JP2005188286A - Valve lift control device of internal combustion engine - Google Patents

Valve lift control device of internal combustion engine Download PDF

Info

Publication number
JP2005188286A
JP2005188286A JP2003426622A JP2003426622A JP2005188286A JP 2005188286 A JP2005188286 A JP 2005188286A JP 2003426622 A JP2003426622 A JP 2003426622A JP 2003426622 A JP2003426622 A JP 2003426622A JP 2005188286 A JP2005188286 A JP 2005188286A
Authority
JP
Japan
Prior art keywords
valve
lift
valve lift
learning
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003426622A
Other languages
Japanese (ja)
Other versions
JP3982492B2 (en
Inventor
Katsuhiko Kawamura
克彦 川村
Katsuhiro Arai
勝博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003426622A priority Critical patent/JP3982492B2/en
Publication of JP2005188286A publication Critical patent/JP2005188286A/en
Application granted granted Critical
Publication of JP3982492B2 publication Critical patent/JP3982492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To excellently perform learning processing with a lift quantity as a minimum value VLmin, without impairing combustion stability, while widely securing a lift operable range by sufficiently reducing the minimum value VLmin of a valve lift quantity. <P>SOLUTION: This valve lift control device has a lift variable mechanism 1 capable of varying the valve lift quantity of an intake valve, and performs the learning processing of the valve lift quantity (Step 7), by operating the lift variable mechanism so that the valve lift quantity becomes the minimum value VLmin, when realizing a predetermined learning permitting condition corresponding to the combustion stability (Step 2), in vehicle deceleration causing a fuel cut (Step 1). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、吸気弁又は排気弁のバルブリフト量又は作動角の少なくとも一方を可変とするリフト可変機構を備えた内燃機関のバルブリフト制御装置に関する。   The present invention relates to a valve lift control device for an internal combustion engine provided with a variable lift mechanism that varies at least one of a valve lift amount and an operating angle of an intake valve or an exhaust valve.

内燃機関の吸気弁のバルブタイミングを変更する機構として、クランク角に対するカムシャフトの位相を変更する位相可変機構が公知である。特許文献1には、燃料カットを伴う車両減速中に、カムシャフトの位相を最遅角あるいは最進角として、上記位相の学習処理を行う技術が開示されている。このように燃料カット中に学習処理を行うことにより、学習処理に伴って燃料消費の増加を招くことがない。   As a mechanism for changing the valve timing of the intake valve of the internal combustion engine, a phase variable mechanism for changing the phase of the camshaft with respect to the crank angle is known. Patent Document 1 discloses a technique for performing the phase learning process with the phase of the camshaft as the most retarded angle or the most advanced angle during vehicle deceleration accompanied by a fuel cut. By performing the learning process during the fuel cut in this way, the fuel consumption is not increased along with the learning process.

また、本出願人が以前に提案した特許文献2には、リフト可変機構として、バルブリフト量及び作動角の双方を連続的に変更可能なリフト・作動角可変機構が開示されている。このようなリフト可変機構により機関運転状態に応じてバルブリフト量を可変制御することにより、燃費と出力の双方を高めることが可能である。
特開2002−180856号公報 特開平11−107725号公報
Patent Document 2 previously proposed by the present applicant discloses a variable lift / operating angle mechanism capable of continuously changing both the valve lift amount and the operating angle as a variable lift mechanism. By variably controlling the valve lift amount according to the engine operating state by such a variable lift mechanism, it is possible to improve both fuel consumption and output.
JP 2002-180856 A JP-A-11-107725

このようなリフト可変機構では、経時劣化や各種誤差を吸収するように、好ましくはバルブリフト量の学習処理や補正処理を行う。この学習処理は、リフト可変機構をリフト可変範囲の機構的な最小値又は最大値、好ましくは動弁系からの反力が低くロスの少ない最小値に操作して行う。例えばバルブリフト量を検出する角度センサやリフトセンサ等を備え、このセンサの出力に基づいてクローズドループ制御を行うものでは、バルブリフト量の機構的な最小値が、制御目標値として使用され得る制御最小値(例えば1.5mm程度)よりも低い値(例えば1mm程度)に設定されており、この機構的なリフト最小値に応じたセンサの基準位置に対して学習値を算出する。   In such a variable lift mechanism, a valve lift amount learning process and a correction process are preferably performed so as to absorb deterioration with time and various errors. This learning process is performed by operating the lift variable mechanism to the mechanical minimum or maximum value of the lift variable range, preferably the minimum value with low reaction force from the valve operating system and low loss. For example, in the case where an angle sensor, a lift sensor, or the like for detecting the valve lift amount is provided and the closed loop control is performed based on the output of the sensor, the control that can use the mechanical minimum value of the valve lift amount as the control target value. It is set to a value (for example, about 1 mm) lower than the minimum value (for example, about 1.5 mm), and a learning value is calculated with respect to the reference position of the sensor corresponding to this mechanical lift minimum value.

しかしながら、機関運転状態に応じてバルブリフト量を幅広く変更できるように、バルブリフト量の操作可能範囲を広げると、その最小値ではリフト量が例えば上記の1mm程度の極小リフトとなり、吸入空気量が極端に少なくなるため、内燃機構の安定した燃焼が成立しないことがある。なお、上述した位相可変機構により位相を変化させても、リフト可変機構のように内燃機関の燃焼が成立しなくなるほど吸入空気量は変化しない。また、燃料カットを伴う車両減速中であっても、バルブリフト量を機構的な最小値とすると、燃料カット解除後の燃焼安定性を確保できないおそれがある。   However, when the operable range of the valve lift amount is widened so that the valve lift amount can be widely changed according to the engine operating state, the minimum lift amount is, for example, the minimum lift of about 1 mm, and the intake air amount is Since it becomes extremely small, stable combustion of the internal combustion mechanism may not be established. Note that even if the phase is changed by the above-described variable phase mechanism, the intake air amount does not change so that combustion of the internal combustion engine is no longer established as in the variable lift mechanism. Even when the vehicle is decelerated with fuel cut, if the valve lift is set to the mechanical minimum value, there is a possibility that the combustion stability after release of the fuel cut cannot be ensured.

本発明は、このような課題に鑑みてなされたものであり、バルブリフト量又は作動角の最小値を十分に小さくすることによりバルブリフト量又は作動角の操作可能範囲を幅広く確保した上で、燃焼安定性を損ねることなく、リフト可変機構により操作されるバルブリフト量又は作動角の学習処理又は補正処理を良好に行うことができる新規な内燃機関のバルブリフト制御装置を提供することを目的としている。   The present invention has been made in view of such a problem, and after ensuring a wide operable range of the valve lift amount or the operating angle by sufficiently reducing the minimum value of the valve lift amount or the operating angle, It is an object of the present invention to provide a novel valve lift control device for an internal combustion engine that can satisfactorily perform learning processing or correction processing of a valve lift amount or operating angle operated by a variable lift mechanism without impairing combustion stability. Yes.

吸気弁又は排気弁のバルブリフト量又は作動角の少なくとも一方を可変とするリフト可変機構と、車両減速中に、内燃機関の燃料カットを行う燃料カット手段と、燃焼安定度に対応する所定の学習許可条件が成立するかを判定する学習許可条件判定手段と、を備える。上記燃料カット中で、かつ上記学習許可条件が成立する場合に、上記バルブリフト量又は作動角が最小値となるように上記リフト可変機構を操作して、バルブリフト量又は作動角の学習処理又は補正処理を行う。   A variable lift mechanism that varies at least one of the valve lift amount or operating angle of the intake valve or exhaust valve, fuel cut means for cutting the fuel of the internal combustion engine during vehicle deceleration, and predetermined learning corresponding to combustion stability Learning permission condition determining means for determining whether the permission condition is satisfied. When the fuel cut is in progress and the learning permission condition is satisfied, the lift variable mechanism is operated so that the valve lift amount or the operating angle becomes the minimum value. Perform correction processing.

本発明によれば、燃料カット中で、かつ上記学習許可条件が成立する場合に限り、上記バルブリフト量又は作動角が最小値となるように上記リフト可変機構を操作して、上記バルブリフト量又は作動角の学習処理又は補正処理を行う。言い換えると、燃料カット中であっても、学習許可条件が成立しない場合には、バルブリフト量又は作動角を最小値とする学習・補正処理を禁止している。従って、バルブリフト量又は作動角の機構的な最小値を十分に小さくすることによりリフト量の操作可能範囲を実質的に幅広く確保した上で、燃焼安定性を損ねることなく学習・補正処理を良好に行うことができる。   According to the present invention, the valve lift amount is operated by operating the variable lift mechanism so that the valve lift amount or the operating angle becomes the minimum value only during fuel cut and when the learning permission condition is satisfied. Alternatively, an operation angle learning process or a correction process is performed. In other words, even when the fuel is being cut, if the learning permission condition is not satisfied, the learning / correction process for minimizing the valve lift amount or the operating angle is prohibited. Therefore, by making the minimum value of the valve lift or operating angle mechanically small enough to ensure a substantially wide range of lift operation, good learning / correction processing without compromising combustion stability Can be done.

以下、この発明に係る内燃機関のバルブリフト制御装置を、自動車用火花点火式ガソリン内燃機関の吸気弁に適用した実施の形態について説明する。   Hereinafter, an embodiment in which a valve lift control device for an internal combustion engine according to the present invention is applied to an intake valve of a spark ignition type gasoline internal combustion engine for an automobile will be described.

図1は、内燃機関の吸気弁の作動特性を変更する可変動弁機構を示す構成説明図である。各気筒には一対の吸気弁11が設けられ、これら吸気弁11のバルブリフタ10の上方に、クランクシャフトに連動して回転する駆動軸2が配設されている。可変動弁機構は、吸気弁のバルブリフト量及び作動角の大きさを連続的・無段階に変更可能なリフト可変機構としてのリフト・作動角可変機構(VEL)1と、吸気弁の作動角のクランク角に対する中心位相を進角もしくは遅角させる位相可変機構21と、が組み合わされて構成されている。   FIG. 1 is an explanatory diagram showing a variable valve mechanism that changes the operating characteristics of an intake valve of an internal combustion engine. Each cylinder is provided with a pair of intake valves 11, and a drive shaft 2 that rotates in conjunction with the crankshaft is disposed above the valve lifter 10 of the intake valves 11. The variable valve mechanism includes a lift / operating angle variable mechanism (VEL) 1 as a variable lift mechanism capable of continuously and continuously changing the valve lift amount and operating angle of the intake valve, and the operating angle of the intake valve. And a phase variable mechanism 21 for advancing or retarding the center phase with respect to the crank angle.

リフト・作動角可変機構1は、本出願人が先に提案したものであるが、例えば特開平11−107725号公報等によって公知となっているので、その概要のみを説明する。リフト・作動角可変機構1は、制御軸12と、この制御軸12に偏心して設けられた制御偏心軸部18と、この制御偏心軸部18に揺動可能に嵌合するロッカアーム6と、駆動軸2に偏心して設けられた駆動偏心軸部3と、駆動軸2に揺動可能に嵌合する揺動カム9と、駆動偏心軸部3とロッカアーム6の一端とを連係するリング状の第1リンク4と、ロッカアーム6の他端と揺動カム9の先端とを連係する第2リンク8と、を有している。制御軸12は、駆動軸2と同様にシリンダブロック等の機関固定要素に回転可能に支持されており、かつ、作動角アクチュエータ13によりウォームギヤ15を介して回転角度位置が変更・保持される。第1リンク4は駆動偏心軸部3の円形の外周に回転可能に嵌合している。ロッカアーム6の一端と第1リンク4の先端とは第1連結ピン5により回転可能に接続されている。ロッカアーム6の他端と第2リンク8の一端とは第2連結ピン7により回転可能に接続されている。第2リンク8の他端と揺動カム9の先端とは第3連結ピン17により回転可能に接続されている。   The lift / operating angle variable mechanism 1 has been previously proposed by the applicant of the present invention. However, since it has been publicly known, for example, in Japanese Patent Application Laid-Open No. 11-107725, only the outline thereof will be described. The variable lift / operating angle mechanism 1 includes a control shaft 12, a control eccentric shaft portion 18 provided eccentric to the control shaft 12, a rocker arm 6 fitted to the control eccentric shaft portion 18 so as to be swingable, and a drive. A drive eccentric shaft portion 3 provided eccentric to the shaft 2, a swing cam 9 slidably fitted to the drive shaft 2, and a ring-shaped first connecting the drive eccentric shaft portion 3 and one end of the rocker arm 6. One link 4 and a second link 8 that links the other end of the rocker arm 6 and the tip of the swing cam 9 are provided. Similarly to the drive shaft 2, the control shaft 12 is rotatably supported by an engine fixing element such as a cylinder block, and the rotation angle position is changed and held by the operating angle actuator 13 via the worm gear 15. The first link 4 is rotatably fitted to the circular outer periphery of the drive eccentric shaft portion 3. One end of the rocker arm 6 and the tip of the first link 4 are rotatably connected by a first connecting pin 5. The other end of the rocker arm 6 and one end of the second link 8 are rotatably connected by a second connecting pin 7. The other end of the second link 8 and the tip of the swing cam 9 are rotatably connected by a third connecting pin 17.

クランクシャフトに連動して駆動軸2が回転すると、駆動偏心軸部3及び第1リンク4を介してロッカアーム6が揺動し、このロッカアーム6の揺動運動が第2リンク8を介して揺動カム9に伝達されて、揺動カム9が揺動する。揺動する揺動カム9が吸気弁11の上方に設けられたバルブリフタ10に接触してこれを押圧することにより、吸気弁11がバルブスプリング反力に抗して開閉作動する。作動角アクチュエータ13により制御軸12の回転位置を変更すると、ロッカアーム6の揺動支点である制御偏心軸部18の中心位置が変化する。これにより、揺動カム9の揺動範囲が変化して、吸気弁11の作動角のクランク角(クランクシャフトの回転位置)に対する中心位相が略一定のままで、吸気弁11のバルブリフト量(最大リフト量)及び作動角の双方の大きさが連続的・無段階に変化する。このリフト・作動角可変機構1の制御状態は、制御軸12の回転位置に応答する角度センサである制御軸センサ(リフトセンサ)14によって検出される。   When the drive shaft 2 rotates in conjunction with the crankshaft, the rocker arm 6 swings through the drive eccentric shaft portion 3 and the first link 4, and the rocking motion of the rocker arm 6 swings through the second link 8. The oscillation cam 9 is oscillated by being transmitted to the cam 9. When the swing cam 9 that swings comes into contact with and presses the valve lifter 10 provided above the intake valve 11, the intake valve 11 opens and closes against the valve spring reaction force. When the rotational position of the control shaft 12 is changed by the operating angle actuator 13, the center position of the control eccentric shaft portion 18 that is the swing fulcrum of the rocker arm 6 changes. As a result, the swing range of the swing cam 9 is changed, and the valve lift amount of the intake valve 11 (with the center phase of the operating angle of the intake valve 11 with respect to the crank angle (rotational position of the crankshaft) remains substantially constant. Both the maximum lift) and the operating angle change continuously and steplessly. The control state of the lift / operating angle variable mechanism 1 is detected by a control shaft sensor (lift sensor) 14 that is an angle sensor that responds to the rotational position of the control shaft 12.

このようなリフト・作動角可変機構1は、吸気弁11のバルブリフト量及び作動角の双方を連続的に変更可能であることに加え、次のような特有の作用効果を有する。各リンク要素の連結部位の多くが面接触となっているため、潤滑が容易で信頼性・耐久性に優れている。リターンスプリング等の付勢手段を敢えて用いる必要がないので、簡素な構成で、ロスが少なく、かつ、信頼性・耐久性に優れている。既存の直動型動弁系のカムシャフト及び固定カムとほぼ同様の位置に駆動軸2及び揺動カム9を配置することができ、直動型動弁系の内燃機関に対してレイアウトを大幅に変更することなく容易に適用できる。   Such a variable lift / operating angle mechanism 1 has the following specific effects in addition to being able to continuously change both the valve lift amount and the operating angle of the intake valve 11. Since many of the connecting parts of each link element are in surface contact, lubrication is easy and reliability and durability are excellent. Since there is no need to use an urging means such as a return spring, the structure is simple, the loss is small, and the reliability and durability are excellent. The drive shaft 2 and the swing cam 9 can be arranged at substantially the same positions as the cam shaft and fixed cam of the existing direct acting valve system, and the layout is greatly increased compared to the internal combustion engine of the direct acting valve system. It can be easily applied without changing.

位相可変機構21は、駆動軸2の前端部に設けられたスプロケット22と、このスプロケット22と駆動軸2とを所定の角度範囲内において相対的に回転させる位相アクチュエータ23と、から構成されている。上記スプロケット22は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに同期して軸周りに回転する。上記位相アクチュエータ23は、例えば油圧式、電磁式などの回転型アクチュエータからなり、後述するエンジンコントロールユニット19からの制御信号に応じて作動する。この位相アクチュエータ23の作用によって、スプロケット22と駆動軸2とが相対的に回転し、吸気弁11の作動角のクランク角に対する中心位相(開閉時期)が遅角・進角する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。また、この変化も、連続的に得ることができる。この位相可変機構21の制御状態は、駆動軸2の回転位置に応答する駆動軸センサ16によって検出される。   The phase variable mechanism 21 includes a sprocket 22 provided at the front end of the drive shaft 2 and a phase actuator 23 that relatively rotates the sprocket 22 and the drive shaft 2 within a predetermined angle range. . The sprocket 22 rotates around an axis in synchronization with the crankshaft via a timing chain or timing belt (not shown). The phase actuator 23 is composed of, for example, a rotary actuator such as a hydraulic type or an electromagnetic type, and operates according to a control signal from an engine control unit 19 described later. By the action of the phase actuator 23, the sprocket 22 and the drive shaft 2 rotate relatively, and the center phase (opening / closing timing) of the operating angle of the intake valve 11 with respect to the crank angle is retarded / advanced. That is, the lift characteristic curve itself does not change, and the whole advances or retards. This change can also be obtained continuously. The control state of the phase variable mechanism 21 is detected by the drive shaft sensor 16 that responds to the rotational position of the drive shaft 2.

図2は、上記内燃機関の吸気系のシステム構成図である。吸気通路25のコレクタ26の上流には、吸気通路25を開閉する電子制御式のスロットル(弁)27が設けられている。この内燃機関では、このスロットル27と、上述したリフト・作動角可変機構1と、位相可変機構21と、の三者を組み合わせて、気筒の燃焼室28へ供給される吸入空気量を制御している。すなわち、エンジンコントロールユニット19は、車速センサ30により検出される車速、無段変速機31の変速比、アクセル開度センサ32により検出されるアクセル信号、回転速度センサ33により検出・演算される機関回転速度(回転数)、水温センサ36により検出される機関冷却水温、圧力センサ37により検出される吸気マニホールド内の吸気通路25の吸気圧力、ブレーキペダルが踏まれているかを検出するブレーキスイッチ38のON/OFF信号、駆動軸センサ16により検出される駆動軸2の回転位置、及び制御軸センサ14により検出される制御軸12の回転位置等の様々な機関運転状態を表す入力信号に基づいて、スロットル27、作動角アクチュエータ13及び位相アクチュエータ23へ指令信号を出力し、スロットル27、リフト・作動角可変機構1及び位相可変機構21の動作を制御する。なお、リフト・作動角可変機構1ならびに位相可変機構21の制御としては、各センサ14,16の検出信号に基づくクローズドループ制御に限らず、運転条件に応じて単にオープンループ制御しても良い。また、エンジンコントロールユニット19は、周知のように、機関運転状態に基づいて点火プラグ34及び燃料インジェクタ35へ制御信号を出力し、点火時期、燃料噴射量及び燃料噴射時期を制御する。上記の無段変速機31は、変速比を無段階・連続的に変更できるもので、ベルト式やトロイダル式のものが公知であり、ここでは説明を省略する。   FIG. 2 is a system configuration diagram of the intake system of the internal combustion engine. An electronically controlled throttle (valve) 27 that opens and closes the intake passage 25 is provided upstream of the collector 26 in the intake passage 25. In this internal combustion engine, the intake air supplied to the combustion chamber 28 of the cylinder is controlled by combining the throttle 27, the lift / operating angle variable mechanism 1 and the phase variable mechanism 21 described above. Yes. That is, the engine control unit 19 detects the vehicle speed detected by the vehicle speed sensor 30, the gear ratio of the continuously variable transmission 31, the accelerator signal detected by the accelerator opening sensor 32, and the engine speed detected and calculated by the rotational speed sensor 33. ON of the brake switch 38 that detects the speed (the number of revolutions), the engine coolant temperature detected by the water temperature sensor 36, the intake pressure of the intake passage 25 in the intake manifold detected by the pressure sensor 37, and whether the brake pedal is depressed. Based on input signals representing various engine operating conditions such as the / OFF signal, the rotational position of the drive shaft 2 detected by the drive shaft sensor 16, and the rotational position of the control shaft 12 detected by the control shaft sensor 14. 27, output a command signal to the operating angle actuator 13 and the phase actuator 23, Torr 27, controls the operation of the lift operating angle varying mechanism 1 and variable phase mechanism 21. The control of the lift / working angle variable mechanism 1 and the phase variable mechanism 21 is not limited to closed loop control based on the detection signals of the sensors 14 and 16, but may be simply open loop control according to the operating conditions. As is well known, the engine control unit 19 outputs a control signal to the spark plug 34 and the fuel injector 35 based on the engine operating state, and controls the ignition timing, the fuel injection amount, and the fuel injection timing. The continuously variable transmission 31 can change the gear ratio continuously and continuously, and a belt type or a toroidal type is known, and a description thereof is omitted here.

次に、図3〜5を参照して、本発明の一実施例に係るバルブリフト量の学習制御について説明する。本実施例では、燃料カットを伴う車両減速中で、かつ、所定の学習許可条件が成立する場合に限り、バルブリフト量が機構的な最小値となるようにリフト可変機構1を操作して、制御軸センサ14により検出されるバルブリフト量の学習処理を行う。図3及び図4は、エンジンコントロールユニット19により所定期間毎に繰り返し実行される制御ルーチンを示すフローチャートで、図5は本実施例に係る学習制御が適用された場合の減速燃料カット時のタイムチャートである。   Next, learning control of the valve lift amount according to one embodiment of the present invention will be described with reference to FIGS. In this embodiment, the variable lift mechanism 1 is operated so that the valve lift amount becomes the mechanical minimum value only when the vehicle is decelerated with fuel cut and a predetermined learning permission condition is satisfied. A learning process of the valve lift detected by the control axis sensor 14 is performed. 3 and 4 are flowcharts showing a control routine that is repeatedly executed at predetermined intervals by the engine control unit 19, and FIG. 5 is a time chart at the time of deceleration fuel cut when the learning control according to the present embodiment is applied. It is.

図3を参照して、ステップ(図ではSと記す)1では、燃料カットを伴う車両減速状態、つまり減速燃料カット中であるかを判定する。例えば図5に示すように、車速が0より高い車両走行中に、アクセル開度が0(ゼロ)となると、所定期間後に燃料カットフラグFCUTが1に設定される。これにより、図示せぬ他のルーチンにより燃料カットが実行され、燃料インジェクタ35による燃料供給を停止する。   Referring to FIG. 3, in step (denoted as S in the figure) 1, it is determined whether the vehicle is decelerating with a fuel cut, that is, whether the fuel is being decelerated. For example, as shown in FIG. 5, when the accelerator opening becomes 0 (zero) while the vehicle speed is higher than 0, the fuel cut flag FCUT is set to 1 after a predetermined period. As a result, the fuel cut is executed by another routine (not shown), and the fuel supply by the fuel injector 35 is stopped.

ステップ2では、学習許可フラグFGSが0(ゼロ)であるかを判定する。この学習許可フラグFGSは、後述する図4の判定ルーチンにより、所定の学習許可条件が成立する場合に1にセットされ、学習許可条件が成立しない場合に0にリセットされる。   In step 2, it is determined whether the learning permission flag FGS is 0 (zero). The learning permission flag FGS is set to 1 when a predetermined learning permission condition is satisfied by a determination routine of FIG. 4 described later, and is reset to 0 when the learning permission condition is not satisfied.

ステップ3では、学習終了フラグFGEが1にセットされているかを判定する。この学習終了フラグFGEは、後述するステップ7において学習処理を実行すると1にセットされる。また、一度の減速燃料カット運転中に繰り返し学習処理が行われることのないように、この学習終了フラグFGEは、減速燃料カット以外の運転状況へ移行すると0にリセットされる(ステップ8)。   In step 3, it is determined whether the learning end flag FGE is set to 1. This learning end flag FGE is set to 1 when the learning process is executed in step 7 to be described later. Further, the learning end flag FGE is reset to 0 when the driving state other than the deceleration fuel cut is entered so that the learning process is not repeatedly performed during one deceleration fuel cut operation (step 8).

ステップ4では、リフト量検出手段としての制御軸センサ14が異常であるかを判定する。この異常判定は、例えば制御軸センサ14から出力される信号と所定値との比較に基づいて行われる。   In step 4, it is determined whether or not the control axis sensor 14 as the lift amount detecting means is abnormal. This abnormality determination is performed based on, for example, a comparison between a signal output from the control axis sensor 14 and a predetermined value.

減速燃料カット中で、学習許可条件が成立しており(FGS=1)、今回の燃料カット中に未だ学習処理が行われておらず(FGE=0)、かつ、リフトセンサ(制御軸センサ)14が正常である場合に限り、ステップ5〜7の学習処理が行われる。それ以外の場合、ステップ9へ進み、バルブリフト量が通常の目標値へ向けて操作・制御される。この実施例では、バルブリフト量の操作可能範囲を幅広く確保するために、その機構的な最小値VLminは、実際の制御目標値として使用される制御範囲の最小値、つまり制御最小値VLs(例えば1.5mm)よりも低い値に設定されており、例えば吸入空気量が極度に小さいか実質的に0(ゼロ)となる1mm程度の極小リフトに設定される。言い換えると、図5に示すように、燃焼安定性を考慮して、学習処理を行わない通常の燃料カット中における目標値は機構的な最小値VLminよりも高い上記の値VLsに設定される。   The learning permission condition is satisfied during the deceleration fuel cut (FGS = 1), the learning process is not yet performed during the current fuel cut (FGE = 0), and the lift sensor (control axis sensor) Only when 14 is normal, the learning process of steps 5 to 7 is performed. In other cases, the process proceeds to Step 9 where the valve lift amount is operated and controlled toward the normal target value. In this embodiment, in order to secure a wide operable range of the valve lift amount, the mechanical minimum value VLmin is the minimum value of the control range used as the actual control target value, that is, the control minimum value VLs (for example, 1.5 mm), for example, a minimal lift of about 1 mm where the intake air amount is extremely small or substantially 0 (zero). In other words, as shown in FIG. 5, in consideration of combustion stability, the target value during the normal fuel cut without performing the learning process is set to the above-described value VLs that is higher than the mechanical minimum value VLmin.

ステップ5では、作動角アクチュエータ23へ最小値VLminに対応する指令信号を出力し、リフト・作動角可変機構1を最小値VLminへ向けて操作する。ステップ6では、バルブリフト量が最小値VLminに達したかを判定する。この判定は、例えばエアフロメータ等により検出される吸入空気量に基づいて判定し、あるいは簡易的に所定期間が経過したかで判定する。図5のT1が、ステップ6の判定が肯定に切り替わってステップ7へ進むタイミングに相当する。   In step 5, a command signal corresponding to the minimum value VLmin is output to the operating angle actuator 23, and the lift / operating angle variable mechanism 1 is operated toward the minimum value VLmin. In step 6, it is determined whether the valve lift amount has reached the minimum value VLmin. This determination is made based on, for example, the amount of intake air detected by an air flow meter or the like, or is simply determined based on whether a predetermined period has elapsed. T1 in FIG. 5 corresponds to the timing at which the determination in step 6 is switched to affirmative and the process proceeds to step 7.

ステップ7では、バルブリフト量の学習処理を実行する。つまりリフトセンサである制御軸センサ14の検出信号と、予め設定・記憶されている最小値VLminに対応する基準値とを比較して、リフトセンサ14の基準位置である最小位置に対する学習値を算出し、バックアップメモリに格納する。この学習値は、例えば以降の制御軸センサ14の検出値に対して反映される。   In step 7, a valve lift amount learning process is executed. That is, the detection value for the minimum position, which is the reference position of the lift sensor 14, is calculated by comparing the detection signal of the control axis sensor 14 that is the lift sensor with the reference value corresponding to the preset minimum value VLmin. And store it in the backup memory. This learning value is reflected on, for example, subsequent detection values of the control axis sensor 14.

図4は、上述した複数の(この例では8つ)の学習許可条件の判定ルーチンである。ステップ11では、ブレーキスイッチ38がOFFであるか、つまりブレーキペダルが開放されているかを判定する。ステップ12では、機関回転数が所定値(例えば1200rpm)よりも大きいかを判定する。ステップ13では、冷却水温が所定値(例えば70℃)よりも大きいかを判定する。ステップ14では、車速が所定値(例えば20km/h)より大きいかを判定する。ステップ15では、機関回転速度(機関回転数)の低下速度が所定値(例えば200rpm/100ms)より小さいかを判定する。ステップ16では、変速機31の変速比が所定値(例えば1.2)より小さいかを判定する。ステップ17では、吸気圧力すなわち吸入深津が所定値(例えば−65kpa)より低いかを判定する。ステップ18では、位相可変機構21により操作される吸気弁の作動角の中心位相が最遅角位相であるかを判定する。   FIG. 4 is a routine for determining the plurality of (eight in this example) learning permission conditions described above. In step 11, it is determined whether the brake switch 38 is OFF, that is, whether the brake pedal is released. In step 12, it is determined whether the engine speed is larger than a predetermined value (for example, 1200 rpm). In step 13, it is determined whether the cooling water temperature is higher than a predetermined value (for example, 70 ° C.). In step 14, it is determined whether the vehicle speed is greater than a predetermined value (for example, 20 km / h). In step 15, it is determined whether the reduction speed of the engine speed (engine speed) is smaller than a predetermined value (for example, 200 rpm / 100 ms). In step 16, it is determined whether the transmission ratio of the transmission 31 is smaller than a predetermined value (for example, 1.2). In step 17, it is determined whether the intake pressure, that is, the intake depth is lower than a predetermined value (for example, -65 kpa). In step 18, it is determined whether the center phase of the operating angle of the intake valve operated by the phase variable mechanism 21 is the most retarded phase.

上記のステップ11〜18の学習許可条件の全てが成立する場合、上記の学習処理に伴いバルブリフト量を最小値VLminとしてもエンジンストール(失火)の危険性がなく、所期の燃焼安定性を確保できると判断して、ステップ19へ進み、学習許可条件成立を表す学習許可フラグFGSを1にセットする。ステップ11〜18の学習許可条件のいずれかが成立しない場合、ステップ20へ進み、仮に学習処理に伴いリフト量を最小値VLminとすると、燃料カット解除後の燃焼安定性を良好に確保できないと判断して、上記の学習フラグFGSを0にリセットする。   When all of the learning permission conditions in the above steps 11 to 18 are satisfied, there is no risk of engine stall (misfire) even if the valve lift amount is set to the minimum value VLmin in accordance with the learning process, and the intended combustion stability is reduced. If it is determined that the learning permission condition can be secured, the process proceeds to step 19 where the learning permission flag FGS indicating that the learning permission condition is satisfied is set to 1. If any of the learning permission conditions in steps 11 to 18 is not satisfied, the process proceeds to step 20, and if the lift amount is set to the minimum value VLmin in accordance with the learning process, it is determined that the combustion stability after the release of the fuel cut cannot be secured well Then, the learning flag FGS is reset to 0.

以上のような本実施例によれば、燃料カット中で、かつ、学習許可条件が成立する場合に限り、バルブリフト量が最小値VLminとなるようにリフト可変機構1を操作して、バルブリフト量の学習処理を行う。言い換えると、燃料カット中であっても、学習許可条件が成立しない場合には、バルブリフト量を最小値VLminとする学習処理を禁止している。従って、バルブリフト量の最小値VLminを例えば1mm程度の極小値としてバルブリフト量の操作可能範囲を十分広く確保した上で、燃焼安定性を損ねることなくバルブリフト量の学習処理を良好に行うことができる。   According to the present embodiment as described above, the valve lift mechanism 1 is operated so that the valve lift amount becomes the minimum value VLmin only when the fuel is cut and the learning permission condition is satisfied, and the valve lift The amount learning process is performed. In other words, even when the fuel is being cut, if the learning permission condition is not satisfied, the learning process for setting the valve lift amount to the minimum value VLmin is prohibited. Accordingly, the minimum value VLmin of the valve lift amount is set to a minimum value of, for example, about 1 mm, and the valve lift amount learning process is satisfactorily performed without sacrificing combustion stability while ensuring a sufficiently wide range of valve lift operation. Can do.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、以下の(A)〜(C)のような種々の変形・変更を含むものである。   As described above, the present invention has been described based on specific examples. However, the present invention is not limited to the above-described examples, and the following (A) to (C) can be made without departing from the spirit of the present invention. ) And various modifications and changes.

(A)上記実施例ではステップ7で算出される値を学習値としてバックアップメモリに記憶する態様としているが、この値を補正値として一時メモリに格納する態様としても良い。   (A) In the above embodiment, the value calculated in step 7 is stored in the backup memory as a learning value. However, this value may be stored in the temporary memory as a correction value.

(B)バルブリフト量を検出するリフトセンサとして、上記実施例では制御軸の角度位置を検出する角度センサ14を用いているが、これに限らず、例えば吸気弁のバルブリフト量を直接的に検出するセンサであっても良い。   (B) In the above embodiment, the angle sensor 14 for detecting the angular position of the control shaft is used as the lift sensor for detecting the valve lift amount. However, the present invention is not limited to this. It may be a sensor to detect.

(C)主として簡素化のためにリフトセンサを省略し、リフト可変機構をオープンループ制御するものであっても良い。この場合、ステップ7で算出される学習値(又は補正値)を作動角アクチュエータ13の指令値に反映すれば良い。   (C) The lift sensor may be omitted mainly for the sake of simplification, and the lift variable mechanism may be subjected to open loop control. In this case, the learning value (or correction value) calculated in step 7 may be reflected in the command value of the operating angle actuator 13.

(D)上記実施例では吸気弁に本発明を適用しているが、同様に排気弁に適用することも可能である。また、上記実施例ではバルブリフト量に対して学習・補正制御を行っているが、同様に作動角に対して学習・補正制御を行うようにしても良い。   (D) Although the present invention is applied to the intake valve in the above embodiment, it can also be applied to the exhaust valve. In the above embodiment, the learning / correction control is performed on the valve lift amount. However, the learning / correction control may be performed on the operating angle.

以上の説明より把握し得る技術思想について以下に列記する。   The technical ideas that can be grasped from the above explanation are listed below.

(1)吸気弁11又は排気弁のバルブリフト量又は作動角の少なくとも一方を可変とするリフト可変機構1と、車両減速中に、内燃機関の燃料カットを行う燃料カット手段と、燃焼安定度に対応する所定の学習許可条件が成立するかを判定する学習許可条件判定手段(ステップ11〜18)と、上記燃料カット中で、かつ、上記学習許可条件が成立する場合に、上記バルブリフト量又は作動角が最小値VLminとなるように上記リフト可変機構1を操作して(ステップ5)、上記バルブリフト量又は作動角の学習処理又は補正処理を行う学習手段(ステップ7)と、を有する。   (1) A variable lift mechanism 1 that makes at least one of the valve lift amount or the operating angle of the intake valve 11 or the exhaust valve variable, fuel cut means for cutting fuel in the internal combustion engine during vehicle deceleration, and combustion stability Learning permission condition determination means (steps 11 to 18) for determining whether or not a corresponding predetermined learning permission condition is satisfied; and when the fuel permission is cut and the learning permission condition is satisfied, the valve lift amount or The variable lift mechanism 1 is operated so that the operating angle becomes the minimum value VLmin (step 5), and learning means (step 7) for performing learning processing or correction processing of the valve lift amount or operating angle is provided.

(2)上記燃料カット中で、かつ、上記学習許可条件が成立しない場合には、上記バルブリフト量又は作動角が最小値VLminよりも大きい値VLsとなるように上記リフト可変機構1が操作される(ステップ9,図5)。   (2) During the fuel cut and when the learning permission condition is not satisfied, the lift variable mechanism 1 is operated so that the valve lift amount or the operating angle becomes a value VLs larger than the minimum value VLmin. (Step 9, FIG. 5).

(3)上記リフト可変機構1は、制御軸12と、この制御軸12の回転位置を変更・保持するアクチュエータ13と、制御軸12に偏心して設けられた制御偏心軸部18と、この制御偏心軸部18に揺動可能に嵌合するロッカアーム6と、クランクシャフトに連動して回転する駆動軸2に揺動可能に嵌合し、吸気弁11又は排気弁を開閉する揺動カム9と、上記駆動軸2に偏心して設けられた駆動偏心軸部3と、この駆動偏心軸部3とロッカアーム6の一端とを連係する第1リンク4と、上記ロッカアーム6の他端と揺動カム9の先端とを連係する第2リンク8と、を有する。   (3) The variable lift mechanism 1 includes a control shaft 12, an actuator 13 that changes and holds the rotational position of the control shaft 12, a control eccentric shaft portion 18 that is provided eccentric to the control shaft 12, and the control eccentricity. A rocker arm 6 slidably fitted to the shaft 18, a swing cam 9 slidably fitted to the drive shaft 2 that rotates in conjunction with the crankshaft, and opens and closes the intake valve 11 or the exhaust valve; A drive eccentric shaft portion 3 provided eccentric to the drive shaft 2, a first link 4 linking the drive eccentric shaft portion 3 and one end of the rocker arm 6, the other end of the rocker arm 6, and the swing cam 9 And a second link 8 that links the tip.

(4)上記学習許可条件が、以下の条件の少なくとも一つを含んでいる。
・ブレーキスイッチがOFF(ステップ11)、
・機関回転数が所定値より大きい(ステップ12)、
・機関冷却水温が所定値より大きい(ステップ13)、
・車速が所定値より大きい(ステップ14)、
・機関回転速度の低下速度が所定値より小さい(ステップ15)、
・変速機の変速比が所定値より小さい(ステップ16)、
・吸気圧力が所定値より小さい(ステップ17)、
・クランク角に対する吸気弁の作動角の中心位相を可変とする位相可変機構21を備え、上記中心位相が最遅角である(ステップ18)。
(4) The learning permission condition includes at least one of the following conditions.
・ The brake switch is OFF (step 11).
The engine speed is greater than a predetermined value (step 12),
The engine coolant temperature is greater than a predetermined value (step 13),
The vehicle speed is greater than a predetermined value (step 14),
-Decreasing speed of the engine speed is smaller than a predetermined value (step 15),
The transmission gear ratio is less than a predetermined value (step 16),
The intake pressure is smaller than a predetermined value (step 17),
A phase variable mechanism 21 that varies the center phase of the intake valve operating angle with respect to the crank angle is provided, and the center phase is the most retarded angle (step 18).

(5)上記バルブリフト量を検出するリフトセンサ(制御軸センサ14)を有し、上記学習手段は、上記バルブリフト量の最小値VLminに対応するリフトセンサの基準位置の補正処理又は学習処理を行う(ステップ7)。   (5) It has a lift sensor (control shaft sensor 14) for detecting the valve lift amount, and the learning means performs a correction process or a learning process for the reference position of the lift sensor corresponding to the minimum value VLmin of the valve lift amount. Perform (Step 7).

(6)上記リフトセンサの異常を検出すると、上記学習手段の作動を禁止する(ステップ4)。   (6) When an abnormality of the lift sensor is detected, the operation of the learning means is prohibited (step 4).

リフト可変機構の一例であるリフト・作動角可変機構を示す斜視図。The perspective view which shows the lift and the working angle variable mechanism which is an example of a variable lift mechanism. 本発明の一実施例に係るバルブリフト制御装置が適用される内燃機関の吸気系のシステム構成図。1 is a system configuration diagram of an intake system of an internal combustion engine to which a valve lift control device according to an embodiment of the present invention is applied. 本実施例に係る学習制御の流れを示すフローチャート。The flowchart which shows the flow of the learning control which concerns on a present Example. 学習許可条件の判定ルーチン。Learning permission condition judgment routine. 燃料カットを伴う車両減速時のタイムチャート。Time chart when the vehicle is decelerated with fuel cut.

符号の説明Explanation of symbols

1…リフト・作動角可変機構(リフト可変機構)
2…駆動軸
3…駆動偏心軸部
4…第1リンク
6…ロッカアーム
8…第2リンク
9…揺動カム
12…制御軸
13…作動角アクチュエータ
14…制御軸センサ(リフトセンサ)
18…制御偏心軸部
19…エンジンコントロールユニット
21…位相可変機構
1. Lift / operating angle variable mechanism (lift variable mechanism)
DESCRIPTION OF SYMBOLS 2 ... Drive shaft 3 ... Drive eccentric shaft part 4 ... 1st link 6 ... Rocker arm 8 ... 2nd link 9 ... Swing cam 12 ... Control shaft 13 ... Actuation angle actuator 14 ... Control shaft sensor (lift sensor)
18 ... Control eccentric shaft part 19 ... Engine control unit 21 ... Phase variable mechanism

Claims (6)

吸気弁又は排気弁のバルブリフト量又は作動角の少なくとも一方を可変とするリフト可変機構と、
車両減速中に、内燃機関の燃料カットを行う燃料カット手段と、
燃焼安定度に対応する所定の学習許可条件が成立するかを判定する学習許可条件判定手段と、
上記燃料カット中で、かつ、上記学習許可条件が成立する場合に、上記バルブリフト量又は作動角が最小値となるように上記リフト可変機構を操作して、上記バルブリフト量又は作動角の学習処理又は補正処理を行う学習手段と、
を有する内燃機関のバルブリフト制御装置。
A variable lift mechanism that varies at least one of a valve lift amount or an operating angle of the intake valve or the exhaust valve;
Fuel cutting means for cutting the fuel of the internal combustion engine during vehicle deceleration;
Learning permission condition determining means for determining whether a predetermined learning permission condition corresponding to the combustion stability is satisfied;
Learning the valve lift amount or operating angle by operating the variable lift mechanism so that the valve lift amount or operating angle becomes the minimum value during the fuel cut and when the learning permission condition is satisfied. Learning means for performing processing or correction processing;
A valve lift control device for an internal combustion engine.
上記燃料カット中で、かつ、上記学習許可条件が成立しない場合には、上記バルブリフト量又は作動角が最小値よりも大きい値となるように上記リフト可変機構が操作される請求項1に記載の内燃機関のバルブリフト制御装置。   2. The variable lift mechanism according to claim 1, wherein the lift variable mechanism is operated such that the valve lift amount or the operating angle is larger than a minimum value when the fuel cut is in progress and the learning permission condition is not satisfied. The valve lift control device for an internal combustion engine. 上記リフト可変機構は、制御軸と、この制御軸の回転位置を変更・保持するアクチュエータと、上記制御軸に偏心して設けられた制御偏心軸部と、この制御偏心軸部に揺動可能に嵌合するロッカアームと、クランクシャフトに連動して回転する駆動軸に揺動可能に嵌合し、吸気弁又は排気弁を開閉する揺動カムと、上記駆動軸に偏心して設けられた駆動偏心軸部と、この駆動偏心軸部とロッカアームの一端とを連係する第1リンクと、上記ロッカアームの他端と揺動カムの先端とを連係する第2リンクと、を有する請求項1又は2に記載の内燃機関のバルブリフト制御装置。   The variable lift mechanism includes a control shaft, an actuator that changes and holds the rotational position of the control shaft, a control eccentric shaft portion that is eccentrically provided on the control shaft, and a swingable fit on the control eccentric shaft portion. A rocker arm, a swinging cam that swingably engages with a drive shaft that rotates in conjunction with the crankshaft, and opens and closes an intake valve or an exhaust valve, and a drive eccentric shaft portion that is eccentrically provided on the drive shaft The first link that links the drive eccentric shaft portion and one end of the rocker arm, and the second link that links the other end of the rocker arm and the tip of the swing cam. A valve lift control device for an internal combustion engine. 上記学習許可条件が、以下の条件の少なくとも一つを含んでいる請求項1〜3のいずれかに記載の内燃機関のバルブリフト制御装置
・ブレーキスイッチがOFF、
・機関回転数が所定値より大きい、
・機関冷却水温が所定値より大きい、
・車速が所定値より大きい、
・機関回転速度の低下速度が所定値より小さい、
・変速機の変速比が所定値より小さい、
・吸気圧力が所定値より小さい、
・クランク角に対する吸気弁の作動角の中心位相を可変とする位相可変機構を備え、上記中心位相が最遅角である。
The valve lift control device / brake switch of the internal combustion engine according to any one of claims 1 to 3, wherein the learning permission condition includes at least one of the following conditions:
・ The engine speed is larger than the specified value.
・ The engine coolant temperature is higher than the specified value.
・ Vehicle speed is higher than the specified value.
-Decrease speed of engine rotation speed is smaller than the predetermined value,
・ The transmission gear ratio is smaller than the specified value.
・ Intake pressure is smaller than the specified value,
A phase variable mechanism that varies the center phase of the intake valve operating angle with respect to the crank angle is provided, and the center phase is the most retarded angle.
上記バルブリフト量を検出するリフトセンサを有し、
上記学習手段は、上記バルブリフト量の最小値に対応するリフトセンサの基準位置の補正処理又は学習処理を行う請求項1〜4のいずれかに記載の内燃機関のバルブリフト制御装置。
A lift sensor for detecting the valve lift amount;
The valve lift control device for an internal combustion engine according to any one of claims 1 to 4, wherein the learning means performs correction processing or learning processing of a reference position of a lift sensor corresponding to the minimum value of the valve lift amount.
上記リフトセンサの異常を検出すると、上記学習手段の作動を禁止する請求項5に記載の内燃機関のバルブリフト制御装置。
6. The valve lift control device for an internal combustion engine according to claim 5, wherein when the abnormality of the lift sensor is detected, the operation of the learning means is prohibited.
JP2003426622A 2003-12-24 2003-12-24 Valve lift control device for internal combustion engine Expired - Fee Related JP3982492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426622A JP3982492B2 (en) 2003-12-24 2003-12-24 Valve lift control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426622A JP3982492B2 (en) 2003-12-24 2003-12-24 Valve lift control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005188286A true JP2005188286A (en) 2005-07-14
JP3982492B2 JP3982492B2 (en) 2007-09-26

Family

ID=34786102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426622A Expired - Fee Related JP3982492B2 (en) 2003-12-24 2003-12-24 Valve lift control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3982492B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120337A (en) * 2005-10-25 2007-05-17 Toyota Motor Corp Control device of variable valve train
JP2007332896A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Output characteristic learning device of rotation angle detection apparatus
JP2007332897A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Output characteristics learning device of rotation angle detection device
JP2008286173A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Control device for on-vehicle internal combustion engine
US7594487B2 (en) 2006-01-26 2009-09-29 Hitachi, Ltd. Apparatus for and method of controlling motion mechanism
JP2009281332A (en) * 2008-05-23 2009-12-03 Toyota Motor Corp Abnormality determining device of valve characteristic change mechanism
DE112008001427T5 (en) 2007-05-24 2010-04-15 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Internal combustion engine control unit and control method for this
US8165784B2 (en) 2006-12-21 2012-04-24 Hitachi, Ltd. Apparatus and method for learning reference position of variable valve unit
US8408187B2 (en) 2006-12-21 2013-04-02 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
CN106555681A (en) * 2015-09-28 2017-04-05 长城汽车股份有限公司 The control method of continuous variable valve lift system, system and vehicle
CN112855355A (en) * 2021-01-15 2021-05-28 浙江吉利控股集团有限公司 Self-learning control method and system of variable valve timing system and vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120337A (en) * 2005-10-25 2007-05-17 Toyota Motor Corp Control device of variable valve train
US7594487B2 (en) 2006-01-26 2009-09-29 Hitachi, Ltd. Apparatus for and method of controlling motion mechanism
JP4684950B2 (en) * 2006-06-16 2011-05-18 日立オートモティブシステムズ株式会社 Control device
JP2007332896A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Output characteristic learning device of rotation angle detection apparatus
JP2007332897A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Output characteristics learning device of rotation angle detection device
US8408187B2 (en) 2006-12-21 2013-04-02 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
US8165784B2 (en) 2006-12-21 2012-04-24 Hitachi, Ltd. Apparatus and method for learning reference position of variable valve unit
DE102007061303B4 (en) * 2006-12-21 2015-02-26 Hitachi, Ltd. Apparatus and method for learning a reference position of a variable valve unit
JP4548447B2 (en) * 2007-05-21 2010-09-22 トヨタ自動車株式会社 Control device for in-vehicle internal combustion engine
JP2008286173A (en) * 2007-05-21 2008-11-27 Toyota Motor Corp Control device for on-vehicle internal combustion engine
DE112008001427T5 (en) 2007-05-24 2010-04-15 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Internal combustion engine control unit and control method for this
JP4525797B2 (en) * 2008-05-23 2010-08-18 トヨタ自動車株式会社 Abnormality judgment device for valve characteristic change mechanism
US7921711B2 (en) 2008-05-23 2011-04-12 Toyota Jidosha Kabushiki Kaisha Abnormality determination apparatus and abnormality determination method for valve characteristics change mechanism
JP2009281332A (en) * 2008-05-23 2009-12-03 Toyota Motor Corp Abnormality determining device of valve characteristic change mechanism
CN106555681A (en) * 2015-09-28 2017-04-05 长城汽车股份有限公司 The control method of continuous variable valve lift system, system and vehicle
CN112855355A (en) * 2021-01-15 2021-05-28 浙江吉利控股集团有限公司 Self-learning control method and system of variable valve timing system and vehicle
CN112855355B (en) * 2021-01-15 2022-04-08 浙江吉利控股集团有限公司 Self-learning control method and system of variable valve timing system and vehicle

Also Published As

Publication number Publication date
JP3982492B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
JP4516401B2 (en) Engine start control device
JP4075846B2 (en) Variable valve operating system for multi-cylinder internal combustion engine
US7520255B2 (en) Control for an engine having a variable valve-driving unit
JP4063026B2 (en) Control device for internal combustion engine
JP4092490B2 (en) Variable valve operating device for internal combustion engine
JP2003065089A (en) Variable valve mechanism for internal combustion engine
JP4151602B2 (en) Reference position learning device for variable valve mechanism
JP4103819B2 (en) Variable valve operating device for internal combustion engine
JP3982492B2 (en) Valve lift control device for internal combustion engine
JP4039239B2 (en) Variable valve control device for internal combustion engine
JP5316086B2 (en) Control device and control method for internal combustion engine
JP4914145B2 (en) Variable valve control device for vehicle engine
JP4765379B2 (en) Control device for internal combustion engine
JP3893205B2 (en) Variable valve operating device for internal combustion engine
JP4206967B2 (en) Valve control device for internal combustion engine
JP4973448B2 (en) Variable valve mechanism control apparatus for internal combustion engine
JP4165433B2 (en) Control device for internal combustion engine
JP4383155B2 (en) Deceleration control device and deceleration control method for internal combustion engine
JP4305344B2 (en) Variable valve operating device for internal combustion engine
JP3933007B2 (en) Intake control device for internal combustion engine
JP4063194B2 (en) Idle speed control device for internal combustion engine
JP4165432B2 (en) Control device for internal combustion engine
JP2008031952A (en) Control device of internal combustion engine
JP4400402B2 (en) Control device for internal combustion engine
JP2007120410A (en) Intake control device for vehicular engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3982492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees