JP2008138826A - Damper - Google Patents

Damper Download PDF

Info

Publication number
JP2008138826A
JP2008138826A JP2006327977A JP2006327977A JP2008138826A JP 2008138826 A JP2008138826 A JP 2008138826A JP 2006327977 A JP2006327977 A JP 2006327977A JP 2006327977 A JP2006327977 A JP 2006327977A JP 2008138826 A JP2008138826 A JP 2008138826A
Authority
JP
Japan
Prior art keywords
refrigerant liquid
screw mechanism
screw
damping
reciprocating motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006327977A
Other languages
Japanese (ja)
Other versions
JP4901443B2 (en
Inventor
Ryoji Kase
良二 加瀬
Takeshi Takatsuka
健 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Oilless Industries Inc
Original Assignee
Sankyo Oilless Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Oilless Industries Inc filed Critical Sankyo Oilless Industries Inc
Priority to JP2006327977A priority Critical patent/JP4901443B2/en
Publication of JP2008138826A publication Critical patent/JP2008138826A/en
Application granted granted Critical
Publication of JP4901443B2 publication Critical patent/JP4901443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To save driving energy by suppressing heating by vibrational energy in a damper. <P>SOLUTION: This damper 1 comprises a screw damping part 4 converting an interlayer displacement produced in a structure by a vibrational energy into a rotary motion by a screw mechanism part and generating a frictional damping; and a viscous damping part 8 damping energy by the resistance of a viscous body placed between an inner tube rotated by the rotary motion and an outer tube surrounding the outer side of the inner tube and rotatably supporting the inner tube. A part of the flow passage of a cooling device 9 is formed near the heating part of the screw mechanism part. A refrigerant liquid 9b in the cooling device flows out in one direction and is circulated by using the reciprocating motion of a reciprocating motion part as a drive source for a pump for refrigerant liquid. A tank storing the refrigerant liquid and having a pressure valve for releasing the variation of flow and the internal pressure in the pump is installed between the flow passage of the screw mechanism part and the flow passage of the pump for refrigerant liquid in the flow passage of the cooling device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、地震等の振動エネルギーによって生じる構造物の慣性エネルギーは構造物上下層の層間によって相違して、層間変位となって現れる。その構造物の上下層における層間変位を利用して当該構造物に設けられた取付部材を介して相対往復運動とし、その相対往復運動をネジ機構により回転運動に変換、且つ、ネジ摩擦によるネジ減衰部と、粘性減衰部とにより吸収して減衰するもので、前記ネジ機構部の発熱を抑制するようにした減衰装置に関するものである。   In the present invention, for example, the inertial energy of a structure generated by vibrational energy such as an earthquake differs between the upper and lower layers of the structure and appears as interlayer displacement. The relative reciprocating motion is converted to the rotational motion by the screw mechanism through the mounting member provided in the structure using the interlayer displacement in the upper and lower layers of the structure, and the screw is attenuated by screw friction. The present invention relates to an attenuation device that is absorbed and attenuated by a part and a viscous attenuation part, and that suppresses heat generation of the screw mechanism part.

従来、地震等における振動エネルギーを減衰させる減衰装置として、上記のように往復直線運動を回転運動に変換する運動エネルギー変換部のある従来例1と従来例2とが知られている(特許文献1、2参照)。   Conventionally, as a damping device for attenuating vibration energy in an earthquake or the like, Conventional Example 1 and Conventional Example 2 having a kinetic energy conversion unit that converts a reciprocating linear motion into a rotational motion as described above are known (Patent Document 1). 2).

従来例1の減衰装置は、回転運動変換手段に、粘性減衰手段の減衰能力が低下しないように、減衰量の一部を負担させたものである。また、前記従来例2は、減衰により発生する熱エネルギーを放熱させる冷却手段を設けたものである。
特開2004−84845号公報 特開2006−17251号公報
In the damping device of Conventional Example 1, a part of the damping amount is borne by the rotational motion converting means so that the damping capacity of the viscous damping means does not decrease. The conventional example 2 is provided with a cooling means for radiating heat energy generated by attenuation.
JP 2004-84845 A JP 2006-17251 A

しかし、従来例1の減衰装置では、回転運動変換部におけるネジ部において、摩擦熱の発生により、ネジ部の膨張等により焼き付きが課題となる。また、従来例2においては、冷却手段を機能させるために、駆動部、制御部に外部エネルギーを要すること、冷却装置の設置場所、また、冷却手段の維持管理に多大な費用を要する等の課題がある。本発明に係る減衰装置は、このような課題を解決するために提案されたものである。   However, in the damping device of Conventional Example 1, seizure becomes a problem due to the expansion of the screw portion or the like due to the generation of frictional heat in the screw portion in the rotational motion conversion portion. Moreover, in the prior art 2, in order for the cooling means to function, external energy is required for the drive unit and the control unit, the place where the cooling device is installed, and the maintenance and management of the cooling means require a large amount of cost. There is. The attenuation device according to the present invention has been proposed in order to solve such a problem.

本発明に係る減衰装置の上記課題を解決して目的を達成するための要旨は、振動エネルギーによって構造物に生じる層間変位を、当該構造物に設けられた取付部材を介して往復運動部の相対往復運動とし、その相対往復運動をネジ機構部により回転運動に変換し、且つ、摩擦減衰を発生させるネジ減衰部と、当該回転運動によって回転される内筒とその外側を囲繞して前記内筒を回転自在に支持する外筒との間に充填された粘性体の抵抗によりエネルギーを減衰させる粘性減衰部とでなる減衰装置において、前記ネジ機構部における発熱部の近傍に冷却装置の一部を設けると共に、前記冷却装置の一部を前記往復運動部に設け、前記往復運動部の往復運動を冷媒液用ポンプの駆動源にして前記冷却装置の冷媒液が一方向に流出されて配管により循環され、前記冷却装置におけるネジ機構部と、冷媒液用ポンプの配管との間に、冷媒液を貯留するとともにポンプの流量変動及び内部圧力を逃す圧力弁を有したタンクが設けられていることである。   The gist for solving the above-described problems of the damping device according to the present invention is to achieve interlayer displacement caused in the structure by vibration energy relative to the reciprocating motion part via the mounting member provided in the structure. A reciprocating motion, converting the relative reciprocating motion into a rotational motion by a screw mechanism, and generating a frictional damping; an inner tube rotated by the rotational motion; In a damping device comprising a viscous damping part that attenuates energy by the resistance of a viscous body filled between an outer cylinder that rotatably supports a part of the cooling device in the vicinity of the heat generating part in the screw mechanism part. In addition, a part of the cooling device is provided in the reciprocating portion, and the reciprocating motion of the reciprocating portion is used as a drive source for the refrigerant liquid pump so that the refrigerant liquid in the cooling device flows out in one direction and is connected to the piping. A tank having a pressure valve that circulates and stores the refrigerant liquid and releases the flow rate fluctuation of the pump and the internal pressure is provided between the screw mechanism portion in the cooling device and the pipe of the refrigerant liquid pump. It is.

前記ネジ機構部からタンクに至るまでの配管が外部に露出され、その外部露出部分の配管には、複数枚の放熱板が固着され若しくは着脱自在にされて設けられていること、;
前記ネジ減衰部の筐体と、粘性減衰部の筐体とが間隙を有して分離され、ネジ減衰部におけるネジ機構部の回転するネジ軸が、粘性減衰部の内筒に連結されていること、;
前記往復運動部における往復直線運動する棒状の往復体にピストン部が形成され、そのピストン部の前後方向の両側に冷媒液用の流路が配設され、この流路の流入側と流出側とに設けられた逆止弁により、冷媒液が一方向に流れて循環すること、;
を含むものである。
A pipe extending from the screw mechanism to the tank is exposed to the outside, and a plurality of heat radiating plates are fixed or detachably provided on the pipe of the externally exposed portion;
The housing of the screw attenuating portion and the housing of the viscous attenuating portion are separated with a gap, and the screw shaft of the screw mechanism portion rotating in the screw attenuating portion is connected to the inner cylinder of the viscous attenuating portion. thing,;
A piston part is formed in a rod-like reciprocating body that reciprocates linearly in the reciprocating part, and a flow path for refrigerant liquid is disposed on both sides in the front-rear direction of the piston part. The refrigerant liquid flows in one direction and circulates by a check valve provided in
Is included.

また、減衰装置の要旨は、振動エネルギーによって構造物に生じる層間変位を、取付部材を介して往復運動部の相対往復運動として、その相対往復運動をネジ機構部により回転運動に変換し、且つ、摩擦減衰を発生させるネジ減衰部と、当該回転運動によって回転される内筒とその外側を囲繞して前記内筒を回転自在に支持する外筒との間に充填された粘性体の抵抗によりエネルギーを減衰させる粘性減衰部とでなる減衰装置において、前記ネジ機構部における発熱部の近傍に冷却装置の流路の一部を設けると共に、ネジ減衰部に冷媒液を貯留するタンクを設け、前記ネジ機構部の近傍に配設された流路と、前記タンクとが少なくとも上下位置の2箇所で連結用流路若しくは連結用配管で連結され、これらの中を冷媒液がその温度差により自然循環することである。   Further, the gist of the damping device is to convert the inter-layer displacement generated in the structure by the vibration energy as a relative reciprocating motion of the reciprocating motion portion via the mounting member, and to convert the relative reciprocating motion into a rotational motion by the screw mechanism portion, and Energy is generated by the resistance of a viscous body filled between a screw damping portion that generates frictional damping, and an inner cylinder that is rotated by the rotational motion and an outer cylinder that surrounds the outer cylinder and rotatably supports the inner cylinder. In the damping device comprising the viscous damping part for damping the screw mechanism part, a part of the flow path of the cooling device is provided in the vicinity of the heat generating part in the screw mechanism part, a tank for storing the refrigerant liquid is provided in the screw damping part, and the screw The flow path disposed in the vicinity of the mechanism portion and the tank are connected to each other at least at two positions in the upper and lower positions by connection flow paths or connection pipes. It is to circulate.

本発明の減衰装置によれば、冷却装置において、往復運動部の往復運動を冷媒液用ポンプの駆動源にして、冷媒液が一方向に流出されて配管により循環されるので、別に冷媒液循環用の駆動源を必要とせず、地震等のエネルギーを活用することができる。
また、冷却装置の冷媒液は振動などにより自動的に循環するので、地震を検知して冷媒液の循環を起動させるような起動装置が不要である。よって、冷却装置全体が簡易でコンパクトな装置になる。
According to the damping device of the present invention, in the cooling device, the reciprocating motion of the reciprocating motion unit is used as the drive source of the refrigerant liquid pump, and the refrigerant liquid flows out in one direction and is circulated through the pipe. It is possible to use energy such as earthquakes without the need for a driving source.
Further, since the refrigerant liquid in the cooling device automatically circulates due to vibration or the like, there is no need for an activation device that detects an earthquake and activates the circulation of the refrigerant liquid. Therefore, the whole cooling device becomes a simple and compact device.

このほか、タンクを設けることで、冷却装置全体に循環させるために必要な冷媒液を確実に確保することができるとともに、その必要量の調整が容易となる。なお、タンクには若干の空間を設けて冷媒液を充填することにより、相対往復運動部における往復時の冷媒液の流量差を吸収可能となる。また、タンクを設けることにより吸収した熱を一時蓄積可能となり、熱放散の効果が期待できる。   In addition, by providing the tank, it is possible to reliably secure the refrigerant liquid necessary for circulation through the entire cooling device, and to easily adjust the necessary amount. The tank is provided with a small space and filled with the refrigerant liquid, so that the flow rate difference of the refrigerant liquid during the reciprocation in the relative reciprocating motion part can be absorbed. Further, the provision of the tank makes it possible to temporarily store the absorbed heat, and the effect of heat dissipation can be expected.

配管に設けた複数枚の放熱板により、放熱量が増大して冷媒装置の冷却能力が向上する。
ネジ減衰部の筐体と、粘性減衰部の筐体とが間隙を有して分離されているので、筐体を通してネジ機構部の熱が伝達しないようになり、粘性減衰部の内筒を支持するベアリングの負荷が軽減されて、製品寿命が向上する。
往復運動部における往復直線運動する棒状の往復体にピストン部が形成され、そのピストン部の前後方向の両側に冷媒液用の配管が配設され、この配管の流入側と流出側とに設けられた逆止弁により、冷媒液が一方向に流れて循環するように構成されているので、冷媒液が間欠することなく、連続して流出するようになる。よって、発熱部の冷却能力が向上する。
The heat radiation amount is increased by the plurality of heat radiation plates provided in the pipe, and the cooling capacity of the refrigerant device is improved.
Since the housing of the screw damping section and the casing of the viscous damping section are separated with a gap, heat of the screw mechanism section is not transmitted through the casing and supports the inner cylinder of the viscous damping section. The bearing load is reduced and the product life is improved.
A piston part is formed on a rod-like reciprocating body that reciprocates linearly in the reciprocating part, and pipes for refrigerant liquid are provided on both sides of the piston part in the front-rear direction, and are provided on the inflow side and the outflow side of this pipe. Since the refrigerant liquid flows in one direction and circulates by the check valve, the refrigerant liquid flows out continuously without being intermittent. Therefore, the cooling capacity of the heat generating part is improved.

更に、ネジ機構部における発熱部の近傍に冷却装置の一部を設けると共に、ネジ減衰部にタンクを設け、前記ネジ減衰部におけるネジ機構部の近傍に配設された流路と、前記タンクとが連結用流路若しくは連結用配管で直接的に連結され、これらの中を冷媒液がその温度差により自然循環することにより、冷媒液循環用の特別な駆動源が不要となり、減衰装置全体の構成が簡易となって取り扱いが容易となり、且つ、コンパクトで軽量小型化され、製造コストの低減となる。   Further, a part of the cooling device is provided in the vicinity of the heat generating part in the screw mechanism part, a tank is provided in the screw attenuation part, a flow path disposed in the vicinity of the screw mechanism part in the screw attenuation part, the tank, Are directly connected by a connecting flow path or a connecting pipe, and the refrigerant liquid naturally circulates in these due to the temperature difference, thereby eliminating the need for a special driving source for circulating the refrigerant liquid, The structure is simple and easy to handle, and it is compact, lightweight, and reduced in manufacturing cost.

本発明に係る減衰装置の第1実施例は、図1に示すように、例えば、地震等の振動エネルギーによる構造物の層間変位に伴う、減衰装置の往復運動部における往復体2の相対的な往復直線運動をネジ機構部3を介して回転運動に変換するネジ減衰部4と、当該回転運動によって回転される内筒5とその外側を囲繞して前記内筒5を回転自在に支持する外筒6との間に充填された粘性体7の抵抗によりエネルギーを減衰させる粘性減衰部8とでなる減衰装置1において、前記ネジ機構部3における発熱部の近傍に冷却装置9の一部を設けると共に、前記冷却装置9の一部を前記往復運動部に設け、前記往復運動部2の往復運動を冷媒液用ポンプ9aの駆動源にして前記冷却装置9の冷媒液9bが一方向に流出されて配管10により循環される減衰装置1である。   As shown in FIG. 1, the first embodiment of the damping device according to the present invention has a relative structure of the reciprocating body 2 in the reciprocating motion part of the damping device in accordance with the interlayer displacement of the structure due to vibration energy such as an earthquake. A screw attenuating portion 4 that converts a reciprocating linear motion into a rotational motion via a screw mechanism portion 3, an inner cylinder 5 that is rotated by the rotational motion, and an outer side that surrounds the outer cylinder 5 and rotatably supports the inner cylinder 5. In the damping device 1 including the viscous damping portion 8 for damping energy by the resistance of the viscous body 7 filled between the cylinder 6, a part of the cooling device 9 is provided in the vicinity of the heat generating portion in the screw mechanism portion 3. At the same time, a part of the cooling device 9 is provided in the reciprocating portion, and the reciprocating motion of the reciprocating portion 2 is used as a driving source of the refrigerant liquid pump 9a, so that the refrigerant liquid 9b of the cooling device 9 flows out in one direction. Reduced by pipe 10 It is a device 1.

前記ネジ機構部3における発熱部は、前記往復運動部である往復体2の一部外周面に刻設された雄ネジ溝と、この雄ネジ溝に螺合するようにナット11の内周壁面に刻設された雌ネジ溝との摺接部分である。図2に示すように、前記往復体2の図において右側にピストンロッド12が軸方向に遊び無く若しくは回転方向に自在に連結して設けられ、図において左側端部には前記内筒5にボルト13で連結する円盤状の鍔部2aが形成されている。   The heat generating part in the screw mechanism part 3 includes a male screw groove carved on a part of the outer peripheral surface of the reciprocating body 2 as the reciprocating motion part, and an inner peripheral wall surface of the nut 11 so as to be screwed into the male screw groove. It is a sliding contact part with the internal thread groove carved in the. As shown in FIG. 2, a piston rod 12 is provided on the right side of the reciprocating body 2 so as not to play in the axial direction or freely connected in the rotational direction. A disc-shaped flange portion 2 a connected at 13 is formed.

前記ナット11を固定して支持するのは、ネジ減衰部4の筒体4aであり、冷却装置9の冷媒液9bを貯留する圧力弁4eを有した円筒状のタンク4bが形成されている。また、前記ナット11には、冷却装置9の流路11a,11b,…が前記ネジ機構部3の近傍に配設され、前記筒体4aの内部に配設された流路4c,4d,…に連通するようにされている。前記流路11a,11b,…は、往復体2の軸心に沿って平行に配設され、周方向に均等配置で複数本設けられているものである。   The nut 11 is fixed and supported by the cylindrical body 4a of the screw attenuating portion 4, and a cylindrical tank 4b having a pressure valve 4e for storing the refrigerant liquid 9b of the cooling device 9 is formed. Further, the nut 11 is provided with flow paths 11a, 11b,... Of the cooling device 9 in the vicinity of the screw mechanism portion 3, and the flow paths 4c, 4d,. To communicate with. The flow paths 11a, 11b,... Are arranged in parallel along the axis of the reciprocating body 2, and a plurality of the flow paths 11a, 11b,.

図2において、前記筒体4aの右側にはピストン駆動部14が形成されている。このピストン駆動部14は、前記ピストンロッド12の先端部が駆動筒体15のリンダー15a内に挿通されて、液漏れの無いようにパッキン付蓋(ヘッド)15bが設けられ、液密に封止されている。このパッキン付蓋(ヘッド)15bには、シリンダー15aと配管10とに連通する冷媒用の流路が設けられている。   In FIG. 2, the piston drive part 14 is formed in the right side of the said cylinder 4a. The piston drive part 14 is provided with a packing-attached lid (head) 15b so that the tip of the piston rod 12 is inserted into a linder 15a of the drive cylinder 15 and there is no liquid leakage. Has been. The packing-attached lid (head) 15 b is provided with a refrigerant flow path communicating with the cylinder 15 a and the pipe 10.

前記駆動筒体15のシリンダー15aには、その内部に、例えば、水溶液若しくは難燃性油等の冷媒液9bが満たされ、冷媒液用ポンプ9aの右側の配管10a,10bと、左側の配管10c,10dとが配設されている。   The cylinder 15a of the drive cylinder 15 is filled with, for example, a refrigerant liquid 9b such as an aqueous solution or flame retardant oil, and the right pipes 10a and 10b and the left pipe 10c of the refrigerant liquid pump 9a. , 10d.

前記配管10の配設の道順を説明することで冷却装置9の構成を説明する。前記駆動筒体15のシリンダー15aに連通される配管10aは、逆止弁16付三方継手17に接続されている。この配管10aは、専ら外部からシリンダー15aへと冷媒液9bが流れる流路となる。同様に、配管10bは、シリンダー15aから外部へ冷媒液9bを流す流路となる。   The configuration of the cooling device 9 will be described by explaining the route of arrangement of the pipe 10. A pipe 10 a communicating with the cylinder 15 a of the drive cylinder 15 is connected to a three-way joint 17 with a check valve 16. The pipe 10a serves as a flow path through which the refrigerant liquid 9b flows exclusively from the outside to the cylinder 15a. Similarly, the pipe 10b serves as a flow path for flowing the refrigerant liquid 9b from the cylinder 15a to the outside.

前記配管10a,10bに対して、ピストン部の反対側に配管10c,10dが配設されている。配管10cは、前記三方継手17の一端部が接続され、他端部がパッキン付蓋(ヘッド)15bを介してシリンダー15aに連通している。配管10dは、一端部がパッキン付蓋(ヘッド)15bを介してシリンダー15aに連通しており、他端部が逆止弁16付の三方継手18に接続されている。   Pipes 10c and 10d are disposed on the opposite side of the piston portion with respect to the pipes 10a and 10b. One end of the three-way joint 17 is connected to the pipe 10c, and the other end communicates with the cylinder 15a via a lid (head) 15b with packing. One end of the pipe 10d communicates with the cylinder 15a through a packing lid (head) 15b, and the other end is connected to a three-way joint 18 with a check valve 16.

こうして、往復運動部における往復直線運動するピストンロッド12にピストン部が形成され、そのピストン部の前後方向の両側に冷媒液用の配管10a,10b,10c,10dが配設され、この配管の流入側と流出側とに設けられた逆止弁16により、冷媒液9bが一方向に流れて循環するものである。   Thus, the piston part is formed on the piston rod 12 that reciprocates linearly in the reciprocating part, and the refrigerant liquid pipes 10a, 10b, 10c, 10d are arranged on both sides of the piston part in the front-rear direction. The refrigerant liquid 9b flows in one direction and circulates by check valves 16 provided on the side and the outflow side.

前記三方継手18に接続される外部の配管10は、その他端部がネジ減衰部4のナット11に連結されている。このナット11においては、冷媒液9bが、ネジ機構部3に至る流路を流れて、その外周面に回って、筒体4aの上部の流路4cを通り、配管10eの一端部に連通していて流入する。   The other end of the external pipe 10 connected to the three-way joint 18 is connected to the nut 11 of the screw attenuation portion 4. In this nut 11, the refrigerant liquid 9 b flows through the flow path reaching the screw mechanism section 3, turns around the outer peripheral surface, passes through the flow path 4 c at the upper part of the cylindrical body 4 a, and communicates with one end of the pipe 10 e. And flows in.

前記配管10eは、他端部が筒体4aの右側端部の、タンク4bの内部に連通する流路に接続される。そして、このタンク4bは、その右側端部の下部で、排出用の流路が設けられていて、そこに、配管10fの一端部が接続されている。この配管10fの他端部が、前記三方継手17に接続されていて、全体として、冷媒液9bが、循環するようになっている。これが冷却装置9の配管と流路の構成である。   The other end of the pipe 10e is connected to a flow path communicating with the inside of the tank 4b at the right end of the cylindrical body 4a. And this tank 4b is provided with the flow path for discharge | emission in the lower part of the right side edge part, and the one end part of the piping 10f is connected there. The other end of the pipe 10f is connected to the three-way joint 17, so that the refrigerant liquid 9b circulates as a whole. This is the configuration of the piping and flow paths of the cooling device 9.

このような冷却装置9を有する減衰装置1により、地震等が発生した場合には、往復運動部における往復体2が、左右に往復直線運動をする。冷媒液用ポンプ9aにおいて、ピストンロッド12が左右に往復直線運動する。まず、ピストンが、右に動くと、シリンダー15a内の右側にある冷媒液9bが右側に押し出され、配管10bから逆止弁16を通過して配管10に流れる。一方、配管10aでは、逆止弁16により弁が働き冷媒液9bは流れない。   When an earthquake or the like is generated by the damping device 1 having such a cooling device 9, the reciprocating body 2 in the reciprocating motion part reciprocates linearly to the left and right. In the refrigerant liquid pump 9a, the piston rod 12 reciprocates linearly left and right. First, when the piston moves to the right, the refrigerant liquid 9b on the right side in the cylinder 15a is pushed out to the right side and flows from the pipe 10b through the check valve 16 to the pipe 10. On the other hand, in the pipe 10a, the check valve 16 works to prevent the refrigerant liquid 9b from flowing.

前記冷媒液用ポンプ9aのピストンが右に移動したと同時に、シリンダー15a内の左側にある冷媒液9bが吸い込まれることになり、三方継手17の逆止弁16を介して配管10c及びパッキン付蓋(ヘッド)15bから冷媒液9bが供給され充填される。また、配管10dの冷媒液9bは、逆止弁16により流路が閉蓋されて流れない。   At the same time as the piston of the refrigerant liquid pump 9a moves to the right, the refrigerant liquid 9b on the left side in the cylinder 15a is sucked in, and the piping 10c and the lid with packing are connected via the check valve 16 of the three-way joint 17. Refrigerant liquid 9b is supplied from (head) 15b and filled. Further, the refrigerant liquid 9b in the pipe 10d does not flow because the flow path is closed by the check valve 16.

前記冷媒液用ポンプ9aのピストンが左側に移動すると、今度は、シリンダー15aの左側の冷媒液9bが押し出されて、配管10dに冷媒液9bが流れて配管10に流出していき、配管10cの冷媒液9bは流れない。反対側の、配管10bでは冷媒液9bが流れず、配管10aは冷媒液9bが三方継手17から流入してシリンダー15aの右側に供給され充填される。このように、ピストン駆動部14においては、ピストンロッド12が往復直線運動するたびに、常に冷媒液9bが配管10fから配管10a若しくは配管10cに供給され、配管10b若しくは配管10dから三方継手18を介して配管10に流出される。   When the piston of the refrigerant liquid pump 9a moves to the left side, the refrigerant liquid 9b on the left side of the cylinder 15a is pushed out, and the refrigerant liquid 9b flows into the pipe 10d and flows out into the pipe 10, and the pipe 10c The refrigerant liquid 9b does not flow. The refrigerant liquid 9b does not flow in the pipe 10b on the opposite side, and the refrigerant liquid 9b flows into the pipe 10a from the three-way joint 17 and is supplied and filled on the right side of the cylinder 15a. Thus, in the piston drive unit 14, whenever the piston rod 12 reciprocates linearly, the refrigerant liquid 9b is always supplied from the pipe 10f to the pipe 10a or the pipe 10c, and from the pipe 10b or the pipe 10d via the three-way joint 18. To the piping 10.

前記冷媒液9bは、配管10からネット11の流路11a,11b,…に流入し、ネジ機構部3の熱を吸収する。これにより、ネジ機構部3が冷却される。その後、冷媒液9bは、前記ナット11の外周部に流れてそこから筒体4aの流路4c、更に、配管10eへと流れる。なお、流路4dは、その開口部が蓋20で閉蓋されており、冷媒液9bの排出時に開口させて利用される。   The refrigerant liquid 9b flows from the pipe 10 into the flow paths 11a, 11b,... Of the net 11 and absorbs the heat of the screw mechanism section 3. Thereby, the screw mechanism part 3 is cooled. Thereafter, the refrigerant liquid 9b flows to the outer peripheral portion of the nut 11 and from there to the flow path 4c of the cylindrical body 4a and further to the pipe 10e. Note that the opening of the channel 4d is closed by the lid 20, and is used when the refrigerant liquid 9b is discharged.

前記配管10eは筒体4aの外部に出されているので、この部分で冷媒液9bが放熱して冷却される。その後、冷媒液9bは、タンク4bに至る。このタンク4bにおいて、冷媒液9bが貯留され、冷却装置9の全体に冷媒液9bが循環するために必要な量が確保される。   Since the pipe 10e is led out of the cylinder 4a, the refrigerant liquid 9b dissipates heat and is cooled in this portion. Thereafter, the refrigerant liquid 9b reaches the tank 4b. In the tank 4b, the refrigerant liquid 9b is stored, and an amount necessary for the refrigerant liquid 9b to circulate throughout the cooling device 9 is secured.

前記タンク4bの下部に下向きに流れ出る流路があり、そこに配管10fの端部が接続されているので、冷媒液9bが、前記ピストンロッド12の往復直線運動の度に、三方継手17に供給され、前述の配管10a,10cに交互に流れて行く。   There is a flow path that flows downward in the lower part of the tank 4b, and the end of the pipe 10f is connected thereto, so that the refrigerant liquid 9b is supplied to the three-way joint 17 every time the piston rod 12 reciprocates linearly. Then, the gas flows alternately to the pipes 10a and 10c.

このようにして、冷却用ポンプ9aが、地震等の振動によって別体の駆動源を必要としないで自然に駆動され、冷媒液9bがネジ機構部3を通ってこれを冷却し、更に、タンク4bで冷媒液9bの温度が冷却されて、そこから全体に冷媒液9bが循環されるようになっている。   In this manner, the cooling pump 9a is driven naturally without the need for a separate drive source due to vibration such as an earthquake, and the refrigerant liquid 9b cools it through the screw mechanism portion 3, and further, the tank In 4b, the temperature of the refrigerant liquid 9b is cooled, and the refrigerant liquid 9b is circulated from there.

第2実施例に係る減衰装置は、前記ネジ機構部3における流路11a,11b,…を往復体2の軸心方向に各々別に平行にするのではなく、当該軸心回りに螺旋状にして、発熱部であるネジ機構部3に配設する例である(図示せず)。この場合、螺旋状の流路11a,11bは、配管で構成したり、若しくは、ナット11の内部周壁面に刻設する螺旋ネジにおけるネジ山の間隙で構成したりするものである。このようにすれば、ネジ機構部3の周方向において、摩擦で発生する熱を間欠的に放熱させるのではなく、周方向に連続的に放熱させてネジ機構部3の全体として均一に放熱させることができる。よって、放熱が効率的に行われ、冷却装置の性能が向上する。   In the damping device according to the second embodiment, the flow paths 11a, 11b,... In the screw mechanism 3 are not made parallel to the axial direction of the reciprocating body 2, but spirally around the axial center. This is an example (not shown) that is disposed in the screw mechanism section 3 that is a heat generating section. In this case, the spiral flow paths 11 a and 11 b are configured by piping, or are configured by a thread gap in a spiral screw engraved on the inner peripheral wall surface of the nut 11. In this way, the heat generated by friction is not dissipated intermittently in the circumferential direction of the screw mechanism portion 3, but is continuously dissipated in the circumferential direction to uniformly dissipate the entire screw mechanism portion 3. be able to. Therefore, heat dissipation is performed efficiently and the performance of the cooling device is improved.

また、第3実施例に係る冷却装置は、図3に示すように、ネジ機構部3からタンク4bに至るまでの配管10eが外部に露出され、その外部露出部分の配管10eには、複数枚の放熱板19が固着され若しくは着脱自在にされて設けられている。これにより、冷媒液9bの温度調節が容易となる。   Further, as shown in FIG. 3, in the cooling device according to the third embodiment, a pipe 10e from the screw mechanism 3 to the tank 4b is exposed to the outside, and a plurality of pipes 10e in the externally exposed portion are provided. The heat radiating plate 19 is fixed or detachably provided. Thereby, the temperature adjustment of the refrigerant liquid 9b is facilitated.

第4実施例に係る冷却装置は、図4に示すように、冷却装置9の冷媒液9bを循環させる循環駆動手段を、その冷媒液9b自身の温度差による自然環流とするものである。即ち、前記ネジ機構部3で熱せられて温度が上昇した冷媒液9bが連結用流路若しくは連結用配管で上方に移動し、温度の低い冷媒液9bが、その分だけ連結用の配管10fを介してタンク4bの底部から補給される。上昇した冷媒液9bは、連結用の配管10eを通ってタンク4bの上部に流出する。こうして、タンク4bで上部の冷媒液9bよりも温度が下がった冷媒液9bがタンク4bの底部に溜まり、自然に循環することになる。   In the cooling device according to the fourth embodiment, as shown in FIG. 4, the circulation driving means for circulating the refrigerant liquid 9b of the cooling device 9 is a natural circulation due to the temperature difference of the refrigerant liquid 9b itself. That is, the refrigerant liquid 9b heated by the screw mechanism portion 3 and moved up in the temperature is moved upward in the connection channel or the connection pipe, and the refrigerant liquid 9b having a lower temperature passes through the connection pipe 10f by that amount. Through the bottom of the tank 4b. The rising refrigerant liquid 9b flows out to the upper part of the tank 4b through the connecting pipe 10e. Thus, the refrigerant liquid 9b having a temperature lower than that of the upper refrigerant liquid 9b in the tank 4b accumulates at the bottom of the tank 4b and circulates naturally.

本発明に係る減衰装置1の縦断面図である。1 is a longitudinal sectional view of an attenuation device 1 according to the present invention. 同本発明の減衰装置1の一部拡大縦断面図である。It is a partially expanded longitudinal cross-sectional view of the damping device 1 of the same invention. 第3実施例に係るネジ減衰部4とピストン駆動部14との縦断面図である。It is a longitudinal cross-sectional view of the screw attenuation | damping part 4 and piston drive part 14 which concern on 3rd Example. 第4実施例に係るネジ減衰部4の縦断面図である。It is a longitudinal cross-sectional view of the screw attenuation | damping part 4 which concerns on 4th Example.

符号の説明Explanation of symbols

1 減衰装置、
2 往復体、 2a 鍔部、
3 ネジ機構部、
4 ネジ減衰部、 4a 筒体、
4b タンク、 4c,4d 流路、
4e 圧力弁、
5 内筒、
6 外筒、
7 粘性体、
8 粘性減衰部、
9 冷却装置、 9a 冷媒液用ポンプ、
9b 冷媒液、
10 配管、 10a〜10f 配管、
11 ナット、 11a,11b 流路、
12 ピストンロッド、
13 ボルト、
14 ピストン駆動部、
15 駆動筒体、 15a シリンダー、
15b パッキン付蓋(ヘッド)、
16 逆止弁、
17,18 三方継手、
19 放熱板、
20 蓋。
1 Attenuator,
2 reciprocating body, 2a buttocks,
3 Screw mechanism,
4 Screw attenuation part, 4a cylinder,
4b tank, 4c, 4d flow path,
4e pressure valve,
5 inner cylinder,
6 outer cylinder,
7 viscous body,
8 Viscous damping part,
9 Cooling device, 9a Refrigerant liquid pump,
9b refrigerant liquid,
10 piping, 10a-10f piping,
11 nut, 11a, 11b flow path,
12 piston rod,
13 volts,
14 piston drive,
15 drive cylinder, 15a cylinder,
15b Lid with packing (head),
16 Check valve,
17, 18 Three-way joint,
19 Heat sink,
20 lid.

Claims (5)

振動エネルギーによって構造物に生じる層間変位を、当該構造物に設けられた取付部材を介して往復運動部の相対往復運動とし、その相対往復運動をネジ機構部により回転運動に変換し、且つ、摩擦減衰を発生させるネジ減衰部と、当該回転運動によって回転される内筒とその外側を囲繞して前記内筒を回転自在に支持する外筒との間に充填された粘性体の抵抗によりエネルギーを減衰させる粘性減衰部とでなる減衰装置において、
前記ネジ機構部における発熱部の近傍に冷却装置の流路の一部を設けると共に、
前記往復運動部の往復運動を冷媒液用ポンプの駆動源にして前記冷却装置の冷媒液が一方向に流出されて循環され、
前記冷却装置の流路における、ネジ機構部と冷媒液用ポンプとの流路との間に、冷媒液を貯留するとともにポンプの流量変動及び内部圧力を逃す圧力弁を有したタンクが設けられていること、
を特徴とする減衰装置。
Interlayer displacement generated in the structure by the vibration energy is converted into a reciprocating motion of the reciprocating motion part via the mounting member provided in the structure, and the relative reciprocating motion is converted into a rotational motion by the screw mechanism and friction. Energy is generated by the resistance of the viscous body filled between the screw attenuating portion that generates the damping and the outer cylinder that surrounds the outer cylinder that is rotated by the rotational motion and that rotatably supports the inner cylinder. In the damping device consisting of the viscous damping part to be attenuated,
While providing a part of the flow path of the cooling device in the vicinity of the heat generating part in the screw mechanism part,
With the reciprocating motion of the reciprocating motion part as the driving source of the coolant liquid pump, the coolant liquid of the cooling device is circulated in one direction,
In the flow path of the cooling device, a tank having a pressure valve for storing the refrigerant liquid and releasing the flow rate variation of the pump and the internal pressure is provided between the screw mechanism section and the flow path of the refrigerant liquid pump. Being
Attenuator characterized by.
ネジ機構部からタンクに至るまでの配管が外部に露出され、その外部露出部分の配管には、複数枚の放熱板が固着され若しくは着脱自在にされて設けられていること、
を特徴とする請求項1に記載の減衰装置。
Piping from the screw mechanism to the tank is exposed to the outside, and a plurality of heat radiating plates are fixed or detachably provided on the piping of the externally exposed portion,
The attenuation device according to claim 1.
ネジ減衰部の筐体と、粘性減衰部の筐体とが間隙を有して分離され、ネジ減衰部におけるネジ機構部の回転するネジ軸が、粘性減衰部の内筒に連結されていること、
を特徴とする請求項1乃至2のいずれかに記載の減衰装置。
The housing of the screw attenuating portion and the housing of the viscous attenuating portion are separated with a gap, and the rotating screw shaft of the screw mechanism portion in the screw attenuating portion is connected to the inner cylinder of the viscous attenuating portion. ,
The attenuation device according to any one of claims 1 to 2.
往復運動部における往復直線運動する棒状の往復体にピストン部が形成され、そのピストン部の前後方向の両側に冷媒液用の流路が配設され、この流路の流入側と流出側とに設けられた逆止弁により、冷媒液が一方向に流れて循環すること、
を特徴とする請求項1乃至3のいずれかに記載の減衰装置。
A piston portion is formed on a rod-like reciprocating body that reciprocates linearly in the reciprocating motion portion, and a flow path for refrigerant liquid is provided on both sides of the piston portion in the front-rear direction. With the check valve provided, the refrigerant liquid flows in one direction and circulates.
The attenuation device according to any one of claims 1 to 3.
振動エネルギーによって構造物に生じる層間変位を、取付部材を介して往復運動部の相対往復運動として、その相対往復運動をネジ機構部により回転運動に変換し、且つ、摩擦減衰を発生させるネジ減衰部と、当該回転運動によって回転される内筒とその外側を囲繞して前記内筒を回転自在に支持する外筒との間に充填された粘性体の抵抗によりエネルギーを減衰させる粘性減衰部とでなる減衰装置において、
前記ネジ機構部における発熱部の近傍に冷却装置の流路の一部を設けると共に、ネジ減衰部に冷媒液を貯留するタンクを設け、
前記ネジ機構部の近傍に配設された流路と、前記タンクとが少なくとも上下位置の2箇所で連結用流路若しくは連結用配管で連結され、これらの中を冷媒液がその温度差により自然循環すること、
を特徴とする減衰装置。
The inter-layer displacement generated in the structure by the vibration energy is converted into a relative reciprocating motion of the reciprocating motion portion via the mounting member, and the relative reciprocating motion is converted into a rotational motion by the screw mechanism portion, and a friction damping is generated. And a viscous damping section that attenuates energy by the resistance of a viscous body that is filled between the inner cylinder rotated by the rotational motion and the outer cylinder that surrounds the outer cylinder and rotatably supports the inner cylinder. In the damping device
A part of the flow path of the cooling device is provided in the vicinity of the heat generating part in the screw mechanism part, and a tank for storing the refrigerant liquid is provided in the screw attenuation part,
The flow path disposed in the vicinity of the screw mechanism part and the tank are connected to each other at least at two positions in the vertical position by a connection flow path or a connection pipe. Circulating,
Attenuator characterized by.
JP2006327977A 2006-12-05 2006-12-05 Attenuator Expired - Fee Related JP4901443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327977A JP4901443B2 (en) 2006-12-05 2006-12-05 Attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327977A JP4901443B2 (en) 2006-12-05 2006-12-05 Attenuator

Publications (2)

Publication Number Publication Date
JP2008138826A true JP2008138826A (en) 2008-06-19
JP4901443B2 JP4901443B2 (en) 2012-03-21

Family

ID=39600505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327977A Expired - Fee Related JP4901443B2 (en) 2006-12-05 2006-12-05 Attenuator

Country Status (1)

Country Link
JP (1) JP4901443B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102759A (en) * 2010-11-08 2012-05-31 A & D Co Ltd Power transmission shaft
CN109723748A (en) * 2019-03-13 2019-05-07 安徽工程大学 MR vibration damper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109939A (en) * 1994-10-13 1996-04-30 Mitsubishi Heavy Ind Ltd Hydraulic damper
JPH08177935A (en) * 1994-12-26 1996-07-12 Mitsubishi Motors Corp Shock absorber cooling structure
JPH10339053A (en) * 1997-06-05 1998-12-22 Taisei Corp Base isolation device
JPH11173360A (en) * 1997-12-10 1999-06-29 Showa Corp Hydraulic shock absorber cooling mechanism
JP2004084845A (en) * 2002-08-28 2004-03-18 Sankyo Oilless Industry Inc Damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109939A (en) * 1994-10-13 1996-04-30 Mitsubishi Heavy Ind Ltd Hydraulic damper
JPH08177935A (en) * 1994-12-26 1996-07-12 Mitsubishi Motors Corp Shock absorber cooling structure
JPH10339053A (en) * 1997-06-05 1998-12-22 Taisei Corp Base isolation device
JPH11173360A (en) * 1997-12-10 1999-06-29 Showa Corp Hydraulic shock absorber cooling mechanism
JP2004084845A (en) * 2002-08-28 2004-03-18 Sankyo Oilless Industry Inc Damper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102759A (en) * 2010-11-08 2012-05-31 A & D Co Ltd Power transmission shaft
CN109723748A (en) * 2019-03-13 2019-05-07 安徽工程大学 MR vibration damper
CN109723748B (en) * 2019-03-13 2023-08-15 安徽工程大学 Magneto-rheological damper

Also Published As

Publication number Publication date
JP4901443B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
KR100341670B1 (en) Reciprocating pump with linear motor driver
US10816001B2 (en) Compressor system with internal air-water cooling
KR20110104003A (en) Driving arrangement for a pump or compressor
US20100219702A1 (en) Electric motor with self-cooling
JP4901443B2 (en) Attenuator
JP2011117453A (en) Piston device for use in vacuum pump for medical purpose
JP4804927B2 (en) Screw compressor
JP2009520898A (en) Small compressor
JP2008512636A (en) Device for controlling fluid temperature
JP2005069163A (en) Air cooled dry vacuum pump
JP2016054618A (en) Electric actuator
CN110848142A (en) Heat dissipation shock attenuation centrifugal pump
US20170335837A1 (en) Connector for a compressor assembly
JP2012159266A (en) Thermoacoustic refrigerating plant
KR20180042301A (en) Vertical bearing device
JPWO2015146761A1 (en) Stirling refrigerator
KR101901171B1 (en) Noise reduction system of Hydraulic Power Unit
KR101755395B1 (en) electro-hydraulic actuator
JP2009052650A (en) Damper
JP4568560B2 (en) Power generator
KR101273325B1 (en) Hydraulic pump integrated electric motor
JP6550274B2 (en) Fuel supply system
KR101338255B1 (en) Air-compression apparatus
WO2017217348A1 (en) Hermetic electric compressor and refrigeration device using same
TW521121B (en) Stirling refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees