μmolm −2 s −1 or higher in light intensity, a method of promoting flowering while suppressing elongation of the main stem of the plant, or light intensity of 70 to 100 μmolm Provided is a method for suppressing flowering while suppressing main stem elongation of a plant using red light set to a photon flux density of −2 s −1 .

また、本発明では、光強度が調整された上記赤色光を植物に照射することによって、該植物の主茎伸長を抑制しながら花成を制御した後に、青色光を該植物に照射して主茎伸長を促進に転じさせるとともに、花成を促進させる植物栽培方法を提供する。   In the present invention, the plant is irradiated with the red light having the light intensity adjusted to control the flowering while suppressing the main stem elongation of the plant, and then the plant is irradiated with blue light. Provided is a plant cultivation method for turning stem elongation into promotion and promoting flowering.

なお、当該植物栽培方法において、青色光照射前の赤色光照射段階で所定光強度以上の強赤色光を用いた場合では、植物の主茎伸長を抑制しながら花成を促進し、続く青色光によって、主茎伸長を促進に転じさせるとともに、花成をさらに促進させることができる。一方、青色光照射前の赤色光照射段階で所定光強度未満の弱赤色光を用いた場合では、植物の主茎伸長を抑制しながら花成を抑制し、続く青色光によって、主茎伸長と花成の両方を促進に転じさせることができる。   In the plant cultivation method, when strong red light of a predetermined light intensity or higher is used in the red light irradiation stage before blue light irradiation, flowering is promoted while suppressing the main stem elongation of the plant, and the subsequent blue light As a result, the elongation of the main stem can be changed to promotion, and the flowering can be further promoted. On the other hand, in the case of using weak red light less than a predetermined light intensity in the red light irradiation stage before the blue light irradiation, the flowering is suppressed while suppressing the main stem elongation of the plant, and the main stem elongation and Both flowering can be turned into promotion.

次に、本発明では、青色光を植物に照射して主茎伸長と花成を促進させた後に、光強度が調整された赤色光を該植物に照射することによって、主茎伸長を抑制しながら花成を制御する植物栽培方法を提供する。   Next, in the present invention, after irradiating the plant with blue light to promote main stem elongation and flowering, the plant is irradiated with red light with adjusted light intensity to suppress main stem elongation. A plant cultivation method for controlling flowering is provided.

なお、当該植物栽培方法において、青色光照射後の赤色光照射段階で、所定光強度以上の強赤色光を用いた場合では、植物の主茎伸長を抑制に転じさせるとともに、花成をさらに促進させることができる。一方、青色光照射後の赤色光照射段階で、所定光強度未満の弱赤色光を用いた場合では、植物の主茎伸長と花成の両方を抑制に転じさせることができ、加えて、側枝を発達させることができる。   In the plant cultivation method, when strong red light of a predetermined light intensity or higher is used in the red light irradiation stage after the blue light irradiation, the main stem elongation of the plant is shifted to suppression and further flowering is further promoted. Can be made. On the other hand, in the red light irradiation stage after the blue light irradiation, when weak red light having a light intensity lower than a predetermined light intensity is used, both the main stem elongation and the flowering of the plant can be turned to suppression, and in addition, the side branch Can be developed.

本発明によれば、光質(赤色光と青色光)、赤色光の光強度、加えて、赤色光と青色光の照射タイミングの選択を、植物種と目的に応じて選択することによって、環境負荷の問題を抱える矮化剤を一切使用することなく、主茎の伸長を制御することができ、目的に応じて自由に、花成を促進又は抑制できる。   According to the present invention, by selecting the light quality (red light and blue light), the light intensity of red light, and the irradiation timing of red light and blue light according to the plant species and purpose, the environment The elongation of the main stem can be controlled without using any rusting agent that has a problem of load, and flowering can be freely promoted or suppressed depending on the purpose.

本発明に係る好適な実施例について、添付した図面等を参照しながら説明する。なお、本実施例は、本発明の一実施例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Preferred embodiments according to the present invention will be described with reference to the accompanying drawings. In addition, a present Example shows one Example of this invention, and, thereby, the range of this invention is not interpreted narrowly.

<実験に使用した材料および方法>
供試植物には、ペチュニア‘バカラブルー’を採用した。いずれも、環境制御室内で、セルトレイに4粒ずつ播種し、本葉が展開し始めた頃に1株残して間引きを行い、本葉3枚展開後、7.5cm径のビニールポットに鉢上げした。白色蛍光灯を光源に用いて、本葉5枚程度まで育苗後、同室に設置したLED(発光ダイオード)パネル光源下で栽培した。環境制御室の気温は20℃とし、明期14時間,暗期10時間に設定した。
<Materials and methods used in experiments>
Petunia 'Baccarat Blue' was adopted as the test plant. In each environment, 4 seeds are sown on the cell tray in the environmental control room, and when the main leaves begin to spread, one strain is left and thinned out. After the three main leaves are deployed, they are raised in a 7.5 cm diameter plastic pot. did. Using white fluorescent light as a light source, after raising seedlings to about 5 true leaves, they were cultivated under an LED (light emitting diode) panel light source installed in the same room. The temperature of the environmental control room was 20 ° C., and the light period was 14 hours and the dark period was 10 hours.

(実施例1)
赤色光の光強度を調節することによって、植物の花芽分化や開花と茎伸長を制御できることを検証する実験系である。
(Example 1)
It is an experimental system that verifies that flower bud differentiation, flowering and stem elongation can be controlled by adjusting the light intensity of red light.

(1)実験1−1
LEDパネル光源として,赤色LED(R区,MIL-R18,三洋電機(株))と青色LED(B区,MIL-B18,三洋電機(株)の各単色光源並びに、対照区として赤色LEDと青色LEDの光源数比を1:1とした混合光源(RB区)を設け、各光源下で両植物を栽培した。照射する光強度は、植物体頂上付近で光量子束密度100μmol・m-2・s-1(PPF)とした。
(1) Experiment 1-1
Red LED (R ward, MIL-R18, Sanyo Electric Co., Ltd.) and blue LED (B ward, MIL-B18, Sanyo Electric Co., Ltd.) as LED panel light source and red LED and blue as control ward A mixed light source (RB section) with an LED light source number ratio of 1: 1 was provided, and both plants were cultivated under each light source, and the light intensity irradiated was a photon flux density of 100 μmol · m −2 · near the top of the plant body. s -1 (PPF).

実験結果。図1(図面代用表)には、本実験の結果をまとめた。まず、上記B区では、茎並びに葉柄の著しい伸長が処理開始後5日目より観察された。特に主茎では、処理終了時まで継続して伸長を続け徒長的外観を示した。また、B区の葉柄は、処理開始後15日目で40mm程度の長さとなり、RB区の約2倍となった。また、葉角の変化は、処理開始後約10時間後に確認され、B区では草姿が立性となった。加えてB区では、処理開始後1ヶ月で開花し、他のLED光源区と比較して著しく開花が促進された。この結果から、青色光には、主茎伸長促進、葉柄伸長促進効果、開花促進効果があることが確認された。   Experimental result. FIG. 1 (drawing substitute table) summarizes the results of this experiment. First, in the above B section, significant elongation of stems and petioles was observed from the fifth day after the treatment was started. In particular, the main stalk continued to elongate until the end of the treatment, and showed a prominent appearance. In addition, the stalk of the B zone was about 40 mm long on the 15th day after the start of the treatment, and was about twice that of the RB zone. In addition, the change in leaf angle was confirmed about 10 hours after the start of the treatment, and the appearance of grass in the B ward became more prominent. In addition, in area B, flowering occurred one month after the start of treatment, and flowering was significantly promoted compared to other LED light source areas. From this result, it was confirmed that the blue light has an effect of promoting main stem elongation, petiole elongation, and flowering.

一方、R区並びにRB区では、主茎の伸長はほとんど観察されず、葉柄長も18mm程度と短くなった。また、これらの処理区では55日間の試験期間中に開花を観察することはできなかった。しかし,R区並びにRB区では、側枝の発達は旺盛であった。この結果から、光量子束密度100μmol・m-2・s-1の弱赤色光には、主茎伸長抑制、開花抑制効果、側枝発達促進効果があることが確認された。 On the other hand, in the R group and the RB group, the elongation of the main stem was hardly observed, and the petiole length was shortened to about 18 mm. In these treatments, flowering could not be observed during the 55-day test period. However, in the R and RB districts, the development of side branches was vigorous. From this result, it was confirmed that the weak red light having a photon flux density of 100 μmol · m −2 · s −1 has an effect of suppressing main stem elongation, an effect of suppressing flowering, and an effect of promoting side branch development.

次に、ペチュニアの茎部を含む成長点付近では、GA20位酸化酵素遺伝子-1の発現量が、B区で処理開始後時間の経過とともに増大し、21時間後には初期値の4.1倍程度と他の処理区の約2.7倍となった(図2参照)。   Next, in the vicinity of the growth point including the petunia stem, the expression level of the GA20 oxidase gene-1 increases with the passage of time in the B zone, and after 21 hours, it is 4.1 times the initial value. It was about 2.7 times that of other treatment zones (see Fig. 2).

このように、ペチュニアでは、活性型GAの合成に関わるGA20位酸化酵素の一部で発現量が青色光下で増大した。青色光下で栽培した両植物で、ロゼットの打破や主茎、葉柄の伸長等の反応が引き起こされる現象が、ジベレリン生合成関連遺伝子の青色光下での発現増大に伴う内生ジベレリン量増加の結果に起因している可能性が示唆された。   Thus, in petunia, the expression level of some of the GA20-position oxidases involved in the synthesis of active GA increased under blue light. In both plants cultivated under blue light, reactions such as breakage of rosettes and elongation of the main stem and petiole are caused by the increase in the amount of endogenous gibberellin accompanying the increased expression of gibberellin biosynthesis-related genes under blue light. It was suggested that it might be attributed to the results.

(2)実験1−2
白色LED照射区(W区)を対照区とし、上記実験1-1と同じ条件で赤色LED照射区(R区)又は青色LED照射区(B区)下で栽培した植物体について、処理後2週間後から蕾完成まで2日おきに、ESEM(環境制御型電子顕微鏡)を用いて、未分化、ガク分化並びに雌ずい分化期に分類して、花芽分化の発達ステージを観察した。
(2) Experiment 1-2
For the plant grown under the red LED irradiation zone (R zone) or the blue LED irradiation zone (B zone) under the same conditions as Experiment 1-1, with the white LED irradiation zone (W zone) as the control zone, after treatment 2 Every two days from the end of the week to the completion of wrinkles, the development stage of flower bud differentiation was observed using ESEM (environmentally controlled electron microscope) and classified into undifferentiated, gourd differentiation and pistil differentiation stage.

実験結果。花芽の発達ステージについて、花芽分化開始までの日数が、W区では処理開始後16日だが、B区では14日と早まったことに加え、ガク分化から雌ずい分化の推移が早く、そのことが分化期間を短縮させ、結果として蕾の形成が2日程度促進され、処理開始後18日目には既に蕾が形成されていた(図3参照)。一方、R区では,花芽分化が起こらず処理期間中栄養生長を続けていた(図3参照)。なお、図3は、光処理開始後18日目のペチュニア主茎成長点の様子を示す走査型電子顕微鏡写真である。   Experimental result. Regarding the stage of flower bud development, the number of days until the start of flower bud differentiation is 16 days after the start of treatment in the W ward, but 14 days in the B ward, and the transition from gaku differentiation to pistil differentiation is fast. The differentiation period was shortened, and as a result, the formation of wrinkles was promoted for about 2 days, and wrinkles were already formed on the 18th day after the start of the treatment (see FIG. 3). On the other hand, in the R ward, flower bud differentiation did not occur and vegetative growth continued during the treatment period (see FIG. 3). FIG. 3 is a scanning electron micrograph showing the state of the petunia main stem growth point on the 18th day after the start of the light treatment.

(3)実験1−3
R区とB区で、光強度を強め、光量子束密度150μmol・m-2・s-1とした区(RH区,BH区)を設け、弱光強度区(RL,BL区:光量子束密度70μmol m-2 s-1)と生育反応を比較した。
(3) Experiment 1-3
In the R zone and B zone, a zone (RH zone, BH zone) with an increased light intensity and a photon flux density of 150 μmol · m −2 · s −1 is provided, and a weak light intensity zone (RL, BL zone: photon flux density). The growth response was compared with 70 μmol m −2 s −1 ).

実験結果。弱赤色光(光量子束密度70μmol・m-2・s-1)は,実験1−1と同様に花成が抑制されたものの、光強度を上げたRH区(光量子束密度150μmol・m-2・s-1)では、処理開始後28.6日で開花が確認でき、B区と同程度の至花日数となった(図4参照)。さらには,RH区における強赤色光条件は、着蕾数をB区以上に増加させた.一方,茎伸長に対しては,各光質における光強度の影響は限定的であった(図5参照)。 Experimental result. Weak red light (photon flux density of 70 μmol · m −2 · s −1 ) was suppressed in flowering as in Experiment 1-1, but RH section with increased light intensity (photon flux density of 150 μmol · m −2) -In s -1 ), flowering was confirmed 28.6 days after the start of the treatment, and the number of flowering days was about the same as in the B section (see Fig. 4). Furthermore, the strong red light condition in the RH section increased the number of arrivals to the B section or more. On the other hand, the effect of light intensity on each light quality was limited for stem elongation (see FIG. 5).

すなわち、対照区であるW区に比べて、R区(RH区、RL区)では、光強度にかかわらず、いずれも大幅に主茎の伸長が抑制され、草姿が小型化した。一方、B区については反対に、大きく主茎の伸長が促進された。しかしながら、R区については、いずれの光強度でもその主茎長は同じであり、B区の場合も、若干BH区において伸長が促進される傾向はあるものの、その差は少なかった(図5参照)。   That is, in comparison with the W group, which is the control group, in the R group (RH group, RL group), regardless of the light intensity, the elongation of the main stem was significantly suppressed, and the figure of the grass was downsized. On the other hand, for the B section, on the contrary, the elongation of the main stem was greatly promoted. However, for the R group, the main stem length is the same regardless of the light intensity. In the case of the B group, the elongation is slightly promoted in the BH group, but the difference is small (see FIG. 5). ).

以上の結果をまとめると、赤色光は、光強度に関係なく、主茎の伸長を抑制し、草姿を小型化する効果があり、青色光は、光強度に関係なく、主茎の伸長を促進する効果があることがわかった。また、弱赤色光(70μmol m-2 s-1)のRL区では,実験1−1(光量子束密度100μmol・m-2・s-1)の場合と同様に花成が抑制され、一方、光強度を強めたRH区(光量子束密度150μmol・m-2・s-1)では、花成が促進され、着蕾数を増加させることがわかった。 Summarizing the above results, red light has the effect of suppressing the growth of the main stem regardless of the light intensity and miniaturizing the grass figure, and blue light has the effect of extending the main stem regardless of the light intensity. It turns out that there is an effect to promote. Further, in the RL Ward weak red light (70μmol m -2 s -1), flowering as in the Experiment 1-1 (photon flux density 100μmol · m -2 · s -1) is suppressed, whereas, In the RH section (light quantum flux density 150 μmol · m −2 · s −1 ) where the light intensity was increased, flowering was promoted and the number of arrivals was increased.

(4)実験1−4
W区(対照区)並びに,光強度H区とL区を設定したR区、B区について、25日間育苗した後に、自然光条件あるいは蛍光灯下の実験区(N区)に移動し、その後の生育反応を観察した。
(4) Experiment 1-4
About W ward (control ward) and R ward and B ward that set the light intensity H ward and L ward, after raising seedlings for 25 days, move to the natural light condition or the experimental ward under fluorescent lamp (N ward) The growth reaction was observed.

実験結果。ペチュニア苗をW区、RH区並びにRL区において25日間育苗し,その後自然光下あるいは蛍光灯下の実験区(N区)に移動させた場合、連続してRH区あるいはRL区で栽培した場合と比べて、それぞれの光源から自然光下に移動したところ,主茎長が増加する傾向にあった(図6参照)。しかし、全体としては、主茎がW区と比較して抑制される傾向が示された。   Experimental result. When petunia seedlings are grown in W, RH and RL for 25 days and then moved to the experimental zone (N zone) under natural light or fluorescent light, they are continuously cultivated in RH or RL zone In comparison, when moving from each light source under natural light, the main stem length tended to increase (see FIG. 6). However, as a whole, there was a tendency for the main stem to be suppressed as compared with the W section.

また、強赤色光のRH区(光量子束密度150μmol・m-2・s-1)からN区へ移動した場合では、自然光移動後すぐに開花した。この結果は、強赤色光の開花促進効果が、自然光下でも持続していることを示している。また、白色LED照射区であるW区からN区へ移動した場合は、自然光移動後15日経過後に開花した。弱赤色光のRL区(光量子束密度70mol・m-2・s-1)からN区へ移動した場合では、自然光移動後35日経過後開花した。このように、光質と光強度の相互作用によって花成が制御されたことが示された(図7参照)。 In addition, in the case of moving from the RH section of intense red light (photon flux density 150 μmol · m −2 · s −1 ) to the N section, it flowered immediately after natural light movement. This result shows that the flowering promotion effect of strong red light is sustained even under natural light. Moreover, when it moved from W ward which is white LED irradiation ward to N ward, it blossomed 15 days after natural light movement. In the case of moving from the RL section of weak red light (photon flux density 70 mol · m −2 · s −1 ) to the N section, the flower bloomed 35 days after natural light movement. Thus, it was shown that flowering was controlled by the interaction between light quality and light intensity (see FIG. 7).

(実施例2)
赤色光と青色光組み合わせた光照射によって,植物の開花と茎伸長を制御できることを検証する実験系である。
(Example 2)
It is an experimental system that verifies that flowering and stem elongation of plants can be controlled by light irradiation combined with red light and blue light.

(1)実験2−1
R区あるいはB区で栽培した植物体を、B区で着蕾確認後、B区からR区(B区→R区)、又はR区からB区(R区→B区)下への切り替えを行った。また、R区で栽培中の植物体に、W区での着蕾を目安として、着蕾時とその3週間後の2回、赤色光下で栽培したペチュニアの成長点付近に100ppmのGA(ジベレリン)を4ml散布し、その後の生育並びに花成を観察した。
(1) Experiment 2-1
After confirming arrival of plants grown in R ward or B ward in B ward, switch from B ward to R ward (B ward → R ward) or from R ward to B ward (R ward → B ward) Went. In addition, 100 ppm of GA (in the vicinity of the growth point of petunia cultivated under red light, twice at the time of arrival and three weeks after the arrival of the plant in the R district, with reference to the arrival in the W district. 4 ml of gibberellin) was sprayed, and the subsequent growth and flowering were observed.

実験結果。赤色光と青色光の照射を切り替えて栽培したところ、ペチュニアの花成に大きな変化が発生することがわかった(図8参照)。   Experimental result. When cultivated by switching the irradiation of red light and blue light, it was found that a large change occurred in petunia flowering (see FIG. 8).

また、弱赤色光のRL区では、主茎の伸長はほとんど確認されなかった一方で(図9参照)、B区で着蕾が確認できた実験開始後15日目に、赤色光下から青色光下に移動したR区→B区(赤色光区から青色光区への切り換えた場合)では、光質の切り換え後に主茎が急激に伸長して最終的にはB区の70%程度となり、着蕾数もB区と同程度となり花成が大きく促進されたことが示された(図9参照)。   In addition, in the RL section of weak red light, while the main stem was hardly elongated (see FIG. 9), on the 15th day after the start of the experiment in which the anchoring was confirmed in the B section, the blue light was seen from below the red light. In the R zone to B zone that moved under the light (when switching from the red light zone to the blue light zone), after switching the light quality, the main stem grows abruptly and finally becomes about 70% of the B zone. The number of arrivals was about the same as that of B-ku, indicating that flowering was greatly promoted (see FIG. 9).

これとは反対に、B区→R区(青色光区から赤色光区へ切り換え場合)では、主茎伸長は光質の切り換え後に抑制され、着蕾数も平均で4.5個とB区(青色光連続照射区)と比べて大きく抑制された。また、R区でGAを散布した場合(GA区)は、RL区(弱赤色光区)と比較して大きく主茎が伸長した(図9参照)。 On the other hand, in the B zone → R zone (when switching from the blue light zone to the red light zone), the main stem elongation is suppressed after switching the light quality, and the number of arrivals is 4.5 on average. It was greatly suppressed compared with (blue light continuous irradiation section). In addition, when GA 3 was sprayed in the R zone (GA zone), the main stem was greatly elongated compared to the RL zone (weak red light zone) (see FIG. 9).

(2)実験2-2
R区で2週間栽培した植物体をB区に移動し,1,2,3,5,7日間栽培した後に,再びR区に戻してその後の生育並びに花成を観察した。図10は、本実験2−2の栽培方法を示す図である。
(2) Experiment 2-2
Plants cultivated in R district for 2 weeks were moved to B district, cultivated for 1, 2, 3, 5, and 7 days, then returned to R district and observed for subsequent growth and flowering. FIG. 10 is a diagram illustrating the cultivation method of the experiment 2-2.

実験結果。赤色光下(R区)で栽培したペチュニアについて、青色光下(B区)で一定期間栽培した後、再び赤色光下(R区)に移動したところ、B区に5日以上移すことで着蕾に至ることが確認された(図11参照)。また、着蕾数は、青色光下で栽培した期間に比例して増加した(図11参照)。   Experimental result. About petunia cultivated under red light (R ward), after cultivating under blue light (B ward) for a certain period of time and then moving again under red light (R ward), it moved to B ward for more than 5 days. It was confirmed that it leads to hemorrhoids (see FIG. 11). Moreover, the number of arrival increased in proportion to the period grown under blue light (see FIG. 11).

以上の実験1(実験1-1〜1−4)、実験2(実験2-1、2-2)の結果をまとめると以下の通りである。   The results of Experiment 1 (Experiments 1-1 to 1-4) and Experiment 2 (Experiments 2-1 and 2-2) are summarized as follows.

実験1−1〜1−3の結果から、ペチュニアの花成は、光強度が70〜100μmol・m-2・s-1の場合、赤色光下では花芽分化の段階で完全に抑制され、同時に主茎の伸長が、赤色光下では強く抑制される一方、側枝の発達は旺盛である。 From the results of Experiments 1-1 to 1-3, when the light intensity is 70 to 100 μmol · m −2 · s −1 , petunia flower is completely suppressed at the stage of flower bud differentiation under red light, The extension of the main stem is strongly suppressed under red light, while the side branch is vigorously developed.

実験1-2〜1−3の結果から、赤色光でも,光強度を150μmol・m-2・s-1以上にした場合、花成を強く促進(誘導)することが可能であり、開花数が大きく増大する。一方、光強度を増大させても,赤色光による主茎伸長抑制効果は影響を受けない。また,赤色光下で育苗したペチュニアを自然光下に移動させた場合でも、花成と主茎伸長に対する光強度の影響は残存する。 From the results of Experiments 1-2 to 1-3, even with red light, when the light intensity is set to 150 μmol · m −2 · s −1 or more, flowering can be strongly promoted (induced), and the number of flowering Greatly increases. On the other hand, even if the light intensity is increased, the main stem elongation suppression effect by red light is not affected. Even when petunia grown under red light is moved under natural light, the effects of light intensity on flowering and main stem elongation remain.

実験2−1〜2−2の結果から、花成及び主茎伸長は赤色光あるいは青色光下に移動した時点から影響を受け、それらの光環境下に適応して草姿を変化させる。また、赤色光下で抑制されていた花成を青色光により誘導する場合、少なくとも5日以上青色光を照射することによりペチュニアの花芽分化を誘導することができる。また、赤色光から青色光に移動させた場合でも、5日間程度の青色光照射であれば、赤色光による主茎伸長抑制効果にはそれほど影響がないと考えられる。   From the results of Experiments 2-1 to 2-2, flowering and main stem elongation are affected from the time when they move under red light or blue light, and adapt to the light environment to change the appearance of the grass. In addition, when flowering that has been suppressed under red light is induced by blue light, petunia flower bud differentiation can be induced by irradiating blue light for at least 5 days. Further, even when the light is moved from the red light to the blue light, if the blue light irradiation is performed for about 5 days, it is considered that the main stem elongation suppressing effect by the red light is not so much affected.

加えて、ペチュニアについて、アラビドプシスのモデルを基に、青色光下では,赤色光経由の花芽抑制機構が弱まるか消滅する一方,クリプトクロムからのシグナルが花芽分化を著しく誘導する光質制御モデルを提示する。図12は、この光質制御モデルの概念を模式的に示す図である。   In addition, based on the Arabidopsis model, petunia presents a light quality control model in which the flower bud suppression mechanism via red light is weakened or disappears under blue light, while the signal from cryptochrome significantly induces flower bud differentiation. To do. FIG. 12 is a diagram schematically showing the concept of this light quality control model.

青色光単独照射下では、花成誘導に加えて、赤色光刺激によるフィトクロムを光レセプターとしたジベレリン生合成系に対する抑制も弱まった結果、ロゼットの打破並びに茎の伸長が促進される。この点に関しては、図2に示した通り、ジベレリン生合成に関連する一部遺伝子の発現が青色光下で増大することを証明した。   Under blue light alone irradiation, in addition to flower induction, suppression of gibberellin biosynthetic systems using phytochrome as a light receptor by red light stimulation is also weakened. As a result, rosette breakage and stem elongation are promoted. In this regard, as shown in FIG. 2, it was proved that the expression of some genes related to gibberellin biosynthesis increased under blue light.

反対に赤色光の単独照射の場合、青色光からの花芽誘導刺激がないことに加えて赤色光からの抑制信号が働き、花芽分化・開花が強く抑制される。一方で、赤色光下でも光強度を増大させた場合は花芽が誘導されることも確認できたので、赤色光下でも、光合成など光強度依存性からのシグナル経路で花成誘導が行われる可能性がある。   On the contrary, in the case of single irradiation of red light, in addition to no flower bud induction stimulation from blue light, a suppression signal from red light works, and flower bud differentiation / flowering is strongly suppressed. On the other hand, it was confirmed that flower buds are induced when the light intensity is increased even under red light, and therefore flower induction can be performed through signal pathways that depend on light intensity such as photosynthesis even under red light. There is sex.

本発明は、植物の草姿制御技術として利用できる。具体的には、主茎の伸長を抑制したままで、目的に応じて自由に、花芽分化や開花を促進又は抑制できる技術として利用できる。   The present invention can be used as a plant grass shape control technique. Specifically, it can be used as a technique capable of freely promoting or suppressing flower bud differentiation and flowering according to the purpose while suppressing the elongation of the main stem.

実験1−1の結果を示す表であって、赤色光並びに青色光の光質がペチュニアの生育に及ぼす影響を示す図(図面代用表)である。It is a table | surface which shows the result of Experiment 1-1, Comprising: It is a figure (drawing substitute table | surface) which shows the influence which the light quality of red light and blue light has on the growth of petunia. 実験1−1の結果を示すグラフであって、赤色光、青色光、それらを組み合わせた光がペチュニアのジベレリン20位酸化酵素遺伝子-1発現に及ぼす影響を示す図(図面代用グラフ)である。It is a graph which shows the result of Experiment 1-1, Comprising: It is a figure (drawing substitute graph) which shows the influence which red light, blue light, and the light which combined them have on the expression of petunia gibberellin 20-position oxidase gene-1. 実験1−2において、光処理開始後18日目のペチュニア主茎成長点の様子を示す走査型電子顕微鏡による観察写真である。In Experiment 1-2, it is an observation photograph with a scanning electron microscope which shows the mode of the petunia main stem growth point on the 18th day after light processing start. 実験1−3の結果を示す表であって、赤色光と青色光の光質や光強度がペチュニアの花成に及ぼす影響を示す図(図面代用表)である。It is a table | surface which shows the result of Experiment 1-3, Comprising: It is a figure (drawing substitute table | surface) which shows the influence which the light quality and light intensity | strength of red light and blue light have on petunia flowering. 実験1−3の結果を示すグラフであって、赤色光と青色光の各光強度がペチュニアの主茎伸長に及ぼす影響を示す図(図面代用グラフ)である。It is a graph which shows the result of Experiment 1-3, Comprising: It is a figure (drawing substitute graph) which shows the influence which each light intensity | strength of red light and blue light has on the main stem elongation of a petunia. 実験1−4の結果を示すグラフであって、異なる光強度条件の赤色光下で育苗したペチュニアを自然光下に移動させた後の主茎伸長の変化を示す図(図面代用グラフ)である。左グラフは、強赤色光条件、右グラフは弱赤色光条件の場合である。It is a graph which shows the result of Experiment 1-4, Comprising: It is a figure (drawing substitute graph) which shows the change of the main stem elongation after moving the petunia raised under red light of different light intensity conditions under natural light. The left graph is for the strong red light condition, and the right graph is for the weak red light condition. 実験1−4の結果を示すグラフであって、異なる光強度条件の赤色光下で育苗したペチュニアを自然光下に移動させた後の開花数の変化を示す図(図面代用グラフ)である。It is a graph which shows the result of Experiment 1-4, Comprising: It is a figure (drawing substitute graph) which shows the change of the number of flowering after moving the petunia planted under red light of different light intensity conditions under natural light. 実験2−1の結果を示す表であって、赤色光と青色光の照射期間がペチュニアの花成に及ぼす影響を示す図(図面代用表)である。It is a table | surface which shows the result of Experiment 2-1, Comprising: It is a figure (drawing substitute table | surface) which shows the influence which the irradiation period of red light and blue light has on the flowering of petunia. 実験2−1の結果を示すグラフであって、赤色光と青色光の照射期間がペチュニアの主茎長に及ぼす影響を示す図(図面代用グラフ)である。It is a graph which shows the result of Experiment 2-1, Comprising: It is a figure (drawing substitute graph) which shows the influence which the irradiation period of red light and blue light has on the main stem length of petunia. 実験2−2の栽培方法を示す図である。It is a figure which shows the cultivation method of Experiment 2-2. 実験2−2の結果を示す表であって、赤色光処理中に青色光下へ移動した日数の違いによる着蕾数への影響を示す図(図面代用表)である。It is a table | surface which shows the result of experiment 2-2, Comprising: It is a figure (drawing substitute table | surface) which shows the influence on the number of arrivals by the difference in the number of days which moved under blue light during red light processing. 本発明に係わる光質制御モデルの概念を模式的に示す図である。It is a figure which shows typically the concept of the light quality control model concerning this invention.

Claims (5)

光強度が調整された赤色光(R;600〜700nm)を植物に照射することによって、該植物の主茎伸長を抑制しながら花成を制御する植物栽培方法。   A plant cultivation method for controlling flowering by irradiating a plant with red light (R; 600 to 700 nm) with adjusted light intensity while suppressing elongation of a main stem of the plant. 光強度が150μmol・m-2・s-1以上の光量子束密度に調整された前記赤色光を用いて、前記植物の主茎伸長を抑制しながら花成を促進することを特徴とする請求項1記載の植物栽培方法。 The red light adjusted to a photon flux density of 150 μmol · m −2 · s −1 or higher in light intensity is used to promote flowering while suppressing elongation of the main stem of the plant. The plant cultivation method according to 1. 光強度が70〜100μmol・m-2・s-1の光量子束密度に設定された前記赤色光を用いて、前記植物の主茎伸長を抑制しながら、花成を抑制することを特徴とする請求項1記載の植物栽培方法。 Using the red light having a light intensity set to a photon flux density of 70 to 100 μmol · m −2 · s −1 , the flowering is suppressed while suppressing the main stem elongation of the plant. The plant cultivation method according to claim 1. 光強度が調整された赤色光(R;600〜700nm)を植物に照射することによって、該植物の主茎伸長を抑制しながら花成を制御した後に、青色光を前記植物に照射して主茎伸長と花成を促進させることを特徴とする植物栽培方法。   By irradiating the plant with red light (R; 600-700 nm) with adjusted light intensity, the plant growth is controlled while suppressing the elongation of the main stem of the plant, and then the plant is irradiated with blue light. A plant cultivation method characterized by promoting stem elongation and flowering. 青色光を植物に照射して主茎伸長と花成を促進させた後に、光強度が調整された赤色光(R;600〜700nm)を該植物に照射することによって、主茎伸長を抑制しながら花成を制御することを特徴とする植物栽培方法。   After irradiating the plant with blue light to promote main stem elongation and flowering, the plant is irradiated with red light (R; 600-700 nm) with adjusted light intensity to suppress main stem elongation. A plant cultivation method characterized by controlling flowering.
JP2006332381A 2006-12-08 2006-12-08 Plant cultivation method Active JP4759746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332381A JP4759746B2 (en) 2006-12-08 2006-12-08 Plant cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332381A JP4759746B2 (en) 2006-12-08 2006-12-08 Plant cultivation method

Publications (2)

Publication Number Publication Date
JP2008142005A true JP2008142005A (en) 2008-06-26
JP4759746B2 JP4759746B2 (en) 2011-08-31

Family

ID=39602886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332381A Active JP4759746B2 (en) 2006-12-08 2006-12-08 Plant cultivation method

Country Status (1)

Country Link
JP (1) JP4759746B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021952A1 (en) * 2011-08-05 2013-02-14 昭和電工株式会社 Plant cultivation method and plant cultivation equipment
WO2013131024A1 (en) * 2012-03-01 2013-09-06 Jenner Thomas Method and apparatus for selective photomorphogenesis in plants
JP2013198484A (en) * 2012-02-23 2013-10-03 Kobe Univ Cultivation method of plant
JP2013201903A (en) * 2012-03-27 2013-10-07 Showa Denko Kk Led lamp for plant cultivation
WO2014112189A1 (en) * 2013-01-15 2014-07-24 昭和電工株式会社 Method for cultivating fruit or vegetable
JP2014147372A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
JP2014147374A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
JP2014147373A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
JP2014147371A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
JP2014166178A (en) * 2013-02-04 2014-09-11 Showa Denko Kk Plant cultivation method, and plant cultivation system
JP2014166180A (en) * 2013-02-04 2014-09-11 Showa Denko Kk Plant cultivation method
JP2015119732A (en) * 2013-01-15 2015-07-02 昭和電工株式会社 Cultivation method of fruit vegetables
US9549507B2 (en) 2013-02-04 2017-01-24 Showa Denko K.K. Method for cultivating plant
RU2740103C1 (en) * 2020-07-20 2021-01-11 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Method for production of radish microgreens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322759A (en) * 1994-06-02 1995-12-12 Norin Suisansyo Yasai Chiyagiyou Shikenjo Treatment of plant for raising
JPH08228599A (en) * 1995-02-24 1996-09-10 Mitsubishi Chem Corp Illumination culture of short-day flowering plant
JPH0937648A (en) * 1995-07-28 1997-02-10 Mitsubishi Chem Corp Culture of plant by using light semiconductor as light source
JPH11196671A (en) * 1998-01-08 1999-07-27 Hamamatsu Photonics Kk Plant culturing method
JP2001258389A (en) * 2000-03-17 2001-09-25 Mitsubishi Chemicals Corp Method for cultivating plant
JP2004097082A (en) * 2002-09-09 2004-04-02 Stanley Electric Co Ltd Method for promoting flowering in flowering plant
JP2005192517A (en) * 2004-01-09 2005-07-21 Stanley Electric Co Ltd Method for growing plant
JP2005211052A (en) * 2004-02-02 2005-08-11 Yamato Kogyo Kk Method and device for inducing flower bud of plant of cruciferae

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322759A (en) * 1994-06-02 1995-12-12 Norin Suisansyo Yasai Chiyagiyou Shikenjo Treatment of plant for raising
JPH08228599A (en) * 1995-02-24 1996-09-10 Mitsubishi Chem Corp Illumination culture of short-day flowering plant
JPH0937648A (en) * 1995-07-28 1997-02-10 Mitsubishi Chem Corp Culture of plant by using light semiconductor as light source
JPH11196671A (en) * 1998-01-08 1999-07-27 Hamamatsu Photonics Kk Plant culturing method
JP2001258389A (en) * 2000-03-17 2001-09-25 Mitsubishi Chemicals Corp Method for cultivating plant
JP2004097082A (en) * 2002-09-09 2004-04-02 Stanley Electric Co Ltd Method for promoting flowering in flowering plant
JP2005192517A (en) * 2004-01-09 2005-07-21 Stanley Electric Co Ltd Method for growing plant
JP2005211052A (en) * 2004-02-02 2005-08-11 Yamato Kogyo Kk Method and device for inducing flower bud of plant of cruciferae

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693882B (en) * 2011-08-05 2020-05-21 日商昭和電工股份有限公司 Plant cultivation method of leafy vegetables, fruit trees or cereals and plant cultivation device of leafy vegetables, fruit trees or cereals
WO2013021676A1 (en) * 2011-08-05 2013-02-14 昭和電工株式会社 Plant cultivation method and plant cultivation equipment
CN103687478A (en) * 2011-08-05 2014-03-26 昭和电工株式会社 Plant cultivation method and plant cultivation equipment
CN103747670A (en) * 2011-08-05 2014-04-23 昭和电工株式会社 Algae cultivation method and algae cultivation equipment
JPWO2013021952A1 (en) * 2011-08-05 2015-03-05 昭和電工株式会社 Plant cultivation method and plant cultivation apparatus
WO2013021952A1 (en) * 2011-08-05 2013-02-14 昭和電工株式会社 Plant cultivation method and plant cultivation equipment
CN103747670B (en) * 2011-08-05 2016-03-09 昭和电工株式会社 Algaculture method and algatron
JPWO2013021675A1 (en) * 2011-08-05 2015-03-05 昭和電工株式会社 Algae culture method and algae culture apparatus
JP2013198484A (en) * 2012-02-23 2013-10-03 Kobe Univ Cultivation method of plant
WO2013131024A1 (en) * 2012-03-01 2013-09-06 Jenner Thomas Method and apparatus for selective photomorphogenesis in plants
US10117385B2 (en) 2012-03-01 2018-11-06 Thomas Jenner Method and apparatus for selective photomorphogenesis in plants
JP2013201903A (en) * 2012-03-27 2013-10-07 Showa Denko Kk Led lamp for plant cultivation
CN103355110A (en) * 2012-03-27 2013-10-23 昭和电工株式会社 LED lamp for plant cultivation
WO2014112189A1 (en) * 2013-01-15 2014-07-24 昭和電工株式会社 Method for cultivating fruit or vegetable
JP2014155436A (en) * 2013-01-15 2014-08-28 Showa Denko Kk Cultivation method of fruit vegetables
JP2015119732A (en) * 2013-01-15 2015-07-02 昭和電工株式会社 Cultivation method of fruit vegetables
JP2014166178A (en) * 2013-02-04 2014-09-11 Showa Denko Kk Plant cultivation method, and plant cultivation system
JP2014166180A (en) * 2013-02-04 2014-09-11 Showa Denko Kk Plant cultivation method
JP2014147371A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
US9241445B2 (en) 2013-02-04 2016-01-26 Showa Denko K.K. Method for cultivating plant
JP2014147373A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
US9326454B2 (en) 2013-02-04 2016-05-03 Showa Denko K.K. Method for cultivating plant
US9392751B2 (en) 2013-02-04 2016-07-19 Showa Denko K.K. Method for cultivating plant
US9549507B2 (en) 2013-02-04 2017-01-24 Showa Denko K.K. Method for cultivating plant
JP2014147374A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
US10172294B2 (en) 2013-02-04 2019-01-08 Showa Denko K.K. Method for cultivating plant
JP2014147372A (en) * 2013-02-04 2014-08-21 Showa Denko Kk Plant cultivation method
RU2740103C1 (en) * 2020-07-20 2021-01-11 Автономная некоммерческая организация «Институт социально-экономических стратегий и технологий развития» Method for production of radish microgreens

Also Published As

Publication number Publication date
JP4759746B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4759746B2 (en) Plant cultivation method
Higuchi et al. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering
JP6418697B2 (en) Plant cultivation method
Demotes-Mainard et al. Temporary water restriction or light intensity limitation promotes branching in rose bush
WO2011007868A1 (en) Fruit and vegetable cultivation method using illumination by green light, and green light illumination system
Dierck et al. Light quality regulates plant architecture in different genotypes of Chrysanthemum morifolium Ramat
Zhang et al. Regulating flowering and extension growth of poinsettia using red and far-red light-emitting diodes for end-of-day lighting
Chen et al. Far-red radiation increases flower and fruit abortion in sweet pepper (Capsicum annuum L.)
Fukuda Advanced light control technologies in protected horticulture: A review of morphological and physiological responses in plants to light quality and its application
Heide et al. Floral initiation in black currant cultivars (Ribes nigrum L.): Effects of plant size, photoperiod, temperature, and duration of short day exposure
Kumar et al. Studies on the effect of plant growth regulators on growth, flowering and yield of African marigold (Tagetes erecta L.) cv. Pusa Narangi Gainda
Wilkins Fuchsia× Hybrida: En. Fuchsia, Ladies' eardrops
Hamano et al. Promotion of flowering by photoperiod treatment in six strawberry (Fragaria× ananassa Duch.) cultivars with different everbearing patterns
Wang et al. GH3‐mediated auxin inactivation attenuates multiple stages of lateral root development
Cavins et al. Photoperiod, juvenility, and high intensity lighting affect flowering and cut stem qualities of Campanula and Lupinus
Casal et al. Impaired stem‐growth responses to blue‐light irradiance in light‐grown transgenic tobacco seedlings overexpressing Avena phytochrome A
JP2006158262A (en) Cultivation method for plant
Ahmad et al. Comparative evaluation of different pinching approaches on vegetative and reproductive growth of carnation (Dianthus caryophyllus)
Oh et al. Flowering and morphological responses of petunia and pansy as influenced by lamp type and lighting period to provide long days
Nishijima Use of plant growth regulators for floriculture in Japan
Katz et al. Promotion of Globularia sarcophylla flowering by Uniconazol, an inhibitor of gibberellin biosynthesis
Kim et al. Night interruption promotes flowering and improves flower quality in Doritaenopsis orchid
de Smedt et al. Influence of temperature and supplementary lighting on growth and flower initiation of Clivia miniata Regel
Vasudevan et al. Effect of bending and plant growth regulators on maximizing the yield and quality of rose (Rosa hybrida var. Tajmahal) under greenhouse conditions
Sumitomo et al. Variation in the effects of ethephon on flowering and extension growth in chrysanthemum as a function of temperature, season, and genetics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150