JP2005320525A - Transparent electrically conductive coating and transparent electrically conductive film - Google Patents

Transparent electrically conductive coating and transparent electrically conductive film Download PDF

Info

Publication number
JP2005320525A
JP2005320525A JP2005109604A JP2005109604A JP2005320525A JP 2005320525 A JP2005320525 A JP 2005320525A JP 2005109604 A JP2005109604 A JP 2005109604A JP 2005109604 A JP2005109604 A JP 2005109604A JP 2005320525 A JP2005320525 A JP 2005320525A
Authority
JP
Japan
Prior art keywords
powder
oxide
needle
translucent conductive
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005109604A
Other languages
Japanese (ja)
Inventor
Masaya Yukinobu
雅也 行延
Kenji Kato
賢二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005109604A priority Critical patent/JP2005320525A/en
Publication of JP2005320525A publication Critical patent/JP2005320525A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent electrically conductive coating excellent in transparency and electrical conductivity and capable of forming a transparent electrically conductive film with a neutral color tone and free from discoloration of the film. <P>SOLUTION: This transparent electrically conductive coating comprises an electrically conductive oxide needle powder, composed of indium oxide doped with a metal oxide such as tin oxide, that is dispersed in a binder-containing solvent. The electrically conductive oxide needle powder has a specific surface area of 4-20 m<SP>2</SP>/g and a power color in the L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color system (a light source: D65, an angular field of view: 10°) of L<SP>*</SP>=82-91, a<SP>*</SP>=-8 to 2 and b<SP>*</SP>=0-10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば分散型エレクトロルミネッセンス素子(分散型EL素子)の透明電極等の形成に適用される透光性導電塗料に係り、特に、透光性と導電性に優れしかも膜の着色が防止される透光性導電塗料と透光性導電膜の改良に関するものである。   The present invention relates to a translucent conductive coating applied to, for example, the formation of a transparent electrode of a dispersive electroluminescent element (dispersed EL element), and in particular, has excellent translucency and conductivity and prevents coloration of the film. It is related with the improvement of the translucent electrically conductive coating material and translucent electrically conductive film.

上記透明電極等に適用される透光性導電膜は、バインダーを含む溶剤中に導電フィラーが分散された透光性導電塗料を塗布することにより形成される。そして、透光性導電塗料の導電フィラーとして、従来、インジウム−錫酸化物(以下、ITOと呼ぶことがある)、錫−アンチモン酸化物(以下、ATOと呼ぶことがある)等の酸化物系フィラーが用いられており、中でもITOはATOに比べて抵抗値が低いために最も優れている。   The translucent conductive film applied to the transparent electrode or the like is formed by applying a translucent conductive paint in which a conductive filler is dispersed in a solvent containing a binder. Conventionally, as conductive fillers for translucent conductive paints, oxides such as indium-tin oxide (hereinafter sometimes referred to as ITO) and tin-antimony oxide (hereinafter sometimes referred to as ATO) are used. Fillers are used, and ITO is the most excellent because of its lower resistance than ATO.

ところで、上記透光性導電塗料において導電フィラーの含有量は少ないほど好ましい。その理由は、塗料成分の一つである透明樹脂(バインダー)に比べフィラーである酸化物の光吸収が遥かに大きいからである。従って、樹脂に対して出来るだけ少量の酸化物フィラーを用いることで低抵抗値の膜が得られれば、膜の光線透過率を向上できる。   By the way, in the said translucent conductive coating material, it is so preferable that there is little content of a conductive filler. The reason is that the light absorption of the oxide as the filler is much greater than that of the transparent resin (binder) which is one of the paint components. Therefore, if a low resistance film can be obtained by using as little oxide filler as possible for the resin, the light transmittance of the film can be improved.

このような理由から、針状またはりん片状の導電フィラーが得られれば、球状、粒状の導電フィラーに比べて少量の添加で低抵抗値の膜が得られるため、コスト面、膜強度、耐候性等の面で優れた膜が得られることになる。   For these reasons, if a needle-like or flake-like conductive filler is obtained, a film having a low resistance value can be obtained by adding a small amount compared to a spherical or granular conductive filler. A film excellent in properties and the like can be obtained.

そして、りん片状の酸化物粉末を得る方法として、無機酸化物、含水無機酸化物等のコロイド溶液を凍結し、コロイド溶液の溶媒の結晶面と結晶面の間隙に無機酸化物粒子や含水酸化物粒子を析出させた後、乾燥して脱溶媒し、含水酸化物の場合は更に焙焼して製造する方法(特許文献1参照)が知られている。   Then, as a method of obtaining a flake-like oxide powder, a colloidal solution such as an inorganic oxide or a hydrous inorganic oxide is frozen, and inorganic oxide particles or a hydrous hydroxide is placed in the gap between the crystal planes of the solvent of the colloidal solution. A method is known in which product particles are precipitated and then dried to remove the solvent, and in the case of a hydrated oxide, it is further roasted and manufactured (see Patent Document 1).

また、針状の酸化物粉末を得る方法としては、針状の蓚酸錫を加熱分解して針状錫酸化物を得る方法(特許文献2参照)、硝酸インジウムの高温加熱濃縮スラリーから回収される白色針状インジウム化合物粉末を加熱分解して針状のインジウム−錫酸化物粉末を得る方法(特許文献3参照)等が提案されており、中でも後者の方法で得られるインジウム−錫酸化物(ITO)針状粉末は、透光性導電膜として優れた導電性と透明性を実現できるため最も好ましいと考えられる。尚、特許文献3記載の方法で得られたインジウム−錫酸化物(ITO)針状粉末を導電フィラーとして適用した透光性導電塗料(導電ペースト)と透光性導電膜も既に提案されている(特許文献4参照)。   In addition, as a method for obtaining acicular oxide powder, acicular tin oxalate is thermally decomposed to obtain acicular tin oxide (see Patent Document 2), and recovered from a high-temperature heat-concentrated slurry of indium nitrate. A method of obtaining a needle-like indium-tin oxide powder by thermally decomposing white needle-like indium compound powder (see Patent Document 3) has been proposed. Among them, an indium-tin oxide (ITO) obtained by the latter method is proposed. ) Needle-like powder is considered to be most preferable because it can achieve excellent conductivity and transparency as a translucent conductive film. In addition, a translucent conductive paint (conductive paste) and a translucent conductive film in which indium-tin oxide (ITO) needle-like powder obtained by the method described in Patent Document 3 is applied as a conductive filler have already been proposed. (See Patent Document 4).

しかし、上記ITO針状粉末を得る特許文献3記載の方法においては、硝酸インジウムの高温加熱濃縮スラリーに予め錫化合物を添加して錫含有白色針状インジウム化合物粉末を得、仮焼によりITO針状粉末にしているため、酸化錫のドープ量の制御が難しく大量生産には向いていない欠点があった。   However, in the method described in Patent Document 3 for obtaining the ITO needle-like powder, a tin compound is added in advance to a high-temperature heat-concentrated slurry of indium nitrate to obtain a tin-containing white needle-like indium compound powder. Since it is in powder form, it is difficult to control the amount of tin oxide doped, which is not suitable for mass production.

このため、特許文献5記載の方法により一旦酸化インジウムの針状粉末を得ておいて、後からその酸化インジウム針状粉末に酸化錫をドープする方法(特許文献6、特許文献7参照)が実際には利用されている。   For this reason, a method of obtaining indium oxide needle-like powder once by the method described in Patent Document 5 and then doping tin oxide into the indium oxide needle-like powder is actually practiced (see Patent Document 6 and Patent Document 7). Has been used.

ところで、特許文献6や特許文献7に記載された方法においては、後からドープした酸化錫成分を酸化インジウムに固溶させるため、700℃以上好ましくは1000〜1300℃以上の温度で焼成処理する必要があった。   By the way, in the methods described in Patent Document 6 and Patent Document 7, it is necessary to perform a baking treatment at a temperature of 700 ° C. or higher, preferably 1000 to 1300 ° C. or higher in order to cause the doped tin oxide component to be dissolved in indium oxide later. was there.

そして、この焼成処理の温度条件については700℃以上の任意温度を選定できるが、実際には酸化錫成分を酸化インジウムに完全に固溶させて高い導電性にする必要性から、1000〜1300℃の極めて高温条件で行われていた。   The temperature condition of this baking treatment can be selected at an arbitrary temperature of 700 ° C. or higher. Actually, however, it is necessary to completely dissolve the tin oxide component in indium oxide to make it highly conductive. Was carried out under extremely high temperature conditions.

この高温焼成処理によりITO針状粉末の導電性を十分に高めることはできたが、その反面、この高温焼成処理によりITO針状粉末中の一次粒子が0.25〜1.0μm程度(比表面積換算では約3〜0.8m/g)まで粒成長するためITO針状粉末が黄緑色に着色し、このITO針状粉末が適用された透光性導電塗料により形成される透光性導電膜も黄緑色に着色してしまう問題があった。 Although this high-temperature firing treatment was able to sufficiently increase the conductivity of the ITO needle-shaped powder, on the other hand, primary particles in the ITO needle-shaped powder were about 0.25 to 1.0 μm (specific surface area). The ITO needle-like powder is colored yellow-green because the grains grow to about 3 to 0.8 m 2 / g in terms of conversion, and the light-transmitting conductive material formed by the light-transmitting conductive paint to which the ITO needle-like powder is applied. There was also a problem that the film was colored yellow-green.

そして、透光性導電膜が黄緑色に着色してしまうと、例えば、この透光性導電膜を分散型EL素子の透明電極に適用した場合、本来の蛍光体の発光色とEL素子の発光色が異なるという現象を生じる問題点が存在した。
特開昭62−3003号公報 特開昭56−120519号公報 特開平6−293515号公報 特開平6−309922号公報 特開平6−293516号公報 特開平6−293517号公報 特開平10−17326号公報
When the translucent conductive film is colored yellow-green, for example, when this translucent conductive film is applied to the transparent electrode of the dispersion type EL element, the emission color of the original phosphor and the emission of the EL element There was a problem that caused the phenomenon of different colors.
JP-A-62-23003 JP-A-56-120519 JP-A-6-293515 JP-A-6-309922 JP-A-6-293516 JP-A-6-293517 Japanese Patent Laid-Open No. 10-17326

本発明はこのような問題点に着目してなされたもので、その課題とするところは、分散型EL素子等各種透明電極用の透光性導電膜に適用された場合に、透光性と導電性に優れるだけでなく膜の着色も抑えられたニュートラルな色調を有する透光性導電膜の形成を可能とする透光性導電塗料を提供し、合わせてこのような特性を具備する透光性導電膜を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that when applied to a transparent conductive film for various transparent electrodes such as a dispersion-type EL element, Provided is a light-transmitting conductive paint that enables formation of a light-transmitting conductive film having a neutral color tone that not only has excellent conductivity but also suppresses coloring of the film. It is in providing a conductive film.

そこで、本発明者等はITO針状粉末の製造条件を詳細に再検討したところ、白色(ニュートラル)に近いITO針状粉末を得るためには、上述したITO針状粉末の製造工程において焼成温度を500〜900℃程度と従来よりも低下させることが必要であることが判明した。更に、得られたITO針状粉末を還元処理すると共に、その還元処理条件の制御において、還元ガスの種類(水素、アルコールなど)、ガス流量、処理温度、処理時間等を調整してITO針状粉末中の酸素空孔量を導電性が著しく低下しない範囲内(すなわち、粉末の格子定数を10.1185〜10.1195Åの範囲内)に設定し、かつ、ITO針状粉末の比表面積を4〜20m/gの範囲とすれば、L表色系におけるITO針状粉末の粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10となり、従来のITO針状粉末に比べbの値が小さくなって極めて白色(ニュートラル)に近くなることを見出すに至った。また、酸化錫がドープされたITO針状粉末に限らず、酸化ジルコニウム、酸化亜鉛、酸化タングステン、酸化チタン等他の金属酸化物がドープされた酸化インジウム針状粉末においても同様であることを見出した。本発明はこのような技術的発見に基づき完成されている。 Therefore, the present inventors reexamined the manufacturing conditions of the ITO needle-shaped powder in detail, and in order to obtain an ITO needle-shaped powder close to white (neutral), the firing temperature in the manufacturing process of the ITO needle-shaped powder described above. It has been found that it is necessary to lower the temperature to about 500 to 900 ° C. compared to the conventional case. Further, the obtained ITO needle-shaped powder is reduced, and in the control of the reduction process conditions, the type of reducing gas (hydrogen, alcohol, etc.), the gas flow rate, the processing temperature, the processing time, etc. are adjusted to make the ITO needle-shaped powder. The amount of oxygen vacancies in the powder is set within a range where the conductivity is not significantly reduced (that is, the powder has a lattice constant of 10.1185 to 10.1195 mm), and the specific surface area of the ITO needle-shaped powder is 4 If the range is ˜20 m 2 / g, the powder color of the ITO needle-shaped powder in the L * a * b * color system (light source: D65, viewing angle: 10 °) is L * = 82 to 91, a * = −8 to 2, b * = 0 to 10, and the value of b * was smaller than that of the conventional ITO needle-like powder, and it was found to be very close to white (neutral). Further, the present invention is found not only in the ITO needle powder doped with tin oxide but also in the indium oxide needle powder doped with other metal oxides such as zirconium oxide, zinc oxide, tungsten oxide, and titanium oxide. It was. The present invention has been completed based on such technical findings.

すなわち、請求項1に係る発明は、
金属酸化物がドープされた酸化インジウムにより構成された導電性酸化物針状粉末がバインダーを含む溶剤中に分散した透光性導電塗料を前提とし、
上記導電性酸化物針状粉末の比表面積が4〜20m/gで、かつ、L表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10であることを特徴とする。
That is, the invention according to claim 1
Assuming a translucent conductive paint in which a conductive oxide needle-like powder composed of indium oxide doped with a metal oxide is dispersed in a solvent containing a binder,
The conductive oxide needle-shaped powder has a specific surface area of 4 to 20 m 2 / g, and the powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system is L * = 82-91, a * =-8-2, b * = 0-10.

また、請求項2に係る発明は、
請求項1記載の発明に係る透光性導電塗料を前提とし、
上記導電性酸化物針状粉末の格子定数が、10.1185〜10.1195Åの範囲に設定されていることを特徴とし、
請求項3に係る発明は、
請求項1または2記載の発明に係る透光性導電塗料を前提とし、
上記導電性酸化物針状粉末のアスペクト比(短径に対する長径の比)が5以上であることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る透光性導電塗料を前提とし、
上記金属酸化物が、酸化錫、酸化ジルコニウム、酸化亜鉛、酸化タングステン、酸化チタンから選択された少なくとも一種であることを特徴とし、
請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る透光性導電塗料を前提とし、
上記導電性酸化物針状粉末:バインダーの重量比が、40:60から90:10であることを特徴とする。
The invention according to claim 2
Based on the translucent conductive paint according to the invention of claim 1,
The lattice constant of the conductive oxide needle-shaped powder is set in the range of 10.1185 to 10.1195 Å,
The invention according to claim 3
Based on the translucent conductive paint according to the invention of claim 1 or 2,
The aspect ratio (ratio of major axis to minor axis) of the conductive oxide needle-shaped powder is 5 or more,
The invention according to claim 4
Based on the translucent conductive paint according to any one of claims 1 to 3,
The metal oxide is at least one selected from tin oxide, zirconium oxide, zinc oxide, tungsten oxide, titanium oxide,
The invention according to claim 5
Based on the translucent conductive paint according to any one of claims 1 to 4,
The conductive oxide needle-shaped powder: binder weight ratio is 40:60 to 90:10.

次に、請求項6に係る発明は、
請求項1〜5のいずれかに記載の発明に係る透光性導電塗料を用いて形成された透光性導電膜を前提とし、
膜の比抵抗が5.0Ω・cm以下であることを特徴とする。
Next, the invention according to claim 6 is:
Based on a translucent conductive film formed using the translucent conductive paint according to any one of claims 1 to 5,
The specific resistance of the film is 5.0 Ω · cm or less.

本発明に係る透光性導電塗料によれば、
金属酸化物がドープされた酸化インジウムにより構成され、かつ、その比表面積が4〜20m/gで、L表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10に設定された導電性酸化物針状粉末が導電フィラーとして適用されているため、形成される透光性導電膜は高い透光性と導電性を有するだけでなく膜の着色も抑えられたニュートラルな色調となる。
According to the translucent conductive paint according to the present invention,
It is composed of indium oxide doped with a metal oxide and has a specific surface area of 4 to 20 m 2 / g, and powder color in the L * a * b * color system (light source: D65, viewing angle: 10 ° ) Is applied as a conductive filler, since the conductive oxide needle-shaped powder set to L * = 82 to 91, a * = − 8 to 2, and b * = 0 to 10 is formed. The conductive film has a neutral color tone that not only has high translucency and conductivity but also suppresses coloring of the film.

従って、この透光性導電塗料により形成された本発明に係る透光性導電膜を、例えば、分散型EL素子の透明電極に適用した場合、素子の発光色がもともとの蛍光体の発光色と異なるという現象を防止することが可能となる。   Therefore, when the translucent conductive film according to the present invention formed of this translucent conductive paint is applied to, for example, a transparent electrode of a dispersed EL element, the emission color of the element is the same as that of the original phosphor. It becomes possible to prevent the phenomenon of being different.

以下、本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically.

金属酸化物がドープされた酸化インジウムにより構成された導電性酸化物針状粉末において、その比表面積を4〜20m/gとし、かつ、この導電性酸化物針状粉末の還元処理条件を制御して、導電性酸化物針状粉末中の酸素空孔量を該粉末の導電性(圧粉抵抗値)を著しく低下させない範囲内(すなわち、粉末の格子定数を10.1185〜10.1195Åの範囲内)に調整した場合、導電性酸化物針状粉末の色が白色(ニュートラル)に近づくことを見出して本発明は完成されている。 In the conductive oxide needle-shaped powder composed of indium oxide doped with metal oxide, the specific surface area is set to 4 to 20 m 2 / g, and the reduction treatment conditions of the conductive oxide needle-shaped powder are controlled. Then, the amount of oxygen vacancies in the conductive oxide needle-shaped powder is within a range in which the conductivity (compact resistance value) of the powder is not significantly reduced (that is, the lattice constant of the powder is 10.15185 to 10.1195Å). The present invention has been completed by finding that the color of the conductive oxide needle-like powder approaches white (neutral) when adjusted to within the range.

尚、導電性酸化物針状粉末中の酸素空孔量を導電性が著しく低下しない範囲内に調整するとは以下の意味である。すなわち、酸素空孔を導入する導電性酸化物針状粉末の上記還元処理により針状粉末の導電性は向上するが、酸素空孔を過剰に導入しても導電性の向上効果は飽和し粉末の着色だけが強くなる。この酸素空孔量が過剰にならない程度の意味である。そして、金属酸化物がドープされた酸化インジウム粉においては、酸素空孔の導入に伴い格子定数が大きくなるため、良好な導電性と粉末の着色を抑制する観点から見ると、粉末の格子定数を10.1185〜10.1195Å、より好ましくは10.1188〜10.1193Åの範囲に設定することが望ましい。粉末の格子定数が10.1185Å未満だと酸素空孔量が少なく良好な導電性が得られず、反対に10.1195Åを超えると導電性は良いが粉末の着色が強くなり過ぎて(粉が黄緑っぽい等という色調の意味でなく、着色が大きくなって暗い色になるという意味)、透光性導電膜の透過率を低下させるため好ましくない。   In addition, adjusting the amount of oxygen vacancies in the conductive oxide needle-shaped powder within a range in which the conductivity is not significantly reduced has the following meaning. That is, the above-described reduction treatment of the conductive oxide needle-like powder that introduces oxygen vacancies improves the conductivity of the needle-like powder, but even if oxygen vacancies are introduced excessively, the conductivity improvement effect is saturated and the powder is saturated. Only the coloring of becomes stronger. This means that the amount of oxygen vacancies is not excessive. And, in the indium oxide powder doped with metal oxide, the lattice constant increases with the introduction of oxygen vacancies, so from the viewpoint of good conductivity and suppression of powder coloring, the lattice constant of the powder is It is desirable to set it in the range of 10.1185 to 10.1195 mm, more preferably 10.1188 to 101.193 mm. If the lattice constant of the powder is less than 10.1185 mm, the amount of oxygen vacancies is small and good conductivity cannot be obtained. Conversely, if the lattice constant exceeds 10.1195 mm, the conductivity is good but the powder is too colored (the powder is This is not preferable because it does not mean the color tone such as yellowish green, but it means that the coloring becomes darker and darker color), and the transmittance of the translucent conductive film is lowered.

以下、酸化錫がドープされた酸化インジウムにより構成された導電性酸化物針状粉末を例に挙げ、ITO針状粉末の従来法と対比しながら本発明に係る透光性導電塗料に適用される導電性酸化物針状粉末の製造方法を詳細に説明する。   Hereinafter, a conductive oxide needle-shaped powder composed of indium oxide doped with tin oxide is taken as an example, and applied to the translucent conductive paint according to the present invention while contrasting with the conventional method of ITO needle-shaped powder. The manufacturing method of electroconductive oxide needle-shaped powder is demonstrated in detail.

まず、インジウムメタルを硝酸に溶解した後、液温130〜150℃で加熱濃縮すると、系内から水および硝酸が蒸発し次第に濃厚な白色のスラリーとなる。この白色スラリーを、高温のままろ過した後、多量の純水で洗浄することで、白色針状インジウム化合物粉末が得られる。この白色針状インジウム化合物粉末は、インジウムの塩基性硝酸塩と考えられ、通常、Inが55〜68重量%、NO が5〜23重量%程度含有している。 First, indium metal is dissolved in nitric acid, and then heated and concentrated at a liquid temperature of 130 to 150 ° C., water and nitric acid evaporate from the system to gradually become a thick white slurry. The white slurry is filtered at a high temperature and then washed with a large amount of pure water to obtain a white needle-shaped indium compound powder. This white acicular indium compound powder is considered to be a basic nitrate of indium, and usually contains about 55 to 68% by weight of In and about 5 to 23% by weight of NO 3 .

上記白色針状化合物粉末を大気中300℃以上で仮焼して酸化インジウム針状粉末とする(特許文献5参照)。得られた酸化インジウム針状粉末は、平均粒径0.01〜0.07μm程度の1次粒子で構成された針状の2次粒子からなり、その1次粒子間に細孔が形成されている。   The white acicular compound powder is calcined at 300 ° C. or higher in the atmosphere to obtain indium oxide acicular powder (see Patent Document 5). The obtained indium oxide needle-like powder consists of needle-like secondary particles composed of primary particles having an average particle diameter of about 0.01 to 0.07 μm, and pores are formed between the primary particles. Yes.

次いで、上記酸化インジウム針状粉末の細孔中に四塩化錫を毛管凝縮させた後、大気中の湿度で加水分解させ、更に700℃以上、好ましくは1000〜1300℃で焼成した後、還元性ガス雰囲気下で還元処理を行うと、低抵抗のITO針状粉末が得られる(特許文献7参照)。尚、ITO針状粉末中の錫の含有量は、導電性の観点から、1〜12重量%、好ましくは2〜10重量%が良い。   Next, after tin tetrachloride is capillary condensed into the pores of the indium oxide needle-shaped powder, it is hydrolyzed at atmospheric humidity, and further calcined at 700 ° C. or higher, preferably 1000 to 1300 ° C. When the reduction treatment is performed in a gas atmosphere, a low resistance ITO needle powder is obtained (see Patent Document 7). The content of tin in the ITO needle-shaped powder is 1 to 12% by weight, preferably 2 to 10% by weight, from the viewpoint of conductivity.

また、別の方法として、上記酸化インジウム針状粉末に仮焼により酸化錫となる錫化合物を被覆して700℃以上(例えば1000℃)で焼成してもITO針状粉末が得ることができる(特許文献6参照)。   As another method, ITO needle-like powder can be obtained by coating the indium oxide needle-like powder with a tin compound that becomes tin oxide by calcination and baking at 700 ° C. or higher (for example, 1000 ° C.) ( (See Patent Document 6).

ところで、特許文献6や特許文献7に記載されたITO針状粉末の従来法が提案された出願当時においてはITO針状粉末における導電性の向上が最優先されていたため、酸化インジウムと酸化錫の固溶並びに粒成長促進のための焼成処理の温度条件は上述したように高めに設定する方策がとられており、透光性導電膜の着色に関して特に問題提起はなされておらず、特許文献4に記載された透光性導電膜においても同様であった。   By the way, at the time of filing when the conventional method of ITO needle-shaped powder described in Patent Document 6 and Patent Document 7 was proposed, improvement of conductivity in ITO needle-shaped powder was given the highest priority. As described above, the temperature condition of the baking treatment for promoting solid solution and grain growth is set high, and no particular problem has been raised regarding the coloring of the translucent conductive film. The same applies to the translucent conductive film described in 1.

ここで、本発明で適用される白色(ニュートラル)に近い導電性酸化物針状粉末を得るためには、その比表面積が4〜20m/g、好ましくは7〜20m/gであることが必要である。比表面積が4m/g未満だと、導電性酸化物針状粉末粒子の1次粒子径に起因するためか、白色(ニュートラル)に近い導電性酸化物針状粉末を得ることが困難となり、反対に20m/gを超えると導電性酸化物針状粉末粒子の色調の問題は生じないが1次粒子径が小さくなるため、1次粒子同士の接触部分が脆弱となり導電性酸化物針状粉末の導電性や耐久性(特に高温高湿耐久性)を大幅に悪化させるため好ましくない。 Here, in order to obtain a conductive oxide needle-like powder close to white (neutral) applied in the present invention, the specific surface area is 4 to 20 m 2 / g, preferably 7 to 20 m 2 / g. is required. If the specific surface area is less than 4 m 2 / g, it is difficult to obtain a conductive oxide needle-like powder close to white (neutral) because of the primary particle diameter of the conductive oxide needle-like powder particles, On the other hand, if it exceeds 20 m 2 / g, the problem of color tone of the conductive oxide needle-shaped powder particles does not occur, but the primary particle diameter becomes small. This is not preferable because the conductivity and durability (particularly high temperature and high humidity durability) of the powder are greatly deteriorated.

そして、このようにするためには、金属酸化物がドープされた酸化インジウムにより構成された導電性酸化物針状粉末の製造工程において、上記焼成温度を500〜900℃程度と従来よりも低下させることが必要で、かつ、得られたITO針状粉末の還元処理条件の制御において還元ガスの種類(水素、アルコールなど)、ガス流量、処理温度、処理時間等を調整することにより達成できる。   And in order to make it like this, in the manufacturing process of the electroconductive oxide needle-shaped powder comprised with the indium oxide by which the metal oxide was doped, the said calcination temperature is lowered to about 500-900 degreeC conventionally. In addition, it can be achieved by adjusting the type of reducing gas (hydrogen, alcohol, etc.), the gas flow rate, the processing temperature, the processing time, etc. in the control of the reduction processing conditions of the ITO needle-shaped powder obtained.

この場合、酸化錫等金属酸化物がドープされた酸化インジウムにより構成された導電性酸化物針状粉末中の酸素空孔量について該粉末の導電性が著しく低下しない範囲内(すなわち、粉末の格子定数を10.1185〜10.1195Åの範囲内)に設定すれば、導電性酸化物針状粉末のL表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10となり、従来のITO針状粉末のL表色系における粉体色がL=82〜91、a=−8〜2、b=15〜20の数値と比較してbの値が小さくなり、極めて白色(ニュートラル)に近くなる。ここで、L表色系においてaは色の方向を示し、aは赤方向、−a方向は緑方向、bは黄方向、−bは青方向を示しており、数値が大きいほど色鮮やかになり、両方とも小さくなるほどニュートラルな色(白−灰−黒系)となる。 In this case, the amount of oxygen vacancies in the conductive oxide needle-shaped powder composed of indium oxide doped with a metal oxide such as tin oxide is within a range in which the conductivity of the powder is not significantly reduced (that is, the lattice of the powder). If the constant is set within the range of 10.1185 to 10.1195 mm), the powder color in the L * a * b * color system of the conductive oxide needle-like powder (light source: D65, viewing angle: 10 °) L * = 82 to 91, a * = − 8 to 2, b * = 0 to 10, and the powder color in the L * a * b * color system of the conventional ITO needle powder is L * = 82 to The value of b * is smaller than the numerical values of 91, a * = − 8 to 2, and b * = 15 to 20, which is very close to white (neutral). Here, in the L * a * b * color system, a * b * indicates the color direction, a * is the red direction, -a * direction is the green direction, b * is the yellow direction, and -b * is the blue direction. As the numerical value increases, the color becomes more vivid, and as both become smaller, the color becomes neutral (white-gray-black).

この製造方法により得られる上記導電性酸化物針状粉末は、長径(長さ)5〜300μm程度、アスペクト比5以上で、濃縮条件によりアスペクト比が30程度のものまで得ることができる。また、この粉末を980Pa(100kgf/cm)の圧力を加えてペレット状にしたときの比抵抗(以下、圧粉抵抗値という)は、上述の導電性酸化物針状粉末中の酸素空孔量について該粉末の導電性が著しく低下しない範囲内(すなわち、粉末の格子定数を10.1185〜10.1195Åの範囲内)に設定することにより0.02〜0.2Ω・cm程度が得られるが、好ましくは0.02〜0.12Ω・cmの範囲内に制御するとよい。 The conductive oxide needle-like powder obtained by this production method can have a major axis (length) of about 5 to 300 μm, an aspect ratio of 5 or more, and an aspect ratio of about 30 depending on the concentration conditions. Further, the specific resistance (hereinafter referred to as a dust resistance value) when the powder is pelletized by applying a pressure of 980 Pa (100 kgf / cm 2 ) is an oxygen vacancy in the above-mentioned conductive oxide needle-like powder. By setting the amount within the range in which the conductivity of the powder does not significantly decrease (that is, the lattice constant of the powder is in the range of 10.1185 to 10.1195 mm), about 0.02 to 0.2 Ω · cm can be obtained. However, it is preferable to control within a range of 0.02 to 0.12 Ω · cm.

尚、本発明で適用される導電性酸化物針状粉末は、上述した方法以外の製造方法、例えば、硝酸インジウムと硝酸錫の溶液から尿素による均一沈殿法により針状水酸化物を得、その後仮焼する方法等により長さ1〜5μm程度のものも得ることが可能である。また、酸化インジウムにドープされる金属酸化物としては、上記酸化錫以外に、酸化ジルコニウム、酸化亜鉛、酸化タングステン、酸化チタン等が挙げられ、これ等単独あるいは複数種類併用してもよい。   The conductive oxide needle-like powder applied in the present invention is obtained by a production method other than the above-described method, for example, by obtaining a needle-like hydroxide from a solution of indium nitrate and tin nitrate by a uniform precipitation method with urea. Those having a length of about 1 to 5 μm can be obtained by a calcination method or the like. In addition to the tin oxide, examples of the metal oxide doped into indium oxide include zirconium oxide, zinc oxide, tungsten oxide, and titanium oxide. These may be used alone or in combination.

ここで、金属酸化物がドープされた酸化インジウムにより構成された導電性酸化物針状粉末のアスペクト比を5以上とするのは、バインダーに対し少量の使用で十分な導電性が得られるようにするためである。アスペクト比が5未満であると、少量の導電性フィラーの添加で透光性導電膜の比抵抗を5.0Ω・cm以下にすることが困難となる。尚、アスペクト比は高い方がよく、好ましくは10以上が良い。   Here, the aspect ratio of the conductive oxide needle-shaped powder composed of indium oxide doped with metal oxide is set to 5 or more so that sufficient conductivity can be obtained with a small amount of use with respect to the binder. It is to do. When the aspect ratio is less than 5, it is difficult to make the specific resistance of the translucent conductive film not more than 5.0 Ω · cm by adding a small amount of conductive filler. The aspect ratio should be high, and preferably 10 or more.

次に、本発明で適用される導電性酸化物針状粉末の長径(長さ)に関して特に制限はないが、1〜300μm、好ましくは5〜100μmがよい。長径が大きい程、粒子同士の接点の数が少なくて低抵抗の膜が得られることと、例えば、分散型ELに用いる場合、塗布面の蛍光体層は5〜30μm径の硫化亜鉛粒子を用いているためその表面に数μm程度の凹凸が存在し、長径が1μm以上あると、このような凹凸が存在しても針状粒子同士の接触が保たれ、必要な導電性が得られるからである。一方、長径が300μmを超えると、スクリーン印刷時にスクリーンの網目を通り難くなり、印刷に支障を来す場合がある。一般的には、100μm以下の長径のものが好ましい。但し、100メッシュ以下の粗い目のスクリーンを用いて印刷する場合はこの限りではない。本発明に係る透光性導電塗料では比較的大きな導電性酸化物針状粉末を用いているが、200μm程度の幅の線をスクリーン印刷することは可能である。   Next, although there is no restriction | limiting in particular regarding the long diameter (length) of the electroconductive oxide needle-shaped powder applied by this invention, 1-300 micrometers, Preferably 5-100 micrometers is good. When the longer diameter is larger, the number of contacts between the particles is smaller and a low-resistance film is obtained. For example, when used in a dispersion-type EL, the phosphor layer on the coated surface uses zinc sulfide particles having a diameter of 5 to 30 μm. Therefore, if the surface has unevenness of about several μm and the major axis is 1 μm or more, even if such unevenness exists, contact between the needle-shaped particles is maintained, and necessary conductivity can be obtained. is there. On the other hand, if the major axis exceeds 300 μm, it may be difficult to pass through the screen mesh during screen printing, which may hinder printing. Generally, a long diameter of 100 μm or less is preferable. However, this is not the case when printing is performed using a coarse screen of 100 mesh or less. In the translucent conductive paint according to the present invention, a relatively large conductive oxide needle-like powder is used, but a line having a width of about 200 μm can be screen-printed.

次に、本発明に係る透光性導電塗料の製造方法について以下説明する。   Next, the manufacturing method of the translucent conductive paint which concerns on this invention is demonstrated below.

まず、導電性酸化物針状粉末をバインダーおよび溶媒と混合し、必要に応じ分散剤を添加した後、分散処理を行う。分散剤としては、シリコンカップリング剤等の各種カップリング剤、各種高分子分散剤、アニオン系、ノニオン系、カチオン系等の各種界面活性剤が挙げられる。これら分散剤は、用いる導電性酸化物針状粉末の種類や分散処理方法に応じて適宜選定される。分散処理には、超音波処理、ホモジナイザー、ペイントシェーカー、ビーズミル、スリーロールミル等の汎用の方法を適用することができる。   First, the conductive oxide needle-like powder is mixed with a binder and a solvent, and a dispersant is added as necessary, followed by a dispersion treatment. Examples of the dispersant include various coupling agents such as a silicone coupling agent, various polymer dispersants, anionic, nonionic and cationic surfactants. These dispersants are appropriately selected according to the type of conductive oxide needle powder used and the dispersion treatment method. For the dispersion treatment, general-purpose methods such as ultrasonic treatment, homogenizer, paint shaker, bead mill, and three roll mill can be applied.

透光性導電塗料に用いる上記バインダーとしては、従来の透光性導電膜に使用されている無機バインダー、有機バインダーを用いることが可能であり、例えば、アクリル、ポリエステル等の熱可塑性樹脂、エポキシ、ウレタン等の熱硬化性樹脂、アクリル系、ウレタン系、エポキシ系紫外線硬化樹脂等が用いられる。また、透光性導電塗料中の導電性酸化物針状粉末とバインダーの重量比は、導電性酸化物針状粉末:バインダー=40:60〜90:10がよく、好ましくは導電性酸化物針状粉末:バインダー=60:40〜80:20がよい。バインダーが導電性酸化物針状粉末:バインダー=40:60より多いと得られる透光性導電膜の抵抗が高くなり過ぎる場合があり、バインダーが導電性酸化物針状粉末:バインダー=90:10より少ないと透光性導電膜の強度が低下すると同時に針状粒子同士の接触がうまくとれず抵抗も高くなる場合があるからである。   As the binder used in the translucent conductive paint, it is possible to use an inorganic binder or an organic binder used in a conventional translucent conductive film. For example, thermoplastic resins such as acrylic and polyester, epoxy, Thermosetting resins such as urethane, acrylic, urethane, and epoxy ultraviolet curable resins are used. The weight ratio of the conductive oxide needle-shaped powder to the binder in the translucent conductive paint is preferably conductive oxide needle-shaped powder: binder = 40: 60 to 90:10, preferably the conductive oxide needle. Powder: binder = 60: 40 to 80:20 is preferable. When the binder is more than the conductive oxide needle-like powder: binder = 40: 60, the resistance of the translucent conductive film obtained may be too high, and the binder is the conductive oxide needle-like powder: binder = 90: 10. If the amount is smaller, the strength of the light-transmitting conductive film is lowered, and at the same time, the contact between the needle-like particles is not good and the resistance may be increased.

また、透光性導電塗料に用いる溶媒としては、使用するプラスチック基板に対する溶解性や成膜条件を考慮して適宜選定することができる。例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、酢酸エチル、酢酸ブチル、乳酸メチル等のエステル系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル等のグリコール誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン、エチレングリコール、ジエチレングリコール、トルエン、キシレン、テトラヒドロフラン(THF)、クロロホルム、メシチレン、ドデシルベンゼン等のベンゼン誘導体等が挙げられるが、これらに限定されるものではない。   Further, the solvent used for the light-transmitting conductive paint can be appropriately selected in consideration of the solubility in the plastic substrate to be used and the film forming conditions. For example, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol (DAA), acetone, methyl ethyl ketone (MEK) , Ketone solvents such as methyl propyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone and isophorone, ester solvents such as ethyl acetate, butyl acetate and methyl lactate, ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS) ), Ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM), propylene glycol ethyl ether (PE), propylene glycol methyl ether Diacetate (PGM-AC), Propylene glycol ethyl ether acetate (PE-AC), Diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether, Diethylene glycol monobutyl ether, Diethylene glycol monomethyl ether acetate, Diethylene glycol monoethyl ether acetate, Diethylene glycol monobutyl ether acetate, Diethylene glycol dimethyl ether , Glycol derivatives such as diethylene glycol diethyl ether, diethylene glycol dibutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, formamide (FA), N-methylformamide Dimethylformamide (DMF), dimethylacetamide, dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), γ-butyrolactone, ethylene glycol, diethylene glycol, toluene, xylene, tetrahydrofuran (THF), chloroform, mesitylene, Examples thereof include, but are not limited to, benzene derivatives such as dodecylbenzene.

次に、本発明に係る透光性導電塗料の基板上への印刷には、スクリーン印刷法、グラビア印刷法、ワイヤーバーコーティング法、ドクターブレードコーティング法、ロールコーティング法等を用いることができる。   Next, a screen printing method, a gravure printing method, a wire bar coating method, a doctor blade coating method, a roll coating method and the like can be used for printing on the substrate of the translucent conductive paint according to the present invention.

このように比表面積および粉体色を所定の範囲に設定した上記導電性酸化物針状粉末が適用された本発明に係る透光性導電塗料を用いて形成される透光性導電膜は、高い透光性と導電性を有するだけでなく、膜の着色が抑えられニュートラルな色調となるため、例えば、分散型EL素子の透明電極に適用した場合に、素子の発光色がもともとの蛍光体の発光色と異なるという現象を効果的に防止することができる。   Thus, the translucent conductive film formed using the translucent conductive paint according to the present invention to which the conductive oxide needle-like powder having the specific surface area and powder color set in a predetermined range is applied, Not only has high translucency and conductivity, but also has a neutral color tone with reduced coloration of the film. For example, when applied to a transparent electrode of a dispersion type EL element, the emission color of the element is the original phosphor It is possible to effectively prevent the phenomenon of being different from the emission color.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。また、以下の記述において「%」は、透過率、ヘイズ値の%を除いて「重量%」を示している。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. Further, in the following description, “%” indicates “% by weight” excluding% of transmittance and haze value.

尚、粒径は、JEOL(株)社製の走査電子顕微鏡で測定した。1次粒子間の平均細孔径、細孔容量、および、比表面積はQuantachrome社製の「Quantasorb QS−10」を用いて測定した。ITO針状粉末の格子定数は、NIST製Si標準粉を内部標準とした広角X線回折測定(Si標準粉:ITO針状粉末[重量比]=30:70〜40:60の配合割合で混合)を行った後、Rietveld解析により求めた。また、L表色系における導電性酸化物針状粉末の粉末色と膜の色は、日本電色工業(株)社製の簡易型分光色差計(NF333)で測定した。 The particle size was measured with a scanning electron microscope manufactured by JEOL Co., Ltd. The average pore diameter, pore volume, and specific surface area between primary particles were measured using “Quantasorb QS-10” manufactured by Quantachrome. The lattice constant of the ITO needle-shaped powder was measured by wide-angle X-ray diffraction measurement using Si standard powder made by NIST as an internal standard (Si standard powder: ITO needle-shaped powder [weight ratio] = 30: 70 to 40:60) ) And then obtained by Rietveld analysis. In addition, the powder color and film color of the conductive oxide needle-shaped powder in the L * a * b * color system were measured with a simple spectral color difference meter (NF333) manufactured by Nippon Denshoku Industries Co., Ltd.

また、透過率(可視光)およびヘイズ値は、村上色彩技術研究所製のヘイズメーター(HR−200)を用いて測定した。塗料の粘度は、塗料温度25℃で、B型粘度計を用いて測定した。また、透光性導電膜の表面抵抗は、三菱化学(株)社製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。   Moreover, the transmittance (visible light) and the haze value were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The viscosity of the paint was measured using a B-type viscometer at a paint temperature of 25 ° C. Moreover, the surface resistance of the translucent conductive film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation.

インジウムメタルを硝酸に溶解した後、液温約150℃まで加熱濃縮して白色のスラリーを得た。この白色スラリーを、この温度のままろ過した後、多量の純水で洗浄してインジウムの塩基性硝酸塩からなる白色針状インジウム化合物粉末を得た。   Indium metal was dissolved in nitric acid, and then heated and concentrated to a liquid temperature of about 150 ° C. to obtain a white slurry. The white slurry was filtered at this temperature and then washed with a large amount of pure water to obtain a white needle-like indium compound powder made of indium basic nitrate.

この白色針状インジウム化合物粉末を700℃で仮焼して酸化インジウム針状粉末とした。得られた酸化インジウム針状粉末は、平均粒径0.07μmの1次粒径で構成された針状の2次粒子からなり、その1次粒子間に形成された細孔の平均細孔径が約11nmで、細孔容量は0.16ml/gであった。   This white acicular indium compound powder was calcined at 700 ° C. to obtain an indium oxide acicular powder. The obtained indium oxide needle-like powder consists of needle-like secondary particles composed of primary particles having an average particle size of 0.07 μm, and the average pore size of pores formed between the primary particles is At about 11 nm, the pore volume was 0.16 ml / g.

次に、上記酸化インジウム針状粉末の細孔中に四塩化錫を毛管凝縮させた後、大気中の湿度で加水分解させ、更に700℃で1時間焼成した後、メタノールを含む窒素ガス雰囲気下、300℃で還元処理を行い、酸化錫がドープされた酸化インジウムにより構成された実施例1に係る導電性酸化物針状粉末(ITO針状粉末)を得た。   Next, after tin tetrachloride is capillary condensed into the pores of the indium oxide needle-like powder, it is hydrolyzed at atmospheric humidity, and further baked at 700 ° C. for 1 hour, and then in a nitrogen gas atmosphere containing methanol. The conductive oxide needle-like powder (ITO needle-like powder) according to Example 1 composed of indium oxide doped with tin oxide was obtained by reduction treatment at 300 ° C.

このITO針状粉末の平均長径(平均長さ)は約50μm、短径に対する長径の比(アスペクト比)は約14、錫含有量は2.4重量%、比表面積は9.0m/g、格子定数は10.1191Åであった。また、上記ITO針状粉末のL表色系における粉体色(光源:D65、視野角:10°)はL=84.7、a=−3.9、b=8.1であった。更に、980Pa(100Kgf/cm)の圧力下で測定した圧粉抵抗値は0.04Ω・cmであった。 The ITO needle-like powder has an average major axis (average length) of about 50 μm, a ratio of major axis to minor axis (aspect ratio) of about 14, a tin content of 2.4% by weight, and a specific surface area of 9.0 m 2 / g. The lattice constant was 10.1191Å. Moreover, the powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of the ITO needle-shaped powder is L * = 84.7, a * = − 3.9, b *. = 8.1. Furthermore, the dust resistance value measured under a pressure of 980 Pa (100 Kgf / cm 2 ) was 0.04 Ω · cm.

尚、圧粉抵抗値は電極断面積2cmの専用ホルダーに粉末を挿入後、所定の圧力(100Kgf/cm)を印加してその電極間抵抗を測定して行った。 Incidentally, dust resistance after insertion the powder to a dedicated holder electrode cross-sectional area 2 cm 2, was performed by measuring the interelectrode resistance by applying a predetermined pressure (100Kgf / cm 2).

次に、このITO針状粉末をアクリル樹脂が溶解した溶剤(エチレングリコールモノブチルエーテルアセテート)に分散させて実施例1に係る透光性導電塗料(ITO:28%、アクリル樹脂:18.7%、エチレングリコールモノブチルエーテルアセテート:53.3%)を調製した。尚、この塗料の粘度は、3000mPa・sであった。   Next, the ITO needle-like powder was dispersed in a solvent (ethylene glycol monobutyl ether acetate) in which an acrylic resin was dissolved, and the translucent conductive paint according to Example 1 (ITO: 28%, acrylic resin: 18.7%, Ethylene glycol monobutyl ether acetate: 53.3%) was prepared. The viscosity of this paint was 3000 mPa · s.

この実施例1に係る透光性導電塗料を、基板としてのPETフィルム[東レ(株)社製ルミラー、厚さ:100μm]上にスクリーン印刷(東京プロセスサービス株式会社製、200メッシュ版[T200S])し、120℃×20分間加熱して透光性導電膜を得た。   The translucent conductive paint according to Example 1 was screen-printed on a PET film [Lumirror manufactured by Toray Industries, Inc., thickness: 100 μm] as a substrate (200 mesh version [T200S] manufactured by Tokyo Process Service Co., Ltd.). And heated at 120 ° C. for 20 minutes to obtain a translucent conductive film.

この透光性導電膜の透過率(可視光)は79.2%、ヘイズは84.4%、表面抵抗値は2100Ω/□、膜の比抵抗値は2.52Ω・cmであった。   This translucent conductive film had a transmittance (visible light) of 79.2%, a haze of 84.4%, a surface resistance of 2100 Ω / □, and a specific resistance of the film of 2.52 Ω · cm.

また、透光性導電膜の色は、L表色系(光源:D65、視野角:10°)で、L=95.2、a=−3.53、b=9.51であった。 The color of the translucent conductive film is L * a * b * color system (light source: D65, viewing angle: 10 °), L * = 95.2, a * = − 3.53, b *. = 9.51.

上記透光性導電膜の色については、色彩色差計を用い、まず白色校正板上に基板としてのPETフィルムを置いて校正を行った後、透光性導電膜付PETフィルムを上記白色校正板上に置いて測定した。   Regarding the color of the translucent conductive film, a color difference meter is used to first calibrate by placing a PET film as a substrate on a white calibration plate, and then the PET film with the translucent conductive film is replaced with the white calibration plate. Measured by placing on top.

尚、透光性導電膜の透過率(可視光)およびヘイズ値は透光性導電膜だけの値であり、それぞれ下記計算式により求められる。   In addition, the transmittance | permeability (visible light) and haze value of a translucent conductive film are values only of a translucent conductive film, and are each calculated | required by the following formula.

透光性導電膜の透過率(%)
=[(透光性導電膜付き基板ごと測定した透過率)/(基板の透過率)]×100
透光性導電膜のヘイズ値(%)
=(透光性導電膜付き基板ごと測定したヘイズ値)−(基板のヘイズ値)
また、透光性導電塗料の粘度は、塗料温度25℃で、B型粘度計を用いて測定した。
Transmissivity of translucent conductive film (%)
= [(Transmittance measured for each substrate with translucent conductive film) / (Transmittance of substrate)] × 100
Haze value of translucent conductive film (%)
= (Haze value measured for each substrate with translucent conductive film)-(Haze value of substrate)
The viscosity of the translucent conductive paint was measured using a B-type viscometer at a paint temperature of 25 ° C.

実施例1に係る透光性導電塗料を、基板としてのPETフィルム[東レ(株)社製ルミラー、厚さ:100μm]上にスクリーン印刷(東京プロセスサービス株式会社製、150メッシュ版[T150S]を用い印刷条件を変えて厚膜印刷)し、120℃×20分間加熱した以外は実施例1と同様に行い、透光性導電膜を得た。   The translucent conductive paint according to Example 1 was screen-printed (Tokyo Process Service Co., Ltd., 150 mesh plate [T150S]) on a PET film [Lumirror manufactured by Toray Industries, Inc., thickness: 100 μm] as a substrate. The light-transmitting conductive film was obtained in the same manner as in Example 1 except that the printing conditions were changed and the thick film was printed) and heated at 120 ° C. for 20 minutes.

この透光性導電膜の透過率(可視光)は63.0%、ヘイズは87.3%、表面抵抗値は450Ω/□、透光性導電膜の比抵抗値は0.86Ω・cmであった。   The transmissivity (visible light) of this translucent conductive film is 63.0%, haze is 87.3%, the surface resistance value is 450Ω / □, and the specific resistance value of the translucent conductive film is 0.86Ω · cm. there were.

また、透光性導電膜の色は、L表色系(光源:D65、視野角:10°)で、L=92.7、a=−4.27、b=12.58であった。
[比較例1]
実施例1において、酸化インジウム針状粉末の細孔中に四塩化錫を毛管凝縮させた後、大気中の湿度で加水分解させ、更に1200℃で1時間焼成した以外は、実施例1と同様に行い、酸化錫がドープされた酸化インジウムにより構成された比較例1に係る導電性酸化物針状粉末(ITO針状粉末)を得た。
The color of the translucent conductive film is L * a * b * color system (light source: D65, viewing angle: 10 °), L * = 92.7, a * = − 4.27, b *. = 12.58.
[Comparative Example 1]
In Example 1, the same procedure as in Example 1 except that tin tetrachloride was capillary condensed into the pores of the indium oxide needle-like powder, then hydrolyzed at atmospheric humidity, and further fired at 1200 ° C. for 1 hour. The conductive oxide needle-shaped powder (ITO needle-shaped powder) according to Comparative Example 1 composed of indium oxide doped with tin oxide was obtained.

このITO針状粉末の平均長径(平均長さ)は約50μm、短径に対する長径の比(アスペクト比)は約14、錫含有量は2.4重量%、比表面積は1.0m/g、格子定数は10.1221Åであった。また、上記ITO針状粉末のL表色系における粉体色(光源:D65、視野角:10°)はL=85.8、a=−5.9、b=17.7であった。更に、980Pa(100Kgf/cm)の圧力下で測定した圧粉抵抗値は0.02Ω・cmであった。 The ITO needle-like powder has an average major axis (average length) of about 50 μm, a ratio of major axis to minor axis (aspect ratio) of about 14, a tin content of 2.4% by weight, and a specific surface area of 1.0 m 2 / g. The lattice constant was 10.1221Å. Moreover, the powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of the ITO needle-shaped powder is L * = 85.8, a * = − 5.9, b *. = 17.7. Furthermore, the dust resistance value measured under a pressure of 980 Pa (100 Kgf / cm 2 ) was 0.02 Ω · cm.

次に、このITO粉末をアクリル樹脂が溶解した溶剤(エチレングリコールモノブチルエーテルアセテート)に分散させて比較例1に係る透光性導電塗料(ITO:28%、アクリル樹脂:18.7%、エチレングリコールモノブチルエーテルアセテート:53.3%)を調製した。この透光性導電塗料の粘度は、2600mPa・sであった。   Next, this ITO powder was dispersed in a solvent (ethylene glycol monobutyl ether acetate) in which an acrylic resin was dissolved, and the translucent conductive paint according to Comparative Example 1 (ITO: 28%, acrylic resin: 18.7%, ethylene glycol). Monobutyl ether acetate: 53.3%) was prepared. This translucent conductive paint had a viscosity of 2600 mPa · s.

次いで、この透光性導電塗料を、基板としてのPETフィルム[東レ(株)社製ルミラー、厚さ:100μm]上にスクリーン印刷(東京プロセスサービス株式会社製、200メッシュ版[T200S])し、120℃×20分間加熱して透光性導電膜を得た。   Next, this translucent conductive paint was screen-printed on a PET film [Lumirror manufactured by Toray Industries, Inc., thickness: 100 μm] as a substrate (200 mesh version [T200S] manufactured by Tokyo Process Service Co., Ltd.) The transparent conductive film was obtained by heating at 120 ° C. for 20 minutes.

この透光性導電膜の透過率(可視光)は80.9%、ヘイズは79.3%、表面抵抗値は2000Ω/□、膜の比抵抗値は2.2Ω・cmであった。また、透光性導電膜の色は、L表色系(光源:D65、視野角:10°)で、L=95.9、a=−4.12、b=12.01であった。
[比較例2]
基板としてのPETフィルム[東レ(株)社製ルミラー、厚さ:100μm]上に、比較例1に係る透光性導電塗料をスクリーン印刷(東京プロセスサービス株式会社製、150メッシュ版[T150S]を用い印刷条件を変えて厚膜印刷)し、120℃×20分間加熱した以外は比較例1と同様に行い、透光性導電膜を得た。
This translucent conductive film had a transmittance (visible light) of 80.9%, a haze of 79.3%, a surface resistance of 2000Ω / □, and a specific resistance of the film of 2.2Ω · cm. The color of the translucent conductive film is L * a * b * color system (light source: D65, viewing angle: 10 °), L * = 95.9, a * = − 4.12, b *. = 12.01.
[Comparative Example 2]
On the PET film [Toray Co., Ltd. Lumirror, thickness: 100 μm] as a substrate, the translucent conductive paint according to Comparative Example 1 was screen-printed (Tokyo Process Service Co., Ltd., 150 mesh version [T150S]). A thick transparent film was used under different printing conditions, and the same procedure as in Comparative Example 1 was performed except that the film was heated at 120 ° C. for 20 minutes to obtain a light-transmitting conductive film.

この透光性導電膜の透過率(可視光)は64.0%、ヘイズは91.0%、表面抵抗値は330Ω/□、透光性導電膜の比抵抗値は0.65Ω・cmであった。   This translucent conductive film has a transmittance (visible light) of 64.0%, a haze of 91.0%, a surface resistance value of 330 Ω / □, and a specific resistance value of the translucent conductive film of 0.65 Ω · cm. there were.

また、透光性導電膜の色は、L表色系(光源:D65、視野角:10°)で、L=93.0、a=−6.56、b=20.62であった。
[比較例3]
実施例1において、還元処理時間を長くして酸素空孔量を多くした以外は、実施例1と同様に行い、酸化錫がドープされた酸化インジウムにより構成された比較例3に係る導電性酸化物針状粉末(ITO針状粉末)を得た。
The color of the translucent conductive film is L * a * b * color system (light source: D65, viewing angle: 10 °), L * = 93.0, a * = − 6.56, b *. = 20.62.
[Comparative Example 3]
In Example 1, except that the reduction treatment time was lengthened to increase the amount of oxygen vacancies, the same process as in Example 1 was carried out, and the conductive oxidation according to Comparative Example 3 composed of indium oxide doped with tin oxide was performed. A needle-like powder (ITO needle-like powder) was obtained.

このITO針状粉末の平均長径(平均長さ)は約50μm、短径に対する長径の比(アスペクト比)は約14、錫含有量は2.4重量%、比表面積は9.0m/g、格子定数は10.1198Åであった。また、上記ITO針状粉末のL表色系における粉体色(光源:D65、視野角:10°)はL=77.2、a=−0.8、b=6.6であった。更に、980Pa(100Kgf/cm)の圧力下で測定した圧粉抵抗値は0.04Ω・cmであった。 The ITO needle-like powder has an average major axis (average length) of about 50 μm, a ratio of major axis to minor axis (aspect ratio) of about 14, a tin content of 2.4% by weight, and a specific surface area of 9.0 m 2 / g. The lattice constant was 10.1198cm. The powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system of the ITO needle-shaped powder is L * = 77.2, a * = − 0.8, b *. = 6.6. Furthermore, the dust resistance value measured under a pressure of 980 Pa (100 Kgf / cm 2 ) was 0.04 Ω · cm.

次に、このITO粉末をアクリル樹脂が溶解した溶剤(エチレングリコールモノブチルエーテルアセテート)に分散させて比較例3に係る透光性導電塗料(ITO:28%、アクリル樹脂:18.7%、エチレングリコールモノブチルエーテルアセテート:53.3%)を調製した。この透光性導電塗料の粘度は、2900mPa・sであった。   Next, this ITO powder was dispersed in a solvent (ethylene glycol monobutyl ether acetate) in which an acrylic resin was dissolved, and the translucent conductive paint according to Comparative Example 3 (ITO: 28%, acrylic resin: 18.7%, ethylene glycol). Monobutyl ether acetate: 53.3%) was prepared. This translucent conductive paint had a viscosity of 2900 mPa · s.

次いで、この透光性導電塗料を、基板としてのPETフィルム[東レ(株)社製ルミラー、厚さ:100μm]上にスクリーン印刷(東京プロセスサービス株式会社製、150メッシュ版[T150S])し、120℃×20分間加熱して透光性導電膜を得た。   Next, this translucent conductive paint was screen-printed on a PET film [Lumirror manufactured by Toray Industries, Inc., thickness: 100 μm] as a substrate (Tokyo Process Service Co., Ltd., 150 mesh version [T150S]), The transparent conductive film was obtained by heating at 120 ° C. for 20 minutes.

この透光性導電膜の透過率(可視光)は59.0%、ヘイズは87.0%、表面抵抗値は455Ω/□、透光性導電膜の比抵抗値は0.87Ω・cmであった。また、透光性導電膜の色は、L表色系(光源:D65、視野角:10°)で、L=91.0、a=−0.9、b=10.1であった。 This translucent conductive film has a transmittance (visible light) of 59.0%, a haze of 87.0%, a surface resistance value of 455 Ω / □, and a specific resistance value of the translucent conductive film of 0.87 Ω · cm. there were. The color of the translucent conductive film is L * a * b * color system (light source: D65, viewing angle: 10 °), L * = 91.0, a * = − 0.9, b *. = 10.1.

「評 価」
(1)その比表面積が9.0m/g、格子定数が10.1191Åである実施例1に係る導電性酸化物針状粉末と、その比表面積が1.0m/g、格子定数が10.1221Åである比較例1に係る導電性酸化物針状粉末の粉体色について比較すると、実施例1のaは−3.9、比較例1は−5.9、実施例1のbは8.1、比較例1は17.7であり、a、b共に実施例1の値(絶対値)が小さいことから、実施例1に係る導電性酸化物針状粉末の粉体色は比較例1に較べてニュートラルな色(白−灰−黒系)であることが確認される。
(2)また、透光性導電膜の色に関し実施例1と比較例1を比較すると、両者の膜の透過率は79〜81%であまり差異はないが、実施例1のaは−3.53、比較例1は−4.12、実施例1のbは9.51、比較例1は12.01であり、a、b共に実施例1の値(絶対値)が小さいことから、実施例1に係る透光性導電膜の色は比較例1に較べてニュートラルな色(白−灰−黒系)であることも確認される。
(3)次に、実施例2(実施例1と同一の導電性酸化物針状粉末)と比較例2(比較例1と同一の導電性酸化物針状粉末)に係る透光性導電膜の色の比較では、両者の膜の透過率は63〜64%であまり差異はないが、実施例2のaは−4.27、比較例2は−6.56、実施例2のbは12.58、比較例2は20.62であり、a、b共に実施例2の値(絶対値)が小さいことから、実施例2に係る透光性導電膜の色も比較例2に較べてニュートラルな色(白−灰−黒系)であることが確認される。
(4)更に、その比表面積が9.0m/g、格子定数が10.1191Åである実施例2に係る導電性酸化物針状粉末(実施例1と同一の導電性酸化物針状粉末)と、その比表面積が9.0m/g、格子定数が10.1198Åである比較例3に係る導電性酸化物針状粉末の粉体色について比較すると、比較例3のa、bの値はそれぞれ−0.8、6.6で、共に実施例2のa、b(−3.9、8.1)よりもその絶対値が小さいが、比較例3のLの値が77.2と実施例2の84.7に比べて大きく悪化しており、可視光線の吸収が強く、透光性導電膜の導電フィラーとして適していないことが確認される。
(5)また、実施例2と比較例3に係る透光性導電膜の比較においても、同様に、比較例3のa、bの値はそれぞれ−0.9、10.1で、共に実施例2のa、b(−4.27、12.58)よりもその絶対値が小さいが、透光性導電膜において最も重要な膜の透過率が、実施例2の63.0%に対し、比較例2は59.0%と大幅に低下していることが確認される。
(6)このように実施例に係る導電性酸化物針状粉末(ITO針状粉末)およびそれを用いた透光性導電膜は良好な透光性を有し、かつ、粉体色と透光性導電膜の色において特にbの値が小さいのに対し、比較例に係る導電性酸化物針状粉末(ITO針状粉末)とバインダーからなる透光性導電塗料を用いて形成された透光性導電膜においては透光性が大幅に悪化しているか、あるいは膜の色が黄色っぽいことが判る。従って、実施例に係る導電性酸化物針状粉末を用いて形成された透光性導電膜は良好な透光性を有しかつ膜の色がニュートラルに近いため、例えば、分散型EL素子の透明電極に適用した場合に、高い輝度を有すると同時に素子の発光色がもともとの蛍光体の発光色と異なるという現象を防止できることが確認できる。
"Evaluation"
(1) The conductive oxide needle-shaped powder according to Example 1 having a specific surface area of 9.0 m 2 / g and a lattice constant of 10.1911, and a specific surface area of 1.0 m 2 / g and a lattice constant of When comparing the powder color of the conductive oxide needle-shaped powder according to Comparative Example 1 that is 10.2211, the a * of Example 1 is −3.9, the Comparative Example 1 is −5.9, and the Example 1 b * is 8.1 and Comparative Example 1 is 17.7 . Since both a * and b * have a small value (absolute value) in Example 1, the conductive oxide needle-shaped powder according to Example 1 It is confirmed that the powder color is a neutral color (white-gray-black) as compared with Comparative Example 1.
(2) Further, when Example 1 and Comparative Example 1 are compared with respect to the color of the translucent conductive film, the transmittance of both films is 79 to 81%, which is not so different, but a * of Example 1 is − 3.53, Comparative Example 1 is -4.12, b * of Example 1 is 9.51, and Comparative Example 1 is 12.01. The values (absolute values) of Example 1 are both a * and b *. Since it is small, it is also confirmed that the color of the translucent conductive film according to Example 1 is a neutral color (white-gray-black) as compared with Comparative Example 1.
(3) Next, the translucent conductive film according to Example 2 (the same conductive oxide needle-like powder as in Example 1) and Comparative Example 2 (the same conductive oxide needle-like powder as in Comparative Example 1) In the comparison of colors, the transmittances of the two films are 63 to 64%, which is not so different, but a * in Example 2 is −4.27, −6.56 in Comparative Example 2, and b in Example 2. * Is 12.58 and Comparative Example 2 is 20.62 . Since both a * and b * are small in value (absolute value) in Example 2, the color of the translucent conductive film according to Example 2 is also compared. Compared to Example 2, it is confirmed that the color is neutral (white-gray-black).
(4) Further, the conductive oxide needle-like powder according to Example 2 having a specific surface area of 9.0 m 2 / g and a lattice constant of 10.1191Å (the same conductive oxide needle-like powder as in Example 1) ) And the powder color of the conductive oxide needle-shaped powder according to Comparative Example 3 having a specific surface area of 9.0 m 2 / g and a lattice constant of 10.1198 mm, a * and b of Comparative Example 3 The values of * are −0.8 and 6.6, respectively, which are smaller in absolute value than a * and b * (−3.9, 8.1) of Example 2, but L * of Comparative Example 3 Of 77.2, which is much worse than 84.7 of Example 2, it is confirmed that absorption of visible light is strong and it is not suitable as a conductive filler of a translucent conductive film.
(5) Also, in the comparison of the light-transmitting conductive film according to Example 2 and Comparative Example 3, similarly, the values of a * and b * of Comparative Example 3 are −0.9 and 10.1, respectively. Both of the absolute values of a * and b * (−4.27, 12.58) of Example 2 are smaller than those of Example 2, but the transmittance of the most important film in the translucent conductive film is 63. It is confirmed that Comparative Example 2 is significantly reduced to 59.0% with respect to 0%.
(6) As described above, the conductive oxide needle-shaped powder (ITO needle-shaped powder) and the translucent conductive film using the conductive oxide have good translucency, and have a powder color and translucency. While the color of the photoconductive film has a particularly small b * value, it was formed using a translucent conductive paint composed of a conductive oxide needle-like powder (ITO needle-like powder) and a binder according to a comparative example. In the translucent conductive film, it can be seen that the translucency is greatly deteriorated or the color of the film is yellowish. Therefore, the translucent conductive film formed using the conductive oxide needle-shaped powder according to the example has good translucency and the color of the film is close to neutral. When applied to the transparent electrode, it can be confirmed that the phenomenon that the emission color of the element is different from the emission color of the original phosphor can be prevented while having high luminance.

本発明に係る透光性導電塗料を用いて形成された透光性導電膜は、高い透光性と導電性を有しかつ膜の着色も抑えられたニュートラルな色調となるため、例えば、分散型EL素子の透明電極に適用した場合に、高い輝度を有すると同時に素子の発光色がもともとの蛍光体の発光色と異なるという現象を防止できる。従って、分散型EL素子等の各種透明電極形成用の透光性導電塗料として利用することができる。   The translucent conductive film formed using the translucent conductive paint according to the present invention has a neutral color tone that has high translucency and conductivity and suppresses coloring of the film. When applied to a transparent electrode of a type EL element, it is possible to prevent a phenomenon in which the light emission color of the element is different from the light emission color of the original phosphor while having high luminance. Therefore, it can be used as a translucent conductive paint for forming various transparent electrodes such as a dispersion type EL element.

Claims (6)

金属酸化物がドープされた酸化インジウムにより構成された導電性酸化物針状粉末がバインダーを含む溶剤中に分散した透光性導電塗料において、
上記導電性酸化物針状粉末の比表面積が4〜20m/gで、かつ、L表色系における粉体色(光源:D65、視野角:10°)がL=82〜91、a=−8〜2、b=0〜10であることを特徴とする透光性導電塗料。
In the translucent conductive paint in which the conductive oxide needle-like powder composed of indium oxide doped with metal oxide is dispersed in a solvent containing a binder,
The conductive oxide needle-shaped powder has a specific surface area of 4 to 20 m 2 / g, and the powder color (light source: D65, viewing angle: 10 °) in the L * a * b * color system is L * = 82-91, a * =-8-2, b * = 0-10, The translucent conductive paint characterized by the above-mentioned.
上記導電性酸化物針状粉末の格子定数が、10.1185〜10.1195Åの範囲に設定されていることを特徴とする請求項1に記載の透光性導電塗料。   2. The translucent conductive paint according to claim 1, wherein a lattice constant of the conductive oxide needle-shaped powder is set in a range of 10.1185 to 10.1195 mm. 上記導電性酸化物針状粉末のアスペクト比(短径に対する長径の比)が5以上であることを特徴とする請求項1または2に記載の透光性導電塗料。   3. The translucent conductive paint according to claim 1, wherein the conductive oxide needle-shaped powder has an aspect ratio (ratio of major axis to minor axis) of 5 or more. 上記金属酸化物が、酸化錫、酸化ジルコニウム、酸化亜鉛、酸化タングステン、酸化チタンから選択された少なくとも一種であることを特徴とする請求項1〜3のいずれかに記載の透光性導電塗料。   The translucent conductive paint according to claim 1, wherein the metal oxide is at least one selected from tin oxide, zirconium oxide, zinc oxide, tungsten oxide, and titanium oxide. 上記導電性酸化物針状粉末:バインダーの重量比が、40:60から90:10であることを特徴とする請求項1〜4のいずれかに記載の透光性導電塗料。   The translucent conductive paint according to any one of claims 1 to 4, wherein a weight ratio of the conductive oxide needle-like powder: binder is 40:60 to 90:10. 請求項1〜5のいずれかに記載の透光性導電塗料を用いて形成された透光性導電膜において、
膜の比抵抗が5.0Ω・cm以下であることを特徴とする透光性導電膜。
In the translucent conductive film formed using the translucent conductive paint according to claim 1,
A translucent conductive film, wherein the specific resistance of the film is 5.0 Ω · cm or less.
JP2005109604A 2004-04-09 2005-04-06 Transparent electrically conductive coating and transparent electrically conductive film Withdrawn JP2005320525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109604A JP2005320525A (en) 2004-04-09 2005-04-06 Transparent electrically conductive coating and transparent electrically conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004115245 2004-04-09
JP2005109604A JP2005320525A (en) 2004-04-09 2005-04-06 Transparent electrically conductive coating and transparent electrically conductive film

Publications (1)

Publication Number Publication Date
JP2005320525A true JP2005320525A (en) 2005-11-17

Family

ID=35468017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109604A Withdrawn JP2005320525A (en) 2004-04-09 2005-04-06 Transparent electrically conductive coating and transparent electrically conductive film

Country Status (1)

Country Link
JP (1) JP2005320525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007235A (en) * 2007-06-01 2009-01-15 Asahi Kasei Corp Indium oxide fine particle dispersion
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007235A (en) * 2007-06-01 2009-01-15 Asahi Kasei Corp Indium oxide fine particle dispersion
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode

Similar Documents

Publication Publication Date Title
JP5070796B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP5798240B2 (en) Antimony-doped tin oxide powder and method for producing the same
KR101991676B1 (en) Conductive ink composition for forming transparent electrode
TW201736276A (en) Composite tungsten oxide ultrafine particles and dispersion liquid thereof
WO2006025470A1 (en) Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article
TW201311569A (en) Ruthenium oxide powder, composition for thick-film resistors using the same, and thick-film resistors
JP7181827B2 (en) Zirconium nitride powder coated with alumina and method for producing the same
JP2005322626A (en) Needle-shaped powder of conductive oxide
JP5831055B2 (en) Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
JP2008140559A (en) Translucent conductive paint and translucent conductive membrane
JP2010199196A (en) Composition for forming electrode for solar cell, method of forming electrode, and solar cell using electrode obtained by method
TW202030152A (en) Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine particle powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body, and infrared absorbing substrate
JP2010075775A (en) Wavelength selective barrier film and wavelength selective barrier
JP2001332123A (en) Conductive pigment powder, and transparent conductive film composed by using it
JP2012072402A (en) Particulate dispersion of infrared-shielding material, infrared-shielding body, method for producing particulate of infrared-shielding material, and particulate of infrared-shielding material
JP2005320525A (en) Transparent electrically conductive coating and transparent electrically conductive film
JP4904714B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP2009181917A (en) Colored conductive film, and colored conductive paint
JP2011018542A (en) Transparent conductive base material and manufacturing method thereof
JP4906027B2 (en) Composite indium oxide particles and method for producing the same, and conductive paint, conductive coating film and conductive sheet
KR101155071B1 (en) Electroconductive coating composition and preparing method thereof
JP2018067640A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor, and method for manufacturing positive temperature coefficient resistor
JP6530644B2 (en) Composition for forming ITO conductive film and ITO conductive film
KR102064997B1 (en) Protective film compound manufacturing method and transparent electrode manufacturing method
JP6866184B2 (en) Blue-white titanium nitride powder and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100416