JP2008138634A - Variable valve gear of internal combustion engine - Google Patents

Variable valve gear of internal combustion engine Download PDF

Info

Publication number
JP2008138634A
JP2008138634A JP2006327812A JP2006327812A JP2008138634A JP 2008138634 A JP2008138634 A JP 2008138634A JP 2006327812 A JP2006327812 A JP 2006327812A JP 2006327812 A JP2006327812 A JP 2006327812A JP 2008138634 A JP2008138634 A JP 2008138634A
Authority
JP
Japan
Prior art keywords
lift
valve
phase
variable
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006327812A
Other languages
Japanese (ja)
Other versions
JP4760691B2 (en
Inventor
Yosuke Mae
洋介 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006327812A priority Critical patent/JP4760691B2/en
Publication of JP2008138634A publication Critical patent/JP2008138634A/en
Application granted granted Critical
Publication of JP4760691B2 publication Critical patent/JP4760691B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable valve gear of an internal combustion engine capable of improving engine performance (performance of an internal combustion engine) in transition, and thereby improving the engine performance in actual use because responsiveness of a phase variable mechanism in transition is improved, and a response time until the phase of a lift center angle of an engine valve is changed to a control target value by a phase variable mechanism is reduced. <P>SOLUTION: This variable valve gear of an internal combustion engine includes: a first variable valve train 11 capable of simultaneously and continuously controlling expansion and reduction of lift/work angles of an intake valve 1; a second variable valve structure 21 retarding/advancing the phase of a lift center angle of the intake valve 1. When the phase of the lift center angle of the intake valve 1 is changed by the second variable valve structure 21, the variable valve gear executes a response assisting operation of once changing the lift/work angles of the intake valve 1 in a direction for improving responsiveness of the second variable valve structure 21 in changing the phase of the lift center angle by the first variable valve train 11. Thereby, the responsiveness of the second variable valve structure 21 in transition is improved, and a response time until the phase of the lift center angle of the intake valve is changed to the control target value by the second variable valve structure 21 is reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の運転状態に応じて、機関弁のリフト・作動角及び機関弁のリフト中心角の位相を連続的に変更可能な内燃機関の可変動弁装置に関する。   The present invention relates to a variable valve operating apparatus for an internal combustion engine capable of continuously changing the lift / operation angle of the engine valve and the phase of the lift center angle of the engine valve in accordance with the operating state of the internal combustion engine.

特許文献1には、機関弁のバルブリフト量を変更可能な油圧駆動式の第1可変動弁機構と、機関弁のリフト中心角の位相を変更可能な油圧駆動式の第2可変動弁機構と、を有し、第1可変動弁機構及び第2可変動弁機構に供給される作動油の油圧または油温を検出し、検出された油圧が設定油圧より低い場合、または検出された油温が設定油温より高い場合に、第1可変動弁機構及び第2可変動弁機構の少なくとも一方への油圧の供給を禁止することで、油圧の低下あるいは油温の上昇に伴い第1及び第2可変動弁機構の双方の作動応答性が同時に低下するのを回避するようにした可変動弁装置が開示されている。   Patent Document 1 discloses a hydraulically driven first variable valve mechanism that can change a valve lift amount of an engine valve and a hydraulically driven second variable valve mechanism that can change a phase of a lift center angle of the engine valve. And detecting the oil pressure or the oil temperature of the hydraulic oil supplied to the first variable valve mechanism and the second variable valve mechanism, and when the detected oil pressure is lower than the set oil pressure, or the detected oil By prohibiting the supply of hydraulic pressure to at least one of the first variable valve mechanism and the second variable valve mechanism when the temperature is higher than the set oil temperature, the first and second oil pressure increases as the oil pressure decreases or the oil temperature increases. There has been disclosed a variable valve operating apparatus that avoids simultaneous deterioration of the operation responsiveness of both of the second variable valve operating mechanisms.

また、特許文献2には、バルブ開閉時期の位相を連続的に変更するバルブタイミング可変機構と、バルブリフト量を連続的に変更するバルブリフト量可変機構と、を備え、バルブタイミング可変機構及びバルブリフト量可変機構の双方の目標値が同時に変化するような場合には、バルブタイミング可変機構とバルブリフト量可変機構との間に作動優先度を決定し、優先度に応じてバルブタイミング可変機構とバルブリフト量可変機構とが制御される内燃機関のバルブ特性制御装置が開示されている。
特開2004−301101号公報 特開2000−87769号公報
Further, Patent Document 2 includes a variable valve timing mechanism that continuously changes the phase of the valve opening / closing timing and a variable valve lift amount mechanism that continuously changes the valve lift amount. When both target values of the variable lift amount mechanism change at the same time, an operation priority is determined between the variable valve timing mechanism and the variable valve lift amount mechanism, and the variable valve timing mechanism is set according to the priority. A valve characteristic control device for an internal combustion engine in which a variable valve lift amount mechanism is controlled is disclosed.
Japanese Patent Laid-Open No. 2004-301101 JP 2000-87769 A

しかしながら、上述した特許文献1は、可変動弁装置の安定した応答を保証するため、作動応答性が著しく悪化する条件で第1可変動弁機構と第2可変動弁機構とが同時に作動することを禁止しているのにすぎない。また、上述した特許文献2は、バルブタイミング可変機構とバルブリフト量可変機構とが同時に作動する場面での作動順序を単に規定しているに過ぎない。   However, in Patent Document 1 described above, the first variable valve mechanism and the second variable valve mechanism operate at the same time under the condition that the operation responsiveness is significantly deteriorated in order to guarantee a stable response of the variable valve device. Is only prohibited. Further, Patent Document 2 described above merely defines an operation order in a scene where the valve timing variable mechanism and the valve lift amount variable mechanism operate simultaneously.

すなわち、機関弁のバルブリフト量を変更可能な作動機構と、機関弁のリフト中心角の位相を変更可能な作動機構と、を組み合わせて構成された特許文献1及び特許文献2に開示されるような従来公知の可変動弁装置においては、各作動機構の構造的な応答速度特性が考慮されておらず、機関弁のバルブリフト量及び機関弁のリフト中心角の位相を変化させる際の変化の応答性を向上させる余地があり、過渡時においてエンジン性能が十分に発揮されていないという問題がある。   That is, as disclosed in Patent Document 1 and Patent Document 2, which are configured by combining an operating mechanism capable of changing the valve lift amount of the engine valve and an operating mechanism capable of changing the phase of the lift center angle of the engine valve. In such a known variable valve operating system, the structural response speed characteristics of each operating mechanism are not taken into consideration, and the change in changing the phase of the valve lift amount of the engine valve and the lift central angle of the engine valve is not considered. There is room for improving the responsiveness, and there is a problem that the engine performance is not sufficiently exhibited during the transition.

そこで、本発明は、機関弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、上記機関弁のリフト中心角の位相を遅進させる位相可変機構と、を有し、上記リフト・作動角可変機構と上記位相可変機構の少なくとも一方を作動させることで上記機関弁のバルブ特性を変更可能な内燃機関の可変動弁装置において、上記位相可変機構により上記機関弁のリフト中心角の位相を変更する際には、上記リフト・作動角可変機構により上記機関弁のリフト・作動角を上記位相可変機構のリフト中心角変更時の応答性を向上させる方向に一旦変更する応答補助動作を行うことを特徴としている。   Accordingly, the present invention provides a lift / working angle variable mechanism capable of simultaneously and continuously expanding and reducing the lift / working angle of the engine valve, and a phase variable mechanism for delaying the phase of the lift center angle of the engine valve. In a variable valve operating apparatus for an internal combustion engine that can change the valve characteristic of the engine valve by operating at least one of the lift / operating angle variable mechanism and the phase variable mechanism, the phase variable mechanism When changing the phase of the lift center angle of the engine valve, the lift / operating angle variable mechanism is used to improve the responsiveness when changing the lift center angle of the phase variable mechanism. It is characterized by performing a response assisting operation that is once changed.

本発明によれば、過渡時における位相可変機構の応答性が向上し、位相可変機構により機関弁のリフト中心角の位相を制御目標値に変更するまでの応答時間が短縮されるので、過渡時におけるエンジン性能(内燃機関の性能)を向上させることができ、ひいては実用時のエンジン性能を向上させることができる。   According to the present invention, the response of the phase variable mechanism at the time of transition is improved, and the response time until the phase of the lift center angle of the engine valve is changed to the control target value by the phase variable mechanism is shortened. Engine performance (performance of the internal combustion engine) can be improved, and as a result, engine performance in practical use can be improved.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、吸気系に適用された本発明に係る内燃機関の可変動弁装置の概略構成を模式的に示した説明図である。この可変動弁装置は、吸気弁1のリフト・作動角を連続的に拡大・縮小させることが可能なリフト・作動角可変機構(VEL)としての第1可変動弁機構11に、さらに、作動角の中心角を連続的に遅進させることが可能な位相可変機構(VTC)としての第2可変動弁機構21を組み合わせたものである。   FIG. 1 is an explanatory view schematically showing a schematic configuration of a variable valve operating apparatus for an internal combustion engine according to the present invention applied to an intake system. This variable valve operating apparatus is further operated by a first variable valve operating mechanism 11 as a lift / operating angle variable mechanism (VEL) capable of continuously expanding / reducing the lift / operating angle of the intake valve 1. The second variable valve mechanism 21 as a phase variable mechanism (VTC) capable of continuously delaying the central angle of the angle is combined.

まず、第1可変動弁機構11について説明する。この第1可変動弁機構は、本出願人が先に提案したものであるが、例えば、特開平11−107725号公報等によって公知となっているので、その概要のみを説明する。   First, the first variable valve mechanism 11 will be described. This first variable valve mechanism has been previously proposed by the applicant of the present invention, but is known from, for example, Japanese Patent Application Laid-Open No. 11-107725, and only its outline will be described.

リフト・作動角を可変制御する第1可変動弁機構11は、内燃機関のクランクシャフト(図示せず)により駆動される駆動軸22と、この駆動軸22に固定された偏心カム23と、回転自在に支持された制御軸32と、この制御軸32の偏心カム部38に揺動自在に支持されたロッカアーム26と、吸気弁1のタペット30に当接する揺動カム29と、を備えており、偏心カム23とロッカアーム26とはリンクアーム24によって連係され、ロッカアーム26と揺動カム29とは、リンク部材28によって連係されている。   The first variable valve mechanism 11 that variably controls the lift and operating angle includes a drive shaft 22 driven by a crankshaft (not shown) of an internal combustion engine, an eccentric cam 23 fixed to the drive shaft 22, and a rotation. A control shaft 32 that is freely supported, a rocker arm 26 that is swingably supported by an eccentric cam portion 38 of the control shaft 32, and a swing cam 29 that contacts the tappet 30 of the intake valve 1 are provided. The eccentric cam 23 and the rocker arm 26 are linked by a link arm 24, and the rocker arm 26 and the swing cam 29 are linked by a link member 28.

ロッカアーム26は、略中央部が偏心カム部38によって揺動可能に支持されており、その一端部に、連結ピン25を介してリンクアーム24のアーム部が連係しているとともに、他端部に、連結ピン27を介してリンク部材28の上端部が連係している。偏心カム部38は、制御軸32の軸心から偏心しており、従って、制御軸32の角度位置に応じてロッカアーム26の揺動中心は変化する。   The rocker arm 26 is supported by an eccentric cam portion 38 so as to be able to swing at the substantially central portion, and the arm portion of the link arm 24 is linked to one end portion thereof via the connecting pin 25 and the other end portion. The upper end portion of the link member 28 is linked via the connecting pin 27. The eccentric cam portion 38 is eccentric from the axis of the control shaft 32, and accordingly, the rocking center of the rocker arm 26 changes according to the angular position of the control shaft 32.

揺動カム29は、駆動軸22の外周に嵌合して回転自在に支持されており、側方へ延びた端部に、連結ピン37を介してリンク部材28の下端部が連係している。この揺動カム29の下面には、駆動軸22と同心状の円弧をなすベースサークル面と、該ベースサークル面から所定の曲線を描いて延びるカム面と、が連続して形成されており、これらのベースサークル面ならびにカム面が、揺動カム29の揺動位置に応じてタペット30の上面に当接する。上記カム面がタペット30を押圧すると、吸気弁1は、図示せぬバルブスプリング反力に抗して押し開かれることになり、これに伴い、バルブスプリング反力が、揺動カム29から各部へ作用する。   The swing cam 29 is rotatably supported by being fitted to the outer periphery of the drive shaft 22, and the lower end portion of the link member 28 is linked to the end portion extending laterally via the connecting pin 37. . A base circle surface that forms a concentric arc with the drive shaft 22 and a cam surface extending in a predetermined curve from the base circle surface are continuously formed on the lower surface of the swing cam 29. These base circle surface and cam surface abut on the upper surface of the tappet 30 according to the swing position of the swing cam 29. When the cam surface presses the tappet 30, the intake valve 1 is pushed open against a valve spring reaction force (not shown). Along with this, the valve spring reaction force is transferred from the swing cam 29 to each part. Works.

制御軸32は、一端部に設けられたリフト・作動角制御用アクチュエータ33によって所定角度範囲内で回転するように構成されている。このリフト・作動角制御用アクチュエータ33は、例えばウォームギア35を介して制御軸32を駆動する電動モータからなり、コントロールユニット10からの制御信号によって制御される。制御軸32の回転角度は、制御軸センサ34によって検出される。   The control shaft 32 is configured to rotate within a predetermined angle range by a lift / operating angle control actuator 33 provided at one end. The lift / operating angle control actuator 33 is composed of, for example, an electric motor that drives the control shaft 32 via the worm gear 35, and is controlled by a control signal from the control unit 10. The rotation angle of the control shaft 32 is detected by the control shaft sensor 34.

第1可変動弁機構11によれば、制御軸32の回転角度位置に応じて吸気弁1のリフト並びに作動角が、両者同時に、連続的に拡大,縮小し、このリフト・作動角の大小変化に伴い、吸気弁1の開時期と閉時期とがほぼ対称に変化する。リフト・作動角の大きさは、制御軸32の回転角度によって一義的に定まるので、制御軸センサ34の検出値により、そのときの実際のリフト・作動角が示される。   According to the first variable valve mechanism 11, the lift and the operating angle of the intake valve 1 are continuously expanded and reduced simultaneously according to the rotational angle position of the control shaft 32, and the lift and operating angle change in magnitude. Accordingly, the opening timing and closing timing of the intake valve 1 change substantially symmetrically. Since the magnitude of the lift / operating angle is uniquely determined by the rotation angle of the control shaft 32, the actual lift / operating angle at that time is indicated by the detection value of the control shaft sensor 34.

尚、図1では、1気筒分のみが示されているが、駆動軸22及び制御軸32は複数気筒に共通のものであり、他の偏心カム23、リンクアーム24、ロッカアーム26、リンク部材28、揺動カム29、偏心カム部38等からなるリンク機構は、気筒毎に設けられている。また、V型内燃機関等では、各バンク毎に、駆動軸22及び制御軸32が設けられる。   Although only one cylinder is shown in FIG. 1, the drive shaft 22 and the control shaft 32 are common to a plurality of cylinders, and the other eccentric cam 23, link arm 24, rocker arm 26, link member 28 are provided. The link mechanism including the swing cam 29, the eccentric cam portion 38, and the like is provided for each cylinder. In a V-type internal combustion engine or the like, a drive shaft 22 and a control shaft 32 are provided for each bank.

一方、中心角を可変制御する第2可変動弁機構21は、駆動軸22の前端部に設けられたスプロケット42と、このスプロケット42と駆動軸22とを、所定の角度範囲内において相対的に回転させる位相制御用アクチュエータ43と、から構成されている。スプロケット42は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、上記クランクシャフトに連動している。位相制御用アクチュエータ43は、油圧式の回転型アクチュエータからなり、コントロールユニット10からの制御信号によって図示せぬ油圧制御弁を介して制御される。この油圧制御弁には、上記クランクシャフトの回転により駆動されるオイルポンプ(図示せず)から作動油が供給されている。つまり、位相制御用アクチュエータ43は、上記クランクシャフトの回転により駆動される上記オイルポンプを油圧源として回転駆動されるものである。そして、この油圧式の位相制御用アクチュエータ43の作用によって、スプロケット42と駆動軸22とが相対的に回転し、吸気弁1のバルブリフトにおけるリフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この第2可変動弁機構21の制御状態は、駆動軸22の回転位置に応答する駆動軸センサ36によって検出される。   On the other hand, the second variable valve mechanism 21 that variably controls the center angle is configured so that the sprocket 42 provided at the front end of the drive shaft 22 and the sprocket 42 and the drive shaft 22 are relatively moved within a predetermined angle range. And a phase control actuator 43 to be rotated. The sprocket 42 is interlocked with the crankshaft via a timing chain or a timing belt (not shown). The phase control actuator 43 is a hydraulic rotary actuator, and is controlled by a control signal from the control unit 10 via a hydraulic control valve (not shown). The hydraulic control valve is supplied with hydraulic oil from an oil pump (not shown) driven by the rotation of the crankshaft. That is, the phase control actuator 43 is rotationally driven using the oil pump driven by the rotation of the crankshaft as a hydraulic pressure source. Then, the action of the hydraulic phase control actuator 43 causes the sprocket 42 and the drive shaft 22 to rotate relatively, and the lift center angle in the valve lift of the intake valve 1 is retarded. That is, the lift characteristic curve itself does not change, and the whole advances or retards. This change can also be obtained continuously. The control state of the second variable valve mechanism 21 is detected by a drive shaft sensor 36 that responds to the rotational position of the drive shaft 22.

従って、第1,第2可変動弁機構11,21の制御を組み合わせることにより、吸気弁1の開時期及び閉時期をリフト量とともに可変制御できる。また、コントロールユニット10には、第2可変動弁機構21に供給される作動油の油温を検知する運転状態検知手段としての油温センサ15、エンジン回転数(内燃機関の機関回転数)を検知する運転状態検知手段としてのエンジン回転数センサ16からの信号が入力されている。   Accordingly, by combining the control of the first and second variable valve mechanisms 11 and 21, the opening timing and closing timing of the intake valve 1 can be variably controlled together with the lift amount. Further, the control unit 10 is provided with an oil temperature sensor 15 as an operating state detecting means for detecting the oil temperature of the hydraulic oil supplied to the second variable valve mechanism 21 and an engine speed (engine speed of the internal combustion engine). A signal is input from an engine speed sensor 16 as an operating state detecting means for detection.

ここで、上述した第2可変動弁機構21は、油圧式の回転型アクチュエータからなっているため、作動油の粘度、油量、油圧により応答速度が影響を受けることになる。   Here, since the second variable valve mechanism 21 described above is composed of a hydraulic rotary actuator, the response speed is affected by the viscosity of the hydraulic oil, the amount of oil, and the hydraulic pressure.

図2は、作動油の油温に対する第2可変動弁機構21の応答速度と作動油の油圧の相関を示したものである。作動油は、自身の温度が低くなると粘度が高くなるため、自身の温度が低くなるほど油路抵抗により第2可変動弁機構21の油圧式アクチュエータ内への流入速度が遅くなる。そのため、図2に示すように、作動油の油温が低い場合には、第2可変動弁機構21により吸気弁1のリフト中心角の位相を進角側へ変更する際の応答速度(図2中のA線を参照)、並びに第2可変動弁機構21により吸気弁1のリフト中心角の位相を遅角側へ変更する際の応答速度(図2中のB線を参照)の双方が相対的に遅くなる。そして、作動油の油温が高い場合には、第2可変動弁機構21により吸気弁1のリフト中心角の位相を進角側へ変更する際の応答速度(図2中の実線Aを参照)、並びに第2可変動弁機構21により吸気弁1のリフト中心角の位相を遅角側へ変更する際の応答速度(図2中の実線Bを参照)の双方が、作動油の油温が低い場合に比べて速くなる。   FIG. 2 shows the correlation between the response speed of the second variable valve mechanism 21 and the hydraulic pressure of the hydraulic oil with respect to the hydraulic oil temperature. Since the viscosity of the hydraulic oil increases as the temperature of the hydraulic oil decreases, the flow rate of the hydraulic oil into the hydraulic actuator of the second variable valve mechanism 21 decreases as the temperature of the hydraulic oil decreases. Therefore, as shown in FIG. 2, when the oil temperature of the hydraulic oil is low, the response speed when the phase of the lift center angle of the intake valve 1 is changed to the advance side by the second variable valve mechanism 21 (FIG. 2) and the response speed when the phase of the lift center angle of the intake valve 1 is changed to the retard side by the second variable valve mechanism 21 (see the B line in FIG. 2). Is relatively slow. When the hydraulic oil temperature is high, the response speed when the phase of the lift center angle of the intake valve 1 is changed to the advance side by the second variable valve mechanism 21 (see the solid line A in FIG. 2). ) And the response speed (see the solid line B in FIG. 2) when the second variable valve mechanism 21 changes the phase of the lift center angle of the intake valve 1 to the retarded angle side. It is faster than when it is low.

尚、図2から明らかなように、第2可変動弁機構21により吸気弁1のリフト中心角の位相を進角側へ変更する際の応答速度と第2可変動弁機構21により吸気弁1のリフト中心角の位相を遅角側へ変更する際の応答速度とは、作動油の油温に対する傾向が略同一となっている。また、図2中の点線は、作動油の油温に対する作動油の油圧(作動油圧)の傾向を示すものであり、作動油圧は作動油温が高くなるほど低くなる傾向にある。   As is apparent from FIG. 2, the response speed when the phase of the lift center angle of the intake valve 1 is changed to the advance side by the second variable valve mechanism 21 and the intake valve 1 by the second variable valve mechanism 21. The response speed when changing the phase of the lift center angle to the retarded angle side has substantially the same tendency with respect to the oil temperature of the hydraulic oil. Also, the dotted line in FIG. 2 indicates the tendency of the hydraulic oil pressure (operating oil pressure) with respect to the hydraulic oil temperature, and the hydraulic pressure tends to decrease as the hydraulic oil temperature increases.

また、第2可変動弁機構21の油圧源となる上記オイルポンプは、上述したように上記クランクシャフトの回転により駆動されている。そのため、図3に示すように、上記オイルポンプから第2可変動弁機構21に供給される作動油圧は、図3中に点線で示すように、エンジン回転数に比例する。従って、第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する際の応答速度は、図3中に実線で示すように、作動油圧が低くなるエンジン回転数が低い領域で相対的に遅くなる。   Further, the oil pump serving as the hydraulic pressure source of the second variable valve mechanism 21 is driven by the rotation of the crankshaft as described above. Therefore, as shown in FIG. 3, the hydraulic pressure supplied from the oil pump to the second variable valve mechanism 21 is proportional to the engine speed, as indicated by the dotted line in FIG. Therefore, the response speed when the phase of the lift center angle of the intake valve 1 is changed by the second variable valve mechanism 21 is in a region where the engine speed is low, as shown by the solid line in FIG. Relatively slow.

そして、作動油の油温が高く、エンジン回転数が低い場合には、上記オイルポンプからの作動油の吐出量が少なく、また作動油の粘度が低くなって油路内の各部隙間からの作動油の漏れ量が多くなるので、第2可変動弁機構21に供給される作動油圧が相対的に低くなると共に、第2可変動弁機構21に供給される作動油の油量が相対的に減少するため、第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する際の応答速度が遅くなる。   When the oil temperature of the hydraulic oil is high and the engine speed is low, the discharge amount of the hydraulic oil from the oil pump is small, and the viscosity of the hydraulic oil becomes low, so that the operation from the gaps in the oil passages Since the amount of oil leakage increases, the hydraulic pressure supplied to the second variable valve mechanism 21 becomes relatively low, and the amount of hydraulic oil supplied to the second variable valve mechanism 21 becomes relatively small. Therefore, the response speed when the phase of the lift center angle of the intake valve 1 is changed by the second variable valve mechanism 21 is reduced.

さらに、第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する場合の応答速度は、吸気弁1のバルブリフト量の影響を受ける。   Further, the response speed when the phase of the lift center angle of the intake valve 1 is changed by the second variable valve mechanism 21 is affected by the valve lift amount of the intake valve 1.

第2可変動弁機構21は、揺動カム29の反力を受けながら吸気弁1のリフト中心角の位相を変更するものであって、吸気弁1のリフト中心角の位相を進角側へ変更する際には揺動カム29の反力がこの進角側への変更を阻害する方向に作用し、吸気弁1のリフト中心角の位相を遅角側へ変更する際には揺動カム29の反力がこの遅角側への変更を助長する方向に作用する。   The second variable valve mechanism 21 changes the phase of the lift center angle of the intake valve 1 while receiving the reaction force of the swing cam 29, and the phase of the lift center angle of the intake valve 1 is advanced. When changing, the reaction force of the swing cam 29 acts in a direction that inhibits the change to the advance side, and when changing the phase of the lift center angle of the intake valve 1 to the retard side, the swing cam 29 The reaction force 29 acts in the direction of promoting the change to the retard side.

詳述すると、図4に示すように、第2可変動弁機構21により吸気弁1のリフト中心角の位相を進角側に変更する場合には、作動油圧を一定すると、揺動カム29が高リフトカムとなって吸気弁1のバルブリフト量が大きく設定されているほど吸気弁1のリフト中心角の進角側への変更の応答速度は遅くなる。一方、第2可変動弁機構21により吸気弁1のリフト中心角の位相を遅角側に変更する場合には、作動油圧を一定とすると、揺動カム29が高リフトカムとなって吸気弁1のバルブリフト量が大きく設定されているほど吸気弁1のリフト中心角の遅角側への変更の応答速度は速くなる。   More specifically, as shown in FIG. 4, when the phase of the lift center angle of the intake valve 1 is changed to the advance side by the second variable valve mechanism 21, if the hydraulic pressure is constant, the swing cam 29 is The response speed of changing the lift center angle of the intake valve 1 to the advance side becomes slower as the lift valve becomes higher and the valve lift amount of the intake valve 1 is set larger. On the other hand, when the phase of the lift center angle of the intake valve 1 is changed to the retard side by the second variable valve mechanism 21, the swing cam 29 becomes a high lift cam and the intake valve 1 when the operating hydraulic pressure is constant. The larger the valve lift amount is, the faster the response speed of changing the lift center angle of the intake valve 1 to the retard side.

そこで、第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する際には、第1可変動弁機構11により吸気弁1のリフト・作動角を第2可変動弁機構21のリフト中心角変更時の応答性を向上させる方向に一旦変更する応答補助動作を行う。   Therefore, when the phase of the lift center angle of the intake valve 1 is changed by the second variable valve mechanism 21, the lift / operating angle of the intake valve 1 is changed by the second variable valve mechanism 21 by the first variable valve mechanism 11. A response assisting operation is performed to temporarily change the lift center angle in a direction to improve the response.

具体的には、第2可変動弁機構21により吸気弁1のリフト中心角の位相を進角側に変更する際には、図5に示すように、第1可変動弁機構11により吸気弁1のリフト・作動角を一旦小リフト・小作動角側に変更して、吸気弁1のリフト中心角の位相の進角側への変更の応答速度を速くする。一方、第2可変動弁機構21により吸気弁1のリフト中心角の位相を遅角側に変更する際には、第1可変動弁機構11により吸気弁1のリフト・作動角を一旦大リフト・大作動角側に変更して、吸気弁1のリフト中心角の位相の遅角側への変更の応答速度を速くする。   Specifically, when the phase of the lift center angle of the intake valve 1 is changed to the advance side by the second variable valve mechanism 21, the intake valve is moved by the first variable valve mechanism 11 as shown in FIG. The lift / operating angle of 1 is once changed to the small lift / small operating angle side to increase the response speed of the change of the phase of the lift center angle of the intake valve 1 to the advance side. On the other hand, when the phase of the lift center angle of the intake valve 1 is changed to the retard side by the second variable valve mechanism 21, the lift / operating angle of the intake valve 1 is temporarily increased by the first variable valve mechanism 11. Change to the large operating angle side to increase the response speed of changing the phase of the lift center angle of the intake valve 1 to the retarded angle side.

ここで、第1可変動弁機構11による上記応答補助動作は、第2可変動弁機構21に吸気弁1のリフト中心角の位相を変更する制御指令が出されると開始され、駆動軸センサ36の検出値から第2可変動弁機構21による吸気弁1のリフト中心角の位相の変更が終了したと判定された時点で終了する。第1可変動弁機構11は、上記応答補助動作が終了すると、吸気弁1のリフト・作動角を今回の制御目標値に向けて変更する。また、上記応答補助動作における吸気弁1のリフト・作動角の変更量は、運転状態や吸気弁1のバルブ特性変更時の制御目標値に応じて可変設定されるものである。   Here, the response assisting operation by the first variable valve mechanism 11 is started when a control command for changing the phase of the lift center angle of the intake valve 1 is issued to the second variable valve mechanism 21, and the drive shaft sensor 36. The process ends when it is determined from the detected value that the change of the phase of the lift center angle of the intake valve 1 by the second variable valve mechanism 21 has been completed. When the response assisting operation ends, the first variable valve mechanism 11 changes the lift / operation angle of the intake valve 1 toward the current control target value. Further, the amount of change of the lift / operating angle of the intake valve 1 in the response assisting operation is variably set according to the operation state and the control target value when the valve characteristic of the intake valve 1 is changed.

尚、図5における細線S1及びS2は制御目標値を示し、太線T1及びT2はセンサ34,36による実測値を示し、点線U1及びU2は上記応答補助動作を実施せずに第1可変動弁機構11と第2可変動弁機構21を同時に制御目標値に向けて作動させた場合の実測値を示すものである。   In FIG. 5, thin lines S1 and S2 indicate control target values, thick lines T1 and T2 indicate actual measurement values by the sensors 34 and 36, and dotted lines U1 and U2 indicate the first variable valve without performing the response assisting operation. The measured value when the mechanism 11 and the second variable valve mechanism 21 are simultaneously operated toward the control target value is shown.

このように第1可変動弁機構11により上記応答補助動作を行うことで、過渡時における第2可変動弁機構21の応答性が向上し、第2可変動弁機構21により吸気弁1のリフト中心角の位相を制御目標値に変更するまでの応答時間が短縮されるので、過渡時におけるエンジン性能(内燃機関の性能)を向上させることができ、ひいては実用時のエンジン性能を向上させることができる。詳述すれば、吸気弁1のリフト中心角の位相を進角側へ変更する際の第2可変動弁機構21の応答速度を向上させることで実用燃費を向上させることができ、吸気弁1のリフト中心角の位相を遅角側へ変更する際の第2可変動弁機構21の応答速度を向上させることで上記内燃機関が搭載される車両の加速性を向上させることができる。   By performing the response assisting operation by the first variable valve mechanism 11 in this way, the response of the second variable valve mechanism 21 at the time of transition is improved, and the lift of the intake valve 1 by the second variable valve mechanism 21 is improved. Since the response time until the phase of the central angle is changed to the control target value is shortened, the engine performance at the time of transition (the performance of the internal combustion engine) can be improved, and consequently the engine performance in practical use can be improved. it can. More specifically, practical fuel consumption can be improved by improving the response speed of the second variable valve mechanism 21 when the phase of the lift center angle of the intake valve 1 is changed to the advance side. By improving the response speed of the second variable valve mechanism 21 when the phase of the lift center angle is changed to the retard side, the acceleration of the vehicle on which the internal combustion engine is mounted can be improved.

そして、第1可変動弁機構11による上記応答補助動作によって過渡時における第2可変動弁機構21の応答性を向上させることができるので、上記オイルポンプの容量を拡大することなく第2可変動弁機構21の応答性を向上させることができる。つまり、コストの上昇、エンジン(内燃機関)の大型化、フリクションの悪化を防止しつつ、第2可変動弁機構21の応答性を向上させることができる。   Since the response assisting operation by the first variable valve mechanism 11 can improve the responsiveness of the second variable valve mechanism 21 at the time of transition, the second variable valve can be operated without increasing the capacity of the oil pump. The responsiveness of the valve mechanism 21 can be improved. That is, the responsiveness of the second variable valve mechanism 21 can be improved while preventing an increase in cost, an increase in size of the engine (internal combustion engine), and deterioration of friction.

また、第1可変動弁機構11による上記応答補助動作は、上記内燃機関の運転状態に応じて実施するようにしてもよい。すなわち、第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する場合には、常に第1可変動弁機構11による上記応答補助動作を行うのではなく、第2可変動弁機構21の応答性が悪くなる場合に限って第1可変動弁機構11による上記応答補助動作を実施するようにしてもよい。具体的には、第2可変動弁機構21に供給される作動油の温度が予め設定された第1所定温度以下となる低油温時(例えば20℃以下の常温)、第2可変動弁機構21に供給される作動油の温度が予め設定された第2所定温度以上となる高油温時(例えば100℃以上)、もしくはエンジン回転数が予め設定された所定回転数以下となる低回転時のいずれかの状態で第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する場合にのみ、上記応答補助動作を実施することで、始動時排気性能、燃費及び上記内燃機関が搭載される車両の加速性能の向上を図ることができる。ここで、作動油の油温を検知するに当たっては、上記内燃機関の冷却水温度を検知する水温センサの検出値を用いて作動油の油温を推定するようにしてもよい。   The response assisting operation by the first variable valve mechanism 11 may be performed according to the operating state of the internal combustion engine. That is, when the phase of the lift center angle of the intake valve 1 is changed by the second variable valve mechanism 21, the response assisting operation is not always performed by the first variable valve mechanism 11, but the second variable valve mechanism The response assisting operation by the first variable valve mechanism 11 may be performed only when the response of the mechanism 21 is deteriorated. Specifically, when the temperature of the hydraulic oil supplied to the second variable valve mechanism 21 is lower than a first predetermined temperature set in advance (for example, a normal temperature of 20 ° C. or lower), the second variable valve is operated. At a high oil temperature (for example, 100 ° C. or higher) when the temperature of the hydraulic oil supplied to the mechanism 21 is equal to or higher than a preset second predetermined temperature, or at a low speed where the engine speed is equal to or lower than a preset predetermined speed By performing the response assisting operation only when the second variable valve mechanism 21 changes the phase of the lift center angle of the intake valve 1 in any state, the exhaust performance at start-up, fuel consumption, and the internal combustion The acceleration performance of the vehicle on which the engine is mounted can be improved. Here, when detecting the oil temperature of the working oil, the oil temperature of the working oil may be estimated using a detection value of a water temperature sensor for detecting the cooling water temperature of the internal combustion engine.

そして、第1可変動弁機構11による上記応答補助動作中の吸気弁1の開時期及び閉時期は、上記応答補助動作が実施される直前の吸気弁1の開閉期間と、第2可変動弁機構21による吸気弁1のリフト中心角の位相の変更を含むバルブ特性の変更後の吸気弁1の開閉期間と、のうちの少なくとも一方の期間内となるように制御されている。すなわち、吸気弁1のバルブ特性の変更に伴い第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する際に、この変更前の吸気弁1の開弁期間を変更前開弁期間とし、この変更後の吸気弁1の開弁期間を変更後開弁期間とすると、第1可変動弁機構11の応答補助動作中における吸気弁1の開時期及び閉時期は、上記変更前開弁期間もしくは上記変更後開弁期間の少なくとも一方の期間内となるように設定されている。   The opening timing and closing timing of the intake valve 1 during the response assist operation by the first variable valve mechanism 11 are the opening / closing period of the intake valve 1 immediately before the response assist operation is performed, and the second variable valve operation. The mechanism 21 is controlled so as to be within at least one of the opening and closing periods of the intake valve 1 after the change of the valve characteristics including the change of the phase of the lift center angle of the intake valve 1. That is, when the phase of the lift center angle of the intake valve 1 is changed by the second variable valve mechanism 21 in accordance with the change of the valve characteristic of the intake valve 1, the opening period of the intake valve 1 before the change is opened before the change. Assuming that the opening period of the intake valve 1 after the change is the opening period after the change, the opening timing and closing timing of the intake valve 1 during the response assisting operation of the first variable valve mechanism 11 are the opening before the change. It is set to be within at least one of the valve period or the changed valve opening period.

尚、第1可変動弁機構11による上記応答補助動作は、該応答補助動作が開始されてから予め設定された所定時間が経過すると終了するようにしてもよい。また、第2可変動弁機構21により吸気弁1のリフト中心角の位相が制御目標値まで変更されていなくとも、該制御目標値に対してある程度近づいた段階で上記応答補助動作が終了するようにしてもよい。   The response assisting operation by the first variable valve mechanism 11 may be terminated when a predetermined time elapses after the response assisting operation is started. Further, even if the phase of the lift center angle of the intake valve 1 is not changed to the control target value by the second variable valve mechanism 21, the response assisting operation is completed when the control target value is approached to some extent. It may be.

また、上述した実施形態においては、第2可変動弁機構21が油圧駆動されているが、吸気弁1のリフト中心角の位相を遅進させる第2可変動弁機構21は油圧駆動されるものに限定されるものではなく、電動モータ等で駆動するものであってもよい。このように第2可変動弁機構21が電動モータで駆動される場合でも、第2可変動弁機構21の応答速度は、吸気弁1のバルブリフト量の影響を受けることになる。つまり、揺動カム29が高リフトカムとなって吸気弁1のバルブリフト量が大きく設定されているほど第2可変動弁機構21による吸気弁1のリフト中心角の進角側への変更の応答速度は遅くなる傾向があり、揺動カム29が高リフトカムとなって吸気弁1のバルブリフト量が大きく設定されているほど第2可変動弁機構21による吸気弁1のリフト中心角の遅角側への変更の応答速度は速くなる傾向がある。そのため、第2可変動弁機構21が電動モータで駆動される場合であっても、第2可変動弁機構21により吸気弁1のリフト中心角の位相を変更する際には、第1可変動弁機構11により吸気弁1のリフト・作動角を第2可変動弁機構21のリフト中心角変更時の応答性を向上させる方向に一旦変更する応答補助動作を行うことで、第2可変動弁機構21の応答性を向上させることができる。   In the above-described embodiment, the second variable valve mechanism 21 is hydraulically driven. However, the second variable valve mechanism 21 that delays the phase of the lift center angle of the intake valve 1 is hydraulically driven. It is not limited to this, and it may be driven by an electric motor or the like. Thus, even when the second variable valve mechanism 21 is driven by the electric motor, the response speed of the second variable valve mechanism 21 is affected by the valve lift amount of the intake valve 1. That is, as the swing cam 29 becomes a high lift cam and the valve lift amount of the intake valve 1 is set larger, the response of the second variable valve mechanism 21 to change the lift center angle of the intake valve 1 to the advance side. The speed tends to be slow, and as the swing cam 29 becomes a high lift cam and the valve lift amount of the intake valve 1 is set to be larger, the lift central angle of the intake valve 1 by the second variable valve mechanism 21 is retarded. The response speed of changes to the side tends to increase. Therefore, even when the second variable valve mechanism 21 is driven by an electric motor, when the second variable valve mechanism 21 changes the phase of the lift center angle of the intake valve 1, the first variable valve mechanism 21 is driven. The valve mechanism 11 performs a response assisting operation that temporarily changes the lift / operating angle of the intake valve 1 in a direction that improves the response when the lift center angle of the second variable valve mechanism 21 is changed, thereby providing the second variable valve operation. The responsiveness of the mechanism 21 can be improved.

そして、本発明に係る内燃機関の可変動弁装置は、吸気系にのみ適用されるものではなく、排気系にも適用可能である。   The variable valve operating apparatus for an internal combustion engine according to the present invention is not only applied to the intake system, but can also be applied to the exhaust system.

上記実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical idea of the present invention that can be grasped from the above embodiment will be listed together with the effects thereof.

(1) 機関弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、上記機関弁のリフト中心角の位相を遅進させる位相可変機構と、を有し、上記リフト・作動角可変機構と上記位相可変機構の少なくとも一方を作動させることで上記機関弁のバルブ特性を変更可能な内燃機関の可変動弁装置において、上記位相可変機構により上記機関弁のリフト中心角の位相を変更する際には、上記リフト・作動角可変機構により上記機関弁のリフト・作動角を上記位相可変機構のリフト中心角変更時の応答性を向上させる方向に一旦変更する応答補助動作を行う。これによって、過渡時における位相可変機構の応答性が向上し、位相可変機構により機関弁のリフト中心角の位相を制御目標値に変更するまでの応答時間が短縮されるので、過渡時におけるエンジン性能(内燃機関の性能)を向上させることができ、ひいては実用時のエンジン性能を向上させることができる。   (1) A lift / working angle variable mechanism capable of simultaneously and continuously expanding and reducing the lift / working angle of the engine valve, and a phase variable mechanism for delaying the phase of the lift center angle of the engine valve. In a variable valve operating apparatus for an internal combustion engine capable of changing the valve characteristic of the engine valve by operating at least one of the lift / operating angle variable mechanism and the phase variable mechanism, the phase variable mechanism When changing the phase of the lift center angle, the lift / operating angle variable mechanism temporarily changes the lift / operating angle of the engine valve in a direction that improves the responsiveness when changing the lift center angle of the phase variable mechanism. Performs a response assist operation. This improves the response of the phase variable mechanism during the transition, and the response time until the phase of the lift valve center angle of the engine valve is changed to the control target value by the phase variable mechanism is shortened. (Performance of the internal combustion engine) can be improved, and as a result, the engine performance in practical use can be improved.

(2) 上記(1)に記載の内燃機関の可変動弁装置は、上記位相可変機構により上記機関弁のリフト中心角の位相を進角側に変更する際に、上記リフト・作動角可変機構により上記機関弁のリフト・作動角を一旦小リフト・小作動角側に変更する。これによって、内燃機関の実用燃費を向上させることができる。   (2) The variable valve operating apparatus for the internal combustion engine according to (1), wherein the lift / operating angle variable mechanism is used when the phase of the lift center angle of the engine valve is changed to the advance side by the phase variable mechanism. Thus, the lift / operating angle of the engine valve is temporarily changed to the small lift / small operating angle side. Thereby, the practical fuel consumption of the internal combustion engine can be improved.

(3) 上記(1)または(2)に記載の内燃機関の可変動弁装置は、上記位相可変機構により上記機関弁のリフト中心角の位相を遅角側に変更する際に、上記リフト・作動角可変機構により上記機関弁のリフト・作動角を一旦大リフト・大作動角側に変更する。これによって、内燃機関が搭載される車両の加速性を向上させることができる。   (3) The variable valve operating apparatus for an internal combustion engine according to (1) or (2) described above, when the phase of the lift central angle of the engine valve is changed to the retard side by the phase variable mechanism. The lift / operating angle of the engine valve is once changed to the large lift / large operating angle side by the operating angle variable mechanism. As a result, the acceleration performance of the vehicle on which the internal combustion engine is mounted can be improved.

(4) 上記(1)〜(3)のいずれかに記載に内燃機関の可変動弁装置は、上記機関弁のバルブ特性の変更に伴い上記位相可変機構により上記機関弁のリフト中心角の位相を変更する際に、この変更前の上記機関弁の開弁期間を変更前開弁期間とし、この変更後の上記機関弁の開弁期間を変更後開弁期間とすると、上記リフト・作動角可変機構の応答補助動作中における上記機関弁の開時期及び閉時期は、上記変更前開弁期間もしくは上記変更後開弁期間の少なくとも一方の期間内となるように設定されている。   (4) In the variable valve operating apparatus for an internal combustion engine according to any one of (1) to (3), the phase of the lift central angle of the engine valve is changed by the phase variable mechanism in accordance with the change of the valve characteristic of the engine valve. If the opening period of the engine valve before the change is the opening period before the change, and the opening period of the engine valve after the change is the opening period after the change, the lift / operating angle is variable. The opening timing and closing timing of the engine valve during the response assisting operation of the mechanism are set so as to be within at least one of the pre-change valve opening period and the post-change valve opening period.

(5) 上記(1)〜(4)のいずれかに記載の内燃機関の可変動弁装置において、上記リフト・作動角可変機構は、具体的には、上記応答補助動作の開始後に予め設定された所定条件が成立すると該応答補助動作を終了し、今回の制御目標値に向けて上記機関弁のリフト・作動角を変更する。   (5) In the variable valve operating apparatus for an internal combustion engine according to any one of (1) to (4), specifically, the lift / operating angle variable mechanism is set in advance after the start of the response assisting operation. When the predetermined condition is satisfied, the response assisting operation is terminated, and the lift / operating angle of the engine valve is changed toward the current control target value.

(6) 上記(5)に記載の内燃機関の可変動弁装置において、上記所定条件は、具体的には、上記応答補助動作の開始から予め設定された所定時間が経過すると成立する。   (6) In the variable valve operating apparatus for an internal combustion engine according to (5), specifically, the predetermined condition is established when a predetermined time elapses from the start of the response assisting operation.

(7) 上記(5)に記載の内燃機関の可変動弁装置において、上記所定条件は、具体的には、上記機関弁のリフト中心角の位相が上記位相可変機構により今回の制御目標値まで変更されると成立する。   (7) In the variable valve operating apparatus for an internal combustion engine according to (5), specifically, the predetermined condition is that the phase of the lift center angle of the engine valve reaches the current control target value by the phase variable mechanism. It is established when it is changed.

(8) 上記(1)〜(7)のいずれかに記載の内燃機関の可変動弁装置において、上記位相可変機構は、具体的には、上記内燃機関のクランクシャフトの回転により駆動されるオイルポンプから供給される作動油の油圧により駆動するものであって、上記内燃機関の運転状態を検知する運転状態検知手段を有し、上記位相可変機構により機関弁のリフト中心角の位相を変更する際に、該運転状態検知手段により、上記作動油の油温が予め設定された第1所定温度以下となる低油温時、上記作動油の油温が予め設定された第2所定温度以上となる高油温時、もしくは上記内燃機関の機関回転数が予め設定された所定回転数以下となる低回転時のいずれかであると判定されたされた際に、上記リフト・作動角可変機構による上記応答補助動作を実施する。これによって、始動時排気性能、燃費及び上記内燃機関が搭載される車両の加速性能の向上を図ることができる。   (8) In the variable valve operating apparatus for an internal combustion engine according to any one of (1) to (7), specifically, the phase variable mechanism is oil driven by rotation of a crankshaft of the internal combustion engine. Driven by the hydraulic pressure of the hydraulic oil supplied from the pump, having operating state detecting means for detecting the operating state of the internal combustion engine, and changing the phase of the lift center angle of the engine valve by the phase variable mechanism. When the oil temperature of the hydraulic oil is lower than a first predetermined temperature set in advance by the operating state detecting means, the oil temperature of the hydraulic oil is equal to or higher than a preset second predetermined temperature. By the variable lift / operating angle when it is determined that the oil temperature is high or the engine speed of the internal combustion engine is low or lower than a predetermined value. The above response assisting action Hodokosuru. As a result, it is possible to improve the starting exhaust performance, the fuel consumption, and the acceleration performance of the vehicle on which the internal combustion engine is mounted.

本発明に係る内燃機関の可変動弁装置の概略構成を模式的に示した説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which showed typically schematic structure of the variable valve operating apparatus of the internal combustion engine which concerns on this invention. 作動油の油温に対する第2可変動弁機構の応答速度と作動油の油圧の相関関係を示す特性線図。The characteristic line figure which shows the correlation of the response speed of the 2nd variable valve mechanism with respect to the oil temperature of hydraulic fluid, and the hydraulic pressure of hydraulic fluid. エンジン回転数に対する第2可変動弁機構の応答速度と作動油の油圧の相関関係を示す特性線図。The characteristic line figure which shows the correlation of the response speed of the 2nd variable valve mechanism with respect to engine speed, and the hydraulic pressure of hydraulic fluid. 第2可変動弁機構の応答速度と吸気弁のバルブリフト量及び第2可変動弁機構の作動油圧の相関関係を示す特性線図。The characteristic line figure which shows the correlation of the response speed of a 2nd variable valve mechanism, the valve lift amount of an intake valve, and the working hydraulic pressure of a 2nd variable valve mechanism. 第2可変動弁機構により吸気弁のリフト中心角の位相を変更する際の第1及び第2可変動弁機構のタイミングチャート。The timing chart of the 1st and 2nd variable valve mechanism at the time of changing the phase of the lift center angle of an intake valve by a 2nd variable valve mechanism.

符号の説明Explanation of symbols

1…吸気弁
11…第1可変動弁機構(リフト・作動角可変機構)
21…第2可変動弁機構(位相可変機構)
DESCRIPTION OF SYMBOLS 1 ... Intake valve 11 ... 1st variable valve mechanism (lift / operating angle variable mechanism)
21 ... Second variable valve mechanism (variable phase mechanism)

Claims (8)

機関弁のリフト・作動角を同時にかつ連続的に拡大,縮小制御可能なリフト・作動角可変機構と、上記機関弁のリフト中心角の位相を遅進させる位相可変機構と、を有し、上記リフト・作動角可変機構と上記位相可変機構の少なくとも一方を作動させることで上記機関弁のバルブ特性を変更可能な内燃機関の可変動弁装置において、
上記位相可変機構により上記機関弁のリフト中心角の位相を変更する際には、上記リフト・作動角可変機構により上記機関弁のリフト・作動角を上記位相可変機構のリフト中心角変更時の応答性を向上させる方向に一旦変更する応答補助動作を行うことを特徴とする内燃機関の可変動弁装置。
A lift / working angle variable mechanism capable of simultaneously and continuously expanding and reducing the lift / working angle of the engine valve, and a phase variable mechanism for delaying the phase of the lift center angle of the engine valve, In a variable valve operating apparatus for an internal combustion engine capable of changing the valve characteristic of the engine valve by operating at least one of a lift / operating angle variable mechanism and the phase variable mechanism,
When the phase of the lift center angle of the engine valve is changed by the phase variable mechanism, the lift / operation angle of the engine valve is changed by the lift / operation angle variable mechanism when the lift center angle of the phase variable mechanism is changed. A variable valve operating apparatus for an internal combustion engine that performs a response assisting operation that temporarily changes in a direction to improve the performance.
上記位相可変機構により上記機関弁のリフト中心角の位相を進角側に変更する際には、上記リフト・作動角可変機構により上記機関弁のリフト・作動角を一旦小リフト・小作動角側に変更することを特徴とする請求項1に記載の内燃機関の可変動弁装置。   When changing the phase of the lift center angle of the engine valve to the advance side by the phase variable mechanism, the lift / operating angle of the engine valve is once changed to the small lift / small operating angle side by the lift / operating angle variable mechanism. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein 上記位相可変機構により上記機関弁のリフト中心角の位相を遅角側に変更する際には、上記リフト・作動角可変機構により上記機関弁のリフト・作動角を一旦大リフト・大作動角側に変更することを特徴とする請求項1または2に記載の内燃機関の可変動弁装置。   When changing the phase of the lift center angle of the engine valve to the retarded side by the phase variable mechanism, the lift / operating angle of the engine valve is once set to the large lift / large operating angle side by the variable lift / operating angle mechanism. The variable valve operating apparatus for an internal combustion engine according to claim 1 or 2, wherein 上記機関弁のバルブ特性の変更に伴い上記位相可変機構により上記機関弁のリフト中心角の位相を変更する際に、この変更前の上記機関弁の開弁期間を変更前開弁期間とし、この変更後の上記機関弁の開弁期間を変更後開弁期間とすると、上記リフト・作動角可変機構の応答補助動作中における上記機関弁の開時期及び閉時期は、上記変更前開弁期間もしくは上記変更後開弁期間の少なくとも一方の期間内となるように設定されていることを特徴とする請求項1〜3のいずれかに記載の内燃機関の可変動弁装置。   When changing the phase of the lift center angle of the engine valve by the phase variable mechanism in accordance with the change of the valve characteristic of the engine valve, the opening period of the engine valve before the change is defined as the pre-change valve opening period. Assuming that the later opening period of the engine valve is a changed opening period, the opening timing and closing timing of the engine valve during the response assisting operation of the lift / operating angle variable mechanism are the opening period before the change or the change The variable valve operating apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the variable valve operating apparatus is set so as to be within at least one of the post-opening periods. 上記リフト・作動角可変機構は、上記応答補助動作の開始後に予め設定された所定条件が成立すると該応答補助動作を終了し、今回の制御目標値に向けて上記機関弁のリフト・作動角を変更することを特徴とする請求項1〜4のいずれかに記載の内燃機関の可変動弁装置。   The lift / operating angle variable mechanism terminates the response assisting operation when a predetermined condition is established after the response assisting operation is started, and sets the lift / operating angle of the engine valve toward the current control target value. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein the variable valve operating apparatus is changed. 上記所定条件は、上記応答補助動作の開始から予め設定された所定時間が経過すると成立することを特徴とする請求項5に記載の内燃機関の可変動弁装置。   6. The variable valve operating apparatus for an internal combustion engine according to claim 5, wherein the predetermined condition is satisfied when a predetermined time elapses from the start of the response assisting operation. 上記所定条件は、上記機関弁のリフト中心角の位相が上記位相可変機構により今回の制御目標値まで変更されると成立することを特徴とする請求項5に記載の内燃機関の可変動弁装置。   6. The variable valve operating system for an internal combustion engine according to claim 5, wherein the predetermined condition is satisfied when the phase of the lift center angle of the engine valve is changed to the current control target value by the phase variable mechanism. . 上記位相可変機構は、上記内燃機関のクランクシャフトの回転により駆動されるオイルポンプから供給される作動油の油圧により駆動するものであって、
上記内燃機関の運転状態を検知する運転状態検知手段を有し、
上記位相可変機構により機関弁のリフト中心角の位相を変更する際に、該運転状態検知手段により、上記作動油の油温が予め設定された第1所定温度以下となる低油温時、上記作動油の油温が予め設定された第2所定温度以上となる高油温時、もしくは上記内燃機関の機関回転数が予め設定された所定回転数以下となる低回転時のいずれかであると判定されたされた際に、上記リフト・作動角可変機構による上記応答補助動作を実施することを特徴とする請求項1〜7のいずれかに記載の内燃機関の可変動弁装置。
The phase variable mechanism is driven by hydraulic pressure of hydraulic oil supplied from an oil pump driven by rotation of a crankshaft of the internal combustion engine,
Having an operating state detecting means for detecting the operating state of the internal combustion engine;
When the phase of the lift central angle of the engine valve is changed by the phase variable mechanism, the operating state detection means causes the oil temperature of the hydraulic oil to be equal to or lower than a first predetermined temperature set in advance. When the oil temperature of the hydraulic oil is higher than a preset second predetermined temperature or when the engine speed of the internal combustion engine is lower than a preset predetermined number of revolutions. 8. The variable valve operating apparatus for an internal combustion engine according to claim 1, wherein when the determination is made, the response assisting operation is performed by the lift / operating angle variable mechanism.
JP2006327812A 2006-12-05 2006-12-05 Variable valve operating device for internal combustion engine Expired - Fee Related JP4760691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327812A JP4760691B2 (en) 2006-12-05 2006-12-05 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327812A JP4760691B2 (en) 2006-12-05 2006-12-05 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008138634A true JP2008138634A (en) 2008-06-19
JP4760691B2 JP4760691B2 (en) 2011-08-31

Family

ID=39600357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327812A Expired - Fee Related JP4760691B2 (en) 2006-12-05 2006-12-05 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4760691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024877A (en) * 2008-07-16 2010-02-04 Hitachi Automotive Systems Ltd Variable valve control device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098202A (en) * 2003-09-25 2005-04-14 Nissan Motor Co Ltd Intake air control device of internal combustion engine
JP2006057454A (en) * 2004-08-17 2006-03-02 Nissan Motor Co Ltd Variable valve system for internal combustion engine and method for controlling the same
JP2006090132A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Variable valve system of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098202A (en) * 2003-09-25 2005-04-14 Nissan Motor Co Ltd Intake air control device of internal combustion engine
JP2006057454A (en) * 2004-08-17 2006-03-02 Nissan Motor Co Ltd Variable valve system for internal combustion engine and method for controlling the same
JP2006090132A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Variable valve system of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024877A (en) * 2008-07-16 2010-02-04 Hitachi Automotive Systems Ltd Variable valve control device for internal combustion engine

Also Published As

Publication number Publication date
JP4760691B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US7793625B2 (en) Variable valve actuating apparatus for internal combustion engine
JP4804384B2 (en) Variable valve operating device and control device for internal combustion engine
WO2000047883A1 (en) Variable valve gear device of internal combustion engine
JP4039239B2 (en) Variable valve control device for internal combustion engine
JP3829629B2 (en) Combustion control device for internal combustion engine
JP5316086B2 (en) Control device and control method for internal combustion engine
JP4760691B2 (en) Variable valve operating device for internal combustion engine
JP2005188286A (en) Valve lift control device of internal combustion engine
JP4765379B2 (en) Control device for internal combustion engine
JP4415788B2 (en) Variable valve operating apparatus for internal combustion engine and control method thereof
JP4706647B2 (en) Control device for internal combustion engine and internal combustion engine
JP2006046193A (en) Controller for internal combustion engine
JP2009215889A (en) Variable valve gear for internal combustion engine
JP4305344B2 (en) Variable valve operating device for internal combustion engine
JP4432746B2 (en) Intake control device for internal combustion engine
JP2004116365A (en) Controller for variable valve system
JP2010077815A (en) Control device for internal combustion engine
JP5206856B2 (en) Control device for internal combustion engine
JP4807155B2 (en) Variable valve gear
JP2007278112A (en) Direct injection type internal combustion engine
JP2004150301A (en) Adjustable valve system for internal combustion engine
JP2007170180A (en) Variable valve gear of internal combustion engine
JP2008261319A (en) Variable valve gear for engine
JP2006207488A (en) Control device for variable valve train for internal combustion engine
JP2009144687A (en) Variable valve gear of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4760691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees