JP2008140559A - Translucent conductive paint and translucent conductive membrane - Google Patents

Translucent conductive paint and translucent conductive membrane Download PDF

Info

Publication number
JP2008140559A
JP2008140559A JP2006322815A JP2006322815A JP2008140559A JP 2008140559 A JP2008140559 A JP 2008140559A JP 2006322815 A JP2006322815 A JP 2006322815A JP 2006322815 A JP2006322815 A JP 2006322815A JP 2008140559 A JP2008140559 A JP 2008140559A
Authority
JP
Japan
Prior art keywords
powder
oxide
needle
translucent conductive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006322815A
Other languages
Japanese (ja)
Inventor
Kenji Kato
賢二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006322815A priority Critical patent/JP2008140559A/en
Publication of JP2008140559A publication Critical patent/JP2008140559A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a translucent conductive paint capable of forming a translucent conductive membrane superior in translucency and conductivity, and the translucent conductive membrane superior in translucency and conductivity formed by using this translucent conductive paint. <P>SOLUTION: The translucent conductive paint contains two kinds of conductive oxide needle-like powders A and B composed of indium oxide doped by metal oxide. As for the powder A, the specific surface area is 4 to 20 m<SP>2</SP>/g, and powder colors in an L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color system L<SP>*</SP>=82 to 91, a<SP>*</SP>=-8 to 2, and b<SP>*</SP>=0 to 10. As for the powder B, the specific surface area is less than 4 m<SP>2</SP>/g, and the powder colors are L<SP>*</SP>=82 to 91, a<SP>*</SP>=-8 to 2, b<SP>*</SP>=15 to 20. Moreover, the weight ratio of the powder A and the powder B is A:B=35:65 to 20:80. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば分散型エレクトロルミネッセンス素子(分散型EL素子)の透明電極等の形成に適用される透光性導電塗料に係り、特に、透光性と導電性に優れ、しかも膜の着色が防止される透光性導電塗料と透光性導電膜に関するものである。   The present invention relates to a translucent conductive coating applied to, for example, the formation of a transparent electrode of a dispersive electroluminescent element (dispersed EL element), and in particular, has excellent translucency and conductivity, and the film is colored. The present invention relates to a translucent conductive paint to be prevented and a translucent conductive film.

EL素子の透明電極等に適用される透光性導電膜は、バインダーを含む溶剤中に導電フィラーが分散された透光性導電塗料を塗布することにより形成される。そして、透光性導電塗料の導電フィラーとしては、従来から、インジウム−錫酸化物(以下、ITOと称することがある)、錫−アンチモン酸化物(以下、ATOと称することがある)等の酸化物系フィラーが用いられており、中でもITOはATOに比べて抵抗値が低いために最も優れている。   A translucent conductive film applied to a transparent electrode or the like of an EL element is formed by applying a translucent conductive paint in which a conductive filler is dispersed in a solvent containing a binder. Conventionally, as the conductive filler of the translucent conductive paint, oxidation of indium-tin oxide (hereinafter sometimes referred to as ITO), tin-antimony oxide (hereinafter sometimes referred to as ATO), etc. Physical fillers are used, and ITO is the most excellent because of its lower resistance than ATO.

上記透光性導電塗料において、導電フィラーの含有量は少ないほど好ましい。その理由は、塗料成分の一つである透明樹脂(バインダー)に比べ、導電フィラーである酸化物の光吸収が遥かに大きいからである。従って、低抵抗値の導電膜が得られる限り、透明樹脂に対して出来るだけ少量の酸化物フィラーを用いることで、その導電膜の光線透過率を向上させることができる。このような理由から、球状や粒状の導電フィラーに比べて、針状又はりん片状の導電フィラーの方が、少量の添加で低抵抗値の膜が得られるため、コスト面、膜強度、耐候性等の面で優れている。   In the translucent conductive paint, the smaller the content of the conductive filler, the better. The reason is that the light absorption of the oxide as the conductive filler is far greater than that of the transparent resin (binder) which is one of the paint components. Therefore, as long as a conductive film having a low resistance value is obtained, the light transmittance of the conductive film can be improved by using as little oxide filler as possible with respect to the transparent resin. For these reasons, compared to spherical or granular conductive fillers, needle-shaped or flake-shaped conductive fillers can provide a low-resistance film with a small amount of addition, so that cost, film strength, and weather resistance are improved. Excellent in terms of properties.

上記りん片状の酸化物粉末を得る方法としては、無機酸化物、含水無機酸化物等のコロイド溶液を凍結し、コロイド溶液の溶媒の結晶面と結晶面の間隙に無機酸化物粒子や含水酸化物粒子を析出させた後、乾燥して脱溶媒し、含水酸化物の場合は更に焙焼して製造する方法(特許文献1:特開昭62−3003号公報)が知られている。   As a method for obtaining the above oxide powder in the form of flakes, a colloidal solution such as an inorganic oxide or a hydrous inorganic oxide is frozen, and an inorganic oxide particle or a hydrous hydroxide is placed between the crystal planes of the solvent of the colloidal solution. A method is known in which product particles are precipitated, dried to remove the solvent, and in the case of a hydrated oxide, it is further roasted and manufactured (Patent Document 1: Japanese Patent Application Laid-Open No. Sho 62-3003).

また、上記針状の酸化物粉末を得る方法としては、針状の蓚酸錫を加熱分解して針状錫酸化物を得る方法(特許文献2:特開昭56−120519号公報)、硝酸インジウムの高温加熱濃縮スラリーから回収される白色針状インジウム化合物粉末を加熱分解して針状のインジウム−錫酸化物粉末を得る方法(特許文献3:特開平6−293515号公報)等が提案されている。   The acicular oxide powder can be obtained by thermally decomposing acicular tin oxalate to obtain acicular tin oxide (Patent Document 2: Japanese Patent Laid-Open No. 56-120519), indium nitrate. Proposed is a method of thermally decomposing white acicular indium compound powder recovered from a high-temperature heat-concentrated slurry of the present invention to obtain acicular indium-tin oxide powder (Patent Document 3: JP-A-6-293515). Yes.

特に上記特許文献3の方法で得られるインジウム−錫酸化物(ITO)針状粉末は、透光性導電膜として優れた導電性と透明性を実現できるため最も好ましいと考えられる。尚、上記特許文献3記載の方法で得られたインジウム−錫酸化物(ITO)針状粉末については、これを導電フィラーとして適用した透光性導電塗料(導電ペースト)と透光性導電膜も既に提案されている(特許文献4:特開平6−309922号公報)。   In particular, the indium-tin oxide (ITO) needle-like powder obtained by the method of Patent Document 3 is considered to be most preferable because it can realize excellent conductivity and transparency as a translucent conductive film. As for the indium-tin oxide (ITO) needle-like powder obtained by the method described in Patent Document 3, a translucent conductive paint (conductive paste) and a translucent conductive film in which this is applied as a conductive filler are also available. It has already been proposed (Patent Document 4: JP-A-6-309922).

しかしながら、上記特許文献3に記載されたITO針状粉末を得る方法においては、硝酸インジウムの高温加熱濃縮スラリーに錫化合物を添加して錫含有白色針状インジウム化合物粉末を得た後、これを仮焼することによりITO針状粉末にしているため、酸化錫のドープ量の制御が難しく、大量生産には向いていないという欠点があった。   However, in the method for obtaining the ITO needle-shaped powder described in Patent Document 3, a tin compound is added to a high-temperature concentrated slurry of indium nitrate to obtain a tin-containing white needle-shaped indium compound powder. Since the ITO needle powder is formed by baking, it is difficult to control the amount of tin oxide dope and is not suitable for mass production.

このため、実際に利用されるITO針状粉末の多くは、硝酸インジウムの高温加熱濃縮スラリーから白色針状インジウム化合物粉末を回収し、これを大気中で仮焼して酸化インジウムの針状粉末を得ておき(特許文献5:特開平6−293516号公報)、次に、その酸化インジウム針状粉末に酸化錫をドープする方法(特許文献6:特開平6−293517号公報、特許文献7:特開平10−17326号公報)により製造されている。   For this reason, most of the ITO needle powders that are actually used are obtained by collecting white needle-like indium compound powder from a high-temperature heat-concentrated slurry of indium nitrate and calcining it in the atmosphere to produce needle-like indium oxide powder. Obtained (Patent Document 5: JP-A-6-293516), then, a method of doping the indium oxide needle-like powder with tin oxide (Patent Document 6: JP-A-6-293517, Patent Document 7: (Japanese Patent Laid-Open No. 10-17326).

ところで、上記特許文献6や特許文献7に記載された方法においては、後からドープした酸化錫成分を酸化インジウムに固溶させるため、焼成処理を行う必要がある。この焼成処理の温度条件については、700℃以上の任意温度を選定できるとされていが、実際には酸化錫成分を酸化インジウムに完全に固溶させて高い導電性にする必要性から、1000〜1300℃の極めて高温で焼成処理が行われている。   By the way, in the method described in the said patent document 6 or the patent document 7, in order to make the doped tin oxide component dissolve in indium oxide later, it is necessary to perform a baking process. As for the temperature condition of this baking treatment, it is said that an arbitrary temperature of 700 ° C. or higher can be selected. However, in actuality, it is necessary to completely dissolve the tin oxide component in indium oxide to make it highly conductive. The firing process is performed at an extremely high temperature of 1300 ° C.

このような高温での焼成処理によって、ITO針状粉末の導電性を十分に高めることはできるが、その反面、ITO針状粉末中の一次粒子が0.25〜1.0μm程度(比表面積換算で約3〜0.8m/g)まで粒成長するため、ITO針状粉末が黄緑色に着色してしまうという問題があった。 Although the conductivity of the ITO needle-like powder can be sufficiently increased by such a high-temperature baking treatment, the primary particles in the ITO needle-like powder are about 0.25 to 1.0 μm (specific surface area conversion). The grain size grows to about 3 to 0.8 m 2 / g), and there is a problem that the ITO needle-like powder is colored yellow-green.

また、このITO針状粉末が適用された透光性導電塗料を用いると、形成される透光性導電膜も黄緑色に着色してしまう。そして、透光性導電膜が黄緑色に着色してしまうと、例えば、この透光性導電膜を分散型EL素子の透明電極に適用した場合、EL素子の発光色が本来の蛍光体の発光色と異なるという現象が生じるという問題が存在した。   Moreover, when the translucent conductive paint to which this ITO needle-like powder is applied is used, the formed translucent conductive film is colored yellow-green. When the translucent conductive film is colored yellow-green, for example, when this translucent conductive film is applied to a transparent electrode of a dispersion type EL element, the emission color of the EL element is the light emission of the original phosphor. There was a problem that the phenomenon of being different from the color occurred.

この問題の解決手段として、ITO針状粉末の製造工程において従来よりも焼成温度を低下させ、例えば500〜900℃程度で焼成し、且つ還元条件を制御することにより、ITO針状粉末の色を白色(ニュートラル)に近くなるようにする方法(特許文献8:特開2005−322626号公報)が提案され、これによりITO針状粉末の着色問題は改善されている。   As a means for solving this problem, in the production process of ITO needle-shaped powder, the firing temperature is lowered than before, for example, firing at about 500 to 900 ° C., and controlling the reducing conditions, the color of the ITO needle-shaped powder is changed. A method of making the color close to white (neutral) (Patent Document 8: Japanese Patent Application Laid-Open No. 2005-322626) has been proposed, whereby the coloring problem of the ITO needle-shaped powder is improved.

特開昭62−3003号公報JP-A-62-23003 特開昭56−120519号公報JP-A-56-120519 特開平6−293515号公報JP-A-6-293515 特開平6−309922号公報JP-A-6-309922 特開平6−293516号公報JP-A-6-293516 特開平6−293517号公報JP-A-6-293517 特開平10−17326号公報Japanese Patent Laid-Open No. 10-17326 特開2005−322626号公報JP 2005-322626 A

上記した低温焼成のITO針状粉末を用いた透光性導電塗料では、得られる透光性導電膜の膜厚を厚くした場合、高温焼成処理したITO針状粉末の透光性導電塗料により得られる透光性導電膜と比べて、表面抵抗値が高いという問題を有していた。一方、高温焼成処理したITO針状粉末を用いた透光性導電塗料の場合は、上記した着色問題と共に、得られる透光性導電膜の膜厚が薄くなると、表面抵抗値が急激に上昇するという問題があった。   In the translucent conductive paint using the above-mentioned low-temperature fired ITO needle-shaped powder, when the thickness of the obtained translucent conductive film is increased, it is obtained by the translucent conductive paint of the high-temperature fired ITO needle-shaped powder. There was a problem that the surface resistance value was higher than that of the translucent conductive film. On the other hand, in the case of a light-transmitting conductive paint using an ITO needle-shaped powder subjected to high-temperature baking treatment, the surface resistance value rapidly increases as the film thickness of the light-transmitting conductive film obtained becomes thin along with the above-described coloring problem. There was a problem.

本発明は、このような従来技術の問題点に着目してなされたものであり、従来よりも透光性と導電性に優れた透光性導電膜の形成を可能とする透光性導電塗料を提供すると共に、この透光性導電塗料を用いることにより、透光性と導電性に優れた透光性導電膜を提供することを目的とする。   The present invention has been made paying attention to such problems of the prior art, and a translucent conductive paint that enables the formation of a translucent conductive film that is more excellent in translucency and conductivity than the prior art. It is another object of the present invention to provide a translucent conductive film excellent in translucency and conductivity by using this translucent conductive paint.

上記目的を達成するため、本発明者は、導電性酸化物針状粉末の製造条件を詳細に検討した結果、酸化錫をドープした酸化インジウム針状粉末を焼成する際に低温焼成した粉末と高温焼成した粉末を組み合わせることによって、透光性と導電性に優れた透光性導電膜の形成を可能になることを見出し、本発明を完成するに至ったものである。   In order to achieve the above object, the present inventor has examined the manufacturing conditions of the conductive oxide needle-shaped powder in detail, and as a result, when firing the indium oxide needle-shaped powder doped with tin oxide, It has been found that by combining the fired powder, it is possible to form a light-transmitting conductive film excellent in light-transmitting property and conductivity, and the present invention has been completed.

即ち、本発明が提供する透光性導電塗料は、金属酸化物がドープされた酸化インジウムからなる導電性酸化物針状粉末がバインダーを含む溶剤中に分散した透光性導電塗料において、上記導電性酸化物針状粉末が、比表面積が4〜20m/gで且つL表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10である導電性酸化物針状粉末Aと、比表面積が4m/g未満で且つL表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=15〜20である導電性酸化物針状粉末Bとを含み、導電性酸化物針状粉末Aと導電性酸化物針状粉末Bの重量比がA:B=35:65〜20:80であることを特徴とする。 That is, the translucent conductive paint provided by the present invention is the translucent conductive paint in which a conductive oxide needle-like powder made of indium oxide doped with a metal oxide is dispersed in a solvent containing a binder. Conductive oxide needle-shaped powder has a specific surface area of 4 to 20 m 2 / g and a powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system L * = 82 to 91 , A * = − 8 to 2 and b * = 0 to 10, conductive oxide needle-shaped powder A, powder surface color in L * a * b * color system with a specific surface area of less than 4 m 2 / g Conductive oxide needle-like powder B with (light source: D65, viewing angle: 10 °) L * = 82 to 91, a * = − 8 to 2, b * = 15 to 20, and conductive oxidation The weight ratio between the needle-like powder A and the conductive oxide needle-like powder B is A: B = 35: 65 to 20:80. And features.

上記本発明による透光性導電塗料において、導電性酸化物針状粉末Aの格子定数は1.0118〜1.0120nmであることを特徴とし、また、導電性酸化物針状粉末Bの格子定数は1.0121〜1.0123nmであることを特徴とする。更に、導電性酸化物針状粉末Aと導電性酸化物針状粉末Bのアスペクト比は、共に5以上であることが好ましい。   In the translucent conductive paint according to the present invention, the conductive oxide needle-shaped powder A has a lattice constant of 1.0118 to 1.0120 nm, and the conductive oxide needle-shaped powder B has a lattice constant. Is 1.021 to 1.0123 nm. Further, the aspect ratio of the conductive oxide needle-shaped powder A and the conductive oxide needle-shaped powder B is preferably 5 or more.

上記本発明の透光性導電塗料において、酸化インジウムにドープされる金属酸化物は、酸化錫、酸化ジルコニウム、酸化亜鉛、酸化タングステン、酸化チタンから選ばれた少なくとも1種を用いることができる。また、上記本発明の透光性導電塗料において、導電性酸化物針状粉末とバインダーの重量比は、導電性酸化物針状粉末:バインダー=40:60〜90:10の範囲が好ましい。   In the translucent conductive paint of the present invention, the metal oxide doped into indium oxide can be at least one selected from tin oxide, zirconium oxide, zinc oxide, tungsten oxide, and titanium oxide. In the translucent conductive paint of the present invention, the weight ratio of the conductive oxide needle-shaped powder and the binder is preferably in the range of conductive oxide needle-shaped powder: binder = 40: 60 to 90:10.

また、本発明は、上記した本発明の透光性導電塗料を用いて形成された透光性導電膜を提供するものであり、その透光性導電膜の表面抵抗は、透過率72%において1000Ω/□(オーム・パー・スクエア)以下であり、且つ透過率81%において10000Ω/□(オーム・パー・スクエア)以下であることを特徴とする。   The present invention also provides a translucent conductive film formed using the above-described translucent conductive paint of the present invention. The surface resistance of the translucent conductive film is such that the transmittance is 72%. It is 1000Ω / □ (ohms per square) or less and 10000Ω / □ (ohms per square) or less at a transmittance of 81%.

本発明によれば、膜厚にかかわらず透光性と導電性の両方に優れる透光性導電膜を得ることができ、この優れた透光性導電膜の形成に用いる透光性導電塗料を提供することができる。従って、本発明による透光性導電膜を分散型EL素子の透明電極に適用することによって、透明性と同時に導電性にも優れた、高性能のEL素子が得られる。   According to the present invention, a translucent conductive film excellent in both translucency and conductivity regardless of the film thickness can be obtained, and a translucent conductive paint used for forming this excellent translucent conductive film is obtained. Can be provided. Therefore, by applying the translucent conductive film according to the present invention to the transparent electrode of the dispersion type EL element, a high-performance EL element having excellent transparency and conductivity can be obtained.

本発明に係る透光性導電塗料に適用される2種類の導電性酸化物針状粉末について、酸化錫がドープされた酸化インジウムにより構成された導電性酸化物針状粉末(ITO針状粉末)を例に挙げ、従来技術と対比しながら詳しく説明する。   About two types of conductive oxide needle-like powder applied to the translucent conductive paint according to the present invention, a conductive oxide needle-like powder composed of indium oxide doped with tin oxide (ITO needle-like powder) Will be described in detail in comparison with the prior art.

まず、導電性酸化物針状粉末の製造方法について説明する。インジウムメタルを硝酸に溶解した後、液温130〜150℃で加熱濃縮することにより、系内から水及び硝酸を蒸発させて濃厚な白色のスラリーとする。この白色スラリーを、高温のまま濾過した後、多量の純水で洗浄することにより、白色針状インジウム化合物粉末を得る。この白色針状インジウム化合物粉末は、インジウムの塩基性硝酸塩と考えられ、通常、Inを55〜68重量%及びNO を5〜23重量%程度含有している。 First, the manufacturing method of electroconductive oxide needle-shaped powder is demonstrated. After indium metal is dissolved in nitric acid, it is heated and concentrated at a liquid temperature of 130 to 150 ° C. to evaporate water and nitric acid from the system to form a thick white slurry. The white slurry is filtered at a high temperature and then washed with a large amount of pure water to obtain a white acicular indium compound powder. This white acicular indium compound powder is considered to be a basic nitrate of indium, and usually contains about 55 to 68% by weight of In and about 5 to 23% by weight of NO 3 .

上記白色針状化合物粉末を大気中にて300℃以上で仮焼することにより、酸化インジウム針状粉末とする。得られた酸化インジウム針状粉末は、平均粒径が0.01〜0.07μm程度の1次粒子で構成された針状の2次粒子からなり、その1次粒子間に細孔が形成されている。   The white acicular compound powder is calcined at 300 ° C. or higher in the air to obtain indium oxide acicular powder. The obtained indium oxide needle-like powder consists of needle-like secondary particles composed of primary particles having an average particle diameter of about 0.01 to 0.07 μm, and pores are formed between the primary particles. ing.

次に、この酸化インジウム針状粉末の細孔中に四塩化錫を毛管凝縮させた後、大気中の湿度で加水分解させ、焼成することによって、錫酸化物がドープされた酸化インジウムからなる導電性酸化物針状粉末(以下、ITO針状粉末とも称する)が得られる。尚、ITO針状粉末中の錫の含有量は、導電性の観点から、1〜12重量%が好ましく、2〜10重量%が更に好ましい。   Next, after condensing tin tetrachloride into capillaries in the pores of the indium oxide needle powder, it is hydrolyzed at atmospheric humidity and baked, thereby conducting a conductive material composed of indium oxide doped with tin oxide. Oxide needle-like powder (hereinafter also referred to as ITO needle-like powder) is obtained. The tin content in the ITO needle-like powder is preferably 1 to 12% by weight, and more preferably 2 to 10% by weight, from the viewpoint of conductivity.

上記焼成工程において、上記特許文献7に記載の方法に従って、1000〜1300℃で焼成した後、還元性ガス雰囲気下で還元処理を行うことにより、比表面積が4m/g未満であり、且つL表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=15〜20である導電性酸化物針状粉末(ITO針状粉末)Bが得られる。この方法で得られた導電性酸化物針状粉末Bの格子定数は、1.0121〜1.0123nmの範囲内にある。 In the firing step, after firing at 1000 to 1300 ° C. according to the method described in Patent Document 7, the specific surface area is less than 4 m 2 / g by performing reduction treatment in a reducing gas atmosphere, and L * A * b * Conductive oxidation in which the powder color (light source: D65, viewing angle: 10 °) in the color system is L * = 82 to 91, a * = − 8 to 2, and b * = 15 to 20 A needle-like powder (ITO needle-like powder) B is obtained. The lattice constant of the conductive oxide needle-like powder B obtained by this method is in the range of 1.021 to 1.0123 nm.

また、上記焼成工程において、上記特許文献8に記載の方法に従って、焼成温度を500〜900℃程度とし、且つ得られたITO針状粉末の還元処理条件において還元ガスの種類(水素、アルコールなど)、ガス流量、処理温度、処理時間等を調整することにより、比表面積が4〜20m/gであり、且つL表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10となる導電性酸化物針状粉末(ITO針状粉末)Aが得られる。この導電性酸化物針状粉末Aの格子定数は、1.0118〜1.0120nmの範囲内にある。 Further, in the firing step, according to the method described in Patent Document 8, the firing temperature is set to about 500 to 900 ° C., and the reducing gas conditions (hydrogen, alcohol, etc.) under the reduction conditions of the ITO needle-like powder obtained. By adjusting the gas flow rate, processing temperature, processing time, etc., the specific surface area is 4-20 m 2 / g and the powder color in the L * a * b * color system (light source: D65, viewing angle: 10 °) is a conductive oxide needle-like powder (ITO needle-like powder) A in which L * = 82 to 91, a * = − 8 to 2, and b * = 0 to 10. The lattice constant of the conductive oxide needle-shaped powder A is in the range of 1.0118 to 1.0120 nm.

また、上記導電性酸化物針状粉末A、Bについて、980Pa(100kgf/cm)の圧力を加えてペレット状にしたときの比抵抗(以下、圧粉抵抗と称する)は、ITO針状粉末Aでは0.02〜0.2Ω・cm程度が得られ、0.02〜0.12Ω・cmの範囲内に制御することが好ましい。また、ITO針状粉末Bでは0.01〜0.1Ω・cm程度の圧粉抵抗が得られ、0.01〜0.05Ω・cmの範囲内に制御することが好ましい。 The conductive oxide needle powders A and B have a specific resistance (hereinafter referred to as dust resistance) when a pressure of 980 Pa (100 kgf / cm 2 ) is applied to form a pellet. In A, about 0.02 to 0.2 Ω · cm is obtained, and it is preferably controlled within the range of 0.02 to 0.12 Ω · cm. In addition, the ITO needle-like powder B has a compacting resistance of about 0.01 to 0.1 Ω · cm, and is preferably controlled within the range of 0.01 to 0.05 Ω · cm.

一般に、金属酸化物がドープされた酸化インジウムにより構成された導電性酸化物針状粉末は、アスペクト比を5以上とすることが、バインダーに対し少量の粉末で十分な導電性が得られるため好ましい。アスペクト比が5未満では、粉末の添加凌駕少ないと透光性導電膜の比抵抗を5.0Ω・cm以下にすることが困難となる。尚、アスペクト比は高い方がよく、10以上が更に好ましい。上記した導電性酸化物針状粉末A、Bは、共に、長径(長さ)が5〜300μm程度、アスペクト比が5以上であり、濃縮条件によりアスペクト比が30程度のものまで得ることができる。   In general, it is preferable that the conductive oxide needle-shaped powder composed of indium oxide doped with a metal oxide has an aspect ratio of 5 or more because sufficient conductivity can be obtained with a small amount of powder with respect to the binder. . If the aspect ratio is less than 5, it is difficult to reduce the specific resistance of the translucent conductive film to 5.0 Ω · cm or less if the addition of powder is small. The aspect ratio is preferably high and more preferably 10 or more. The above-mentioned conductive oxide needle-shaped powders A and B can both have a major axis (length) of about 5 to 300 μm, an aspect ratio of 5 or more, and an aspect ratio of about 30 depending on the concentration conditions. .

導電性酸化物針状粉末の長径(長さ)に関しては、特に制限はないが、1〜300μmが好ましく、5〜100μmが更に好ましい。長径が大きい程、粒子同士の接点の数が少なくて低抵抗の膜が得られるからである。例えば、分散型EL素子に用いる場合、塗布面の蛍光体層は5〜30μm径の硫化亜鉛粒子を用いているため、その表面に数μm程度の凹凸が存在する。従って、長径が1μm以上あると、このような凹凸が存在しても針状粒子同士の接触が保たれ、必要な導電性が得られるからである。   Although there is no restriction | limiting in particular regarding the major axis (length) of electroconductive oxide needle-shaped powder, 1-300 micrometers is preferable and 5-100 micrometers is still more preferable. This is because the larger the major axis, the smaller the number of contacts between the particles and the lower the resistance. For example, when used in a dispersion-type EL element, the phosphor layer on the coated surface uses zinc sulfide particles having a diameter of 5 to 30 μm, and thus there are irregularities of about several μm on the surface. Therefore, when the major axis is 1 μm or more, the contact between the acicular particles is maintained even when such irregularities exist, and the necessary conductivity is obtained.

一方、長径が300μmを超えると、スクリーン印刷時にスクリーンの網目を通り難くなり、印刷に支障を来す場合がある。一般的には、100μm以下の長径のものが好ましい。ただし、100メッシュ以下の粗い目のスクリーンを用いて印刷する場合には、この限りではない。本発明に係る透光性導電塗料は長径(長さ)が比較的大きいが、200μm程度の幅の線をスクリーン印刷することは可能である。   On the other hand, if the major axis exceeds 300 μm, it may be difficult to pass through the screen mesh during screen printing, which may hinder printing. Generally, a long diameter of 100 μm or less is preferable. However, this is not the case when printing is performed using a coarse screen of 100 mesh or less. Although the translucent conductive paint according to the present invention has a relatively large major axis (length), it is possible to screen-print lines having a width of about 200 μm.

尚、上記した導電性酸化物針状粉末の製造方法において、酸化インジウムにドープされる金属酸化物としては、上記酸化錫以外に、酸化ジルコニウム、酸化亜鉛、酸化タングステン、酸化チタン等が挙げられ、これらを単独で使用するか、あるいは複数を組み合わせて使用することができる。また、本発明における導電性酸化物針状粉末は、上述した方法以外の製造方法、例えば、硝酸インジウムと硝酸錫の溶液から尿素による均一沈殿法により針状水酸化物を形成し、この針状水酸化物を仮焼する方法等により、長径(長さ)1〜5μm程度の粉末を得ることが可能である。   In addition, in the manufacturing method of the above-described conductive oxide needle-shaped powder, examples of the metal oxide doped into indium oxide include zirconium oxide, zinc oxide, tungsten oxide, titanium oxide and the like in addition to the tin oxide. These can be used alone or in combination. In addition, the conductive oxide needle-shaped powder in the present invention forms a needle-shaped hydroxide by a production method other than the above-described method, for example, a uniform precipitation method using urea from a solution of indium nitrate and tin nitrate. It is possible to obtain a powder having a major axis (length) of about 1 to 5 μm by a method of calcining hydroxide.

次に、本発明に係る透光性導電塗料の製造方法について説明する。まず、導電性酸化物針状粉末A、Bを、バインダー及び溶媒と混合し、必要に応じて分散剤等を添加した後、分散処理を行う。その際、導電性酸化物針状粉末Aと導電性酸化物針状粉末Bの比率(重量比)は、A:B=35:65〜20:80の範囲とする。この範囲を外れると、良好な導電特性が得られず、特に導電性酸化物針状粉末Bの比率が高いと、透光性導電膜が着色するため好ましくない。   Next, the manufacturing method of the translucent conductive paint which concerns on this invention is demonstrated. First, the conductive oxide needle-shaped powders A and B are mixed with a binder and a solvent, and after adding a dispersant or the like as necessary, a dispersion treatment is performed. At that time, the ratio (weight ratio) between the conductive oxide needle-shaped powder A and the conductive oxide needle-shaped powder B is set to a range of A: B = 35: 65 to 20:80. Outside this range, good conductive properties cannot be obtained, and particularly when the ratio of the conductive oxide needle-like powder B is high, the translucent conductive film is colored, which is not preferable.

また、透光性導電塗料中の導電性酸化物針状粉末とバインダーの重量比は、導電性酸化物針状粉末:バインダー=40:60〜90:10の範囲が好ましく、60:40〜80:20の範囲が更に好ましい。上記導電性酸化物針状粉末:バインダーで40:60よりもバインダーが多いと、得られる透光性導電膜の抵抗が高くなり過ぎる場合があり、導電性酸化物針状粉末:バインダーで90:10よりもバインダーが少ないと、透光性導電膜の強度が低下するだけでなく、針状粒子同士の接触が不十分となって導電性が低下するからである。   The weight ratio of the conductive oxide needle-shaped powder to the binder in the translucent conductive paint is preferably in the range of conductive oxide needle-shaped powder: binder = 40: 60 to 90:10, 60:40 to 80 : 20 is more preferable. When there is more binder than 40:60 with the said conductive oxide needle-shaped powder: binder, the resistance of the translucent conductive film obtained may become too high, and conductive oxide needle-shaped powder: 90% with a binder. When the binder is less than 10, not only the strength of the light-transmitting conductive film is lowered, but also the contact between the acicular particles is insufficient and the conductivity is lowered.

透光性導電塗料に用いるバインダーとしては、従来から透光性導電膜に使用されている無機バインダー、有機バインダーを用いることが可能である。例えば、アクリル、ポリエステル等の熱可塑性樹脂、エポキシ、ウレタン等の熱硬化性樹脂、アクリル系、ウレタン系、エポキシ系の紫外線硬化樹脂等を用いることができる。   As a binder used for a translucent conductive paint, it is possible to use an inorganic binder and an organic binder conventionally used for a translucent conductive film. For example, thermoplastic resins such as acrylic and polyester, thermosetting resins such as epoxy and urethane, acrylic, urethane, and epoxy ultraviolet curable resins can be used.

また、透光性導電塗料に用いる溶媒としては、使用するプラスチック基板に対する溶解性や成膜条件を考慮して、適宜選定することができる。例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、酢酸エチル、酢酸ブチル、乳酸メチル等のエステル系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル等のグリコール誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン、エチレングリコール、ジエチレングリコール、トルエン、キシレン、テトラヒドロフラン(THF)、クロロホルム、メシチレン、ドデシルベンゼン等のベンゼン誘導体等が挙げられるが、これらに限定されるものではない。   In addition, the solvent used for the light-transmitting conductive paint can be appropriately selected in consideration of solubility in the plastic substrate to be used and film formation conditions. For example, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol (DAA), acetone, methyl ethyl ketone (MEK) , Ketone solvents such as methyl propyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone and isophorone, ester solvents such as ethyl acetate, butyl acetate and methyl lactate, ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS) ), Ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM), propylene glycol ethyl ether (PE), propylene glycol methyl ether Diacetate (PGM-AC), propylene glycol ethyl ether acetate (PE-AC), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol dimethyl ether , Glycol derivatives such as diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, formamide (FA), N-methylformamide Dimethylformamide (DMF), dimethylacetamide, dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), γ-butyrolactone, ethylene glycol, diethylene glycol, toluene, xylene, tetrahydrofuran (THF), chloroform, mesitylene, Examples thereof include, but are not limited to, benzene derivatives such as dodecylbenzene.

また、分散剤としては、シリコンカップリング剤等の各種カップリング剤、各種高分子分散剤、アニオン系、ノニオン系、カチオン系等の各種界面活性剤が挙げられる。これら分散剤は、用いる導電性酸化物針状粉末の種類や分散処理方法に応じて適宜選定される。尚、分散処理には、超音波処理、ホモジナイザー、ペイントシェーカー、ビーズミル、スリーロールミル等の汎用の方法を適用することができる。   Examples of the dispersant include various coupling agents such as a silicon coupling agent, various polymer dispersants, anionic, nonionic, and cationic surfactants. These dispersants are appropriately selected according to the type of conductive oxide needle powder used and the dispersion treatment method. For the dispersion treatment, general-purpose methods such as ultrasonic treatment, homogenizer, paint shaker, bead mill, and three roll mill can be applied.

本発明の透光性導電塗料は、通常の手法により基板上に塗布することにより、透光性導電膜を形成することができる。透光性導電塗料の塗布方法としては、スクリーン印刷法、グラビア印刷法、ワイヤーバーコーティング法、ドクターブレードコーティング法、ロールコーティング法等を用いることができる。   The translucent conductive paint of the present invention can form a translucent conductive film by applying the translucent conductive paint on a substrate by an ordinary method. As a method for applying the light-transmitting conductive paint, a screen printing method, a gravure printing method, a wire bar coating method, a doctor blade coating method, a roll coating method, or the like can be used.

このようにして得られた本発明の透光性導電膜は、上記2種類の導電性酸化物針状粉末で構成されているため、膜の着色を抑制できると同時に、膜厚にかかわらず高い透光性と導電性とを有している。具体的には、本発明の透光性導電膜の表面抵抗値は、透過率72%において1000Ω/□(オーム・パー・スクエア)以下であり、且つ透過率81%においては10000Ω/□(オーム・パー・スクエア)以下であって、高い透光性と導電性を兼ね備えている。   The translucent conductive film of the present invention thus obtained is composed of the above-mentioned two kinds of conductive oxide needle-like powders, so that it is possible to suppress the coloring of the film and at the same time, regardless of the film thickness. It has translucency and conductivity. Specifically, the surface resistance value of the translucent conductive film of the present invention is 1000Ω / □ (ohms per square) or less at a transmittance of 72%, and 10000Ω / □ (ohms) at a transmittance of 81%.・ Per-square) or less, and has both high translucency and conductivity.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、以下の記述における「%」は、透過率及びヘイズ値の%を除いて、「重量%」を示している。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” indicates “% by weight” excluding% of transmittance and haze value.

尚、粉末の粒径は、JEOL(株)社製の走査電子顕微鏡で測定した。1次粒子間の平均細孔径、細孔容量、比表面積は、Quantachrome社製のQuantasorbQS−10を用いて測定した。粉末の格子定数は、NIST製Si標準粉を内部標準とした広角X線回折測定(Si標準粉:ITO針状粉末[重量比]=30:70〜40:60の配合割合で混合)を行った後、Rietveld解析により求めた。圧粉抵抗値は、電極断面積2cmの専用ホルダーに粉末を挿入後、所定の圧力(100kgf/cm)を印加して、その電極間抵抗を測定して求めた。 The particle size of the powder was measured with a scanning electron microscope manufactured by JEOL Co., Ltd. The average pore diameter, pore volume, and specific surface area between primary particles were measured using a Quantasorb QS-10 manufactured by Quantachrome. For the lattice constant of the powder, wide angle X-ray diffraction measurement (Si standard powder: ITO needle powder [weight ratio] = mixed at a blending ratio of 30:70 to 40:60) was performed using NIST Si standard powder as an internal standard. Then, it was determined by Rietveld analysis. Powder resistance, after insertion the powder to a dedicated holder electrode cross-sectional area 2 cm 2, by applying a predetermined pressure (100kgf / cm 2), was determined by measuring the inter-electrode resistance.

表色系における導電性酸化物針状粉末の粉末色と透光性導電膜の膜色は、日本電色工業(株)社製の簡易型分光色差計NF333を用いて測定した。塗料の粘度は、塗料温度25℃で、B型粘度計を用いて測定した。また、透光性導電膜の表面抵抗は、三菱化学(株)社製の表面抵抗計ロレスタAP(MCP−T400)を用いて測定した。更に、透光性導電膜の透過率(可視光)及びヘイズ値は、村上色彩技術研究所製のヘイズメーターHR−200を用いて測定した。尚、上記透光性導電膜の膜色の測定は、まず透光性導電膜を形成していない基板だけを校正用白色板(L*=95.5)上に設置してキャリブレーション(白色校正)した後、次に上記校正用白色板上に透光性導電膜を形成した基板を設置して行った。 The powder color of the conductive oxide needle-like powder and the film color of the translucent conductive film in the L * a * b * color system were measured using a simple spectral color difference meter NF333 manufactured by Nippon Denshoku Industries Co., Ltd. It was measured. The viscosity of the paint was measured using a B-type viscometer at a paint temperature of 25 ° C. Moreover, the surface resistance of the translucent conductive film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. Furthermore, the transmittance (visible light) and haze value of the translucent conductive film were measured using a haze meter HR-200 manufactured by Murakami Color Research Laboratory. The film color of the light-transmitting conductive film is measured by first placing only the substrate on which the light-transmitting conductive film is not formed on a calibration white plate (L * = 95.5). Then, a substrate having a light-transmitting conductive film formed thereon was placed on the calibration white plate.

[実施例1]
ITO針状粉末Aとして、住友金属鉱山(株)製のSCP−X700Bを用いた。このITO針状粉末Aは、平均長径が約50μm、短径に対する長径の比(アスペクト比)が約14、錫含有量が2.5重量%、比表面積が9.0m/g、格子定数が1.01191nm、L表色系における粉体色(光源:D65、視野角:10°)がL=83.4、a=−4.2、b=6.1である。また、980Pa(100kgf/cm)の圧力でペレット状にして測定した圧粉抵抗値は0.06Ω・cmである。
[Example 1]
As the ITO needle-shaped powder A, SCP-X700B manufactured by Sumitomo Metal Mining Co., Ltd. was used. This ITO needle-like powder A has an average major axis of about 50 μm, a ratio of major axis to minor axis (aspect ratio) of about 14, a tin content of 2.5% by weight, a specific surface area of 9.0 m 2 / g, and a lattice constant. Is 1.0191 nm, powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system is L * = 83.4, a * = − 4.2, b * = 6. 1. Further, the dust resistance value measured in a pellet form at a pressure of 980 Pa (100 kgf / cm 2 ) is 0.06 Ω · cm.

また、ITO針状粉末Bとして、住友金属鉱山(株)製のSCP−X1200を用いた。このITO針状粉末Bは、平均長径が約50μm、短径に対する長径の比(アスペクト比)が約14、錫含有量が2.5重量%、比表面積が1.0m/g、格子定数が1.01221nm、L表色系における粉体色(光源:D65、視野角:10°)がL=85.8、a=−5.9、b=17.7である。また、980Pa(100kgf/cm)の圧力でペレット状にして測定した圧粉抵抗値は0.02Ω・cmである。 Moreover, as ITO needle-like powder B, Sumitomo Metal Mining Co., Ltd. SCP-X1200 was used. The ITO needle-like powder B has an average major axis of about 50 μm, a ratio of major axis to minor axis (aspect ratio) of about 14, a tin content of 2.5% by weight, a specific surface area of 1.0 m 2 / g, and a lattice constant. Is 1.0221 nm, the powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system is L * = 85.8, a * = − 5.9, b * = 17. 7. Further, the dust resistance value measured in a pellet form at a pressure of 980 Pa (100 kgf / cm 2 ) is 0.02 Ω · cm.

次に、上記ITO針状粉末AとBを、A:B=50:50(重量比)の割合で混合し、バインダー(ウレタン変性ポリエステル樹脂)が溶解した溶剤(エチレングリコールモノブチルエーテルアセテート)、硬化剤(イソシアネート)及び分散剤に分散させて、実施例1に係る透光性導電塗料(ITO針状粉末A:14%、ITO針状粉末B:14%、ウレタン変性ポリエステル樹脂:15.1%、エチレングリコールモノブチルエーテルアセテート:55.6%、硬化剤:1.0%、分散剤:0.3%)を調製した。尚、この塗料の粘度は、5000mPa・sであった。   Next, the ITO needle-shaped powders A and B are mixed at a ratio of A: B = 50: 50 (weight ratio), a solvent (ethylene glycol monobutyl ether acetate) in which a binder (urethane-modified polyester resin) is dissolved, and curing A light-transmitting conductive paint according to Example 1 (ITO needle powder A: 14%, ITO needle powder B: 14%, urethane-modified polyester resin: 15.1%, dispersed in an agent (isocyanate) and a dispersant. Ethylene glycol monobutyl ether acetate: 55.6%, curing agent: 1.0%, dispersant: 0.3%). The viscosity of this paint was 5000 mPa · s.

この実施例1に係る透光性導電塗料を、基板としての東レ(株)社製のPETフィルム(商品名:ルミラー、厚さ:100μm)上に、メッシュサイズ及びスキージの掃引速度を変えスクリーン印刷し、120℃で20分間加熱することにより、膜厚の異なる複数の透光性導電膜を得た。   The translucent conductive paint according to Example 1 was screen-printed on a PET film (trade name: Lumirror, thickness: 100 μm) manufactured by Toray Industries, Inc. as a substrate while changing the mesh size and the sweep speed of the squeegee. Then, by heating at 120 ° C. for 20 minutes, a plurality of translucent conductive films having different film thicknesses were obtained.

これら実施例1による複数の透光性導電膜について、透過率と表面抵抗値の関係を図1に示す。これらの透光性導電膜のヘイズ値は、60〜95%の範囲にあった。また、これら複数の透光性導電膜のL表色系における膜色(光源:D65、視野角:10°)は、透過率60〜85%の範囲において、L=92〜97、a=−5〜−2.5、b=8.5〜15の範囲にあった。 FIG. 1 shows the relationship between the transmittance and the surface resistance value of the plurality of translucent conductive films according to Example 1. The haze value of these translucent conductive films was in the range of 60 to 95%. Further, the film color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of these light-transmitting conductive films is L * = 92 in the range of 60 to 85% transmittance. -97, a * =-5 to -2.5, and b * = 8.5 to 15.

尚、透光性導電膜の透過率(可視光)及びヘイズ値は、透光性導電膜だけの値であり、それぞれ下記計算式により求められる:
透光性導電膜の透過率(%)=[(透光性導電膜付き基板ごと測定した透過率)/(基板の透過率)]×100
透光性導電膜のヘイズ値(%)=(透光性導電膜付き基板ごと測定したヘイズ値)−(基板のヘイズ値)
In addition, the transmittance | permeability (visible light) and haze value of a translucent conductive film are values only of a translucent conductive film, and are calculated | required by the following formula, respectively:
Transmissivity of translucent conductive film (%) = [(transmittance measured for each substrate with translucent conductive film) / (transmittance of substrate)] × 100
Haze value of translucent conductive film (%) = (Haze value measured for each substrate with translucent conductive film) − (Haze value of substrate)

[実施例2]
上記ITO針状粉末AとBの重量比をA:B=30:70にした以外は実施例1と同様にして、膜厚の異なる複数の透光性導電膜を得た。これら実施例2による複数の透光性導電膜について、透過率と表面抵抗値の関係を図2に示す。これらの透光性導電膜のヘイズ値は、60〜95%の範囲にあった。また、これら複数の透光性導電膜のL表色系における膜色(光源:D65、視野角:10°)は、透過率60〜85%の範囲において、L=92〜97、a=−6〜−2.7、b=9〜18の範囲にあった。
[Example 2]
A plurality of translucent conductive films having different film thicknesses were obtained in the same manner as in Example 1 except that the weight ratio of the ITO needle-like powders A and B was A: B = 30: 70. FIG. 2 shows the relationship between the transmittance and the surface resistance value of the plurality of translucent conductive films according to Example 2. The haze value of these translucent conductive films was in the range of 60 to 95%. Further, the film color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of these light-transmitting conductive films is L * = 92 in the range of 60 to 85% transmittance. ˜97, a * = − 6 to −2.7, b * = 9 to 18.

[比較例1]
上記ITO針状粉末Aのみを用いた以外は実施例1と同様にして、膜厚の異なる複数の透光性導電膜を得た。これら比較例1による複数の透光性導電膜について、透過率と表面抵抗値の関係を図1〜3に示す。これらの透光性導電膜のヘイズ値は、60〜95%の範囲にあった。また、これら複数の透光性導電膜のL表色系における膜色(光源:D65、視野角:10°)は、透過率60〜85%の範囲において、L=92〜97、a=−4.5〜−2、b=8〜13の範囲にあった。
[Comparative Example 1]
A plurality of translucent conductive films having different film thicknesses were obtained in the same manner as in Example 1 except that only the ITO needle powder A was used. About the some translucent conductive film by these comparative examples 1, the relationship of the transmittance | permeability and a surface resistance value is shown to FIGS. The haze value of these translucent conductive films was in the range of 60 to 95%. Further, the film color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of these light-transmitting conductive films is L * = 92 in the range of 60 to 85% transmittance. -97, a * =-4.5 to -2, b * = 8-13.

[比較例2]
上記ITO針状粉末Bのみを用いた以外は実施例1と同様にして、膜厚の異なる複数の透光性導電膜を得た。これら比較例2による複数の透光性導電膜について、透過率と表面抵抗値の関係を図1〜2に示す。これらの透光性導電膜のヘイズ値は、60〜95%の範囲にあった。また、これら複数の透光性導電膜のL表色系における膜色(光源:D65、視野角:10°)は、透過率60〜85%の範囲において、L=92〜97、a=−7〜−3、b=9.5〜22の範囲にあった。
[Comparative Example 2]
Except having used only the said ITO needle-like powder B, it carried out similarly to Example 1, and obtained the some translucent electrically conductive film from which film thickness differs. About the some translucent conductive film by these comparative examples 2, the relationship between the transmittance | permeability and a surface resistance value is shown to FIGS. The haze value of these translucent conductive films was in the range of 60 to 95%. Further, the film color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of these light-transmitting conductive films is L * = 92 in the range of 60 to 85% transmittance. -97, a * =-7 to -3, b * = 9.5 to 22.

[比較例3]
上記ITO針状粉末AとBの重量比をA:B=70:30にした以外は実施例1と同様にして、膜厚の異なる複数の透光性導電膜を得た。これら比較例3による複数の透光性導電膜について、透過率と表面抵抗値の関係を図3に示す。これらの透光性導電膜のヘイズ値は、60〜95%の範囲にあった。また、これら複数の透光性導電膜のL表色系における膜色(光源:D65、視野角:10°)は、透過率60〜85%の範囲において、L=92〜97、a=−4.5〜−2、b=8〜14の範囲にあった。
[Comparative Example 3]
A plurality of translucent conductive films having different film thicknesses were obtained in the same manner as in Example 1 except that the weight ratio of the ITO needle-like powders A and B was A: B = 70: 30. FIG. 3 shows the relationship between the transmittance and the surface resistance value of the plurality of translucent conductive films according to Comparative Example 3. The haze value of these translucent conductive films was in the range of 60 to 95%. Further, the film color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of the plurality of light-transmitting conductive films is L * = 92 in the transmittance range of 60 to 85%. -97, a * =-4.5 to -2, b * = 8-14.

上記した実施例1及び2と比較例1及び2を比較すると、ITO針状粉末AとBとを混合することによって、透光性導電膜の着色を抑制できると共に、図1及び図2から分るように、低透過率から高透過率の範囲において低抵抗の透光性導電膜が得られる。   When the above-described Examples 1 and 2 and Comparative Examples 1 and 2 are compared, by mixing the ITO needle-shaped powders A and B, coloring of the translucent conductive film can be suppressed, and from FIG. 1 and FIG. Thus, a low-resistance translucent conductive film can be obtained in the range of low transmittance to high transmittance.

また、図3から分るように、比較例3の透光性導電膜の導電特性は比較例1と同様であることから、導電性酸化物針状粉末AとBの重量比がA:B=35:65〜20:80の範囲外では、導電特性は改善されないことが分る。   Further, as can be seen from FIG. 3, the conductive property of the light-transmitting conductive film of Comparative Example 3 is the same as that of Comparative Example 1, so that the weight ratio of the conductive oxide needle-shaped powders A and B is A: B. It can be seen that outside the range of 35:65 to 20:80, the conductive properties are not improved.

実施例1と比較例1、2で得られた複数の透光性導電膜における透過率と表面抵抗値の関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability in the some translucent conductive film obtained in Example 1, and Comparative Examples 1 and 2, and a surface resistance value. 実施例2と比較例1、2で得られた複数の透光性導電膜における透過率と表面抵抗値の関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability in the some translucent conductive film obtained in Example 2, and Comparative Examples 1 and 2, and a surface resistance value. 比較例1、3で得られた複数の透光性導電膜における透過率と表面抵抗値の関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability in the some translucent electrically conductive film obtained by the comparative examples 1 and 3, and a surface resistance value.

Claims (7)

金属酸化物がドープされた酸化インジウムからなる導電性酸化物針状粉末がバインダーを含む溶剤中に分散した透光性導電塗料において、上記導電性酸化物針状粉末が、比表面積が4〜20m/gで且つL表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10である導電性酸化物針状粉末Aと、比表面積が4m/g未満で且つL表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=15〜20である導電性酸化物針状粉末Bとを含み、導電性酸化物針状粉末Aと導電性酸化物針状粉末Bの重量比がA:B=35:65〜20:80であることを特徴とする透光性導電塗料。 In the translucent conductive paint in which conductive oxide needle-shaped powder made of indium oxide doped with metal oxide is dispersed in a solvent containing a binder, the conductive oxide needle-shaped powder has a specific surface area of 4 to 20 m. 2 / g and the powder color in the L * a * b * color system (light source: D65, viewing angle: 10 °) is L * = 82 to 91, a * = − 8 to 2, b * = 0 to The conductive oxide needle-like powder A is 10 and the specific surface area is less than 4 m 2 / g and the powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system is L *. Conductive oxide needle-like powder A and conductive oxide needle-like powder B, which are = 82 to 91, a * = − 8 to 2, and b * = 15 to 20. The weight ratio of A: B is 35:65 to 20:80. 上記導電性酸化物針状粉末Aの格子定数が1.0118〜1.0120nmであることを特徴とする、請求項1に記載の透光性導電塗料。   The translucent conductive paint according to claim 1, wherein the conductive oxide needle-like powder A has a lattice constant of 1.0118 to 1.0120 nm. 上記導電性酸化物針状粉末Bの格子定数が1.0121〜1.0123nmであることを特徴とする、請求項1又は2に記載の透光性導電塗料。   The translucent conductive paint according to claim 1 or 2, wherein the conductive oxide needle-like powder B has a lattice constant of 1.021 to 1.0123 nm. 上記導電性酸化物針状粉末Aと導電性酸化物針状粉末Bのアスペクト比が共に5以上であることを特徴とする、請求項1〜3のいずれかに記載の透光性導電塗料。   The translucent conductive paint according to any one of claims 1 to 3, wherein both the aspect ratios of the conductive oxide needle-shaped powder A and the conductive oxide needle-shaped powder B are 5 or more. 上記金属酸化物が、酸化錫、酸化ジルコニウム、酸化亜鉛、酸化タングステン、酸化チタンから選ばれた少なくとも1種であることを特徴とする、請求項1に記載の透光性導電塗料。   The translucent conductive paint according to claim 1, wherein the metal oxide is at least one selected from tin oxide, zirconium oxide, zinc oxide, tungsten oxide, and titanium oxide. 上記導電性酸化物針状粉末とバインダーの重量比が、導電性酸化物針状粉末:バインダー=40:60〜90:10であることを特徴とする、請求項1〜5のいずれかに記載の透光性導電塗料。   The weight ratio of the conductive oxide needle-shaped powder and the binder is conductive oxide needle-shaped powder: binder = 40: 60 to 90:10, according to any one of claims 1 to 5. Translucent conductive paint. 請求項1〜6のいずれかに記載の透光性導電塗料を用いて形成された透光性導電膜であって、透光性導電膜の表面抵抗が、透過率72%において1000Ω/□以下であり、且つ透過率81%において10000Ω/□以下であることを特徴とする透光性導電膜。   A translucent conductive film formed using the translucent conductive paint according to claim 1, wherein the translucent conductive film has a surface resistance of 1000Ω / □ or less at a transmittance of 72%. And a translucent conductive film characterized by having a transmittance of 81% and 10000 Ω / □ or less.
JP2006322815A 2006-11-30 2006-11-30 Translucent conductive paint and translucent conductive membrane Pending JP2008140559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322815A JP2008140559A (en) 2006-11-30 2006-11-30 Translucent conductive paint and translucent conductive membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322815A JP2008140559A (en) 2006-11-30 2006-11-30 Translucent conductive paint and translucent conductive membrane

Publications (1)

Publication Number Publication Date
JP2008140559A true JP2008140559A (en) 2008-06-19

Family

ID=39601823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322815A Pending JP2008140559A (en) 2006-11-30 2006-11-30 Translucent conductive paint and translucent conductive membrane

Country Status (1)

Country Link
JP (1) JP2008140559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002284A1 (en) * 2010-06-29 2012-01-05 住友化学株式会社 Light emitting element, photoelectric conversion element, method for producing light emitting element, and method for producing photoelectric conversion element
WO2012133165A1 (en) * 2011-03-28 2012-10-04 住友化学株式会社 Light emitting element and method for manufacturing same
JP2012216489A (en) * 2010-10-08 2012-11-08 Sumitomo Chemical Co Ltd Light emitting element and photoelectric conversion element, and method for manufacturing the same
JP2014125415A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp ITO powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012002284A1 (en) * 2010-06-29 2012-01-05 住友化学株式会社 Light emitting element, photoelectric conversion element, method for producing light emitting element, and method for producing photoelectric conversion element
US8866134B2 (en) 2010-06-29 2014-10-21 Sumitomo Chemical Company, Limited Light-emitting device and photovoltaic cell, and method for manufacturing the same
JP2012216489A (en) * 2010-10-08 2012-11-08 Sumitomo Chemical Co Ltd Light emitting element and photoelectric conversion element, and method for manufacturing the same
WO2012133165A1 (en) * 2011-03-28 2012-10-04 住友化学株式会社 Light emitting element and method for manufacturing same
JP2014125415A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp ITO powder

Similar Documents

Publication Publication Date Title
EP3064556B1 (en) Electrically conductive composition for thin film printing, and method for forming thin film conductive pattern
TWI529135B (en) Ruthenium oxide powder, composition for thick-film resistors using the same, and thick-film resistors
KR101991676B1 (en) Conductive ink composition for forming transparent electrode
CN107001686A (en) For thermoplastic matrix and the Stretchable polymeric thick film combination of wearable electronic product
CN103827977B (en) Thermoformable polymer thick film silver conductor and the purposes in capacitance-type switch circuit thereof
KR20090034823A (en) Composition for forming electrode in solar cell, method of forming the electrode, and solar cell employing electrode obtained by the formation method
KR20090115854A (en) Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
JP5747941B2 (en) Method for synthesizing metal nanoparticles
JP2008135190A (en) Composition for electrode formation of solar cell, forming method of electrode, and solar cell using electrode obtained by forming method
CN101613186A (en) Lead-free silver slurry for high-temperature sintered automobile glass heating wire and preparation method thereof
JP5831055B2 (en) Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
JP5248006B2 (en) Method for forming electrode of solar cell
JP6535000B2 (en) Stretchable polymer thick film silver conductor for high permeability substrates
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
JP2008140559A (en) Translucent conductive paint and translucent conductive membrane
CN101157826B (en) Coating liquid for forming translucent electrically conductive film, translucent electrically conductive film, and dispersive-type electroluminescent device
JP2005322626A (en) Needle-shaped powder of conductive oxide
JP2007149631A (en) Translucent conductive coating and translucent conductive film
JP5070808B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and solar cell using the electrode obtained by the forming method
EP3170188B1 (en) Polymer thick film silver conductor with inverted cure profile behavior
JP2009181917A (en) Colored conductive film, and colored conductive paint
JP2005320525A (en) Transparent electrically conductive coating and transparent electrically conductive film
JP2011018542A (en) Transparent conductive base material and manufacturing method thereof
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP2008034345A (en) Conductive oxide particulate dispersion solution, coating liquid for forming transparent conductive film, and transparent conductive film