JP2008138280A - Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein - Google Patents

Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein Download PDF

Info

Publication number
JP2008138280A
JP2008138280A JP2006357044A JP2006357044A JP2008138280A JP 2008138280 A JP2008138280 A JP 2008138280A JP 2006357044 A JP2006357044 A JP 2006357044A JP 2006357044 A JP2006357044 A JP 2006357044A JP 2008138280 A JP2008138280 A JP 2008138280A
Authority
JP
Japan
Prior art keywords
dimensional
iron
casting
lattice
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006357044A
Other languages
Japanese (ja)
Inventor
Shinichiro Kojima
信一郎 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006357044A priority Critical patent/JP2008138280A/en
Publication of JP2008138280A publication Critical patent/JP2008138280A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite which can be used for lightweight applications, achieves an increased strength and an increased fatigue resistance without requiring a large amount of energy in an iron-making step, by reducing the use of iron, an iron alloy, pig iron and a pig-iron substrate, and a manufacturing method thereof. <P>SOLUTION: The composite comprises iron, an iron alloy, pig iron, a pig-iron alloy, etc. as a substrate, and a three-dimensional lattice compounded with trace amounts of silicon carbide lattice, alumina lattice, zircon lattice and other inorganic stable substances. The substrate is melted, and casting is carried out by continuously feeding the molten metal to an ingot case in which the three-dimensional lattice is placed. In case of continuous casting, the three-dimensional lattice is continuously fed while casting is performed. The three-dimensional lattice is set so that an excess metal decoration part is previously formed on the ingot case and subjected to pre-heating in vacuum or in an argon-nitrogen atmosphere. Immediately before casting, the three-dimensional lattice is subjected to a contact catalytic reaction with various inoculation materials. A variant similarly obtained through continuous casting is subjected to mechanical pressurization or free pressurization (dressing treatment) of the decoration part and used as a structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

[0001−1]
本発明は、資源の枯渇などに貢献する意味を持ち、その一には鉄やその合金などに応用し、本来の鉄よりもその複合3次元形成物質が軽い場合、当然、それらを活用して得た製品は本来の鉄系に比べ軽くて剛性に富み、尚かつ省資源方向で考えた場合、複合化に使用する材料の炭化ケイ素、或いはアルミナ、又はジルコン又はシリカなどは今まで種々雑多の耐火材などに使用されていましたが、これらを混合使用、或いは単独使用することにより、基材となる鉄の消費量が大幅に削減できる上、その用途も今までのように圧延して成型品、形成品、板、鋳造して形成品などを市場のニーズに合わせて使用してきたが、ここへ来てエネルギー問題と用途の新たな拡大などを図る為、本発明をしたものであり、この発明により複合化された鉄の薄板などは、複合材が3次元形成格子体を備え持つ為、その空洞部に鉄を重鎮することにより従来のオール鉄よりもあらゆる意味でマーケットの拡大を図り、そのマーケットは鉄は結晶構造が冶金的に連続構造の方が強いという認識があったものの、それらの認識をより一層明確にするのが本発明であり、本発明は資源エネルギーの面でも大きなメリットを期待できる部分もあるが、今まで鉄を使用して限界のあった部分への拡大も考えられ、なぜそれらが有効的な技術の分野であるかというと、例えば自動車などのシャーシー材、化粧材として今までも高い地位を占めていたものの、その一端には重いという欠点がどうしても浮上してくるのが現実であり、重いが為、薄板をプレスにより成形し、形状係数でカバーし、それに補強を形状係数で付けて使用しているのが現状で、これらの諸問題を根底から覆す方法として下記に随随述べるような中間的製造方法の一例と使用方法の一例を本発明の代表的なものとして挙げていきます。本項目では省エネルギー、及び本発明の3次元格子体複合鉄によって種々の方法で得られた基盤体、基盤体とは圧延の場合、インゴットを意味することであり、又、連続鋳造、断続鋳造、断続引き抜きなどに3次元格子体と鉄をその空洞部分に粉末、又は溶解などで得られた基材、鉄を入れ、その周囲を基材の鉄系合金、又は鉄炭素合金など鉄系の物を内部と外部に均一に挿入し、その挿入方法として当然、元となるインゴットなどではあってはならない気泡や有害なガス欠陥などのない様、真空溶解鋳造などで目的物を求め、或いは連続鋳造、モールド法や大型変形品を求めるロストワックス法などで目的物を得る場合にも同じことが言え、これらを3次元形成格子体を表面から見えない内面に位置する位置に設置し、それらに鋳湯、及び粉末、又はバインダーを含む粉末体、ミム成型のようにする場合でも寸法の不安定さが焼結時、厚肉部では出るのが現状で、本発明の利点の一つを生かすことにより、予め棚型、或いはモールド内に3次元形成体をその容積に合わせて製作し、予め厚肉部や振動、及び共振などで金属疲労などが有る物とか、製造時、寸法問題で難易度の高い部分に設置することで、確定的な要素の寸法の維持や吸音効果、耐疲労度などの面で全ての周波数の振動や共振を吸収することにより、より高いレベルの素形材を得ることができ、又尚かつ、使用する鉄粉や合金粉などの消費を抑え、コストダウンにも繋がる。これらを鋳造で求めた場合、鉄やその合金の基材として占める割合が大幅にダウンすることは無論、この3次元形状格子体を内面に使用することで、この他にも省エネルギー効果を含めて耐衝撃力や振動吸収などで大きな貢献を及ぼすことになり、上記に述べたような方法は全ての類する溶解可能なマテリアル、或いは粉末化が可能なマテリアルでは、その使用が可能となり、若干の熱膨張差を入れて素形品を求める場合、中子としてもその用途は拡大でき、これは通常の中子の場合、鋳抜いて鋳造穴や異形を求める為に使う言葉であるが、本発明では中子のことを3次元形成格子体と言うような表現を使い、3次元に形成した酸化、還元、及び高温、高熱雰囲気でも安定性の高い炭化ケイ素質、アルミナ質、ジルコン質、これらの混合質、及びシリカ質などを用いるか、それぞれの膨張係数と利点を合致させるため混合し、それらにバインダーを併せ持たせることで、3次元格子体の複合安定性を確保し、これらが持つ無機要素から得られる性質を活用し、新しい考え方の複合形成体を形成し、それらの特徴の一つとして語れば、収縮率を極端に抑え、尚かつ一旦複合化すると3次元組織が内部に形成され、鉄、及びそれらの合金は今まで金属疲労という意味でその防止策として種々の工夫がされてきたが、本発明が標記する特徴として異質な無機体が3次元方向で内部に連なることにより、例えば内燃機関のように金属音をどうしても打ち消すことの出来ない部分などに一部使用することにより、それらの共振音や干渉音、その他を全周波数流域で吸収し、防音、消音効果を発揮するのも特徴の一つであり、今後本発明をあらゆる分野に活用することにより、冒頭に述べたように資源の節約を兼ねた音に対する環境、及び音が災いする省エネルギー、或いは粉末冶金やミム成形のように粉末を圧縮成型、又は粉末にバインダーを混ぜインジェクション成形する物などに対して、強度対策の上でも優位に立ち、尚かつ今まで出来なかった大物生産の実用化が可能になる。このように本発明はありとあらゆる分野で活躍が期待でき、その応用範囲も広く、例を挙げればきりがないほどである。
[0001−2]
本発明の中で鉄、及び鉄の合金、又は銑鉄、及び銑鉄の合金を溶解して、その溶解方法とは高炉溶解、転炉溶解、平炉溶解、坩堝溶解、掛傾炉溶解、高周波誘導炉溶解、真空溶解炉溶解、電気炉溶解、連続溶解などの溶解方法を取り、溶湯が全てに波及し、目的物の必要とする温度に上がると同時にアルゴンなどでバブリングをかける場合がある。バブリングした後、溶湯を凝固時、凝固組織が緻密な組織を得る為、バナジウム、及び各種接種材を用い、溶湯の中に挿入し、脱酸、脱ガスの目的もあり、通常は純アルミニウムや純チタンなどが有名であるが、純アルミニウムに強酸化剤をコーティングし、接種と溶湯清浄化などの為に目的物の微細化をも向上する、これらの処置を講じる場合があり、これらの処置を講じても溶湯の使い方に異なった点が生じ、例えば、連続溶解鋳造法などの場合、バブリングは溶湯部分で連続的にできるものの、接種材の接触反応は難しい場合が出てくる。その場合、バブリングと合わせて同一区分で鋳造直前にマグネシウムシリコン等で接触反応を起こさせ、連続鋳造ノズル二段階方式、二段階方式とは、第一段階で3次元炭化ケイ素形状格子体を中央部に連続的に挿入し、最終ノズルは3次元形状格子体の周囲に2次元層を熱延、冷延に備え、3次元層よりも少し大きめな位置に連続鋳造ノズルの大きさを固定し、連続して3次元形状格子体が連続鋳造ワーク4面全てに対して、2次元構造部をバランス良く配置し、鋳造硬化(冷却されたものが冷えていく状態での結晶方向の方向付けと組織微細化による硬化現象を相乗して、その硬化を3次元形状格子体の形状骨材に炭化ケイ素、ジルコン、アルミナ、シリカ、その混合物等で形成せしめた3次元格子体に対して、鋳造溶湯方向に対して形成体より内側に温度勾配が3次元内部である故、起こりうる為、3次元形状格子体の空洞方向から空間方向に対してバランス良く交差した微細化3次元形状格子体空間部に導かれ、同方向に誘導、形成し、これらで3次元形成体の内部で更に起こった3次元方向の温度勾配を活用し、鉄、及び鉄の合金、銑鉄、及び銑鉄の合金の圧延前インゴット形状の基本構造を誘発させ、以上のような点から連続溶解鋳造における3次元に対して、ミクロン3次元の凝固組織を形成しうるインゴット製作に関わる事であったが、このインゴットを変体点以下まで温度落ちした状態でホットロール圧延を繰り返し何度か行い、その後更に温度が降下した時点で冷延圧延を何度か繰り返し、予め形状的に圧延方向に対して横から見ると、上下両耳方向はインゴット段階で一定の予肉を持たせていた為、内部に残留する3次元形成体の主形成物、炭化ケイ素なるものが圧延されて3次元形状を維持したまま、長手方向横方向に鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金からなる3次元形成体が炭化ケイ素、又はジルコン、或いはアルミナ、或いはシリカ単独か、前記の利点を活用し、各無機物の性質、即ち膨張係数、耐熱性、加工性などから考慮できる無機耐火物等の混合体などを、形状を圧縮方向に変化させながら圧延の厚みによっても異なるが、3次元複合材として3次元内部に封止され、主材に合わせた形で変形を重ね、3次元形状を圧延された状態でも維持できる様、骨材となる3次元形状、主構造物の内部でのマイクロスリップ、及びミクロンスリップを起こしやすくする為、幾ら薄くしても鱗状になり、主構造体、鉄、及び鉄の合金、及び銑鉄、及び銑麩の合金の3次元の形成を強固に維持することができると共に、圧延時に溶湯時、加えた接種材などの微細化剤的存在と既に一時的3次元構造体が形成された周囲に付随して凝固時できた3次元結晶も圧延時、圧延により生じた圧力により、元の状態に戻ったミクロン、ミリミクロン、マイクロミクロン、炭化ケイ素、又はアルミナ、又はジルコン、又はシリカ、又は前者の何れかの利点を相互に活用する為、その混合物が固体潤滑的役割を果たし、凝固時、その周囲に生じた温度勾配3次元構造体の内部に、一部組み込まれ、更に強固な構造体を組成し、今まで鉄系圧延板には無かった力学的内部組織構造を計画的に形成することができ、尚かつ、複合材故に変形転移すると同時に、それに対するエネルギー分の熱を作ることができ、冷延状態で極めて優位な働きをするものであり、これらが相乗して出来たものが極めて遮音性が高く、防音遮蔽壁、吸音体、及び組織内部共振体などに活用できる。又、基本内部構造で構築されたマクロ的3次元の強固な構造を活用することで、今まで鉄、及び鉄の合金では考えられなかった対構造体とか、様々な用途に使用でき、その用途は限りないものであるが、例えば、マイクロ波、超音波、振動子、IH発信体の共振変調波発熱部にサンドイッチ使用、又は端面使用することで、今まで分子間伝達で共振、発熱していたものが、3次元方向の複合共振発熱を誘発させる為、極めて高いエネルギー変換効率が実現できる。又、自動車などの自己発生エネルギーによる動力伝達方法で一番問題になるのが、自己発生エネルギーに対して、1馬力あたり何キログラムの加重を支えているかということが近年特に問題となってきた。今まではハイテンション構造鋼板薄板をプレス成形し、力学的形状変化を加えて一定の強度を得ていたが、本発明の複合3次元圧延材は確かに力学的な形状的プレス加工を平均化して形状変化を起こさせることで、その持ち前の強度を発揮できる事は無論、現在防錆処理としてカチオンがカチオン電着塗装が溝付け塗装などを施して錆から守っているが、本発明の内部3次元複合組織には、その場合によって電気的特性の優れた炭化ケイ素、及びそれに類する合成体を使用する為、塗料の付着安定性が極めて良く、又塗装時においても吹きつけ、或いは精錬塗装によって安定した塗膜を得ることができ、塗料の無駄遣いが極めて少なくなり、強固な密着力により優れた塗面を作ることが可能になる。その理由の一つには、内部に複合材として強活性帯電体を形成することが容易になり、目的物に外部から極性を与えることで吸着性を高めることができ、塗料が目的物に照射衝突時に波状現象を抑え、到達目的物に限りなく付着する。この場合、目的物に対して母体側に静電圧を要求することで、目的物の仕上げ塗装などに大きな効果をもたらす。それは何故かというと3次元構造体内部組織鱗組織に複合物が本発明で存在する為、その部分に対してより高い静電圧が期待できるからである。それは着磁性体と非磁性体とが共存して出来る現象で、これらを上手に使い分けすることで塗料の節約が大幅に期待できる。又静粛性に優れた軽い複合3次元格子体を内部に得ている為、省エネルギー型構造構成、及び化粧構成にも同時に活用できる。省エネルギー型複合材で、尚かつ組織的には幾ら薄くなっても3次元形状を維持し、垂直水平加重、及び耐微震衝撃性に優れ、これからの新素材として期待の持てること。
[0001−3]
本発明中、坩堝溶解鋳造、及び掛傾炉などによる溶解鋳造の中には、真空溶解鋳造アルゴン加圧方式などが代表的なものとして含まれ、坩堝鋳造にも坩堝周辺に燃焼バーナーや抵抗式ヒーター、或いは高周波誘導コイルなどを併せ持ち、それらのエネルギーにより、坩堝を加熱して溶湯を作る方式として熱の伝導などにより目的物を(鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金)などがあり、これらの溶解にあたっては、酸化速度が速い為、アルゴン雰囲気や窒素雰囲気などの不活性ガス雰囲気を用いて溶解する方法を取るものの、これらの中で高周波誘導加熱は上記同一の方法を取る場合と、真空釜の中に高周波誘導炉を設置し、誘導炉内に目的物(鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金)などを誘導炉内の中に入れ、真空中で同一真空容器内に設置した目的物を作る為のインゴット鋳型ケース、その鋳型ケースの中に3次元構成体を予め設置、その設置したケースに同一真空容器内でケースの外部に高周波誘導用加熱コイルを設置し、適正な目標温度までケースの温度を上げ、真空容器内での鋳造に備える。そのとき不純物などのかみ込みが発生する恐れがあるので予め大気中で仮焼成、及び仮予熱を掛け、清掃後、清浄化したものを真空容器内の鋳造場所に設置する場合もある。これらの方法を使用し、鋳造する場合、インゴットケースと名付ける部分にセラミックモールド溶湯鋳型を使用する場合もあり、この場合は予め3次元形成物を設置し、酸化雰囲気内で予め焼成措置を講じ、その後、真空容器内に装着し、溶湯の注ぎ口より溶湯を注ぐ、その場合、セラミックモールド鋳型の温度は抵抗ヒーター、若しくは高周波誘導コイル間接加熱により加熱し、その温度は目的物等の材質により異なりますが、メルティングポイントより若干低い位置でセットし、溶湯を鋳造と同時に今度は真空容器内を外部よりアルゴンガスを急速挿入し、鋳造完了と共に本処置は行い、1気圧ないし加圧による数気圧の圧力を容器内で得ることで、鋳造された溶湯の上部より加圧された状態で先に記した高周波誘導コイル、抵抗式ヒーターなどの隙間に冷却用コイルを張り巡らすか、インゴットケースの場合、二重ケースにし、その二重目のケース枠に常温の水、又は冷却媒体を循環冷却、インゴットケース、及びセラミックモールド鋳型の周囲を強制冷却により内部に鋳造された(鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金)等を周囲より吸熱することにより、外側から冷却を掛けることにより、インゴットケース内とセラミックモールド鋳型内に予め設置せしめた3次元形状格子体の形成部より、鋳造された溶湯は熱が外側に勾配を取り、熱が引かれる為、溶湯物の表面より伝導とケース、又はセラミックモールド鋳型の放熱により、内部に3次元構造を献じしてある為、熱は直線方向でなく、3次元方向に流れ、その粒子の大きさは外側に対して徐々に小さくなり、予め鋳造する器となるインゴットケース、セラミックモールド鋳型の固定3次元形状格子体を各端面を基準に3次元形状格子体の及ばぬ部分を作るよう施工し、鋳造された為、各端面からの熱の放射伝導効率は極めて良く、更にインゴットケースにおいては真空容器内の真空状態から気圧を不活性ガスにより逆に加圧し、加圧とは一方方向加圧、即ち上部加圧になるが、セラミックモールド鋳型の場合、鋳型に通気性を促す気孔が存在する為、6面全体に不活性ガスによる加圧が上部鋳湯口から順番に加圧され、最終的には6面全部を加圧することで緻密度を高め、溶解鋳湯直前、及び鋳湯時、凝固核を改善して生成せしめる為にマグネシウムシリコン、及びカルシウムシリコン、その他種々の接種材を用いて接触凝固核を多く作る様、予め作った溶湯を直ちに鋳造する為、凝固核が3次元形状格子体内まで均等に行き渡り、それぞれの場所において3次元凝固核を生成し、そこで始まる凝固は3次元形状格子体に沿い、外方向に対して3次元凝固を起こす。それらの行為で得られた目的物はインゴットケースの場合、真空容器内より機械的要素、或いは半機械的要素により外部に取り出し、そのときの温度は常温に身近なもので各材料の低温変体点を通過した時点から排出を可能とし、排出された3次元構造インゴット、及びセラミックモールド鋳型の場合、目的形状物は、セラミックモールド鋳型は除去し、そのまま使用しても良いが、不要なものは排除して、そのまま使用する場合もあり、インゴットケースの場合、圧延異形などを目的とする為、インゴットケース内から取り出した目的物は、表面に不純物などが無いよう十分、酸洗いや清浄、洗浄や清掃を行い、鍛圧機、又は静圧プレスで鍛圧、又は圧縮し、圧延前形状まで火作りするか、インゴット形状が圧延前形状の場合と表面にスケールや頑固な酸化物、異物などの無い場合、加熱してそのままホットロールにかみこませ、圧延を繰り返し行い、又は直線上で順番に圧延することで冷延前コイルを作り、圧延時に生じた不純物などの付着などを完全に処理し、冷延ロールを直線上に繰り返し潜らせ、目的物の使用目的の厚さまで冷延して目的物を求める方法であること。
[0001−4]
本発明の溶湯の作り方は、基材となる鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金などの多大な種々の鉄系合金、又はその鉄系合金を冶金的に複合3次元形状格子体に沿いやすいよう作る。そのためには如何なる溶解方法を取ろうが、基材となる部分の溶解を行う為には、通常、常識的ではあるものの、酸化雰囲気では比較的酸化速度の速い、鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金などは殆どが酸素から遮断した状態で常圧においても不活性ガス雰囲気内にて行うこととし、その不活性ガスも合金の種類によっては窒素などを使用した場合、窒化現象を促進する様な事態を誘発する為、基本的にはアルゴンガスを使用して行う。又、酸化物や不純物の溶湯内の除去についてはアルゴンバブリング、或いは還元性活性ガスをまま使用する場合もあるが、危険を伴う為、特殊な場合を除いてそれらの使用は行わない。溶解炉内で溶落した基材となり得る溶湯は、溶落後、鋳造温度まで上げ、沈静清浄化した湯の中にインゴット組織を出来るだけ緻密化させる為、接種材を用い、その接種材の多点凝固組織を作る為、鋳造前、或いは鋳造直前に鋳湯湯に付き込み、むら無く接種材反応を誘発させ、鋳造後の組織を微細化出来ることと共に、複数の凝固核を生成する様、組織を均一化し、3次元状格子体が3次元状にある故、それに配列凝固する様、溶湯に対して十分な接触添加反応を連続的に誘発させることで、それを即座にインゴット又は形状目的物に合った量を鋳造し、その鋳造物の中心位置、即ち形状周囲に肉付けをした形が形成できる様、3次元形成物をセットし、その3次元形成物の3次元の規模は任意に調整できることが可能であることと、鋳造される溶湯の温度と同等まで予熱などを加え、滑らかな3次元鋳造が出来る様、予め予熱等が取れる仕組みを装備し、これらの条件下で鋳造後、直ちに酸化防止雰囲気内で外部より3次元構造の大きなものを必要とする場合、極めて鋭角な温度勾配を提供するものであるが、ミクロン3次元構造を3次元構造体に付帯して生成せしめる場合、鋳造後、保冷温度勾配を鈍角にし、ミクロン球状化組織が混在する組織を3次元形状物に対して、より緻密に生成せしめることで常に方向性が3次元に分布すると共に、結晶構造体の結合力が高く、これらを完成品で判断した場合、あらゆる方向の引っ張り圧縮に対して極めて高い強度と靭性を得ることが可能となり、尚かつ、中心部にセットされた最終凝固末には炭化物が熱の蓄層により順列化するが故、高いヤング率を形成せしめることが可能となり、尚かつ、3次元格子体に比重の異なるものを活用する故、微振動などで応力蓄積を所定弱点に集中しやすかった蓄積破断要因の一つ、疲労クラックなどの発生を無くし、応力や微振動を吸収し、熱に変え、外部に放出する。その場合、3次元格子体とミクロン3次元生成体との共有構造により、従来の鉄基合金と比較して非常に高い分子間テンションとなり得る構造を作ることで、今まで以上の用途以外に使用することがなかなか難しいものであったが、本発明が複合材的要素を持つと共に、溶湯コントロールをし、尚かつ、鋳造タイミングなどを併せ持ち、本発明の3次元形成体使用凝固方法により、従来の鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金等の弱点を大幅に改善し、用途を無限に広げようとするものであること。
[0001−5]
本発明の主立った特徴は、3次元格子体に鋳造、又はインジェクション成形などで、そのワークの内側に均一に固定し、外方向に一定の肉を保有することにより、それより得ようとした形状は、例えば、ミム成形やロストワックス成形などで予め金型内に予肉部に3次元形成体が余裕を持つよう金型内にセットし、インジェクション成形し、ミムの場合、焼結前形状を得る。ロストワックスの場合、ロウ型モデルを得て、それを基盤に耐火材をバインダーで練り上げた物に界面活性剤等を加え初期コーティングを施し、初期コーティングの骨材にはスラリーコーティング後、初期コーティングを一定した厚みにコーティングし、それに粒子のやや細かな膨張係数のほぼ同一な骨材をサンディングし、この過程を2度程繰り返し、その後にバックアップ用スラリーに浸け、同じく膨張係数の似たような物を数回にわたり乾燥した後に繰り返しコーティングし、最終的にスラリーにリップして乾燥させた物をショックヒートやオートクレイブ、マイクロ波などの諸装置により、成型時に同一にした内部のワックスを溶出し、鋳型を得て、その鋳型を焼成炉の中に入れ、酸化雰囲気で焼成し、焼成後、内部に巾器により固定するか、巾器の無い場合、ワックス成型時に3次元格子体に届く様、適度な位置に穴などを開け固定する場合もある。それらの工程を経て焼成された物に迅速溶解で酸化する速度よりも早く高周波溶解し、高周波溶解した鉄、及び鉄の合金、銑鉄、及び銑鉄の合金を高温の鋳型に鋳湯し、鋳湯した鋳型は内部目的物表面が脱炭や酸化を防止する為、還元雰囲気にて除冷し、目的物を得、得た目的物は目的物の周りに固定された耐火物を除去し、使用目的を考慮に入れて、それにあった熱処理を行い、3次元格子体が化粧面より内部にある為、表面からは確認できないが、X線などで確認する場合もあり、これらで得た異形体は周波数帯に異ならず、全ての周波数帯で音の吸収をせしめ、その吸収したエネルギーを熱に変え、放散、或いは蓄熱して他の用途に使用することで内部3次元組織が内部3次元形状係数を稼ぎ、強度や剛性を上げることは無論、振動や騒音になる要因を吸収し、サイレント効果を各部品で出すと共に、耐衝撃疲労についても衝撃を3次元形成体が吸収し、金属疲労などを防止する性質を有する物である。又、前記に述べた圧延材や薄板などは勿論、電磁波などの乱波を吸収し、それらを熱源に変え、効率の良い加熱行為を行ったり、乱波の周囲を覆うことで乱波の漏れを防ぎ、電波障害などを防止する場合もある。その他にも相当の発熱行為、音波遮蔽行為、今までの鉄、及び鉄の合金、及び銑鉄、及び銑鉄の合金には無かった保温行為も同時に付与し、例えば、缶ジュース、缶ビールなどの加温保温や冷却保温などの温度遮蔽効果を備え持ち、更に封止接合等においても加熱、溶融接合が可能なものであり、本複合合成体を引き抜きなどで求めた結果、その中央部に位置する3次元格子体に馴染むミクロン、サブミクロンなどのそれに沿った3次元形成組織から大きな構造的機械的性質を生み出し、今まで鉄系では使用が困難とされていた異形構造物の分野まで踏み出し、用途の拡大が図れること。
[0001−6]
本発明の連続鋳造引き抜きにおいて、引き抜き水冷ダイス前方から3次元形状格子体を引き抜き形状の外接部全てに基材のみの耳が付くようセットして、連続的に引き抜くことにより、強固な3次元を有した構造用異形体を求めることができ、その求めた異形体を外接部より機械的、又はシップ処理のように全面に圧力を掛け、締め込むことにより、更に強固な異形体構造菩提を得ることができ、本発明は3次元格子体とその内部に組織組成する3次元組織により、あらゆる方向に対して強固になる様、複合化とそれに伴う組織変化、及び接種材などを使用することで、ナノ単位の尾っぽを持つ3次元組織を得ることとなり、これらを得ることにより、鉄系全ての強度を上げ、使用過程の可能性を増大し、耐蝕性、対リサイクル性に富み、又尚かつ、線膨張率を抑え、動植物が生殖する摂氏25℃程度を0点とし、上下方向に対して耐候性に優れ、それに合わせて化粧面表面は空気接触率の少ないフラット面が確保でき、美観的にも優れた部分を覗かせ、これらの構築物の使用に対しては溶接構造を可能にし、又これらの方法で得た厚板を接合し、形状構造体を形成する上で、撓み量が少なく3次元格子体の使用基材として比較的比重の低い3次元格子体を使用した場合、軽い為、その用途は無限に広がりを見せるものである。
[0001−7]
本発明は、3次元格子体を軸にそれに基材の鉄、及び鉄の合金などの組織微細と3次元組織の生成を促すことを基本としたが、この中で3次元格子体のみで接触接合組織などを使用しない場合がある。その場合、3次元格子体を予めセットし、それに対して全判前記に述べた朱記の一部異なる部分が出てくる。その部分とは、3次元形状格子体のみを使用し、溶湯などにさほど変化を付けず溶湯が醸し出す従来の方法でインゴットケース、又はセラミックモールド鋳型中央部に3次元格子体を設置し、それに溶湯を注ぐことにより得る方法である。この方法もインゴットケース、セラミックモールド鋳型、及び連続鋳造受け板の方には、予め予熱し、安定した温度勾配を作ることで3次元格子体が鋳湯時、及び鋳湯後、3次元形成物で構成された構成内部組織は多少は大きくなるものの、上記の朱記に記載したような、ナノ尾っぽなどの生成は100%とは言えないものの、多少にとどまることで圧縮された3次元部分内にミクロン組織として3次元組織形成を生じ、これらの特徴を生かし、簡易化された3次元複合組成ミクロン組織性状を活用し、同じように目的物を得ることで若干の優劣は付くが、組織構造は上記朱記にやや似た性状を生成することを前提に3次元形成物を使用し、それで得る鋳造品鍛造素材、圧延板材、異形材、構造用異形材、航空宇宙新素材としてその活用範囲は幅広く広がり、特に新分野として構造構築物、電気、電子、吸収、加熱、蓄熱、発熱、舶用、航空宇宙関連製品、自動車、重火器、小火器、民生用、産業用工作機械、ツーリング、工具、治具などと代表的なものをあげているが、その他、多大な用途が浮上することと、新しい技術の開路を作ったものであり、それにも勝り従来にない省エネルギー、省減量、基材の節約、リサイクルの簡易性などを挙げるものである。
[0001−8]
本発明の技術の分野について[0001−7]までにいろいろ述べてきましたが、これらを高炉からインゴットケースに直接鋳湯する場合もあり、又、合金化せしめた鉄や鉄の合金を平炉などで溶解保持し、インゴットを作る場合もあり、この場合も前記同様、3次元格子体を予め加温し、インゴットケース、又は鋳型なども予め予熱を掛け、3次元格子体の内部まで均一に鋳湯が入っていくよう配慮し、大型のインゴットを求めることがある。この大型のインゴットを求めたことによって、鋳湯後、大型のインゴットを熱鍛圧により圧延前形状まで形成変化をフリー鍛造、固定鍛造、静圧プレスなどにより、連続的、反復的に作り、この場合でも表層に近い部分に化粧肉(予肉)を全面に付け、加熱して仮コイル状に形を整え、熱燗でロール圧延し、その後、表面のスケールや傷、ゴミ、酸化不純物などを酸洗いなどで完全に除去し、冷延して目的の厚さまで繰り返し、セミホット、或いは冷延により、目標厚さを求めることを前提とした物である。
[0001-1]
The present invention has a meaning that contributes to resource depletion, etc. One of them is applied to iron and its alloys, etc. When the composite three-dimensional formation material is lighter than the original iron, naturally, they are utilized. The product obtained is lighter and more rigid than the original iron-based material, and when considered in the direction of resource saving, silicon carbide, alumina, zircon, or silica, etc. used as a composite material has been miscellaneous. Although it was used for refractory materials, the consumption of iron as a base material can be greatly reduced by using these alone or in combination, and the use can also be rolled and molded as before. Products, molded products, plates, cast molded products etc. have been used according to market needs, but here we come to the present invention in order to aim for new expansion of energy problems and applications, Iron thin film composited according to this invention Because the composite material has a three-dimensionally formed lattice, the market is expanded in every sense than the conventional all-iron by reducing the amount of iron in the cavity. Although there was a recognition that the continuous structure is stronger, it is the present invention that makes the recognition even more clear, and the present invention has a part that can be expected to have a great merit in terms of resource energy. The use of iron can be expanded to the limited part, and why they are in the field of effective technology, for example, occupy a high position as a chassis material and cosmetic material for automobiles etc. However, it is actually a fact that the disadvantage of being heavy at one end of the surface has emerged, and because it is heavy, a thin plate is formed by pressing, covered with a shape factor, and reinforcement is added to the shape factor. As an example of the present invention, an example of an intermediate manufacturing method and an example of a method of use as described below are given as typical examples of the present invention. To go. In this item, energy saving, and the base body obtained by various methods using the three-dimensional lattice composite iron of the present invention, the base body means ingot in the case of rolling, continuous casting, intermittent casting, For intermittent pulling, etc., a three-dimensional lattice and iron are powdered into the cavity, or a base material obtained by melting or the like, iron is put, and the surroundings are iron-based materials such as iron-based alloys or iron-carbon alloys Is inserted into the inside and outside uniformly, and as a method of insertion, of course, the object should be obtained by vacuum melting casting or the like so that there should be no bubbles or harmful gas defects that should not be the original ingot, etc. The same can be said for obtaining the target object by the molding method or the lost wax method for obtaining a large deformed product. These three-dimensional grids are placed on the inner surface where they cannot be seen from the surface, and cast on them. Hot water, and Even when powdered or powdered body containing a binder, such as mim molding, dimensional instability is present at the thick part when sintered, by taking advantage of one of the advantages of the present invention in advance, A shelf-type or a three-dimensional formed body in the mold is manufactured according to its volume, and there is metal fatigue due to thick parts, vibration, resonance, etc. in advance, or parts that are difficult due to dimensional problems at the time of manufacture It is possible to obtain a higher-level material by absorbing vibration and resonance at all frequencies in terms of maintaining deterministic element dimensions, sound absorption effect, fatigue resistance, etc. Moreover, consumption of iron powder and alloy powder to be used is suppressed, leading to cost reduction. When these are obtained by casting, the proportion of iron or its alloy as a base material is not significantly reduced. Of course, the use of this three-dimensional grid on the inner surface also includes an energy saving effect. This will make a significant contribution to impact resistance and vibration absorption, and the methods described above can be used with all types of dissolvable or powderable materials. In the case of obtaining a molded product with an expansion difference, the use of the core can be expanded. In the case of a normal core, this is a term used for casting to find a cast hole or an irregular shape. Then, using the expression that the core is a three-dimensionally formed lattice, oxidation, reduction, and three-dimensionally formed silicon carbide, alumina, zircon, and these that are highly stable in high temperature and high heat atmosphere. Mixed quality, In order to ensure the composite stability of the three-dimensional lattice and obtain it from the inorganic elements possessed by them By utilizing these properties, we can form a composite formation with a new concept. If we talk about it as one of these characteristics, the shrinkage rate is extremely suppressed, and once combined, a three-dimensional structure is formed inside, iron, In addition, various alloys have been devised as countermeasures for preventing metal fatigue in the sense of metal fatigue, but as a feature of the present invention, a heterogeneous inorganic substance is connected to the inside in a three-dimensional direction, for example, an internal combustion engine. By using some parts such as where metal sound cannot be canceled by all means, the resonance sound, interference sound, etc. are absorbed in the entire frequency range, and soundproofing and sound deadening effects are produced. It is one of the features, and by utilizing the present invention in all fields in the future, as described at the beginning, the environment for sound that also saves resources, and energy saving that damages the sound, or powder metallurgy and mim It is superior in terms of strength against a product that is compression-molded as in molding, or a material that is injection-molded by mixing a binder with the powder, and it is possible to put to practical use large-scale production that has not been possible until now. As described above, the present invention can be expected to play an active role in a variety of fields, and its application range is wide.
[0001-2]
In the present invention, iron and an iron alloy, or pig iron and pig iron alloy are melted, and the melting method is blast furnace melting, converter melting, open hearth melting, crucible melting, slanting furnace melting, high frequency induction furnace There are cases where a melting method such as melting, vacuum melting furnace melting, electric furnace melting, or continuous melting is taken, and the molten metal spreads all over and rises to the temperature required by the target product and at the same time is bubbled with argon or the like. After bubbling, when solidifying the molten metal, a solidified structure is obtained by using vanadium and various inoculants, which are inserted into the molten metal for the purpose of deoxidation and degassing. Pure titanium etc. are famous, but these measures may be taken to coat pure aluminum with a strong oxidizer and improve the refinement of the target object for inoculation and molten metal cleaning, etc. However, there are cases where the molten metal is used in a continuous melting casting method, for example, although bubbling can be continuously performed in the molten metal portion but the contact reaction of the inoculum is difficult. In that case, contact reaction is caused with magnesium silicon etc. just before casting in the same section together with bubbling, and the continuous casting nozzle two-stage method, the two-stage method is a three-dimensional silicon carbide shaped lattice body in the first stage The final nozzle is equipped with a two-dimensional layer around the three-dimensional grid body for hot rolling and cold rolling, and the size of the continuous casting nozzle is fixed at a position slightly larger than the three-dimensional layer, The three-dimensional lattice is continuously arranged on all four surfaces of the continuous casting workpiece with a well-balanced arrangement of the two-dimensional structure, and the casting is hardened (the orientation and structure of the crystal direction when the cooled one cools down). Synthesizing the hardening phenomenon caused by miniaturization, the direction of the molten metal for a three-dimensional lattice formed with silicon carbide, zircon, alumina, silica, a mixture thereof, etc. on the aggregate of the three-dimensional lattice Against shape Since the temperature gradient inside the body is three-dimensional inside, it can happen, so it is guided from the cavity direction of the three-dimensional shape lattice body to the miniaturized three-dimensional shape lattice space that intersects the space direction in a balanced manner. The basic structure of the ingot shape before rolling of iron and iron alloys, pig iron and pig iron alloys by utilizing the temperature gradient in the three-dimensional direction, which was induced and formed in the direction, and further occurred inside the three-dimensional formed body. From the above points, it was related to the production of an ingot capable of forming a micron three-dimensional solidified structure compared to the three dimensions in continuous melt casting, but the temperature of this ingot dropped below the transformation point. In this state, hot roll rolling was repeated several times, and when the temperature further decreased, cold rolling was repeated several times. In this stage, a certain pre-mesh was provided, so that the main formation of the three-dimensional formed body remaining inside, that is, silicon carbide, was rolled to maintain the three-dimensional shape while maintaining the iron in the longitudinal direction. And the alloy of iron, and the three-dimensional formed body of pig iron and pig iron alloy is silicon carbide, zircon, alumina, or silica alone, utilizing the above-mentioned advantages, the properties of each inorganic substance, that is, expansion coefficient, heat resistance The mixture of inorganic refractories, etc. that can be considered from the viewpoint of properties, workability, etc., varies depending on the thickness of the rolling while changing the shape in the compression direction, but is sealed inside the 3D as a 3D composite material. In order to keep the three-dimensional shape rolled up in a combined manner and maintain the three-dimensional shape in a rolled state, it is slightly thinner to make it easier to cause a three-dimensional shape that becomes an aggregate, a microslip inside the main structure, and a micron slip. Shi It becomes a scale and can maintain the three-dimensional formation of the main structure, iron, iron alloy, pig iron, and iron alloy firmly, and at the time of melting, inoculum added, etc. The three-dimensional crystal formed during solidification along with the presence of the micronizing agent and the temporary three-dimensional structure already formed is restored to the original state by the pressure generated by the rolling. Micron, micromicron, silicon carbide, or alumina, or zircon, or silica, or the former, the mixture acts as a solid lubricant and the temperature generated around it during solidification A part of the gradient three-dimensional structure is incorporated into the structure to form a stronger structure, and a mechanical internal structure that has never been found in iron-based rolled sheets can be systematically formed. , Transformation due to composite material At the same time, it can generate heat for the energy, and it works extremely preferentially in the cold rolled state, and the result of these synergies is extremely high sound insulation, soundproofing shielding wall, sound absorber, And can be used for tissue internal resonators. In addition, by utilizing a macroscopic three-dimensional solid structure built with the basic internal structure, it can be used for various applications such as anti-structures that have not been considered in the past with iron and iron alloys. Although there is no limit, for example, by using a sandwich or end face for the resonant modulation wave heat generating part of microwaves, ultrasonic waves, vibrators, and IH transmitters, resonance and heat have been generated by intermolecular transmission until now. Since this induces complex resonance heat generation in the three-dimensional direction, extremely high energy conversion efficiency can be realized. In addition, the most important problem in the power transmission method using self-generated energy such as automobiles has been a particular problem in recent years in terms of how many kilograms of weight per horsepower are supported for self-generated energy. Up to now, high tension steel sheets were press-formed and mechanical strength was changed to obtain a certain strength, but the composite 3D rolled material of the present invention certainly averaged the mechanical shape press work. Of course, it is possible to exert its original strength by causing the shape change to occur, and as a rust prevention treatment, cations are protected from rust by applying cation electrodeposition coating with groove coating etc. In some cases, silicon carbide with excellent electrical properties and similar composites are used for the three-dimensional composite structure, so the adhesion stability of the paint is very good, and it is sprayed or refined during painting. A stable coating film can be obtained, waste of paint is extremely reduced, and an excellent coating surface can be made with a strong adhesion. One of the reasons is that it becomes easy to form a highly active charged body as a composite material inside, and the adsorption property can be enhanced by applying polarity to the target object from the outside, and the paint is irradiated to the target object. Suppresses the wavy phenomenon at the time of collision and adheres to the target object as much as possible. In this case, by requiring an electrostatic voltage on the base side of the object, a great effect is brought about in the finish painting of the object. This is because, since a composite exists in the internal tissue scale tissue of the three-dimensional structure in the present invention, a higher electrostatic voltage can be expected for that portion. This is a phenomenon that can be achieved by the coexistence of magnetized and non-magnetic materials. By using these properly, you can expect significant savings in paint. In addition, since a light composite three-dimensional lattice body excellent in quietness is obtained inside, it can be used at the same time for an energy saving structure structure and a makeup structure. It is an energy-saving composite material that maintains its three-dimensional shape even when it is thinned structurally, has excellent vertical and horizontal load, and resistance to microseismic shock, and can be expected as a new material in the future.
[0001-3]
In the present invention, the crucible melting casting and the melting casting by a tilting furnace include a vacuum melting casting argon pressurization system and the like, and the crucible casting also includes a combustion burner and a resistance type around the crucible. A heater or a high-frequency induction coil is also used, and the energy is used to heat the crucible to make a molten metal. The target is made by heat conduction (iron, iron alloy, pig iron and pig iron alloy), etc. In order to dissolve these, since the oxidation rate is fast, a method of melting using an inert gas atmosphere such as an argon atmosphere or a nitrogen atmosphere is employed, but among these, the same method is used for high frequency induction heating. In some cases, a high-frequency induction furnace is installed in the vacuum pot, and the target object (iron, iron alloy, pig iron, pig iron alloy, etc.) is placed in the induction furnace, and in a vacuum. An ingot mold case for making an object installed in the same vacuum vessel, a three-dimensional structure is installed in the mold case in advance, and a heating coil for high frequency induction outside the case in the same vacuum vessel in the installed case To raise the case temperature to the appropriate target temperature and prepare for casting in the vacuum vessel. At that time, there is a possibility that impurities or the like may be bitten, so that preliminary calcination and preliminary preheating are performed in the air in advance, and after cleaning, the purified product may be placed in a casting place in the vacuum vessel. When using these methods and casting, ceramic mold molten metal mold may be used in the part named ingot case. In this case, a three-dimensional formed product is set in advance, and a firing measure is taken in an oxidizing atmosphere in advance. After that, it is installed in a vacuum vessel and the molten metal is poured from the spout of the molten metal. In that case, the temperature of the ceramic mold is heated by a resistance heater or indirect heating of the high frequency induction coil, and the temperature varies depending on the material such as the object. However, it is set at a position slightly lower than the melting point, and at the same time as casting the molten metal, argon gas is rapidly inserted into the vacuum vessel from the outside, and this treatment is performed when the casting is completed. The high frequency induction coil and the resistance type heater described above in a state of being pressurized from the upper part of the cast molten metal are obtained in the container. -In the case of an ingot case, a double case is used, and room temperature water or a cooling medium is circulated in the double case frame to circulate cooling, the ingot case, and the ceramic mold mold. By absorbing heat from the surroundings (iron, iron alloys, pig iron, and pig iron alloys) and the like cast inside by forced cooling, the inside of the ingot case and the ceramic mold mold Because the cast metal melts from the formation part of the three-dimensional shape grid that has been installed in advance, the heat takes a gradient and the heat is drawn, so conduction and heat dissipation from the surface of the melt or the ceramic mold mold Therefore, because the 3D structure is dedicated to the inside, heat flows in the 3D direction instead of the linear direction, and the size of the particles gradually decreases with respect to the outside. The ingot case, which becomes a casting machine in advance, and the fixed three-dimensional lattice of the ceramic mold mold were constructed so as to create a portion that does not reach the three-dimensional lattice on the basis of each end surface. The radiation conduction efficiency of the ingot case is further improved. In the ingot case, the pressure is reversed from the vacuum state in the vacuum vessel by an inert gas, and the pressurization is one-way pressurization, that is, upper pressurization. In the case of a mold, since there are pores that promote air permeability in the mold, pressurization with an inert gas is sequentially applied to the entire six surfaces in order from the upper casting port, and finally, all six surfaces are densely pressed. In order to improve the degree of solidification and improve the solidification nuclei immediately before and at the time of the casting, magnesium silicon, calcium silicon and other various inoculums are used to make many contact solidification nuclei in advance. In order to cast the molten metal immediately, the solidification nuclei spread evenly into the 3D-shaped grid and generate 3D solidification nuclei at each location, where the solidification starts along the 3D-shaped grid and outwards Cause three-dimensional solidification. In the case of an ingot case, the object obtained by those actions is taken out from the inside of the vacuum vessel by a mechanical element or semi-mechanical element, and the temperature at that time is close to normal temperature, and the low temperature transformation point of each material In the case of discharged three-dimensional structure ingot and ceramic mold mold, the ceramic mold mold can be removed and used as it is, but unnecessary ones are excluded. In the case of an ingot case, it is intended for rolling irregularities, etc., so the object taken out from the ingot case should be sufficiently pickled, cleaned, washed and cleaned so that there are no impurities on the surface. After cleaning, forging or compression with a forging machine or a hydrostatic press to make a fire up to the pre-rolling shape, or when the ingot shape is the pre-rolling shape and on the surface If there is no steel, stubborn oxide, foreign matter, etc., it is heated and bitten into a hot roll as it is, repeatedly rolled, or rolled in order on a straight line to make a coil before cold rolling, which occurred during rolling It is a method that completely treats adhesion of impurities, etc., repeatedly immerses the cold-rolled roll on a straight line, and cold-rolls it to the intended use thickness to obtain the target product.
[0001-4]
The method of making the molten metal according to the present invention includes a large amount of various iron-based alloys such as iron as a base material, iron alloys, pig iron, pig iron alloys, etc. Make it easy to follow your body. Whatever melting method is used for this purpose, in order to dissolve the portion to be the base material, although it is usually common sense, iron and iron alloys, which have a relatively high oxidation rate in an oxidizing atmosphere, and Pig iron and pig iron alloys are mostly shielded from oxygen in an inert gas atmosphere even at normal pressure, and depending on the type of alloy, the nitriding phenomenon Basically, argon gas is used to induce such a situation. In addition, argon bubbling or reducing active gas may be used as it is for removing oxides and impurities in the molten metal, but they are dangerous and are not used except in special cases. The molten metal that can become the base material that has melted in the melting furnace is raised to the casting temperature after melting, and the ingot structure is made as dense as possible in the calmly cleaned hot water. In order to create a point solidified structure, it is attached to the casting water before casting or just before casting, inducing the inoculum reaction uniformly, making the structure after casting fine, and generating multiple solidification nuclei, Since the structure is uniformized and the three-dimensional lattice is three-dimensionally arranged, the contact addition reaction is sufficiently induced to the molten metal so that it is arranged and solidified. Cast a suitable amount to the object, set the three-dimensional object so that the center position of the object, that is, the shape around the shape can be formed, and set the three-dimensional object arbitrarily. Being able to be adjusted and casting Equipped with a mechanism that allows preheating etc. to be taken in advance so that smooth three-dimensional casting can be performed up to the temperature of the molten metal, and after casting under these conditions, a three-dimensional structure from the outside immediately in an antioxidant atmosphere However, when a micron three-dimensional structure is attached to a three-dimensional structure, a cold insulation temperature gradient is made obtuse after casting, and a micron three-dimensional structure is provided. By creating a dense structure with a spheroidized structure for a three-dimensional shape, the directionality is always distributed three-dimensionally and the bonding strength of the crystal structure is high. In this case, it becomes possible to obtain extremely high strength and toughness against tensile compression in all directions, and carbide is permuted by heat accumulation at the final solidification end set in the center. Therefore, it is possible to form a high Young's modulus, and one of the accumulated rupture factors that makes it easy to concentrate stress accumulation on a predetermined weak point due to microvibration, etc., because it uses a three-dimensional lattice having a different specific gravity. It eliminates the occurrence of fatigue cracks, absorbs stress and micro vibrations, converts it into heat, and releases it to the outside. In that case, by using a shared structure between the three-dimensional lattice and the micron three-dimensional product, a structure that can have a very high intermolecular tension compared to conventional iron-based alloys can be used for purposes other than those previously used. Although it was difficult to do, the present invention has a composite material element, controls the molten metal, and also has a casting timing, etc. It is intended to greatly improve the weaknesses of iron, iron alloys, pig iron, pig iron alloys, etc., and to expand the application infinitely.
[0001-5]
The main feature of the present invention is the shape that is obtained from the three-dimensional lattice by casting, injection molding, etc., by fixing it uniformly inside the workpiece and holding a certain amount of meat in the outward direction. For example, in the case of mim molding, lost wax molding, etc., the mold is set in the mold so that the three-dimensional formed body has a margin in the pre-moulded part in advance and injection molded. obtain. In the case of lost wax, a wax-type model is obtained, and the initial coating is performed by adding a surfactant, etc. to a material obtained by kneading a refractory material with a binder. After the slurry coating is applied to the aggregate of the initial coating, the initial coating is applied. Coating with a constant thickness, sanding aggregate with almost the same expansion coefficient of particles, repeating this process twice, and then dipping in a backup slurry, with similar expansion coefficient After several times of drying, it is repeatedly coated, and finally the lip in the slurry is dried, and the internal wax made the same at the time of molding is eluted by various devices such as shock heat, autoclave, microwave, Obtain a mold, put the mold in a firing furnace, fire it in an oxidizing atmosphere, and after firing, fix it inside with a sweeper. Either, when no width unit, as it reaches the three-dimensional lattice body during wax molding or may be fixed open and holes in appropriate positions. High-frequency melting faster than the rate of oxidation by rapid dissolution in the products fired through these processes, high-frequency molten iron and iron alloys, pig iron, and pig iron alloys are cast into a high-temperature mold, In order to prevent decarburization and oxidation on the surface of the target object, the mold was cooled in a reducing atmosphere to obtain the target object, and the target object obtained was used after removing the refractory fixed around the target object. Taking into account the purpose, heat treatment was performed accordingly, and since the 3D lattice is inside the decorative surface, it cannot be confirmed from the surface, but it may be confirmed by X-rays, etc. Does not differ in frequency band, it absorbs sound in all frequency bands, converts the absorbed energy into heat, dissipates or stores heat, and uses it for other purposes, so that the internal 3D structure is internal 3D shape Of course, increasing the coefficient and increasing the strength and rigidity, vibration and It absorbs Source for sound, along with issuing a silent effect on each part, absorbed by the 3-dimensional forming body impact also impact fatigue and has a property of preventing a metal fatigue. In addition to the rolled materials and thin plates described above, turbulent waves such as electromagnetic waves are absorbed, converted into heat sources, efficient heating, and turbulent wave leakage by covering the surroundings of turbulent waves. In some cases, radio interference and the like can be prevented. In addition, there is considerable heat generation, sonic shielding, iron and iron alloys, and pig iron and pig iron alloys. It has temperature shielding effects such as heat insulation and cooling insulation, and can also be heated and melted in sealing joining etc., and as a result of obtaining this composite composite by drawing etc., it is located in the center part Produces large structural and mechanical properties from micro- and sub-micron three-dimensional structures that conform to three-dimensional lattices, and has taken steps to the field of deformed structures that had previously been difficult to use in iron systems. Can be expanded.
[0001-6]
In the continuous casting drawing of the present invention, a solid three-dimensional lattice body is set from the front of the drawing water-cooled die so that all the outer parts of the drawing shape are attached with the base material only, and is continuously drawn to obtain a strong three-dimensional shape. It is possible to obtain a structural variant having the structure, and by applying the pressure to the entire surface like a ship process or mechanically from the circumscribed part and tightening it, a more rigid variant structure is obtained. The present invention can be combined with a three-dimensional lattice body and a three-dimensional structure formed in the inside thereof, so as to be strong in all directions, by using a composite and accompanying tissue change, and an inoculum. By obtaining these three-dimensional structures with tails of nano-units, the strength of all iron-based materials is increased, the possibility of use processes is increased, and corrosion resistance and recyclability are high. In addition, the coefficient of linear expansion is suppressed, and the temperature of 25 degrees Celsius at which animals and plants reproduce is set to 0 point. It is excellent in weather resistance in the vertical direction. It is possible to look at the best part of the structure, and to use a welded structure for the use of these structures, and to join the thick plates obtained by these methods to form a shape structure, When a three-dimensional lattice body having a relatively low specific gravity is used as a base material, the use of the three-dimensional lattice body is light, so that its application is infinitely wide.
[0001-7]
The present invention is based on the three-dimensional lattice as the axis and promotes the generation of fine structure and three-dimensional structure such as iron and iron alloy as a base material. In some cases, a bonded tissue is not used. In that case, a three-dimensional lattice is set in advance, and in contrast to this, a partially different portion of the red mark mentioned above appears. This part uses only a three-dimensional grid, and a three-dimensional grid is installed in the center of the ingot case or ceramic mold mold using the conventional method that the molten metal produces without much change in the molten metal. It is a method to obtain by pouring. In this method, the ingot case, ceramic mold, and continuous casting backing plate are pre-heated in advance, and a stable temperature gradient is created so that the three-dimensional lattice body is cast and after casting. Although the internal structure of the structure is slightly larger, the generation of nano-tails, etc., as described in the above red, is not 100%, but it is compressed by staying slightly. The formation of a three-dimensional structure as a micron structure in the part, taking advantage of these features, utilizing the simplified three-dimensional composite composition micron structure properties, and obtaining the target in the same way, some advantages and disadvantages are attached, The structure is based on the premise that it will produce a property that is somewhat similar to the above-mentioned vermilion, and the cast forging material, rolled sheet material, profile material, structural profile material, and aerospace new material obtained with it Range of use Widely spread, especially as a new field of structural structures, electricity, electronics, absorption, heating, heat storage, heat generation, marine, aerospace related products, automobiles, heavy weapons, small arms, civilian, industrial machine tools, tooling, tools, Typical examples include tools, but other applications have emerged, and a new technology has been created, which is far superior to conventional energy savings, weight savings, and substrate savings. And ease of recycling.
[0001-8]
Various technical fields of the present invention have been described up to [0001-7], but these may be cast directly from the blast furnace to the ingot case, and the alloyed iron or iron alloy may be used in a flat furnace or the like. In this case, the ingot case or mold is preheated in advance, and the ingot case or mold is preheated in the same manner as described above. Considering that hot water will enter, a large ingot may be requested. By requesting this large ingot, after the casting, the large ingot is formed to the shape before rolling by hot forging, and it is made continuously and repeatedly by free forging, fixed forging, hydrostatic press, etc. However, a piece of decorative meat (pre-cooked meat) is applied to the entire surface near the surface, heated to form a temporary coil shape, rolled with hot water, and then pickled to remove surface scales, scratches, dust, and oxidized impurities. It is a premise that the target thickness is obtained by semi-hot or cold rolling after being completely removed, etc., cold rolled and repeated to the target thickness.

本発明は、今まであらゆる形で複合材が試みられてきたが、その余りにも特性の違い故、なかなか合致しなかったのが現実であり、本発明はその難点を3次元格子体を使用することで、熱を封じ込め、3次元格子体の形状に沿って3次元凝固し、それらをインゴットとして使用し、圧延したり、プレスにより圧縮成型することで素形を自由自在に選択できると共に、内部に応力変関を含まず、一定した成形が可能で、その成形した成型物は表面上面下面部が3次元形状が形成される基材の端点にあたり、その中間部に3次元形状がマクロとミクロとミリミクロとナノという形で生成され、これらの基材をインゴットと呼び、そのインゴットを加圧、又はロール成型において成型し、平板を作ることで中間層に3次元組織が存在し、その3次元組織の更に中間層に鱗状に3次元形成物の圧延遡上し、存在する為、吸音性などに優れ、これらを構造物や電子、電気、自動車などに使用することで、その強度と表層部の地金そのものの美観を生かすと共に、上下で引っ張り、圧縮を強度として醸し出し、サンドイッチ状になった内部3次元層部があらゆる音波、微振動などを吸収する為、本材を箱形密閉と考えた場合、内部空間は極めて静粛性に優れ、又断音、断熱効果により、無効エネルギーを抑えると共に、全ての面で軽量化が図れ、合わせて溶接なども可能となり、従来、鉄系に頼っていた形状強度メンバーを本素材でカバーすることができる。即ち圧縮方向と引っ張り方向を同一材質で補い、補った材質の表面から内部に向けて3次元構造体がせしめる複合方向強度や耐疲労性に富む、心的な役割を果たしているからである。更にその中間層に数十段に渡って圧延した場合、鱗状の3次元形成物超微粒子が異なる方向からの微振動や音波を吸収し、変形復元性に富む形を形成するからである。次に本発明の中で圧延途上、及び連続鋳造、連続引き抜き、間欠引き抜き鋳造などで得られた内部を3次元形状格子体で熱封止し、求めようと言う強度、及び消音効果などがある。これらは粗の状態であるが、3次元形状格子体の誘導エリア内に3次元組織形状格子体を形成し、強固な一体構造質を保つことが可能になるものであり、これらも合わせて3次元形状格子体を持つ特性と熱変関誘導作用による3次元形成物からなる生成物によって、強固な構造的強度を出し、更にその方向は3次元に及ぶ為、3次元方向全ての力学的形状係数として何れの方向に対しても、その強度を失うことのない構造になることである。こういった利点を生かし、あらゆるものに軽さを始めとし、それを元にした新しい複合3次元形状格子体に付随する3次元組織生成物で有ることに相違ないが、自由形状のように直接部品などの形状を求める場合、その部品の厚肉部分や音の発生源手前部分の化粧層を除いた内部を3次元格子体を活用し、複合3次元構造を得ることで音などを消滅させ、又音などによって組織内部に疲労の原因となる微振動を吸収して、疲労破壊などの問題の起こりえる部分に構築することで、3次元格子体がその格子体内に充満した鉄系、或いは鉄系合金、鋳造で言えば銑鉄とその合金などの鋳造品にも3次元複合を目的とする格子体を設置することで、鋳物にありがちな音や微振動を吸収し、熱に変え放出することで耐疲労度を激減することと、使用する基材の鉄、又は鉄の合金、又は銑鉄、銑鉄の合金などの使用量をも節約し、複合材としての新しい用途を開拓するものである。In the present invention, composite materials have been tried in various forms until now, but the reality is that they did not easily match due to the difference in properties, and the present invention uses a three-dimensional lattice for the difficulty. In this way, heat can be confined along the shape of the three-dimensional grid, solidified along the shape of the three-dimensional lattice, used as an ingot, rolled, or compression-molded by pressing, and the original shape can be selected freely. The molded product does not include stress variation, and the molded product is the end of the base material where the top surface and the bottom surface of the surface are formed with a three-dimensional shape. These are produced in the form of micro-micro and nano, and these base materials are called ingots. The ingot is molded by pressure or roll molding, and a flat plate is created to create a three-dimensional structure in the intermediate layer. Since the three-dimensional formation is rolled up in the middle layer of the weave and exists, it has excellent sound absorption, and its strength and surface layer can be obtained by using these in structures, electronics, electricity, automobiles, etc. In addition to taking advantage of the beauty of the bullion itself, pulling up and down to create compression, the sandwiched three-dimensional internal layer absorbs all sound waves, micro-vibrations, etc. In this case, the internal space is extremely quiet. In addition, noise and heat insulation effects can be used to reduce reactive energy, reduce weight in all aspects, and make welding possible. The shape strength member can be covered with this material. In other words, the compression direction and the pulling direction are supplemented with the same material, and it plays a mental role that is rich in compound direction strength and fatigue resistance that the three-dimensional structure is made from the surface of the supplemented material to the inside. Furthermore, when the intermediate layer is rolled over several tens of stages, the scale-like three-dimensional formed ultrafine particles absorb fine vibrations and sound waves from different directions, and form a shape with excellent deformation recovery properties. Next, in the present invention, the inside obtained by rolling, continuous casting, continuous drawing, intermittent drawing, etc. is heat-sealed with a three-dimensional lattice body, and there are strengths to obtain, a silencing effect, etc. . Although these are rough states, it is possible to form a three-dimensional tissue shape lattice in the guiding area of the three-dimensional shape lattice, and to maintain a strong integral structural quality. Due to the characteristics of the three-dimensional grid and the product consisting of the three-dimensional formation by the thermal transformation induction action, it gives a strong structural strength, and the direction extends to three dimensions. It is a structure that does not lose its strength in any direction as a coefficient. Taking advantage of these advantages, there is no doubt that it is a 3D tissue product associated with a new composite 3D shape grid based on the lightness of everything, but it is directly like a free shape. When determining the shape of a part, etc., the inside of the part, excluding the cosmetic layer on the front part of the sound source, is removed by using a 3D grid to obtain a composite 3D structure to eliminate the sound. In addition, by absorbing fine vibration that causes fatigue inside the tissue by sound, etc., and building it in a part where problems such as fatigue failure can occur, the iron system in which the three-dimensional lattice is filled in the lattice, or For iron-based alloys, castings such as pig iron and its alloys, by installing a lattice body for the purpose of three-dimensional compounding, it absorbs the sounds and micro-vibrations that are often found in castings and converts them into heat and releases them. To reduce fatigue resistance and use Iron substrate, or iron alloys, or pig iron, is also the amount of such pig iron alloys saving, is to develop new applications as composite.

発明が解決しょうとする課題Problems to be solved by the invention

今まであらゆる角度で鉄系に対する複合材が試みられたが、応力を吸収する部分が一点に限られ、応力破壊による限界があった。これらの研究は現状でも進められているが、複合材故、何らかのメリットが無いと複合化は市場的に要求されないのが現状であった。又尚かつ、鉄、又は鉄の合金、又は銑鉄、又は銑鉄の合金等は製鉄段階で大量のエネルギーを必要とする為、コストが高く高温で形を得ていくと言うことと、重い、錆びるということのみが殆どの場合デメリットとして考えられてきた。これらの課題を根底から見直そうというのが本発明3次元格子体を使用し、その内部に熱力学的要素を取り入れ、更にそれを微細化延長して強度を得、3次元格子体をも複合3次元形成させることにより、更にあらゆる面でメリットを提供できる課題であることと、金属疲労などの問題があり、なかなか衝撃の大きい、小さいを別にして吸収という形で解消を考えたものである。So far, composite materials for iron-based materials have been tried at all angles, but there is only one point that absorbs stress, and there is a limit due to stress fracture. Although these researches are still underway, because they are composite materials, there is no need for compositing in the market without any merit. Moreover, iron, iron alloys, pig iron, pig iron alloys, etc. require a large amount of energy at the iron making stage, so it is costly and gets shape at high temperature, and is heavy and rusted Only this has been considered as a demerit in most cases. In order to reexamine these issues from the ground up, the 3D grid of the present invention is used, a thermodynamic element is incorporated in the interior, and it is further refined and extended to obtain strength, and the 3D grid is also combined. It is a problem that can provide merit in all aspects by forming it in three dimensions, and there are problems such as metal fatigue, and it is considered to solve it in the form of absorption apart from large and small impacts. .

課題を解決するための手段Means for solving the problem

本発明は資源エネルギーをバランス良く使用して、今まで鉄系はその合金を含む又、銑鉄をも含む鉄系全般において本発明はそれを複合化し、使用容積率を今までの100%から任意のパーセンテージまで引き下げ、粗鋼使用量を抑え、更に同等以上の強度を3次元格子体を使用することで、鋳湯時の熱の封止を3次元形状格子体で図ることにより、3次元形状格子体に沿って基材の凝固方向に対して、3次元のミクロン組織を生成させ、更に圧延等の場合、3次元格子体は圧縮される為、基材の3次元形成、及びそれから連なる3次元形成ミクロン組織を破壊せずに圧延できることに本発明はメリットを出したものの、それ以外にも用途の多様化と構造用母材、及び化粧母材として使用することができる様、圧延前インゴット時、基材層を3次元形成物周囲に計画的に作ることで、圧延はみ出しなどを防止し、更にその周囲の層を化粧層として使用し、強度メンバーとしては圧縮、引っ張りの2方向のバランスが取れる様、目的物を上下で表した場合、上方、下方が引っ張り、圧縮曲げ強度に付随して有効とするが、中央部に位置した3次元形成物層、形成物層の内部には基材が入り込み、その基材の周辺には、3次元の発信点を上部から下部へ、下部から上部へと延長し、これらを圧延圧縮、プレス圧縮することにより、中層には幾重にも重なった複合組織を鱗状に隣接し、更にその鱗組織は朱記で提供したように、3次元ミクロン構造を色濃く残す為、あらゆる方向からの引っ張り圧縮に対して極めて頑丈な組成を構築し、鱗状に重なり合ったミクロ的、マクロ的3次元格子体内部のマクロ3次元面に3次元誘導形状格子体が組成し、音波に対しては、全周波数帯で吸収し、熱に変え、尚かつ内部に残留した酸素などを吸収して、増大をはからない炭化ケイ素、ジルコン、アルミナ、若しくはその混合物をバインダーで結合した3次元格子体を使用する為、例をあげれば、自動車などに使用した場合、本発明の鉄系複合材に微振動を強制的に与えることにより、共振して振動を打ち消す為、そのエネルギーを熱に変え、暖房効果を図ることも可能なものであり、本3次元格子体を使用し、連続鋳造、又は引き抜き、又は単一鋳造等でも同様のことが言え、複雑形状物ではシップ処理等を施すことにより、より高い剛性を得ることができる。このように3次元格子体を使用することで、それに付随する3次元組織が生成され、更にそれがナノ単位まで延長され、今まで無かった用途にまで波及し、尚かつ資源のリサイクル上、比重差で簡単に分別でき、再溶解時も同じように比重差により極めて簡単に分離、回収ができることを提供します。The present invention uses resource energy in a well-balanced manner, and until now the iron system includes its alloys. In addition, the present invention combines it in all iron systems including pig iron, and the usage volume ratio is arbitrarily selected from 100% so far. By reducing the percentage of steel, reducing the amount of crude steel used, and using a three-dimensional lattice body with a strength equal to or higher than that, a three-dimensional shape lattice body can be used to seal heat during casting. A three-dimensional micron structure is generated along the body with respect to the solidification direction of the base material. Further, in the case of rolling or the like, the three-dimensional lattice body is compressed. Although the present invention has an advantage in that it can be rolled without destroying the formed micron structure, other than that, it can be used as a structural base material and a decorative base material at the time of ingot before rolling so that it can be used. , Base material layer By creating it systematically around the dimension formation, it prevents rolling out, etc., and uses the surrounding layer as a decorative layer, and as a strength member, the object of the object can be balanced so that compression and tension can be balanced. When expressed in the upper and lower directions, the upper and lower sides are effective in connection with the compression bending strength, but the three-dimensional formed layer located in the center, the substrate enters the formed layer, the substrate The three-dimensional transmission point is extended from the upper part to the lower part and from the lower part to the upper part. In addition, the scale structure, as provided in Zhu, leaves a three-dimensional micron structure with a strong color, so it has a very robust composition against tensile compression from all directions. Dimensional lattice A three-dimensional guided lattice structure is formed on the internal macro three-dimensional surface, and for sound waves, it absorbs in all frequency bands, changes to heat, and absorbs oxygen remaining in the interior to increase In order to use a three-dimensional lattice body in which silicon carbide, zircon, alumina, or a mixture thereof is bonded with a binder, for example, when used in automobiles, the iron-based composite material of the present invention is forced to vibrate slightly. In order to cancel resonance and resonate, the energy can be changed to heat and the heating effect can be achieved. Using this three-dimensional grid, continuous casting, drawing, or simple The same can be said for one casting and the like, and it is possible to obtain higher rigidity by performing ship processing or the like for a complex shape object. By using a three-dimensional lattice in this way, a three-dimensional structure associated therewith is generated, which is further extended to the nano-unit, spreading to uses that have not existed before, and in terms of resource recycling, the specific gravity is increased. It can be easily separated by the difference, and can be separated and collected by refining as well.

発明の効果The invention's effect

本発明は、今まで鉄、銑鉄は合金化することにより、その効果と強度を増していたが、粗鋼になる基材は全て製鉄によって作られており、この過程では大変多くのエネルギーを使う割に生産量が限られてきた。これらの問題を使用上の事と平行して解決し、複合化することにより鉄、又は鉄の合金、又は銑鉄、又は銑鉄の合金などの使用量を激減しながらも鉄本来の化粧体が表層部で形成でき、従来は構造物、機械、自動車、建築物、船舶、航空宇宙、電子、電気、防音壁、吸音壁、家電、OA機器、農機具、その他多大な構造物に本発明の複合3次元形状格子体を使用して、更に形状格子体に付随するミクロン3次元組織と複合材3次元形状格子体の混在により、強度を得た鉄系3次元複合体は、朱記のような用途にも強度メンバーとして使用してきたが、更にその用途を拡大し、その最も優位的な効果は音波を全流域で吸収でき、他接合物に対して有害な微振動など伝えないアブソーパー的な働きをし、金属疲労などを激減させるものであり、それと共に今まで強度メンバーとして使用できなかったものを使用可能にしたことと、連続鋳造や引き抜き、異形引き抜き、異形ロールなどで同じように表層に化粧層を残し、内部を3次元構造組織にすることにより、使用用途が異なり、軽くて強い異形、又は強制プレスなどによる形状係数も大幅に向上することができ、軽さと耐久性を求めるものの、化粧母材と構造母材が両立する複合3次元材であるものであることを提供致します。In the present invention, the effect and strength of iron and pig iron have been increased by alloying until now, but all the base materials that become crude steel are made by iron making. In this process, much energy is consumed. The production volume has been limited. By solving these problems in parallel with usage and compounding, the original cosmetic body of iron is the surface layer while drastically reducing the amount of iron, iron alloy, pig iron, pig iron alloy, etc. Conventionally, the composite 3 of the present invention can be applied to structures, machines, automobiles, buildings, ships, aerospace, electronics, electricity, sound barriers, sound absorbing walls, home appliances, OA equipment, agricultural equipment, and many other structures. Iron-based three-dimensional composites that have gained strength through the use of three-dimensional microstructures and composite three-dimensional lattices that are associated with the shape grids are used for applications such as Although it has been used as a strength member, its use is further expanded, and the most advantageous effect is that it can absorb sound waves in the entire basin and does not transmit harmful micro vibrations to other joints. However, metal fatigue is drastically reduced. In addition, it has become possible to use materials that could not be used as strength members until now, and leave a decorative layer on the surface layer in the same way by continuous casting, drawing, deformed drawing, deformed roll, etc., and making the inside a three-dimensional structure Depending on the application, it is possible to use light and strong irregular shapes, or the shape factor by forced pressing can be greatly improved. Although it requires lightness and durability, it is a composite three-dimensional material that is compatible with both a makeup matrix and a structural matrix. We will provide that it is.

本発明の例として、次のようなことを提供致します。本発明は製造段階で資源の省エネルギーを実現させ、更に大幅なコストダウンを実現し、比重的に複合化することにより、軽量化方向に行くことで輸送量などが大幅に増大する可能性を秘めるものであり、尚かつ製造段階では各接種材を使用する場合と使用しない場合があり、使用した場合、3次元形状物の内部にミクロ組織として3次元化する組織の機密度が高くなり、更に温度勾配による方向性凝固結晶が3次元形成物により遮られ、形成物から形成物間に対して更に3次元組織をミクロ的に増幅した組織ができ、3次元構造物の隙間の基材全てがミクロン3次元構造と成長し、それらで得たインゴット(化粧構造部分を全ての面に残した物)圧延し、これら圧延した3次元構造物を化粧面から発した3次元構造体を板で言えば中心層に持ち、板断面で表現すれば、上部断面化粧肉、下部断面化粧肉があり、プレス成形などで形状成型する場合、両化粧面が引っ張りと圧縮で形成され、それから発生する内部に向けて3次元層がアブソーバーの役目を果たし、滑らかな、そして強固な両表面化粧構造を得ることができ、板にした薄さの中でも拡大解釈すれば、3次元層は化粧面から内部に向けて徐々に成長し、例えば自動車などに使用した場合、プレス成形性を損なわず、溶接性を兼ね備える。又端面の折り曲げに対してもアブソーバーになる内部3次元層がある為、極めてエッジの立たない綺麗な折り曲げができるのが特徴であり、更に化粧層の下は3次元層に支えられている為、化粧層を支える為の3次元構造体圧縮形状が基材の3次元構造体が鱗状に重なり合い、破断などを避けるような構造を有し、その部分も強度メンバーとして形状係数を稼ぐ為、強度的には鋼板構造と比較して上回る構造を有することになる。それ故、全体を軽量化でき、省エネルギーに繋がる物である。更に複合材故に言えることであるが、防音効果が極めて高い為、樹脂マスキング、アスファルトマスキングなどを施す必要性が無くなる為、製造工程が簡素化され、電蝕性や耐候性に富み、極めて使いやすい複合材として本発明の3次元構造組織化粧面持ち板の用途は計り知れない物があるが、本発明で自由形状の鋳造品などで得る種々の部品やフレームなどにも3次元格子形状複合化体が大きな役割を背負うことになる。その背景には複合化することであらゆる周波数の音や振動を吸収し、又尚かつ鋳造時の形状欠陥などを改善することが可能になることである。そして、それらで求められた製品は複合3次元格子体が占める容積率が高い為、溶湯の使用量をも激減せしめることができる。The following is provided as an example of the present invention. The present invention realizes the energy saving of resources at the manufacturing stage, realizes a significant cost reduction, and combines with specific gravity, so that there is a possibility that the transportation amount etc. will increase significantly by going in the direction of weight reduction. In addition, in the production stage, each inoculum may or may not be used, and if used, the sensitivity of the structure that is three-dimensionalized as a microstructure inside the three-dimensional shape increases. Directionally solidified crystals due to the temperature gradient are blocked by the three-dimensional formation, and a structure in which the three-dimensional structure is further microscopically amplified from the formation to the formation can be formed. A micron three-dimensional structure grows, and the ingot obtained by them (the one that leaves the makeup structure part on all surfaces) is rolled, and the three-dimensional structure that originates the rolled three-dimensional structure from the decorative surface can be said to be a plate In the center layer In other words, if expressed in terms of plate cross-section, there are upper cross-section and bottom cross-section, and when shape molding is performed by press molding, both decorative faces are formed by pulling and compressing, and then three-dimensionally toward the interior generated from it The layer acts as an absorber, and a smooth and strong both-surface makeup structure can be obtained. If it is interpreted in the thinness of the board, the three-dimensional layer gradually grows from the decorative surface toward the inside. However, when used in, for example, an automobile, the press formability is not impaired and the weldability is also achieved. In addition, because there is an internal 3D layer that becomes an absorber even when bending the end face, it is characterized by being able to bend beautifully without any edges, and further, the bottom of the decorative layer is supported by the 3D layer The three-dimensional structure compression shape to support the decorative layer has a structure where the three-dimensional structure of the base material overlaps like a scale and avoids breakage, etc., and that part also gains a shape factor as a strength member, Specifically, it has a structure that exceeds that of the steel plate structure. Therefore, the whole can be reduced in weight, leading to energy saving. Furthermore, it can be said that it is a composite material, but since the soundproofing effect is extremely high, there is no need to perform resin masking, asphalt masking, etc., so the manufacturing process is simplified, and it is rich in electric corrosion resistance and weather resistance and extremely easy to use. Although the use of the three-dimensional structure textured faceplate of the present invention as a composite material is immeasurable, it can also be used for various parts and frames obtained by free-form castings in the present invention. Will take on a big role. In the background, it is possible to absorb sounds and vibrations of all frequencies by compounding and to improve shape defects during casting. And since the product calculated | required by them has the high volume ratio which a composite three-dimensional lattice body occupies, the usage-amount of a molten metal can also be reduced sharply.

例図1は形状格子体を炭化ケイ素、及びアルミナ、及びジルコン、及びシリカ、及び各々混合物等を用いて構成したものであり、本図より更に任意に細かいものを使う場合があり、3次元状にハニカム交差したもので、この格子の隙間の中に溶湯が隈無く入ることでハニカム3次元構造体の格子が熱を遮蔽して、更にその格子の中にミクロン組織状の3次元組織を形成するものである。Example FIG. 1 shows a configuration in which the shape lattice is composed of silicon carbide, alumina, zircon, silica, and a mixture thereof. When the molten metal enters the gaps between the lattices, the lattice of the honeycomb three-dimensional structure shields the heat and further forms a micron-structured three-dimensional structure in the lattice. To do. 本発明の中で背景で既に詠っているアルゴン雰囲気溶解の鋳造準備一例を本図にて表したもので、本図はとりあえず高周波誘導炉を基準に例として標記したものであり、坩堝用掛傾炉等も同様であり、本例に図示した物はインゴットケースの場合の一例であり、セラミックモールドなどもほぼ同様な鋳造形態を取る為、本例図を代表的なものとして標記するものである。This figure shows an example of the preparation for casting of argon atmosphere melting already mentioned in the background in the present invention. This figure is shown as an example on the basis of a high-frequency induction furnace for the time being. The furnace and the like are the same, and the example shown in this example is an example of an ingot case, and since the ceramic mold and the like take almost the same casting form, this example diagram is marked as a representative one. . 本例図は、圧延の状態を一般的圧延方法として標記したもので、これ以外にも親子などがあるが、圧延面圧をできるだけ点から線接触にする方が、本インゴットの性質上、優位なので、例として参考記載したものである。In this example, the rolling state is marked as a general rolling method, but there are also parent and child etc. In addition, it is advantageous in terms of the properties of this ingot to make the rolling contact pressure as linear as possible from the point of view. Therefore, it is a reference description as an example. 本例図は、切断面を標記したものであり、切断面4面に化粧構造体を作る予肉を標記し、内部に3次元複合格子体と言うが、配置され、マクロ的3次元組織を表現したものであり、ミクロ的なものについては図4−1によって標記するため、本図はあくまでインゴット時の肉の割り振りについて表現を色濃く記載したものであり、ほんの一例である。In this example, the cut surface is marked, and the cut surface is marked with a pre-cut for making a decorative structure on the four cut surfaces, and is called a three-dimensional composite lattice inside. Since this is a representation, and a microscopic one is marked by FIG. 4-1, this drawing is a mere description of the representation of the meat allocation at the time of the ingot. 本例図は、図4で記載したように、3次元誘導格子体内部にミクロ組織の3次元組織体が生成される状況を説明するために図4の一部を切り取り、拡大して表現したものであり、この図で表した格子内部のミクロン組織合体を表し、この組織については、技術の背景所見で既に述べたように、各々格子に遮蔽された内側を3次元方向に潜り抜け、あらゆる方向に対してハニカム状にミクロン組織を形成せしめる状況を図示したものである。In this example, as described in FIG. 4, a part of FIG. 4 is cut out and enlarged to explain a situation in which a three-dimensional microstructure is generated inside the three-dimensional guiding lattice. This represents the coalescence of the micron structure inside the lattice shown in this figure, and as described above in the background of the technology, this structure penetrates the inside shielded by the lattice in a three-dimensional direction. The situation where a micron structure is formed in a honeycomb shape with respect to the direction is illustrated. 本例図は、上記の方法を以て制作されたインゴットを静圧プレスなどで加圧し、圧延前段階を作る形態を簡単ではあるが、化粧部分の肉付きの意味を表現するために記載したものであり、組織変化等については記載していない為、そのバランス的なものを標記したものであることを確認下されば幸いです。This example diagram is a simple form of forming the pre-rolling stage by pressing the ingot produced by the above method with a hydrostatic press or the like, but is described to express the meaning of the flesh of the decorative part. Since the organization change is not described, it would be greatly appreciated if the balance was confirmed. 本例図は、真空中でインゴットなどを製作する場合、その一例を略図により一例を標記したもので、準備状態で溶解や鋳造などを行っている風景を標記したものではありません。技術の背景の分野で説明しています通り、インゴットケースを代表的なものとして標記し、本発明の意味を分かりやすく説明した例図で、その方法についても刻銘には書いておりませんが、問題になるのは3次元形状格子体の周囲に予肉が付くように、予めセットした状況などを標記したものであります。This example diagram shows an example of an ingot, etc. produced in a vacuum, with an example of the schematic diagram, not a scene of melting or casting in preparation. As explained in the technical background field, the ingot case is marked as a representative example and the meaning of the present invention is explained in an easy-to-understand manner. The problem is that the pre-set situation is marked so that a pre-skin is attached around the 3D grid. 本例図は、超耐火セラミックプッシャーにより、押しと超耐火セラミック誘導レールにより引きを表現し、3次元形状格子体の連続挿入方法などをできるだけ分かりやすく記載した略図でございます。本発明の技術の分野で既に記載していますが、略図にてその例を表現しようと記載したものであり、原理的にはこのようなものであるが図示する図については、表現が非常に難しい為、特に図7−1で次に説明する切断面の図がどのようにして出来、又どのようにして3次元構造格子体を連続挿入するのかを重きを置いて例として記載したものである。This example is a schematic diagram that describes the method of continuous insertion of a three-dimensional grid as easily as possible by expressing pulling with a super refractory ceramic pusher and pushing with a super refractory ceramic induction rail. Although it has already been described in the technical field of the present invention, it has been described to express an example in a schematic diagram. Because it is difficult, especially in Fig. 7-1, how to make the cut surface diagram to be explained next, and how to insert the three-dimensional structured lattice continuously is described as an example. is there. 本例図は、異形体の連続鋳造引き抜き的な所もあるが、する上で3次元構造格子体セット位置を標記するため描いたもので、技術の分野で刻銘に記載した事項、化粧予肉部分、又構造用強度、引っ張り、圧縮などが集中するなどの意味を拡大的に表現した例であり、これ以外にも幾通りもの異形体が存在するということをご理解頂ければ幸いです。又、本異形体を機械的外圧で強化するか、フリー外圧で強化するかということを技術の背景分野で記載していますが、その部分も併せ持って、ここで記載させて頂きます。This figure is drawn in order to mark the position of the three-dimensional structural grid set in order to draw out the continuous casting of the deformed body. This is an example of an expanded representation of the meaning of the concentration of meat, structural strength, tension, compression, etc. We hope you understand that there are many other variants. In addition, although it is described in the technical background field whether this variant is reinforced with mechanical external pressure or with free external pressure, I will describe it here as well. 本例図は自由形状を描き、両端に取り付けねじ穴を2カ所設け、それらの自由形状部品を振動や音の発生、金属疲労から回避する為に内部に3次元格子体をセットして鋳造した物を切断して標記した一例で御座います。This example shows a free form, two mounting screw holes are provided at both ends, and these free form parts are cast with a three-dimensional lattice set inside to avoid vibration, sound generation and metal fatigue. This is an example of cutting and marking things.

符号の説明Explanation of symbols

選択図の符号の説明Explanation of selection diagram symbols

Claims (10)

3次元形状格子体、炭化ケイ素、アルミナ、ジルコン、シリカなどをバインダーを使用し、ジルコンの場合、シリカ微粉末などを共用して3次元格子体を製作し、化粧部分を残して複合化物として鉄の使用量を減量することで、強度や耐久性を落とさず薄板、厚板、異形などに用い、従来品に比べ、トータルでコストダウンとなることであること。A three-dimensional grid, silicon carbide, alumina, zircon, silica, etc. are used as a binder. In the case of zircon, a three-dimensional grid is manufactured using silica fine powder, etc. By reducing the amount used, it can be used for thin plates, thick plates, irregular shapes, etc. without reducing strength and durability, and the total cost can be reduced compared to conventional products. 3次元格子体に沿って温度勾配が鈍角で凝固する為、3次元ミクロン組織を生成し、更に強度、靭性を付与することであることと共に、3次元格子体を化粧肉部分を全周囲に残し、インゴットなどとして使用するか、異形鋳造の場合、強制ロールする場合とそのまま使用する場合がある。異形鋳造とは、あらゆる鋳造プロセスで得られる種々の形状の内側に複合3次元格子体として炭化ケイ素、アルミナ、ジルコン、シリカなどで形成された3次元格子体を異形体の中に化粧肉部分を残して固定し、異形体の内部に3次元形状格子体が存在したままでそのまま使用するか、熱処理を施し表面加工、仕上げ加工などをして使用すること。Because the temperature gradient solidifies at an obtuse angle along the three-dimensional lattice, it creates a three-dimensional micron structure, and gives strength and toughness. It may be used as an ingot or the like, or in the case of profile casting, forcibly rolled or used as it is. Profile casting is a composite three-dimensional lattice formed inside a variety of shapes obtained by any casting process. A three-dimensional lattice formed of silicon carbide, alumina, zircon, silica, etc. Either leave it fixed and use it with the three-dimensional shaped grid inside the deformed body, or use it after heat treatment and surface treatment, finishing. 3次元形状格子体をインゴットケース、又はセラミックモールド鋳型中に表面、化粧部分が出来るよう設置し、更に鋳湯に対して鋳造性を良くする為、種々の接種材などを使用し、微細化、及び鋳造性を改善した物をアルゴン雰囲気や真空鋳造などにより、3次元形成格子体の内部まで鋳湯が行き渡るよう3次元格子体を予め予熱、焼成などにより加熱した物をインゴットケースなどに化粧予肉部が均一になるよう鋳造して出来るインゴット、及び連続鋳造引き抜きなどの場合も同様、3次元格子体内に有害なガスや空気のかみ込みの無いことを想定して、真空溶解鋳造、無酸化雰囲気鋳造などを応用し、圧延や引き抜きなどにより、3次元形状格子体に一定の予肉を全周に渡り付けるように施工すると共に、圧延の都合上、一端を残して他の部分、又は複数部分を残して化粧部分を付け、目的物を得ることとすること。A three-dimensional grid is installed in an ingot case or ceramic mold mold so that the surface and decorative part can be made. Furthermore, in order to improve the castability with respect to the casting, various inoculums are used, and it is refined. In addition, a product that has been improved in castability is pre-heated by preheating and firing the 3D lattice body so that the cast metal reaches the inside of the 3D formed lattice body by argon atmosphere or vacuum casting. In the case of ingots that can be cast so that the meat part is uniform, and continuous casting, as well, vacuum melting casting and non-oxidation are performed assuming that no harmful gas or air is trapped in the 3D lattice. Apply atmospheric casting, etc., and apply a certain pre-mesh to the three-dimensional grid by rolling or drawing, and leave one end for the convenience of rolling. Moiety, or with a decorative portion leaving a plurality of portions, it is to obtain the desired product. 本発明の中で圧延による加圧、又はプレスによる静圧などを受けることにより、それが要因で3次元形状格子体に変化が起き、基材となる鉄が3次元状に圧縮されると共に、その結合体の組織に沿い、形状を変化させる役目と本材の音や振動による疲労を和らげ、防音効果を得ることであると共に、ハニカム状に組織性状に剃り込む為、容積変動を起こさず、形状体の体力を向上させ、用途を広げることであること。In the present invention, by receiving pressure by rolling or static pressure by pressing, a change occurs in the three-dimensional lattice due to the factor, and the iron as a base material is compressed into a three-dimensional shape, Along with the structure of the bonded body, the role of changing the shape and the fatigue of the sound and vibration of this material are alleviated, and a soundproof effect is obtained. To improve the physical strength of the shape body and to expand its applications. 本発明の連続鋳造、及び断続引き抜きして異形材を求める時、化粧部分を残して、その内側に3次元形状格子体を設置し、異形材を鋳造、又は引き抜きにより求めた時、そのままの形で使用する場合があることと共に、機械的、又はフリー的外圧を加え、更に美観と製品強度剛性を上げることとすること。When obtaining a deformed material by continuous casting and intermittent drawing of the present invention, a decorative part is left and a three-dimensional lattice is placed inside, and when the deformed material is obtained by casting or drawing, the shape is left as it is. In addition to being used at the same time, mechanical or free external pressure should be applied to further increase aesthetics and product strength and rigidity. 本発明中で鋳造と種々の接種材による微細化溶湯を用い、3次元形状格子体に予め、それを類した部分も含め予熱を加え、鋳造性を良くし、更に、この一連の動作を真空中鋳造はもとより、大気においてもアルゴン雰囲気、真空溶解鋳造などを生かし、無酸化状態でインゴットを求めることと共に、接種材無しに前記同様、3次元形状格子体に沿う形で鋳造し、3次元形状格子体の空洞部分に溶解した鋳造物を隈無く充填し、3次元組織構造体を求めることと、圧延や成型を目的としたインゴットなどを作るのに使用することとすること。In the present invention, casting and refined molten metal using various inoculants are used to preheat the three-dimensional lattice body in advance, including similar parts, to improve castability, and this series of operations is vacuumed. In addition to medium casting, in the atmosphere, argon atmosphere, vacuum melting casting, etc. are utilized, and ingot is obtained in the non-oxidized state, and in the same manner as described above, without inoculum, it is cast along the three-dimensional grid, and the three-dimensional shape Filled with a melted casting in the hollow part of the lattice body to obtain a three-dimensional structure and use it to make an ingot for the purpose of rolling and molding. 本発明の本質は、鉄を構造的強度メンバーを更に用途的に拡大し、強度的内部構造を3次元形状格子体に沿って更に生成せしめ、その為、電気的、電子的性質、及びその他の性質を大幅に改善した複合材3次元内部構造組織故、今後、その応用範囲が極度に広がりを見せることであるが、圧延等を施し得ることによって基材となる鉄の使用量を激減すると共に、薄板などで内部に3次元複合物、炭化ケイ素、又はジルコン、又はアルミナなどの主成分を使用し、3次元形成体が圧縮され、複合3次元形成体が変形して鱗状に化粧肉を除く内部に分布することであること。The essence of the present invention is that iron further expands structural strength members in a more versatile manner and further creates a strength internal structure along the three-dimensional shaped grid, so that electrical, electronic properties, and other Due to the 3D internal structure of the composite material with greatly improved properties, its application range will be extremely widened in the future, but the amount of iron used as the base material will be drastically reduced by being able to perform rolling and the like. Using a main component such as a three-dimensional composite, silicon carbide, zircon, or alumina inside a thin plate, the three-dimensional formed body is compressed, and the composite three-dimensional formed body is deformed to remove scaled skin. It must be distributed inside. 鉄と各種元素で今まである程度の剛性を得ていたものの、組織的に限界があり、その限界を更に更新する為、形成鋳造物に化粧予肉を設け、内部を複合3次元構造にすることで数段高い剛性を得ることであると共に、鉄の使用量を激減させることとするものであること。Although some rigidity has been obtained with iron and various elements until now, there is a limit in terms of organization, and in order to further update the limit, a pre-coating is provided in the molded casting, and the interior is made into a composite three-dimensional structure In addition to obtaining several steps of rigidity, the amount of iron used must be drastically reduced. 本発明の3次元複合組織を内面に得た構造用、化粧用、構成用、防音用、吸振用、電子、電気、発熱、吸熱、構造用母材、その他用途に使用した場合、溶接構造などが可能であり、又、形状強度を付ける為、プレス成形などでリブ加工、凹凸加工などを併用して、種々の用途に使用が可能であると共に、異形形状の物を製作できること。圧延して平板に使用できること。異形形状に成型して使用でき、尚かつ、波板などにも使用でき得るが故、これらで電磁波などの遮蔽エネルギー応用、増幅などの用途が新たに出来るものとして、これを3次元複合組織変形、若しくはそのまま応用素材とすること。When the three-dimensional composite structure of the present invention is obtained on the inner surface for structural, cosmetic, structural, soundproofing, vibration absorption, electronic, electric, heat generation, heat absorption, structural base material, and other applications, welded structures, etc. In order to add shape strength, it can be used for various purposes by combining rib processing and concavo-convex processing by press molding, etc., and it can produce irregularly shaped products. It can be rolled and used as a flat plate. Since it can be molded into a deformed shape and can also be used for corrugated sheets, it can be used for shielding energy such as electromagnetic waves and for new applications such as amplification. Or use it as an applied material. 本発明の形状格子体とは、炭化ケイ素類、ジルコン類、アルミナ類、或いはそれらを一定のパーセンテージで混合したものを3次元状に形成し、これを3次元形成体と仮称し、これらで出来た複合目的3次元形成体を自由形状(鋳造品やインジェクション成形、或いは焼結等)で得られる組織の内部に使用し、防振や吸音、及び電子的性質、電気的性質をも改善し、計画的に使用することで、効率の良い熱の発生や構造体や可動体が求める集中疲労クラックなどの防止対策として使用すると共に、本発明の3次元複合材を使用して今までの鉄系に無かった特性や靭性強度などを応用して、機械器具、構造物、工具、家庭用電化製品、工業用電化製品、及び自動化製品、環境改善機材、その他展開される用途などに新規に本発明の特性を応用し、板材などで軽量化を図り、複合3次元形成組織体の利点を応用し、あらゆる物を作ることであること。The shape grid body of the present invention is formed by three-dimensionally forming silicon carbides, zircons, aluminas, or a mixture of them in a certain percentage, and this is temporarily called a three-dimensional formed body. The composite three-dimensional formed body is used in the structure obtained in a free shape (casting, injection molding, sintering, etc.) to improve vibration and sound absorption, electronic properties, and electrical properties, By using it systematically, it can be used as a measure to prevent the generation of efficient heat and concentrated fatigue cracks required for structures and movable bodies, and the conventional iron system using the three-dimensional composite material of the present invention. The present invention is newly applied to machinery, structures, tools, household appliances, household appliances, industrial appliances, automation products, environmental improvement equipment, and other applications that are not applied to Applying the characteristics of Reducing the weight or the like sheet material, it applies the advantages of complex three-dimensional form tissue construct is to make everything.
JP2006357044A 2006-12-03 2006-12-03 Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein Pending JP2008138280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006357044A JP2008138280A (en) 2006-12-03 2006-12-03 Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006357044A JP2008138280A (en) 2006-12-03 2006-12-03 Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein

Publications (1)

Publication Number Publication Date
JP2008138280A true JP2008138280A (en) 2008-06-19

Family

ID=39600054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006357044A Pending JP2008138280A (en) 2006-12-03 2006-12-03 Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein

Country Status (1)

Country Link
JP (1) JP2008138280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809970B1 (en) * 2016-06-21 2018-01-26 한국생산기술연구원 A metallic plate including iron and lightweight metal and a method for manufacturing the same
CN113857431A (en) * 2021-08-31 2021-12-31 昆明理工大学 Preparation method of steel-rubber composite wear-resistant part with three-dimensional interpenetrating network structure
CN114633443A (en) * 2022-03-11 2022-06-17 重庆平伟汽车零部件有限公司 Optimization method of injection molding process of complex rhombic grating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809970B1 (en) * 2016-06-21 2018-01-26 한국생산기술연구원 A metallic plate including iron and lightweight metal and a method for manufacturing the same
CN113857431A (en) * 2021-08-31 2021-12-31 昆明理工大学 Preparation method of steel-rubber composite wear-resistant part with three-dimensional interpenetrating network structure
CN113857431B (en) * 2021-08-31 2023-10-31 昆明理工大学 Preparation method of steel-rubber composite wear-resistant part with three-dimensional interpenetrating network structure
CN114633443A (en) * 2022-03-11 2022-06-17 重庆平伟汽车零部件有限公司 Optimization method of injection molding process of complex rhombic grating
CN114633443B (en) * 2022-03-11 2024-05-24 重庆平伟汽车零部件有限公司 Optimization method of injection molding process of complex diamond-shaped grating

Similar Documents

Publication Publication Date Title
Hangai et al. Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing
Rajak et al. TECHNICAL OVERVIEW OF ALUMINUM ALLOY FOAM.
CN101435064B (en) High sound intensity ultrasonic processing apparatus for metal and alloy solidification and processing method thereof
CN104235237A (en) Road vehicle brake disc made of carborundum foamed ceramics/aluminum alloy composite materials and production method of road vehicle brake disc
CN101125362A (en) Casting method for manufacturing layered metal composite material technology and equipment
CN104818401B (en) Prepare the friction stir welding method of closed-cell foam metal
Ubertalli et al. Joining of AL-6016 to Al-foam using Zn-based joining materials
CN107326208B (en) A kind of foam magnesium or foam aluminum alloy and preparation method thereof
Bauer et al. Production and application of metal foams in casting technology
CN103691909A (en) Aluminum/magnesium solid-liquid compound casting molding method
JP2008138280A (en) Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein
CN107695318B (en) A kind of foam magnesium sandwich plate and its Semi-Solid Thixoforming Seepage Foundry method
CN108543931B (en) Manufacturing method of MgAl composite casting
CN107604189B (en) A kind of foam aluminum sandwich and its Semi-Solid Thixoforming Seepage Foundry method
CN107398544B (en) A kind of lost-foam casting method of three-dimensional network ceramics-iron base composite material
CN109351918B (en) Multi-physical-field composite action micro-component liquid forming method
CN109338144A (en) A kind of preparation method of 20 four sides leptospira structure foam copper
JP2008126312A (en) Strengthening of aluminum, magnesium alloy and light alloy, three-dimensionally formed composite having noise shielding property, electrical and electronic property or the like, and micron three-dimensional double-bonded high toughness light alloy stock
CN107974597A (en) The magnesium scandium alloy and its processing technology of a kind of die casting
CN101537495B (en) Reduced metal particle high speed micro-forging forming process
CN107604190A (en) A kind of Semi-Solid Thixoforming Seepage Foundry method of foam aluminum alloy
CN108834406A (en) Method for producing metal casting, especially motor stator casing, electronic power parts shell, battery sump or accumulator housing, the application of the casting produced by this method and the cooling pipe produced by roll welding
JP5773424B2 (en) Foam metal manufacturing method and foam metal manufacturing apparatus
ES2285453T3 (en) PROCEDURE FOR STABILIZING AN ELEMENT OF CONSTRUCTION OF DEFORMABLE CELL MATERIAL, THE CONSTRUCTION ELEMENT AND ITS USE.
JP2014065058A (en) Manufacturing method of casting, and casting product