JP2008140748A - Manganese dry battery - Google Patents

Manganese dry battery Download PDF

Info

Publication number
JP2008140748A
JP2008140748A JP2006328663A JP2006328663A JP2008140748A JP 2008140748 A JP2008140748 A JP 2008140748A JP 2006328663 A JP2006328663 A JP 2006328663A JP 2006328663 A JP2006328663 A JP 2006328663A JP 2008140748 A JP2008140748 A JP 2008140748A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
dry battery
positive electrode
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006328663A
Other languages
Japanese (ja)
Inventor
Yasuo Mukai
保雄 向井
Hiroshi Hase
洋志 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006328663A priority Critical patent/JP2008140748A/en
Priority to PCT/JP2007/065536 priority patent/WO2008068929A1/en
Priority to CN200780003271A priority patent/CN100583518C/en
Publication of JP2008140748A publication Critical patent/JP2008140748A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/182Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells with a collector centrally disposed in the active mass, e.g. Leclanché cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/598Guarantee labels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M2006/5094Aspects relating to capacity ratio of electrolyte/electrodes or anode/cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manganese dry battery having high leakage resistance and high discharge capacity. <P>SOLUTION: An electric capacity ratio of zinc contained in an anode zinc can 3 of a manganese dry battery equipped with an outer package label 9 of heat-shrinkable resin, to manganese dioxide contained in a cathode mixed agent 6, is to be 2.24 or more and 4.00 or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マンガン乾電池に関し、さらに詳しくは負極亜鉛缶の外周面を覆う保護部材を備えたマンガン乾電池に関する。   The present invention relates to a manganese dry battery, and more particularly to a manganese dry battery including a protective member that covers an outer peripheral surface of a negative electrode zinc can.

従来より、マンガン乾電池には、発電要素を収納した負極亜鉛缶を密封して、その負極亜鉛缶の外周に熱収縮性樹脂製の外装ラベルを巻きつけるタイプがある。   2. Description of the Related Art Conventionally, manganese dry batteries include a type in which a negative electrode zinc can containing a power generation element is sealed and a heat-shrinkable resin exterior label is wound around the outer periphery of the negative electrode zinc can.

マンガン乾電池に用いられる負極亜鉛缶は、負極と容器の機能を兼ねている。このため、放電反応の進行に伴い、亜鉛が消費されて負極亜鉛缶の側面の厚さが薄くなり、さらには部分的に孔が開いてしまう場合がある。   The negative electrode zinc can used for a manganese dry battery has the function of a negative electrode and a container. For this reason, as the discharge reaction proceeds, zinc is consumed, the thickness of the side surface of the negative electrode zinc can becomes thin, and a hole may be partially opened.

熱収縮性樹脂製の外装ラベルを備えたマンガン乾電池の場合、負極亜鉛缶の開いた孔から漏れ出した電解液が、外装ラベルを侵して破損させたり、負極亜鉛缶と外装ラベルの間を伝わって電池の外部に漏出してしまったりする不具合が生じていた。   In the case of a manganese dry battery equipped with a heat-shrinkable resin exterior label, the electrolyte leaked from the open hole in the negative electrode zinc can damages the exterior label or travels between the negative electrode zinc can and the exterior label. In some cases, the battery leaks out of the battery.

これに対して従来から、負極亜鉛缶の外周に金属製容器を配設してから外装ラベルを巻きつける構成や、耐電解液性や耐衝撃性を有するように厚みが0.2〜1.5mmである、厚い外装ラベルを用いる構成が開示されている。(特許文献1および2参照)
特開平6−318451号公報 特開2006−19091号公報
In contrast, conventionally, a metal container is disposed on the outer periphery of the negative electrode zinc can, and then the outer label is wound, or the thickness is 0.2 to 1 so as to have electrolyte resistance and impact resistance. A configuration using a thick exterior label of 5 mm is disclosed. (See Patent Documents 1 and 2)
JP-A-6-318451 JP 2006-19091 A

しかしながら特許文献1および2に示されている従来の構成では、耐漏液特性を確保するために前述の金属製容器や厚い外装ラベルを用いる必要があった。このことは、例えばJISで外形寸法を定められたマンガン乾電池においては、金属製容器や厚い外装ラベルの分だけ外径が小さくなった負極亜鉛缶を用いることを余儀なくされ、放電容量の高容量化を図ることを阻害していた。   However, in the conventional configurations shown in Patent Documents 1 and 2, it is necessary to use the above-described metal container or thick exterior label in order to ensure the leakage resistance. This is because, for example, in manganese dry batteries whose outer dimensions are determined by JIS, it is necessary to use a negative electrode zinc can whose outer diameter is reduced by the amount of a metal container or a thick outer label, thereby increasing the discharge capacity. It was obstructing to plan.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、高い耐漏液性と高い放電容量とを兼ね備えたマンガン乾電池を提供することにある。   This invention is made | formed in view of this point, The place made into the objective is to provide the manganese dry battery which has high liquid-proof property and high discharge capacity.

本発明のマンガン乾電池は、有底円筒形の負極亜鉛缶と、前記負極亜鉛缶に収納され、二酸化マンガンと炭素粉末と電解液とを含む正極合剤と、前記負極亜鉛缶と前記正極合剤との間に配置されるセパレータと、前記負極亜鉛缶の外周面を覆う保護部材とを備え、前記負極亜鉛缶に含まれる亜鉛と前記正極合剤に含まれる二酸化マンガンとの電気容量比を2.24以上4.00以下とした構成にしている。   The manganese dry battery of the present invention includes a bottomed cylindrical negative electrode zinc can, a positive electrode mixture that is housed in the negative electrode zinc can and contains manganese dioxide, carbon powder, and an electrolyte, and the negative electrode zinc can and the positive electrode mixture. And a protective member that covers the outer peripheral surface of the negative electrode zinc can, and the electric capacity ratio of zinc contained in the negative electrode zinc can and manganese dioxide contained in the positive electrode mixture is 2 .24 to 4.00.

本発明のマンガン乾電池は、正極合剤に含まれる二酸化マンガンに対する負極亜鉛缶に含まれる亜鉛の電気容量比(以下、単に電気容量比)を2.24以上4.00以下として、電気容量において二酸化マンガンに対して充分な量の亜鉛を有しているので、放電反応の進行に伴い、亜鉛が消費されて負極亜鉛缶の側面の厚さが薄くなっても、部分的に孔が開くことはなく漏液に至りにくい。よって前述の金属製容器や厚い外装ラベルを使用する必要がないので、従来よりも大きな外径の負極亜鉛缶を用いることができ、高容量化を図ることができるという効果を奏するものである。   The manganese dry battery of the present invention has an electric capacity ratio of zinc contained in the negative electrode zinc can to manganese dioxide contained in the positive electrode mixture (hereinafter simply referred to as electric capacity ratio) of 2.24 or more and 4.00 or less. Since it has a sufficient amount of zinc with respect to manganese, as the discharge reaction proceeds, even if zinc is consumed and the thickness of the side surface of the negative electrode zinc can thins, it is possible that holes will partially open. Without leaking easily. Therefore, since it is not necessary to use the above-mentioned metal container or a thick exterior label, a negative electrode zinc can having a larger outer diameter than that of the conventional one can be used, and the capacity can be increased.

本発明の実施形態に係るマンガン乾電池は、正極合剤に含まれる二酸化マンガンに対する負極亜鉛缶に含まれる亜鉛の電気容量比を2.24以上4.00以下としている。この電気容量比は、理論容量から計算した比率のことである。   In the manganese dry battery according to the embodiment of the present invention, the electric capacity ratio of zinc contained in the negative electrode zinc can to manganese dioxide contained in the positive electrode mixture is set to 2.24 or more and 4.00 or less. This electric capacity ratio is a ratio calculated from the theoretical capacity.

電気容量比が2.24未満では、電池を使い切らないうちに漏液が起こり、4.00より大きな場合では負極の量が過剰なため、正極の充填量が少なくなってしまい、良好な放電容量が得られない。   When the electric capacity ratio is less than 2.24, leakage occurs before the battery is used up, and when it is larger than 4.00, the amount of the negative electrode is excessive, so the filling amount of the positive electrode is reduced, and a good discharge capacity is obtained. Cannot be obtained.

さらに好ましくは、電気容量比を2.40以上4.00以下とするとよい。このようにすると、電池を機器に装填して使用した後、万が一、スイッチを消し忘れて長期間の過放電状態にあっても、漏液するおそれはほとんどない。   More preferably, the capacitance ratio is 2.40 or more and 4.00 or less. In this way, there is almost no risk of leakage even if the battery is loaded into the device and used, and if the user forgets to turn off the switch and is in an overdischarge state for a long time.

また、炭素粉末に対する二酸化マンガンの重量比を4.0以上とすることが好ましい。このようにすることにより、正極合剤が硬くなり、薄い負極亜鉛缶を用いても電池の機械的強度を保つことができる。4.0未満であると、炭素粉末が相対的に多くなり正極合剤が軟らかくなって電池の機械的強度が低下してしまうおそれがある。   Further, the weight ratio of manganese dioxide to carbon powder is preferably 4.0 or more. By doing so, the positive electrode mixture becomes hard, and the mechanical strength of the battery can be maintained even if a thin negative electrode zinc can is used. If it is less than 4.0, the carbon powder is relatively increased, the positive electrode mixture becomes soft, and the mechanical strength of the battery may be lowered.

保護部材には、厚さを0.03mm以上0.15mm以下とした熱収縮性樹脂フィルムを用いてもよい。このようにすると、従来よりも大きな外径の負極亜鉛缶を用いることができ、高容量化を図ることができる。保護部材には印刷が施されて、印刷された保護部材は外装ラベルと呼ばれることが多いので、以後保護部材のことを外装ラベルという。   A heat-shrinkable resin film having a thickness of 0.03 mm or more and 0.15 mm or less may be used for the protective member. If it does in this way, the negative electrode zinc can of the outer diameter larger than before can be used, and high capacity | capacitance can be achieved. Since the protection member is printed and the printed protection member is often called an exterior label, the protection member is hereinafter referred to as an exterior label.

外装ラベルの厚さが0.03mm未満では、強度が不足して破損しやすく、0.15mmより厚い場合には、従来よりも実質的に大きな外径の負極亜鉛缶3を用いることができず、放電容量の顕著な増加が得られない。   When the thickness of the outer label is less than 0.03 mm, the strength is insufficient and the breakage easily occurs, and when it is thicker than 0.15 mm, the negative electrode zinc can 3 having a substantially larger outer diameter than conventional cannot be used. A significant increase in discharge capacity cannot be obtained.

以下、本発明の実施形態を図面に基づいて詳細に説明する。図1は、外装ラベル9を備えた実施形態に係る単3形マンガン乾電池R6の一部を断面とした正面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front view of a cross section of a part of an AA manganese dry battery R6 according to an embodiment including an exterior label 9.

有底円筒形の負極亜鉛缶3には、正極合剤6がセパレータ7を介して収納されている。負極亜鉛缶3は、円筒の2つの開口部のうち、一方のみが開口していて他方が底となる亜鉛板により閉じられている。負極亜鉛缶3の開口している側では、正極合剤6の上に鍔紙5が載せられ、その上側で封口体2が負極亜鉛缶3の開口部を閉じている。   A positive electrode mixture 6 is accommodated in a bottomed cylindrical negative electrode zinc can 3 via a separator 7. The negative electrode zinc can 3 is closed by a zinc plate in which only one of the two cylindrical openings is open and the other is the bottom. On the open side of the negative electrode zinc can 3, the paper 5 is placed on the positive electrode mixture 6, and the sealing body 2 closes the opening of the negative electrode zinc can 3 on the upper side.

正極合剤6には、活物質として二酸化マンガン、導電材としてアセチレンブラックなどの炭素粉末、および電解液として少量の塩化アンモニウムを添加した塩化亜鉛水溶液を混合したものが用いられる。   As the positive electrode mixture 6, a mixture of manganese dioxide as an active material, carbon powder such as acetylene black as a conductive material, and a zinc chloride aqueous solution to which a small amount of ammonium chloride is added as an electrolytic solution is used.

二酸化マンガンは、高い放電容量が得られる電解二酸化マンガンを用いることが好ましいが、本発明により、従来と比較して充分な放電性能が得られるため、製造コストを考慮して、安価な天然二酸化マンガンや化学マンガンを適宜使用しても構わない。   As manganese dioxide, it is preferable to use electrolytic manganese dioxide that can provide a high discharge capacity. However, according to the present invention, sufficient discharge performance can be obtained as compared with the conventional one. Or chemical manganese may be used as appropriate.

負極亜鉛缶3は、高い機械的強度と優れた耐食性を有するものが好ましく、鉛、マンガン、マグネシウム、インジウム等を添加した亜鉛合金から作製されていることが好ましい。   The negative electrode zinc can 3 preferably has high mechanical strength and excellent corrosion resistance, and is preferably made of a zinc alloy to which lead, manganese, magnesium, indium or the like is added.

セパレータ7には、クラフト紙の片面に架橋デンプンと酢酸ビニルを主とする結着剤とをアルコール系溶媒に溶かした糊材を塗布し乾燥させたものが用いられる。そして、その塗布面が負極亜鉛缶3に対向して接するようにセパレータ7が配されている。正極合剤6の中央部には、炭素粉末を焼結して得られた炭素棒4が挿入されている。正極合剤6の底部と負極亜鉛缶3の底部との間には、絶縁を確保するために底紙8が配置されている。つまり、負極亜鉛缶3の円筒部分の内周面を覆うようにセパレータ7が配置され、正極合剤6はセパレータ7と底紙8と鍔紙5とによって囲まれている。   As the separator 7, a kraft paper coated with a paste obtained by dissolving a crosslinked starch and a binder mainly composed of vinyl acetate in an alcohol solvent and dried is used. And the separator 7 is arranged so that the application surface may face and contact the negative electrode zinc can 3. A carbon rod 4 obtained by sintering carbon powder is inserted in the central portion of the positive electrode mixture 6. A bottom paper 8 is disposed between the bottom of the positive electrode mixture 6 and the bottom of the negative electrode zinc can 3 to ensure insulation. That is, the separator 7 is disposed so as to cover the inner peripheral surface of the cylindrical portion of the negative electrode zinc can 3, and the positive electrode mixture 6 is surrounded by the separator 7, the bottom paper 8, and the paper 5.

ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂やナイロンからなる封口体2は、負極亜鉛缶3の開口部を封口している。封口体2は、炭素棒4の頂部に嵌合させた正極端子板1の外周縁部と、負極亜鉛缶3の開口端部のかしめ部とにより締め付けられている。   A sealing body 2 made of polyolefin resin such as polyethylene or polypropylene or nylon seals the opening of the negative electrode zinc can 3. The sealing body 2 is fastened by the outer peripheral edge portion of the positive electrode terminal plate 1 fitted to the top of the carbon rod 4 and the caulking portion of the open end portion of the negative electrode zinc can 3.

負極亜鉛缶3の外周面には、外部との電気的絶縁を確保するために熱収縮性樹脂製の外装ラベル9を密着させている。この外装ラベル9は、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリエチレンテレフタレートからなる群より選ばれた少なくとも1種を含む熱収縮性樹脂フィルムからなる。そして、熱風で熱収縮性樹脂フィルム全体を熱収縮させることにより、負極亜鉛缶3を直接覆っている。外装ラベル9が乾電池の円筒部分の最外層になる。   A heat shrinkable resin exterior label 9 is adhered to the outer peripheral surface of the negative electrode zinc can 3 in order to ensure electrical insulation from the outside. The exterior label 9 is made of a heat-shrinkable resin film containing at least one selected from the group consisting of polyethylene, polyvinyl chloride, polystyrene, and polyethylene terephthalate. And the negative electrode zinc can 3 is directly covered by carrying out the heat shrink of the whole heat-shrinkable resin film with a hot air. The exterior label 9 becomes the outermost layer of the cylindrical portion of the dry battery.

また、前記熱収縮性樹脂フィルムは、予め端面を貼り合わせて筒状にしたものを用い、その中へ発電要素を収納して密封した負極亜鉛缶3を挿入し、熱風で筒状の熱収縮性樹脂フィルム全体を熱収縮させてもよい。   The heat-shrinkable resin film has a cylindrical shape with end faces bonded together, and a negative electrode zinc can 3 in which a power generation element is housed and sealed is inserted, and the heat-shrinkable resin film is cylindrically shrunk with hot air. The entire conductive resin film may be heat shrunk.

環境問題を考慮すると熱収縮性樹脂フィルムは、ポリスチレン、ポリエチレン、およびポリエチレンテレフタレートが好ましい。   In consideration of environmental problems, the heat-shrinkable resin film is preferably polystyrene, polyethylene, or polyethylene terephthalate.

本実施形態では、負極亜鉛缶3に含まれる亜鉛と正極合剤6に含まれる二酸化マンガンとの電気容量比を2.24以上4.00以下としている。   In the present embodiment, the electric capacity ratio between zinc contained in the negative electrode zinc can 3 and manganese dioxide contained in the positive electrode mixture 6 is set to 2.24 or more and 4.00 or less.

なお、電気容量比は次の方法で算出した。   The electric capacity ratio was calculated by the following method.

正極は、正極合剤6に含有される活物質の二酸化マンガンの重量に、その単位重量あたりの理論電気容量(0.308Ah/g)を乗じることによって得られる。例えば、9gの正極合剤6に、二酸化マンガンの純度が91%の電解二酸化マンガンが45%含有される場合は、以下の式で計算される。   The positive electrode is obtained by multiplying the weight of the active material manganese dioxide contained in the positive electrode mixture 6 by the theoretical electric capacity per unit weight (0.308 Ah / g). For example, when 9 g of the positive electrode mixture 6 contains 45% of electrolytic manganese dioxide whose purity of manganese dioxide is 91%, the following formula is used.

9×0.45×0.91×0.308=1.135(Ah)
負極は、正極合剤6に対峙する負極亜鉛缶3の側面(円筒部分)が活物質に相当し、負極亜鉛缶3の外径、側面の厚さ、及び正極合剤6の高さ(鍔紙5と底紙8との間)によって体積を算出し、亜鉛の密度(7.14g/立方センチメートル)を乗じて重量に換算してから、さらに負極亜鉛缶3の亜鉛の純度とその単位重量あたりの理論電気容量(0.820Ah/g)を乗じることによって得られる。例えば、外径φ13.64mm、側面の厚さ0.3mm、亜鉛の純度99.5%の負極亜鉛缶3に高さ38.5mmとなる正極合剤6が充填されている場合は、以下の式で計算される。
9 × 0.45 × 0.91 × 0.308 = 1.135 (Ah)
In the negative electrode, the side surface (cylindrical portion) of the negative electrode zinc can 3 facing the positive electrode mixture 6 corresponds to the active material, the outer diameter of the negative electrode zinc can 3, the thickness of the side surface, and the height of the positive electrode mixture 6 (鍔The volume is calculated according to the paper 5 and the bottom paper 8), multiplied by the zinc density (7.14 g / cubic centimeter) and converted to the weight, and then the zinc purity of the negative electrode zinc can 3 and its unit weight Is multiplied by the theoretical electric capacity of (0.820 Ah / g). For example, when the positive electrode mixture 6 having a height of 38.5 mm is filled in the negative electrode zinc can 3 having an outer diameter of 13.64 mm, a side thickness of 0.3 mm, and a zinc purity of 99.5%, Calculated by the formula.

(13.64/2×13.64/2−13.04/2×13.04/2)×3.14×38.5/1000×7.14×0.995×0.820=2.818(Ah)
よって、上記の例における電気容量比は、次式にて求められる。
(13.64 / 2 × 13.64 / 2-13.04 / 2 × 13.04 / 2) × 3.14 × 38.5 / 1000 × 7.14 × 0.995 × 0.820 = 2. 818 (Ah)
Therefore, the capacitance ratio in the above example is obtained by the following equation.

2.818/1.135=2.483   2.818 / 1.135 = 2.483

以下に本発明の実施例を実験例として詳細に説明するが、本発明は以下に示す実施例に限定されない。   Examples of the present invention will be described in detail below as experimental examples, but the present invention is not limited to the following examples.

<実験例1>
図1に示す本実施形態のマンガン乾電池において、負極亜鉛缶3の側面の厚さと、前記炭素粉末に対する二酸化マンガンの重量比を種々変えて、表1に示す値の電気容量比を有する実験番号No.1−15の合計15水準の電池を作製した。このとき、各電池のポリスチレンからなる熱収縮性樹脂フィルムの外装ラベル9の厚さを0.03mm、負極亜鉛缶3の外径をφ13.64とし、すべてに共通とした。
<Experimental example 1>
In the manganese dry battery of the present embodiment shown in FIG. 1, the experiment number No. having the electric capacity ratio of the values shown in Table 1 by varying the thickness of the side surface of the negative electrode zinc can 3 and the weight ratio of manganese dioxide to the carbon powder. . Batteries with a total of 15 levels of 1-15 were produced. At this time, the thickness of the heat-shrinkable resin film exterior label 9 made of polystyrene of each battery was 0.03 mm, the outer diameter of the negative electrode zinc can 3 was φ13.64, and was common to all.

本実験では、電気容量比において本実施形態の効果を明確にするために、電気容量を決定付ける大きな因子として、負極亜鉛缶3の側面の厚さ(=亜鉛の重量)と、正極合剤6の前記炭素粉末に対する二酸化マンガンの重量比とを種々変えて、2元的に実験を行ったものである。   In this experiment, in order to clarify the effect of the present embodiment in the electric capacity ratio, as a major factor that determines the electric capacity, the thickness of the side surface of the negative electrode zinc can 3 (= the weight of zinc) and the positive electrode mixture 6 The experiment was conducted in a binary manner by changing the weight ratio of manganese dioxide to the carbon powder.

二酸化マンガンには純度が91%の電解二酸化マンガンを、炭素粉末にはアセチレンブラックを用いた。   Electrolytic manganese dioxide having a purity of 91% was used for manganese dioxide, and acetylene black was used for carbon powder.

電解液には、塩化アンモニウムを2重量%と塩化亜鉛を30重量%とを含有する水溶液を用い、前記炭素粉末に対する二酸化マンガンの重量比に従って所定の量を混合し、正極合剤6の高さが38.5mmとなるように、セパレータ7と底紙8とを内面に密着させた負極亜鉛缶3の中に充填した。   As an electrolytic solution, an aqueous solution containing 2% by weight of ammonium chloride and 30% by weight of zinc chloride was used, and a predetermined amount was mixed according to the weight ratio of manganese dioxide to the carbon powder. Was filled in the negative electrode zinc can 3 in which the separator 7 and the bottom paper 8 were in close contact with the inner surface.

なお、負極亜鉛缶3は、鉛を0.4%含有する亜鉛合金であって、亜鉛の純度が99.5%のものを用いて公知の方法で製缶して用いた。   The negative electrode zinc can 3 was a zinc alloy containing 0.4% lead, and the can was made by a known method using a zinc alloy having a purity of 99.5%.

次に、これらで得られた電池の評価について説明する。   Next, evaluation of the battery obtained with these will be described.

(評価1)懐中電灯による実装漏液試験
上記で得た各実験番号の電池をそれぞれ10個ずつ、市販の懐中電灯(松下電器製BF−187、単3形乾電池2本使い)5台に装填し、1日あたり30分点灯させ毎日繰り返し、それぞれの懐中電灯が点灯できなくなった時点で、各電池を懐中電灯から取り出して漏液の有無を確認し、漏液した電池の個数を記録した。なお、漏液とは電解液が電池の外部に洩れ出ている現象のことである。
(Evaluation 1) Mounting Leakage Test Using Flashlight Load 10 batteries of each experiment number obtained above into 5 commercially available flashlights (using BF-187 made by Matsushita Electric, 2 AA batteries) Then, it was turned on for 30 minutes per day and repeated every day. When each flashlight could not be turned on, each battery was taken out from the flashlight to check for leakage, and the number of leaked batteries was recorded. The leakage is a phenomenon in which the electrolyte leaks out of the battery.

(評価2)懐中電灯による実装過放電漏液試験
上記で得た各実験番号の電池をそれぞれ10個ずつ、市販の懐中電灯(松下電器製BF−187、単3形乾電池2本使い)5台に装填し、点灯させて明かりがつかなくなってもスイッチを切らずに1ヶ月放置して、その後に各電池を取り出して漏液の有無を確認し、漏液した電池の個数を記録した。
(Evaluation 2) Mounting Over-Discharge Leakage Test Using Flashlights 10 batteries of each experimental number obtained above, 5 commercially available flashlights (using Matsushita Electric BF-187, 2 AA batteries) The battery was left on for 1 month without turning off the light even if it could not be lit. After that, each battery was taken out and checked for leakage, and the number of leaked batteries was recorded.

(評価3)放電試験
上記で得た各電池を、3.9Ωの負荷で放電した。このときの終止電圧0.9Vまでに達する時間を測定した。
(Evaluation 3) Discharge test Each battery obtained above was discharged with a load of 3.9Ω. The time required to reach a final voltage of 0.9 V at this time was measured.

これらの結果を表1に示す。   These results are shown in Table 1.

Figure 2008140748
Figure 2008140748

評価1の懐中電灯による実装漏液試験においては、No.1、2、6−8、および11−15の電池は、電気容量比が2.24以上で、正極電気容量に対して負極電気容量が充分なために、いずれのNo.の電池も10個すべてが漏液しなかった。一方、電気容量比が2.24未満の実験番号では、10個中1個以上の電池が漏液していた。   In the mounting leak test using the flashlight of evaluation 1, No. The batteries Nos. 1, 2, 6-8, and 11-15 have an electric capacity ratio of 2.24 or more, and the negative electrode electric capacity is sufficient with respect to the positive electrode electric capacity. None of the 10 batteries leaked. On the other hand, in the experiment number having an electric capacity ratio of less than 2.24, one or more batteries out of 10 leaked.

評価2の懐中電灯による実装過放電漏液試験は過酷な条件での試験であるので、電気容量比が2.40以上であるNo.1、6−8、および11−14の電池は、正極電気容量に対して負極電気容量がさらに充分なために漏液に至らなかったが、評価1で漏液が生じなかったNo.2、15では、10個中1個が漏液していた。なお、No.2、15の電池の電気容量比は、2.24以上であるが2.40未満である。   Since the mounting overdischarge leakage test using the flashlight of evaluation 2 is a test under severe conditions, No. 2 having an electric capacity ratio of 2.40 or more. The batteries Nos. 1, 6-8, and 11-14 did not leak because the negative electrode capacity was more sufficient than the positive electrode capacity. In 2 and 15, 1 out of 10 leaked. In addition, No. The electric capacity ratio of the batteries Nos. 2 and 15 is 2.24 or more but less than 2.40.

評価3の放電試験においては、放電の持続時間が85分以上であれば放電持続性能が優れていると評価できる。No.1−15の電池全てが、85分よりも長い持続時間であるが、特に11の電池のように電気容量比が4.0に近づくと耐漏液特性と放電特性とのバランスがとりにくくなり、過度の負極電気容量が正極電気容量の不足を招き、高容量化の実質的な効果を得られにくいことから、電気容量比は4.0以下であることが好ましい。   In the discharge test of Evaluation 3, it can be evaluated that the discharge sustainability is excellent if the discharge duration is 85 minutes or more. No. All the batteries of 1-15 have a duration longer than 85 minutes, but especially when the electric capacity ratio approaches 4.0 as in the case of 11 batteries, it becomes difficult to balance the leakage resistance characteristics and the discharge characteristics, Since an excessive negative electrode capacity causes a shortage of the positive electrode capacity and it is difficult to obtain a substantial effect of increasing the capacity, the electric capacity ratio is preferably 4.0 or less.

以上の評価において、評価1の条件では10個の電池すべてが漏液しないことが実用上要求される。けれども評価2の条件は厳しい条件であるので、10個中2個までならば漏液していても実用上は問題ない。ただし、評価2の条件でも10個の電池すべてが漏液しないことが好ましいので、電気容量比は2.40以上であることが好ましい。   In the above evaluation, it is practically required that all 10 batteries do not leak under the conditions of evaluation 1. However, since the condition of evaluation 2 is a severe condition, there is no practical problem even if the liquid leaks up to 2 out of 10. However, since it is preferable that all 10 batteries do not leak even under the condition of Evaluation 2, the electric capacity ratio is preferably 2.40 or more.

また、電気容量比が4.0を越えると製造工程において加工がしにくく、また構成部材の中で最も高価である負極亜鉛缶3の亜鉛の量も多くする必要があるため、コストが増大し好ましくない。   Further, if the capacitance ratio exceeds 4.0, it is difficult to process in the manufacturing process, and it is necessary to increase the amount of zinc in the negative electrode zinc can 3 which is the most expensive among the constituent members. It is not preferable.

<実験例2>
実験例1と同じ材料を用いて、ポリスチレンからなる熱収縮性樹脂フィルムの外装ラベル9の厚さと、負極亜鉛缶3の外径、および電気容量比とを表2に示す値に種々に変えて、図1に示す乾電池と同様のNo.16−27のマンガン乾電池を作製した。No.16−27では、電池の外径を共通のφ13.7とした。
<Experimental example 2>
Using the same material as in Experimental Example 1, the thickness of the heat-shrinkable resin film exterior label 9 made of polystyrene, the outer diameter of the negative electrode zinc can 3, and the electric capacity ratio were variously changed to the values shown in Table 2. No. similar to that of the dry battery shown in FIG. A 16-27 manganese dry battery was prepared. No. In 16-27, the outer diameter of the batteries was set to a common φ13.7.

実験例2では、負極の電気容量をほぼ一定に保つために、負極亜鉛缶3の厚さを一定とし外径のみを変えた。電気容量比の変動は、主に正極合剤6の前記炭素粉末に対する二酸化マンガンの重量比によるものと捉えることができる。   In Experimental Example 2, in order to keep the electric capacity of the negative electrode substantially constant, the thickness of the negative electrode zinc can 3 was made constant and only the outer diameter was changed. The fluctuation of the electric capacity ratio can be considered to be mainly due to the weight ratio of manganese dioxide to the carbon powder of the positive electrode mixture 6.

これらの結果を、前記実験例1のNo.6−10の電池を比較のため、一緒に表2に示した。   These results are shown in No. 1 of Experimental Example 1. 6-10 cells are shown together in Table 2 for comparison.

Figure 2008140748
Figure 2008140748

評価1の懐中電灯による実装漏液試験において、No.9、10、20、および25の電池では電気容量比が2.24未満であり、正極電気容量に対して負極電気容量が不十分なために、点灯終了までに負極亜鉛缶3に孔が開いて漏液した電池がみられた。しかし、電気容量比が2.24以上の電池は、漏液しなかった。   In the mounting leak test using the flashlight of evaluation 1, No. The batteries of 9, 10, 20, and 25 have an electric capacity ratio of less than 2.24, and the negative electrode electric capacity is insufficient with respect to the positive electrode electric capacity. A leaked battery was found. However, batteries having an electric capacity ratio of 2.24 or more did not leak.

評価2の懐中電灯による実装過放電漏液試験において、電気容量比が2.40未満であるNo.9、10、19、20、24、および25の電池では、正極電気容量に対して負極電気容量が不十分なために、過放電状態で負極亜鉛缶3に孔が開いて漏液した電池がみられた。しかしながら、上述のとおり評価2の条件は過酷な条件であるので、実用上は、10個中2個までの漏液は許容できるので、No.19,24は許容レベルと判断される。   In the mounting overdischarge leakage test using the flashlight of evaluation 2, the electrical capacity ratio is less than 2.40. In the batteries of 9, 10, 19, 20, 24, and 25, since the negative electrode capacity was insufficient with respect to the positive electrode capacity, there was a battery that leaked due to an opening in the negative electrode zinc can 3 in an overdischarged state. It was seen. However, as described above, the condition of evaluation 2 is a severe condition, so that practically no leakage of 2 liquids out of 10 is acceptable. 19 and 24 are determined to be acceptable levels.

また、評価3の放電試験においては、外装ラベル9の厚さが0.03mmから0.15mmの熱収縮性樹脂フィルムを用いたNo.6−10、および16−25の電池では、従来よりも大きな外径の負極亜鉛缶3を用いることができ、全て放電持続性能が優れていると評価できる。   In the discharge test of Evaluation 3, No. 1 using a heat-shrinkable resin film having a thickness of the outer packaging label 9 of 0.03 mm to 0.15 mm. In the batteries of 6-10 and 16-25, the negative electrode zinc can 3 having an outer diameter larger than that of the conventional one can be used, and it can be evaluated that all the discharge sustainability is excellent.

しかしながら、外装ラベル9の厚さが0.20mmの熱収縮性樹脂フィルムを用いたNo.26、および27の電池では、放電の持続時間が85分以下であり放電持続性能が優れているとは言えなかった。   However, No. 1 using a heat-shrinkable resin film having a thickness of the outer label 9 of 0.20 mm. In the batteries of 26 and 27, the discharge duration was 85 minutes or less, and it could not be said that the discharge sustainability was excellent.

また実験の結果は示していないが、外装ラベル9の厚さが0.03mm未満では、機械的強度が不足して破損しやすく実用的ではない。   Although the result of the experiment is not shown, if the thickness of the exterior label 9 is less than 0.03 mm, the mechanical strength is insufficient, and it is easily damaged and is not practical.

<実験例3>
負極亜鉛缶3の側面の厚さを薄くしていくと負極亜鉛缶3の機械的強度が低下してしまうが、負極亜鉛缶3に収納する正極合剤6の硬さで機械的強度の低下を補うことができると考えられるので、正極合剤6中の炭素粉末と二酸化マンガンとの重量比が乾電池の耐衝撃性に与える影響を実験例1のNo.6−10の電池を用いて調べた。調べ方は、電池側面を下にして1mの高さから落下させ、その後外装ラベル9を取り除いて負極亜鉛缶3の打痕の有無を目視により確認する方法を採用した。
<Experimental example 3>
When the thickness of the side surface of the negative electrode zinc can 3 is reduced, the mechanical strength of the negative electrode zinc can 3 decreases, but the mechanical strength decreases due to the hardness of the positive electrode mixture 6 housed in the negative electrode zinc can 3. Therefore, the effect of the weight ratio of the carbon powder and manganese dioxide in the positive electrode mixture 6 on the impact resistance of the dry battery was evaluated as No. 1 in Experimental Example 1. It investigated using the battery of 6-10. As a method for checking, a method was adopted in which the battery side was dropped from a height of 1 m, the exterior label 9 was then removed, and the negative electrode zinc can 3 was visually checked for dents.

No.6−10の電池をそれぞれ5個ずつ上記のように落下させたところ、No.6は打痕の発生率が20%であったが、No.7−10は0%であった。   No. When 5 batteries of 6-10 were dropped as described above, no. In No. 6, the incidence of dents was 20%. 7-10 was 0%.

この結果は、電池の機械的強度が正極合剤6を構成する硬い二酸化マンガンとアセチレンブラックのような柔らかい炭素粉末との配合比に依存するためである。硬い二酸化マンガンの量を相対的に多くして、炭素粉末に対する二酸化マンガンの重量比を4.0以上とすることで耐衝撃性が高い乾電池とすることができる。なお、打痕の発生率が20%程度でも実用上は十分な機械的強度を有していると考えられる。また、外装ラベル9や負極亜鉛缶3の側面が厚ければ耐衝撃性は向上する。   This result is because the mechanical strength of the battery depends on the mixing ratio of hard manganese dioxide constituting the positive electrode mixture 6 and soft carbon powder such as acetylene black. By making the amount of hard manganese dioxide relatively large so that the weight ratio of manganese dioxide to carbon powder is 4.0 or more, a dry battery having high impact resistance can be obtained. In addition, even if the incidence rate of dents is about 20%, it is considered that the mechanical strength is practically sufficient. Moreover, if the side surface of the exterior label 9 or the negative electrode zinc can 3 is thick, the impact resistance is improved.

以上のように本発明のマンガン乾電池は耐漏液特性と高い放電容量を有するため、懐中電灯や携帯用の電子機器等の電源に適用することができる。   As described above, the manganese dry battery of the present invention has a liquid leakage resistance and a high discharge capacity, and thus can be applied to a power source of a flashlight, a portable electronic device, or the like.

本発明の実施形態に係るマンガン乾電池R6の一部を断面にした図である。It is the figure which made a part of manganese dry battery R6 concerning the embodiment of the present invention a section.

符号の説明Explanation of symbols

1 正極端子板
2 封口体
3 負極亜鉛缶
4 炭素棒
5 鍔紙
6 正極合剤
7 セパレータ
8 底紙
9 外装ラベル
DESCRIPTION OF SYMBOLS 1 Positive electrode terminal board 2 Sealing body 3 Negative electrode zinc can 4 Carbon rod 5 Paper 6 Positive electrode mixture 7 Separator 8 Bottom paper 9 Exterior label

Claims (5)

有底円筒形の負極亜鉛缶と、
前記負極亜鉛缶に収納され、二酸化マンガンと炭素粉末と電解液とを含む正極合剤と、
前記負極亜鉛缶と前記正極合剤との間に配置されるセパレータと、
前記負極亜鉛缶の外周面を覆う保護部材と
を備え、
前記負極亜鉛缶に含まれる亜鉛と前記正極合剤に含まれる二酸化マンガンとの電気容量比を2.24以上4.00以下としたことを特徴とするマンガン乾電池。
A bottomed cylindrical negative electrode zinc can,
Housed in the negative electrode zinc can, a positive electrode mixture containing manganese dioxide, carbon powder and an electrolyte solution;
A separator disposed between the negative electrode zinc can and the positive electrode mixture;
A protective member covering the outer peripheral surface of the negative electrode zinc can,
A manganese dry battery, wherein an electric capacity ratio of zinc contained in the negative electrode zinc can and manganese dioxide contained in the positive electrode mixture is set to 2.24 or more and 4.00 or less.
前記電気容量比を2.40以上4.00以下としたことを特徴とする請求項1記載のマンガン乾電池。   2. The manganese dry battery according to claim 1, wherein the electric capacity ratio is set to 2.40 or more and 4.00 or less. 前記炭素粉末に対する前記二酸化マンガンの重量比を4.0以上としたことを特徴とする請求項1記載のマンガン乾電池。   The manganese dry battery according to claim 1, wherein a weight ratio of the manganese dioxide to the carbon powder is 4.0 or more. 前記保護部材は、0.03mm以上0.15mm以下の厚さの熱収縮性樹脂フィルムであることを特徴とする請求項1から3のいずれか一つに記載のマンガン乾電池。   The manganese dry battery according to any one of claims 1 to 3, wherein the protective member is a heat-shrinkable resin film having a thickness of 0.03 mm or more and 0.15 mm or less. 前記保護部材は、最外層に配置されており、前記負極亜鉛缶の外周面を直接覆っていることを特徴とする請求項1から4のいずれか一つに記載のマンガン乾電池。   5. The manganese dry battery according to claim 1, wherein the protective member is disposed in an outermost layer and directly covers an outer peripheral surface of the negative electrode zinc can. 6.
JP2006328663A 2006-12-05 2006-12-05 Manganese dry battery Withdrawn JP2008140748A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006328663A JP2008140748A (en) 2006-12-05 2006-12-05 Manganese dry battery
PCT/JP2007/065536 WO2008068929A1 (en) 2006-12-05 2007-08-08 Manganese dry cell
CN200780003271A CN100583518C (en) 2006-12-05 2007-08-08 Magnesium dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328663A JP2008140748A (en) 2006-12-05 2006-12-05 Manganese dry battery

Publications (1)

Publication Number Publication Date
JP2008140748A true JP2008140748A (en) 2008-06-19

Family

ID=39491841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328663A Withdrawn JP2008140748A (en) 2006-12-05 2006-12-05 Manganese dry battery

Country Status (3)

Country Link
JP (1) JP2008140748A (en)
CN (1) CN100583518C (en)
WO (1) WO2008068929A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864224B (en) * 2019-11-26 2021-10-15 宁波丰银电池有限公司 Zinc-manganese dry battery manufacturing process
CN111933827A (en) * 2020-06-05 2020-11-13 松栢投资有限公司 Battery and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244651A (en) * 1988-08-01 1990-02-14 Fuji Elelctrochem Co Ltd Manufacture of spiral type battery
JPH02162652A (en) * 1988-12-15 1990-06-22 Fuji Elelctrochem Co Ltd Manufacture of layer built battery
JP2814655B2 (en) * 1990-02-22 1998-10-27 松下電器産業株式会社 Battery with spiral electrodes
JPH0511313U (en) * 1991-07-26 1993-02-12 富士電気化学株式会社 Manganese battery
JP2001006635A (en) * 1999-06-16 2001-01-12 Matsushita Electric Ind Co Ltd Manganese dry cell
JP2001351639A (en) * 2000-04-03 2001-12-21 Matsushita Electric Ind Co Ltd Manganese dry battery and its manufacturing method
JP2004063252A (en) * 2002-07-29 2004-02-26 Matsushita Electric Ind Co Ltd Manganese dry battery
JP5091408B2 (en) * 2003-11-07 2012-12-05 東芝ホームアプライアンス株式会社 Negative electrode active material for battery, negative electrode can for battery, negative electrode zinc plate for battery, manganese dry battery, and manufacturing method thereof

Also Published As

Publication number Publication date
CN101375440A (en) 2009-02-25
WO2008068929A1 (en) 2008-06-12
CN100583518C (en) 2010-01-20

Similar Documents

Publication Publication Date Title
CN101501887B (en) Vent closure with rupturable membrane for a battery
JP5504250B2 (en) Enclosure for sealed electrochemical cell
US9034498B2 (en) Secondary battery
US20060204839A1 (en) Wafer alkaline cell
US20050214648A1 (en) Wafer alkaline cell
US20030082445A1 (en) Battery pouch
WO2004025757A3 (en) High-capacity nanostructured silicon and lithium alloys thereof
US5079108A (en) Dry cell seal closure
KR20060112731A (en) Secondary battery
JP2008311218A (en) Size aa battery
CN100373661C (en) Lithium ion secondary battery
JP2008140748A (en) Manganese dry battery
JPH08138635A (en) Cylindrical manganese dry battery
CN1270707A (en) End cover for battery cells
EP3598547B1 (en) Water-activated power generating device
KR20180069254A (en) Tray Having Stopper for Accommodating Battery Cell
EP1039563B1 (en) A method for treating contact leads on electrochemical cells so as to achieve improved hermeticity and hermetically sealed electrochemical cells derived therefrom.
KR100561293B1 (en) Secondary Battery
JP2000306559A (en) Pack battery
KR200214033Y1 (en) Pouch Material Having Heat-Contracting Resin Layer
JPH10189064A (en) Cylindrical air cell
JP2825921B2 (en) Manganese dry cell
KR100373729B1 (en) Lithium secondary battery
JP2008130421A (en) Manganese dry battery
JP2587244Y2 (en) Manganese dry cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110520