JP2008126312A - Strengthening of aluminum, magnesium alloy and light alloy, three-dimensionally formed composite having noise shielding property, electrical and electronic property or the like, and micron three-dimensional double-bonded high toughness light alloy stock - Google Patents
Strengthening of aluminum, magnesium alloy and light alloy, three-dimensionally formed composite having noise shielding property, electrical and electronic property or the like, and micron three-dimensional double-bonded high toughness light alloy stock Download PDFInfo
- Publication number
- JP2008126312A JP2008126312A JP2006339186A JP2006339186A JP2008126312A JP 2008126312 A JP2008126312 A JP 2008126312A JP 2006339186 A JP2006339186 A JP 2006339186A JP 2006339186 A JP2006339186 A JP 2006339186A JP 2008126312 A JP2008126312 A JP 2008126312A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- aluminum
- casting
- shape
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、資源の枯渇などに貢献する意味を持ち、その一にはアルミニウムやマグネシウムなどの合金については、軽くて強く、アルマイト処理を掛ければ耐蝕性に優れ、使いやすいのが現状で、更にその形を様々なものに変化させ、リサイクルが可能な観点から、ありとあらゆる分野で使用されているのが現実である。だがその根源には、アルミニウムの場合、ボーキサイトを精錬し得る為、それに必要とする投入エネルギー量は、そのまま地金の相場に跳ね返り、もっと普及するのが常識的な事であると考えるが、その要因の一つに成形コストなどの面から石油を原料とし、ナフサを得て、それより幾通りもの合成樹脂を生み、この樹脂を使用してあらゆる方法で形を得ることの方が現実的にコスト面で安く付き、量産性に向いている為、どうしても枯渇間近な石油資源に頼っているのが現状である。これらを価格面や使用面から打破する為、本発明は、アルミニウム、及びアルミニウム基に合金結合させたものなどの結晶構造と3次元形状格子体(炭化ケイ素)などの複合物を付与することにより、根本的に変える従来法で得られた以上のアルミニウム、及びアルミニウム合金等の靭性、ヤング率、剛性、耐加重性等に、あまり今まで向かなかった。又、必要外の用途に使用する場合、例えば、新幹線や飛行場、高速道路などの防音壁などに使用されるようになり、その工夫は様々であるが、本発明はそれらのアルミニウム、及びアルミニウム合金等を効率の良い吸音、即ち音の周波数帯の全ての波形音を吸収し、熱エネルギーなどに変化させ、雪や氷の漂着を妨げ、その内訳は全ての周波数帯の音を一端の平面部から反対側の平面部に対して、3次元的同一材質で結合させ、更にその3次元を形成しうるが為、内部に炭化ケイ素などの3次元誘導物を用いて鋳造、及び連続鋳造、及び平炉内におき、単一鋳造、反復鋳造、半連続的、又は連続的に3次元形成用形成物を製造しながら、半連続、又は連続鋳造の場合、平行して、この3次元形成用形成物は作られ、その作られた形成物を連続形態の場合、連続的に連続鋳造炉内に挿入され、一方の連続鋳造吐き出し成形口より、3次元形成物が中央部に位置し、後の4面に対しては圧延時(熱圧延、常温圧延)などを施す際に加圧内部破壊を起こさないようにする為、一定の予肉を周囲に持たせ、その厚みの部分はアルミニウム、又はアルミニウム合金が占める部分とし、圧延圧縮時、型くずれや圧延上の上面、下面に3次元形成物が異常変形して、表層にはみださないように圧延できるよう連続鋳造の場合、又は間欠鋳造の場合、3次元形成物のポイントを予め設定できるよう中心部に固定して、インゴットの製作を行い、これで得られた3次元形成物内部固定型インゴットを連続の場合、3次元形成物が溶解後、冷却に伴う温度勾配を適度に阻止する為、3次元形成物の材質にもよるが、形成物が温度の流れを3次元上に長く保つ為、アルミニウム、或いはアルミニウム合金は内部的に温度勾配が鈍角になり、3次元形成物に接触、遮蔽された部分に鈍化された温度勾配が影響し、冷却時、3次元構造物の周囲にミクロン的3次元凝固現象を起こすことにより、更に細かな3次元方向形成結晶を作り、これらにより3次元形成物複合体周囲にミクロン結晶を得ることができ、これを粒界破壊を起こさないようセミホット的保温、若しくは加温しながら圧延、熱延、冷延と順序を踏み、最終的に仕上げ圧延を施したり、中間圧延時に変形ロールにより内部に袋詰め状になった鱗状の3次元複合結合体を形成し、これらを形成する内部3次元構造体の鱗面に連続鋳造、単一鋳造、半連続鋳造時に中央部に固定された3次元構造物(複合物)、及びその周囲に生成した3次元結晶が加圧された状態になり、3次元の状態を平坦状態に変化させ、微少結晶複合物の中間体に位置する基材、アルミニウム、及びアルミニウム合金は3次元形状が加圧され、圧縮されると共に、3次元凝固結晶も合わせて複合3次元結合を形成する為、鉄系圧延材に見られるような圧延方向に対して一定のファイバーを形成するようにアルミニウム、及びアルミニウム合金に対しても内部で鱗結合状中間複合材3次元配置になり得、組織が結合力を維持したまま、薄板まで形成出来る為、このような発明の発展には本発明で冒頭で詩っているように、複合3次元材として基材はアルミニウム、又はその合金を使用し、主3次元に用いる複合材は炭化ケイ素などの資源に余裕のあるものを使い、更に基材の減量を可能にし、3次元形成結合することにより、比重的にも軽量化でき、尚かつ、再生溶解時、比重差によって完全に分離することができ、再溶解が可能な新しいアルミニウム、及びアルミニウム合金として再度反復使用ができるのが特徴の一つであり、これらも含めて構造用平板、又は構造用パネル、構造用連続鋳造引き抜き、異形引き抜きなどの場合も同様、異形内部に3次元形態が生成できる様、内部に3次元誘導形態物を異形の外部から引っ張り圧縮強度の出るよう異形の形状を整える為、実際の異形状より小さめの3次元誘導形態物を連続的に挿入し、異形形態組織と形状係数を増大、誘発する異形体を挿入し、異形行動体最終異形外圧引き締め仕上げを施し、構造用異形材として使用すること。The present invention has a meaning that contributes to resource depletion and the like, and one of them is aluminum, magnesium and other alloys that are light and strong, and are excellent in corrosion resistance and easy to use if anodized. The reality is that it is used in a wide variety of fields from the viewpoint that it can be recycled in various forms and can be recycled. However, in the case of aluminum, since bauxite can be refined at the root, it is common sense that the amount of energy required for it bounces back to the price of bullion and spreads further. One of the factors is that it is more realistic to use petroleum as a raw material from the aspect of molding cost, etc., to obtain naphtha, to produce several kinds of synthetic resins, and to use this resin to obtain shapes by any method Because it is cheap in terms of cost and suitable for mass production, the current situation is that it relies on oil resources that are almost exhausted. In order to break down these from the viewpoint of price and use, the present invention provides a composite structure such as aluminum and a crystal structure such as an alloy-bonded aluminum base and a three-dimensional lattice (silicon carbide). However, it has not been suitable so far for toughness, Young's modulus, rigidity, load resistance, etc. of aluminum and aluminum alloys, etc. more than those obtained by the conventional method that fundamentally changes. In addition, when used for applications other than necessary, for example, it has been used for soundproof walls such as Shinkansen, airfields, highways, etc., and there are various contrivances, but the present invention relates to those aluminum and aluminum alloys. Efficient sound absorption, that is, absorbs all waveform sound in the frequency band of sound, changes it into heat energy, etc., and prevents snow and ice from drifting. Since the three-dimensional same material can be bonded to the plane portion on the opposite side, the three-dimensional shape can be formed. Therefore, casting using a three-dimensional derivative such as silicon carbide, continuous casting, and In the case of semi-continuous or continuous casting, this three-dimensional forming formation is performed in parallel in the case of semi-continuous or continuous casting while producing a three-dimensional forming formation in a single furnace, repeated casting, semi-continuous or continuously. Things are made, and the created formations are continuous In the case of the state, it is continuously inserted into the continuous casting furnace, and the three-dimensional product is located in the center from one continuous casting discharge port, and the remaining four surfaces are subjected to rolling (hot rolling, normal temperature). In order to prevent pressure internal fracture during rolling, etc., a certain amount of pre-mesh is provided around it, and the thickness portion is occupied by aluminum or an aluminum alloy. In the case of continuous casting or in the case of intermittent casting, the points of the three-dimensional product can be set in advance so that the three-dimensional product can be deformed abnormally on the upper and lower surfaces of the rolling, and not rolled out on the surface layer. The ingot is manufactured by fixing it to the central portion, and when the three-dimensionally formed internally fixed ingot thus obtained is continuous, the temperature gradient accompanying cooling is appropriately prevented after the three-dimensionally formed material is melted. Therefore, the material of the three-dimensional formation However, because the formation keeps the flow of temperature long in three dimensions, the temperature gradient of the aluminum or aluminum alloy becomes obtuse inside, and the temperature is blunted in the part that is in contact with or shielded from the three-dimensional formation. The gradient influences, and upon cooling, micron-like three-dimensional solidification phenomenon occurs around the three-dimensional structure, thereby forming a finer three-dimensional direction-forming crystal, thereby forming a micron crystal around the three-dimensional formed complex. This can be obtained by semi-hot heat retaining so as not to cause intergranular fracture, or in the order of rolling, hot rolling, cold rolling while heating, and finally performing finish rolling, or by deforming rolls during intermediate rolling A scale-like three-dimensional composite structure formed into a bag is formed inside, and the inner three-dimensional structure forming the three-dimensional composite body is fixed to the central portion during continuous casting, single casting, and semi-continuous casting 3 Dimensional structure The structure (composite) and the three-dimensional crystal generated around it are in a pressurized state, the three-dimensional state is changed to a flat state, and the substrate located in the intermediate of the microcrystalline composite, aluminum, And aluminum alloy is pressed and compressed in 3D shape and combined with 3D solidified crystal to form a composite 3D bond. Development of such an invention is possible because aluminum and aluminum alloys can form a three-dimensional arrangement of scale-bonded intermediate composite materials while forming a thin plate while maintaining the bonding force. As mentioned at the beginning of the present invention, the base material is aluminum or an alloy thereof as the composite three-dimensional material, and the composite material used in the main three-dimensional material has sufficient resources such as silicon carbide. use New aluminum that can be re-dissolved by reducing the weight of the base material and reducing the weight in terms of specific gravity by three-dimensionally forming and bonding. One of the characteristics is that it can be used again and again as an aluminum alloy. In the case of structural flat plates, structural panels, structural continuous casting pulling, deformed drawing, etc. In order to generate a three-dimensional form, the three-dimensional guide form is continuously inserted by pulling the three-dimensional guide form from the outside of the deformed form so that the deformed shape can be obtained. Insert the deformed body to increase and induce the deformed shape structure and shape factor, give the deformed action body final deformed external pressure tightening finish, and use it as the structural deformed material.
本発明の中でアルミニウム、及びアルミニウム軽合金を溶解して、その溶解方法とは坩堝溶解、反射炉溶解、掛傾炉溶解、高周波誘導炉溶解、真空溶解炉溶解、電気炉溶解、連続溶解などの溶解方法を取り、溶湯が全てに波及し、目的物の必要とする温度に上がると同時にアルゴンなどでバブリングをかける場合がある。バブリングした後、溶湯を凝固時、凝固組織が緻密な組織を得る為、ボロンカーバイトなどを用い、溶湯の中に挿入し、ボロンカーバイトの接触と溶湯目的物の微細化を図る為、これらの処置を講じる場合があり、これらの処置を講じても溶湯の使い方に異なった点が生じ、例えば、連続溶解鋳造法などの場合、バブリングは溶湯部分で連続的にできるものの、ボロンカーバイトの接触反応は難しい場合が出てくる。その場合、バブリングと合わせて同一区分で鋳造直前にボロンカーバイトの接触反応を起こさせ、連続鋳造ノズル二段階方式、二段階方式とは、第一段階で3次元炭化ケイ素形状格子体を中央部に連続的に挿入し、最終ノズルは3次元形状格子体の周囲に2次元層を熱延、冷延に備え、3次元層よりも少し大きめな位置に連続鋳造ノズルの大きさを固定し、連続して3次元形状格子体が連続鋳造ワーク4面全てに対して、2次元構造部をバランス良く配置し、鋳造硬化(冷却されたものが冷えていく状態での結晶方向の方向付けと組織微細化による硬化現象を相乗して、その硬化を3次元形状格子体の形状骨材に対して、鋳造溶湯方向に対して形成体より内側に温度勾配が3次元内部である故、起こりうる為、炭化ケイ素方向から空間方向に対してバランス良く交差した微細化3次元形状格子体空間部に導かれ、同方向に誘導、形成し、これらで3次元形成体の内部で更に起こった3次元方向の温度勾配を活用し、アルミニウム、及びアルミニウム軽合金類の圧延前インゴット形状の基本構造を誘発させ、以上のような点から連続溶解鋳造における3次元に対して、ミクロン3次元の凝固組織を形成しうるインゴット製作に関わる事であったが、このインゴットを変体点以下まで温度落ちした状態でホットロール圧延を繰り返し何度か行い、その後更に温度が降下した時点で冷延圧延を何度か繰り返し、予め形状的に圧延方向に対して横から見ると、上下両耳方向はインゴット段階で一定の予肉を持たせていた為、内部に残留する3次元形成体の主形成物、炭化ケイ素なるものが圧延されて3次元形状を維持したまま、長手方向横方向に主アルミニウム、及びアルミニウム合金からなる3次元形成体が炭化ケイ素を形状を圧縮方向に変化させながら圧延の厚みによっても異なるが、3次元複合材として3次元内部に封止され、主材に合わせた形で変形を重ね、3次元形状を圧延された状態でも維持できる様、骨材となる3次元形状、主構造物の内部でのマイクロスリップ、及びミクロンスリップを起こしやすくする為、幾ら薄くしても鱗状になり、主構造体、アルミニウム、及びアルミニウム合金の3次元の形成を強固に維持することができると共に、圧延時に溶湯時、加えたボロンカーバイトなどの微細化剤的存在と既に一時的3次元構造体が形成された周囲に付随して凝固時できた3次元結晶も圧延時、圧延により生じた圧力により、元の状態に戻ったミクロン炭化ケイ素が固体潤滑的役割を果たし、凝固時、その周囲に生じたミクロン温度勾配3次元構造体の内部に、一部組み込まれ、更に強固な構造体を構築し、今までアルミニウム圧延板には無かった力学的内部結晶構造を計画的に形成することができ、尚かつ、複合材故に変形転移すると同時に、それに対するエネルギー分の熱を作ることができ、冷延状態で極めて優位な働きをするものであり、これらが相乗して出来たものが極めて遮音性が高く、防音遮蔽壁などに活用できる。又、3次元の強固な構造を活用することで、今までアルミニウムや軽合金では考えられなかった対構造体とか、様々な用途に使用でき、その用途は限りないものであるが、例えば、IH発信体の共振部にサンドイッチ使用することで、今まで分子間伝達で発熱していたものが、3次元方向の複合発熱を誘発させる為、極めて高い省エネルギー化が実現できる。又、自動車などの自己発生エネルギーによる動力伝達方法で一番問題になるのが、自己発生エネルギーに対して、1馬力あたり何キログラムの加重を支えているかということが近年特に問題となってきた。今まではハイテンション構造鋼板薄板をプレス成形し、力学的形状変化を加えて一定の強度を得ていたが、本発明の複合3次元圧延材は確かに力学的な形状的プレス加工を平均化して形状変化を起こさせることで、その持ち前の強度を発揮できる事は無論、耐蝕性や静粛性に優れた軽い省エネルギー型構造構成、及び化粧構成にも同時に活用できる。省エネルギー型複合材で、尚かつ組織的には幾ら薄くなっても3次元形状を維持し、垂直水平加重、及び耐衝撃性に優れ、これからの新素材として期待の持てること。In the present invention, aluminum and aluminum light alloy are melted, and melting methods include crucible melting, reflection furnace melting, hanging furnace melting, high frequency induction furnace melting, vacuum melting furnace melting, electric furnace melting, continuous melting, etc. In some cases, the molten metal spreads to all and rises to the temperature required by the target product, and at the same time, it is bubbled with argon or the like. After bubbling, when solidifying the molten metal, in order to obtain a dense solidified structure, use boron carbide etc., insert it into the molten metal, these to make the contact of boron carbide and refinement of the molten metal object Even if these measures are taken, there are differences in the usage of the molten metal.For example, in the case of continuous melting casting, bubbling can be performed continuously in the molten metal part, but boron carbide Contact reactions can be difficult. In that case, the contact reaction of boron carbide is caused just before casting in the same section together with bubbling, and the continuous casting nozzle two-stage method, the two-stage method is a three-dimensional silicon carbide grid in the first stage The final nozzle is equipped with a two-dimensional layer around the three-dimensional grid body for hot rolling and cold rolling, and the size of the continuous casting nozzle is fixed at a position slightly larger than the three-dimensional layer, The three-dimensional lattice is continuously arranged on all four surfaces of the continuous casting workpiece with a well-balanced arrangement of the two-dimensional structure, and the casting is hardened (the orientation and structure of the crystal direction when the cooled one cools down). Synergizing the hardening phenomenon due to miniaturization, the hardening can occur on the shape aggregate of the three-dimensional shape lattice body because the temperature gradient is inside the formation body in the three-dimensional direction with respect to the casting melt direction. , From silicon carbide direction to spatial direction Then, it is guided to the space of the miniaturized 3D-shaped grid that intersects in a well-balanced manner, guided and formed in the same direction, and the temperature gradient in the 3D direction further generated inside the 3D formed body is utilized. Inducing the basic structure of the ingot shape before rolling of aluminum light alloys and producing ingots that can form a solid micronized three-dimensional structure compared to the three dimensions in continuous melting casting from the above points. However, the hot roll rolling was repeated several times while the temperature of the ingot was lowered to the transformation point or less, and then the cold rolling was repeated several times when the temperature further decreased, and the shape was previously set in the rolling direction. On the other hand, when viewed from the side, the upper and lower binaural directions had a certain pre-mesh at the ingot stage, so that the main formation of the three-dimensional formation remaining inside, silicon carbide, is the pressure. While the three-dimensional shape is maintained, the three-dimensional formed body made of main aluminum and aluminum alloy in the lateral direction in the longitudinal direction varies depending on the thickness of the rolling while changing the shape of silicon carbide in the compression direction. Three-dimensional shape that is sealed inside as a material, and repeatedly deformed according to the shape of the main material so that the three-dimensional shape can be maintained even in a rolled state. In order to easily cause slip and micron slip, it can be scaled no matter how thin it is, and the three-dimensional formation of the main structure, aluminum, and aluminum alloy can be firmly maintained, and can be added at the time of melting during rolling. The presence of fine particles such as boron carbide and the 3D crystals formed during solidification accompanying the surroundings where temporary 3D structures have already been formed are also produced during rolling. Micron silicon carbide returned to its original state by solid pressure plays a role of solid lubrication, and is partly incorporated into the three-dimensional structure of micron temperature gradient generated around it at the time of solidification. It is possible to form a mechanical internal crystal structure that has not been found in rolled aluminum sheets up to now, and at the same time it can deform and transition due to the composite material, and at the same time can generate heat for the energy It works extremely advantageous in the cold-rolled state, and the product of these synergistic effects is extremely sound-insulating and can be used as a sound-proof shielding wall. In addition, by utilizing a strong three-dimensional structure, it can be used for various applications such as a counter structure that has not been considered in the past with aluminum and light alloys. By using a sandwich at the resonance part of the transmitter, heat generated by intermolecular transmission until now induces combined heat generation in a three-dimensional direction, so extremely high energy saving can be realized. In addition, the most important problem in the power transmission method using self-generated energy such as automobiles has been a particular problem in recent years in terms of how many kilograms of weight per horsepower are supported for self-generated energy. Up to now, high tension steel sheets were press-formed and mechanical strength was changed to obtain a certain strength, but the composite 3D rolled material of the present invention certainly averaged the mechanical shape press work. It is of course possible to exert its original strength by causing the shape to change, and it can be used simultaneously for a light energy-saving structural configuration excellent in corrosion resistance and quietness, and a makeup configuration. It is an energy-saving composite material, and it maintains a three-dimensional shape even when it is thinned structurally. It has excellent vertical and horizontal load and impact resistance, and can be expected as a new material in the future.
本発明中、坩堝溶解鋳造、及び掛傾炉などによる溶解鋳造の中には、真空溶解鋳造アルゴン加圧方式などが代表的なものとして含まれ、坩堝鋳造にも坩堝周辺に燃焼バーナーや抵抗式ヒーター、或いは高周波誘導コイルなどを併せ持ち、それらのエネルギーにより、坩堝を加熱して溶湯を作る方式として熱の伝導輻射などにより目的物を(地金、アルミニウム、及びアルミニウム合金、又はマグネシウム合金)などがあり、これらの溶解にあたっては、酸化速度が速い為、アルゴン雰囲気や窒素雰囲気などの不活性ガス雰囲気を用いて溶解する方法を取るものの、これらの中で高周波誘導加熱は上記同一の方法を取る場合と、真空釜の中に高周波誘導炉を設置し、誘導炉内に目的物(地金、アルミニウム、及びアルミニウム合金、マグネシウム合金)などを誘導炉内の中に入れ、真空中で同一真空容器内に設置した目的物を作る為のインゴット鋳型ケース、その鋳型ケースの中に3次元構成体を予め設置、その設置したケースに同一真空容器内でケースの外部に高周波誘導用加熱コイルを設置し、適正な目標温度までケースの温度を上げ、真空容器内での鋳造に備える。そのとき不純物などのかみ込みが発生する恐れがあるので予め大気中で仮焼成、及び仮予熱を掛け、清掃後、清浄化したものを真空容器内の鋳造場所に設置する場合もある。これらの方法を使用し、鋳造する場合、インゴットケースと名付ける部分にセラミックモールド溶湯鋳型を使用する場合もあり、この場合は予め3次元形成物を設置し、酸化雰囲気内で予め焼成措置を講じ、その後、真空容器内に装着し、溶湯の注ぎ口より溶湯を注ぐ、その場合、セラミックモールド鋳型の温度は抵抗ヒーター、若しくは高周波誘導コイル間接加熱により加熱し、その温度は目的物等の材質により異なりますが、メルティングポイントより若干低い位置でセットし、溶湯を鋳造と同時に今度は真空容器内を外部よりアルゴンガスを急速挿入し、鋳造完了と共に本処置は行い、1気圧ないし加圧による数気圧の圧力を容器内で得ることで、鋳造された溶湯の上部より加圧された状態で先に記した高周波誘導コイル、抵抗式ヒーターなどの隙間に冷却用コイルを張り巡らすか、インゴットケースの場合、二重ケースにし、その二重目のケース枠に常温の水、又は冷却媒体を循環冷却、インゴットケース、及びセラミックモールド鋳型の周囲を強制冷却により内部に鋳造された(地金、アルミニウム、アルミニウム合金、マグネシウム合金)等を周囲より吸熱することにより、外側から冷却を掛けることにより、インゴットケース内とセラミックモールド鋳型内に予め設置せしめた3次元形成体の形成部より、鋳造された溶湯は熱が外側に勾配を取り、熱が引かれる為、溶湯物の表面より伝導とケース、又はセラミックモールド鋳型の放熱により、内部に3次元構造を献じしてある為、熱は直線方向でなく、3次元方向に流れ、その粒子の大きさは外側に対して徐々に小さくなり、予め鋳造する器となるインゴットケース、セラミックモールド鋳型の固定3次元形状格子体を各端面を基準に3次元形状格子体の及ばぬ部分を作るよう施工し、鋳造された為、各端面からの熱の放射伝導効率は極めて良く、更にインゴットケースにおいては真空容器内の真空状態から気圧を不活性ガスにより逆に加圧し、加圧とは一方方向加圧、即ち上部加圧になるが、セラミックモールド鋳型の場合、鋳型に通気性を促す気孔が存在する為、6面全体に不活性ガスによる加圧が上部鋳湯口から順番に加圧され、最終的には6面全部を加圧することで緻密度を高め、溶解鋳湯直前、及び鋳湯時、ボロンカーバイトなどで接触凝固核を作る様、予め作った溶湯を直ちに鋳造する為、凝固核が3次元形状格子体内まで均等に行き渡り、それぞれの場所において3次元凝固核を生成し、そこで始まる凝固は3次元形状格子体に沿い、外方向に対して3次元凝固を起こす。それらの行為で得られた目的物はインゴットケースの場合、真空容器内より機械的要素、或いは半機械的要素により外部に取り出し、そのときの温度は常温に身近なもので各材料の低温変体点を通過した時点から排出を可能とし、排出された3次元構造インゴット、及びセラミックモールド鋳型の場合、目的形状物は、セラミックモールド鋳型は除去し、そのまま使用しても良いが、不要なものは排除して、そのまま使用する場合もあり、インゴットケースの場合、圧延異形などを目的とする為、インゴットケース内から取り出した目的物は、表面に不純物などが無いよう十分、洗浄や清掃を行い、ホットプレスで圧延前形状まで圧縮するか、そのままホットロールにかみこませ、圧延を繰り返し行い、又は直線上で順番に圧延することで冷延前コイルを作り、圧延時に生じた不純物などの付着などを完全に処理し、冷延ロールを直線上に繰り返し潜らせ、目的物の使用目的の厚さまで冷延して目的物を求める方法であること。In the present invention, the crucible melting casting and the melting casting by a tilting furnace include a vacuum melting casting argon pressurization system and the like, and the crucible casting also includes a combustion burner and a resistance type around the crucible. A heater or a high-frequency induction coil is also used, and the target object (base metal, aluminum, and aluminum alloy, or magnesium alloy) is produced by heat conduction radiation as a method of making a molten metal by heating the crucible with their energy. There is a method of dissolving these by using an inert gas atmosphere such as an argon atmosphere or a nitrogen atmosphere because the oxidation rate is fast. A high-frequency induction furnace is installed in the vacuum kettle, and the target object (metal, aluminum, aluminum alloy, magnesium, etc.) is placed in the induction furnace. Alloy) etc. in the induction furnace, ingot mold case to make the target object installed in the same vacuum vessel in vacuum, the case where the three-dimensional structure is installed in the mold case in advance In addition, a heating coil for high frequency induction is installed outside the case in the same vacuum vessel, and the case temperature is raised to an appropriate target temperature to prepare for casting in the vacuum vessel. At that time, there is a possibility that impurities or the like may be bitten, so that preliminary calcination and preliminary preheating are performed in the air in advance, and after cleaning, the purified product may be placed in a casting place in the vacuum vessel. When using these methods and casting, ceramic mold molten metal mold may be used in the part named ingot case. In this case, a three-dimensional formed product is set in advance, and a firing measure is taken in an oxidizing atmosphere in advance. After that, it is installed in a vacuum vessel and the molten metal is poured from the spout of the molten metal. In that case, the temperature of the ceramic mold is heated by a resistance heater or indirect heating of the high frequency induction coil, and the temperature varies depending on the material such as the object. However, it is set at a position slightly lower than the melting point, and at the same time as casting the molten metal, argon gas is rapidly inserted into the vacuum vessel from the outside, and this treatment is performed when the casting is completed. The high-frequency induction coil and resistance type heater described above in a state of being pressurized from the upper part of the cast molten metal are obtained in the container. -In the case of an ingot case, a double case is used, and room temperature water or a cooling medium is circulated in the double case frame to circulate cooling, the ingot case, and the ceramic mold mold. Pre-installed in the ingot case and ceramic mold by cooling from the outside by absorbing heat from the surroundings (base metal, aluminum, aluminum alloy, magnesium alloy) etc. Since the cast molten metal has a gradient in the outside from the forming part of the three-dimensional formed body, the heat is drawn, so that the heat is drawn from the surface of the molten metal by the heat and heat from the case or the ceramic mold. Since the dimensional structure is dedicated, heat flows not in a linear direction but in a three-dimensional direction, and the size of the particles gradually decreases with respect to the outside. Since the ingot case, which becomes a casting machine, and the fixed 3D shape lattice body of the ceramic mold are preliminarily constructed and cast so as to create a portion that does not reach the 3D shape lattice body based on each end surface, each end surface The radiation conduction efficiency of the heat from is very good, and in the ingot case, the pressure is reversed from the vacuum state in the vacuum vessel by an inert gas, and the pressurization is one-way pressurization, that is, upper pressurization. In the case of a ceramic mold mold, since there are pores for promoting air permeability in the mold, pressurization with an inert gas is sequentially applied to the entire six surfaces from the upper casting port, and finally all six surfaces are pressurized. In order to increase the density, immediately before and during the molten casting, to make the contact solidification nuclei with boron carbide etc. Go around A three-dimensional solidification nucleus is generated at each location, and solidification that starts there occurs along the three-dimensional grid and causes three-dimensional solidification in the outward direction. In the case of an ingot case, the object obtained by those actions is taken out from the inside of the vacuum vessel by a mechanical element or semi-mechanical element, and the temperature at that time is close to normal temperature, and the low temperature transformation point of each material In the case of discharged three-dimensional structure ingot and ceramic mold mold, the ceramic mold mold can be removed and used as it is, but unnecessary ones are excluded. In the case of an ingot case, it is intended for rolling deformation, etc., so the object taken out from the ingot case should be thoroughly cleaned and cleaned so that there are no impurities on the surface. Compressed to the pre-rolling shape with a press, or directly held in a hot roll, repeated rolling, or rolled in order on a straight line. It is a method to make a front coil, completely treat the adhesion of impurities etc. generated during rolling, repeatedly immerse the cold rolling roll on a straight line and cold roll to the desired thickness of the target object to obtain the target object thing.
本発明の溶湯の作り方は、基材となるアルミニウム、及びアルミニウム合金、及びマグネシウム合金などの多大な種々の軽合金、又はその軽合金を冶金的に複合3次元形状格子体に沿いやすいよう作る。そのためには如何なる溶解方法を取ろうが、基材となる部分の溶解を行う為には、通常、常識的ではあるものの、酸化速度の速いアルミニウム合金、アルミニウム、マグネシウム合金などは殆どが酸素から遮断した状態で常圧においても不活性ガス雰囲気内にて行うこととし、その不活性ガスも合金の種類によっては窒素などを使用した場合、窒化現象を促進する様な事態を誘発する為、基本的にはアルゴンガスを使用して行う。又、酸化物や不純物の溶湯内の除去についてはアルゴンバブリング、或いは還元性活性ガスをまま使用する場合もあるが、危険を伴う為、特殊な場合を除いてそれらの使用は行わない。溶解炉内で溶落した基材となり得る溶湯は、溶落後、鋳造温度まで上げ、そこで一端バブリングなどの行為を行い、清浄化した湯の中にボロンカーバイト鋳造前、或いは鋳造直前に鋳湯湯に付き込み、むら無くボロン化反応を誘発させ、鋳造後の組織を微細化出来ることと共に、複数の凝固核を生成する様、組織を均一化し、カーバイト炭化物が3次元状に配列凝固する様、溶湯に対して十分な接触添加反応を連続的に誘発させることで、それを即座にインゴット又は形状目的物に合った量を鋳造し、その鋳造物の中心位置、即ち形状周囲に肉付けをした形が形成できる様、3次元形成物をセットし、その3次元形成物の3次元の規模は任意に調整できることが可能であることと、鋳造される溶湯の温度と同等まで予熱などを加え、滑らかな3次元鋳造が出来る様、予め予熱等が取れる仕組みを装備し、これらの条件下で鋳造後、直ちに酸化防止雰囲気内で外部より3次元構造の大きなものを必要とする場合、極めて鋭角な温度勾配を提供するものであるが、ミクロン3次元構造を3次元構造体に付帯して生成せしめる場合、鋳造後、保冷温度勾配を鈍角にし、カーバイト炭化物が混在する組織を3次元形状物に対して、より緻密に生成せしめることで常に方向性が3次元に分布すると共に、結晶構造体の結合力が高く、これらを完成品で判断した場合、あらゆる方向の引っ張り圧縮に対して極めて高い強度と靭性を得ることが可能となり、尚かつ、中心部にセットされた最終凝固末には炭化物が熱の蓄層により順列化するが故、高いヤング率を形成することが可能となり、尚かつ、3次元形成体に比重の低いものを活用する故、軽くて強い、又、微振動などで応力蓄積を所定弱点に集中しやすかった蓄積破断要因の一つ、疲労クラックなどの発生を無くし、応力や微振動を吸収し、熱に変え、外部に放出する。その場合、3次元形成体とミクロン3次元生成体との共有構造により、従来の合金と比較して非常に高い分子間テンションとなり得る構造を作ることで、今まで限られた用途以外に使用することがなかなか難しいものであったが、本発明が複合材的要素を持つと共に、溶湯コントロールをし、尚かつ、鋳造タイミングなどを併せ持ち、本発明の3次元形成体使用凝固方法により、従来のアルミニウム合金、及びアルミニウム、又はマグネシウム合金等の弱点を大幅に改善し、用途を無限に広げようとするものであること。The method of making the molten metal of the present invention is to make a large number of various light alloys such as aluminum, aluminum alloy, and magnesium alloy as a base material, or such light alloys so as to be easily metallurgically along a composite three-dimensional shape lattice. For this purpose, whatever melting method is used, most of the aluminum alloys, aluminum, magnesium alloys, etc., which have a high oxidation rate, are usually shielded from oxygen in order to dissolve the base material. Basically, in order to induce a situation that promotes the nitriding phenomenon when nitrogen is used depending on the type of the alloy, the inert gas is used in the inert gas atmosphere under normal pressure. Is performed using argon gas. In addition, argon bubbling or reducing active gas may be used as it is for removing oxides and impurities in the molten metal, but they are dangerous and are not used except in special cases. The molten metal that can become the base material that has melted in the melting furnace is raised to the casting temperature after melting down, and there is an act such as bubbling at one end. Incorporates into the hot water and induces the boronization reaction evenly, making it possible to refine the structure after casting and homogenizing the structure so that multiple solidification nuclei are generated, and carbide carbide is arranged and solidified in a three-dimensional manner. In this way, by continuously inducing a sufficient contact addition reaction to the molten metal, it is immediately cast in an amount suitable for the ingot or the shape object, and the center position of the casting, that is, surrounding the shape, is thickened. 3D formation can be set and the 3D scale of the 3D formation can be adjusted arbitrarily, and preheating etc. can be added to the temperature of the molten metal to be cast. ,Smooth Equipped with a mechanism that can be preheated in advance so that three-dimensional casting can be performed. If a large three-dimensional structure is required from outside in an oxidation-preventing atmosphere immediately after casting under these conditions, a very sharp temperature gradient is required. Although it is provided, when a micron three-dimensional structure is attached to a three-dimensional structure and generated, a cold insulation temperature gradient is made obtuse after casting, and a structure containing carbide carbide is mixed with a three-dimensional shape. By generating more densely, the directionality is always distributed in three dimensions and the bonding strength of the crystal structure is high, and when these are judged as finished products, they have extremely high strength and toughness against tensile compression in all directions. It is possible to obtain a high Young's modulus because carbides are permuted by heat accumulation in the final solidification powder set in the center, and One of the causes of accumulated fracture, which is light, strong, and easy to concentrate stress accumulation at a predetermined weak point due to micro vibrations, is eliminated by using a low-specificity three-dimensional formed body. Absorbs micro-vibration, converts it into heat, and releases it to the outside. In that case, by using a shared structure of the three-dimensional formed body and the micron three-dimensional product, a structure that can have a very high intermolecular tension compared to conventional alloys is used, so that it can be used for purposes other than limited applications so far. Although it was quite difficult, the present invention has a composite material element, has a molten metal control, and has a casting timing and the like. It is intended to greatly improve the weaknesses of alloys, aluminum, and magnesium alloys, and to expand its applications infinitely.
本発明の主立った特徴は、3次元形成体を鋳造、又はインジェクション成形などで、そのワークの内側に均一に固定し、外方向に一定の肉を保有することにより、それより得た形状は、周波数帯に異ならず、全ての周波数帯で音の吸収をせしめ、その吸収したエネルギーを熱に変え、放散、或いは蓄熱して他の用途に使用する。勿論、電磁波などの乱波を吸収し、それらを熱源に変え、効率の良い加熱行為を行ったり、乱波の周囲を覆うことで乱波の漏れを防ぎ、電波障害などを防止する場合もある。その他にも相当の発熱行為、音波遮蔽行為、今までのアルミニウム、アルミニウム合金、マグネシウム合金には無かった保温行為も同時に付与し、例えば、缶ジュース、缶ビールなどの加温保温や冷却保温などの温度遮蔽効果を備え持ち、更に封止接合等においても加熱、溶融接合が可能なものであり、本複合合成体を引き抜きなどで求めた結果、その中央部に位置する3次元形成体に馴染むミクロン、サブミクロンなどのそれに沿った3次元形成組織から大きな構造的機械的性質を生み出し、今までアルミ系では使用が困難とされていた異形構造物の分野まで踏み出し、用途の拡大が図れること。The main feature of the present invention is that a three-dimensional formed body is uniformly fixed inside the workpiece by casting or injection molding, and by holding a certain meat in the outer direction, the shape obtained therefrom is It absorbs sound in all frequency bands, regardless of the frequency band, converts the absorbed energy into heat, dissipates it, or stores it for other uses. Of course, it absorbs turbulent waves such as electromagnetic waves, converts them into heat sources, performs efficient heating action, or covers the turbulent waves to prevent turbulent leakage and sometimes prevent radio interference. . In addition, there is a considerable amount of heat generation, sonic shielding, and warming that was not found in conventional aluminum, aluminum alloys, and magnesium alloys. For example, warming and cooling of canned juice, canned beer, etc. Micron that has a temperature shielding effect and that can be heated and melted even in sealing bonding, etc., and that conforms to the three-dimensional formed body located in the center as a result of drawing this composite composite. To create large structural mechanical properties from 3D formation structures such as sub-micron, and to expand into the field of deformed structures that have been difficult to use with aluminum.
本発明の連続鋳造引き抜きにおいて、引き抜き水冷ダイス前方から3次元形状格子体を引き抜き形状の外接部全てに基材のみの耳が付くようセットして、連続的に引き抜くことにより、強固な3次元を有した構造用異形体を求めることができ、その求めた異形体を外接部より機械的、又はシップ処理のように全面に圧力を掛け、締め込むことにより、更に強固な異形体構造菩提を得ることができ、本発明は3次元形成体とその内部に組織組成する3次元組織により、あらゆる方向に対して強固になる様、複合化とそれに伴う組織変化、及びボロンカーバイトなどを使用することで、ナノ単位の尾っぽを持つ3次元組織を得ることとなり、これらを得ることにより、軽合金系全ての強度を上げ、使用過程の可能性を増大し、耐蝕性、対リサイクル性に富み、又尚かつ、線膨張率を抑え、動植物が生殖する摂氏25℃程度を0点とし、上下方向に対して耐候性に優れ、それに合わせて化粧面表面は空気接触率の少ないフラット面が確保でき、美観的にも優れた部分を覗かせ、これらの構築物の使用に対しては溶接構造を可能にし、又これらの方法で得た厚板を接合し、形状構造体を形成する上で、撓み量が少なく軽い為、その用途は無限に広がりを見せるものである。In the continuous casting drawing of the present invention, a solid three-dimensional lattice body is set from the front of the drawing water-cooled die so that all the outer parts of the drawing shape are attached with the base material only, and is continuously drawn to obtain a strong three-dimensional shape. It is possible to obtain a structural variant having the structure, and by applying the pressure to the entire surface like a ship process or mechanically from the circumscribed part and tightening it, a more rigid variant structure is obtained. In the present invention, the composite and the accompanying tissue change, and boron carbide, etc. are used so as to be strengthened in all directions by the three-dimensional formed body and the three-dimensional structure formed in the structure. In this way, a three-dimensional structure with nano-unit tails will be obtained. By obtaining these, the strength of all light alloy systems will be increased, the possibility of use processes will be increased, corrosion resistance, and recyclability. It is rich in nature and has a low coefficient of linear expansion, has a temperature of about 25 ° C where animals and plants reproduce, and is excellent in weather resistance in the vertical direction. The surface can be secured and the aesthetically pleasing part can be looked at, and the use of these structures enables a welded structure, and the thick plates obtained by these methods are joined together to form a shape structure. Above, because the amount of bending is small and light, its use is infinitely wide.
本発明は、3次元形成体を軸にそれに基材のアルミニウム系軽合金、及びマグネシウム合金などの組織微細と3次元組織の生成を促すことを基本としたが、この中で3次元形成体のみで接触接合組織などを使用しない場合がある。その場合、3次元形成体を予めセットし、それに対して全判前記に述べた朱記の一部異なる部分が出てくる。その部分とは、3次元形状格子体のみを使用し、溶湯などにさほど変化を付けず溶湯が醸し出す従来の方法でインゴットケース、又はセラミックモールド鋳型中央部に3次元形成体を設置し、それに溶湯を注ぐことにより、得る方法である。この方法もインゴットケース、セラミックモールド鋳型、及び連続鋳造受け板の方には、予め予熱し、安定した温度勾配を作ることで3次元形成体が鋳湯時、及び鋳湯後、3次元形成物で構成された構成内部組織は多少は大きくなるものの、3次元形成物に沿って3次元組織を生成せしめ、上記の朱記に記載したような、ナノ尾っぽなどの生成は100%とは言えないものの、多少にとどまることで圧縮された3次元部分内にミクロン組織として3次元形成を生じ、これらの特徴を生かし、簡易化された3次元複合組成ミクロン組織性状を活用し、同じように目的物を得ることで若干の優劣は付くが、組織構造は上記朱記にやや似た性状を生成することを前提に3次元形成物を使用し、それで得る鋳造品鍛造素材、圧延板材、異形材、構造用異形材、航空宇宙新素材としてその活用範囲は幅広く広がり、特に新分野として構造構築物、電気、電子、加熱、蓄熱、発熱、舶用、航空宇宙関連製品、自動車、重火器、小火器などと代表的なものをあげているが、その他、多大な用途が浮上することと、新しい技術の開路を作ったものであり、それにも勝り従来にない省エネルギー、省減量、基材の節約、リサイクルの簡易性などを挙げるものである。The present invention is based on the three-dimensional formed body as an axis and promotes the formation of fine structure and three-dimensional structure such as aluminum-based light alloy and magnesium alloy as a base material. In some cases, contact bonding structure is not used. In that case, a three-dimensional formed body is set in advance, and on the other hand, a different part of the red mark mentioned above appears. This part uses only a three-dimensional shaped grid, and a three-dimensional formed body is installed in the center of the ingot case or ceramic mold mold by the conventional method that the molten metal produces without much change in the molten metal. It is a method to obtain by pouring. This method is also applied to the ingot case, the ceramic mold, and the continuous casting backing plate in advance by preheating and creating a stable temperature gradient so that the three-dimensional formed body is cast and after the casting. Although the internal structure composed of is somewhat larger, a three-dimensional structure is generated along the three-dimensional formation, and the generation of nano-tails, etc., as described in the above red, is 100% Although it can't be said, 3D formation as a micron structure occurs in the compressed 3D part by staying a little, taking advantage of these features, utilizing the simplified 3D composite composition micron structure property, and so on Although it is slightly superior or inferior by obtaining the target object, the structure of the structure uses a three-dimensional formed product on the premise that it produces properties that are somewhat similar to the above red, and the cast forging material, rolled plate material, deformed shape obtained with it For materials and structures As a new shape material and aerospace material, the range of use is widened. Especially, as a new field, structural structures, electricity, electronics, heating, heat storage, heat generation, marine, aerospace related products, automobiles, heavy weapons, small arms, etc. However, it is a new technology open circuit that has emerged, and it is far superior to energy savings, weight savings, substrate savings, and ease of recycling. Etc.
本発明は、今まであらゆる形で複合材が試みられてきたが、その余りにも特性の違い故、なかなか合致しなかったのが現実であり、本発明はその難点を3次元形成体を使用することで、熱を封じ込め、3次元形成体の形状に沿って、微細化組織を生成し、それらをインゴットとして使用し、圧延したり、プレスにより圧縮成型することで素形を自由自在に選択できると共に、内部に応力変関を含まず、一定した成形が可能で、その成形した成型物は表面上面下面部が3次元形状が形成される基材の端点にあたり、その中間部に3次元形状がマクロとミクロとミリミクロとナノという形で生成され、これらの基材をインゴットと呼び、そのインゴットを加圧、又はロール成型において成型し、平板を作ることで中間層に3次元組織が存在し、その3次元組織の更に中間層に鱗状に3次元形成物の圧延遡上し、存在する為、吸音性などに優れ、これらを構造物や電子、電気、自動車などに使用することで、その強度と表層部の地金そのものの美観を生かすと共に、上下で引っ張り、圧縮を強度として醸し出し、サンドイッチ状になった内部3次元層部があらゆる音波、微振動などを吸収する為、本材を箱形密閉と考えた場合、内部空間は極めて静粛性に優れ、又断音、断熱効果により、無効エネルギーを抑えると共に、全ての面で軽量化が図れ、合わせて溶接なども可能となり、従来、鉄系に頼っていた形状強度メンバーを本素材でカバーすることができる。即ち圧縮方向と引っ張り方向を同一材質で補い、補った材質の表面から内部に向けて3次元構造体がせしめる複合方向強度や耐疲労性に富む、心的な役割を果たしているからである。更にその中間層に数十段に渡って圧延した場合、鱗状の3次元形成物超微粒子が異なる方向からの微振動や音波を吸収し、変形復元性に富む形を形成するからである。次に本発明の中で圧延途上、及び連続鋳造、連続引き抜き、間欠引き抜き鋳造などで得られた内部を3次元形状格子体で熱封止し、求めようと言う強度、及び消音効果などがある。これらは粗の状態であるが、3次元形状格子体の誘導エリア内に3次元組織形状格子体を形成し、強固な一体構造質を保つことが可能になるものであり、これらも合わせて3次元形状格子体を持つ特性と熱変関誘導作用による3次元形成物からなる生成物によって、強固な構造的強度を出し、更にその方向は3次元に及ぶ為、3次元方向全ての力学的形状係数として何れの方向に対しても、その強度を失うことのない構造になることである。こういった利点を生かし、あらゆるものに軽さを始めとし、それを元にした新しい複合3次元形状格子体に付随する3次元組織生成物で有ることに相違ない。In the present invention, composite materials have been tried in various forms until now, but the reality is that they did not easily match due to the difference in properties, and the present invention uses a three-dimensional formed body for the difficulty. Therefore, it is possible to freely select the original shape by containing heat and generating a refined structure along the shape of the three-dimensional formed body, using them as an ingot, rolling, or compression molding with a press. At the same time, constant molding is possible without stress variation inside, and the molded product has a three-dimensional shape in the middle part of the base material where the upper surface and lower surface of the surface are the end points of the base material on which the three-dimensional shape is formed. It is produced in the form of macro, micro, millimicro, and nano, and these base materials are called ingots. The ingot is molded by pressing or roll molding, and a three-dimensional structure exists in the intermediate layer by making a flat plate. So Since the three-dimensional structure is rolled up in a further intermediate layer of the three-dimensional structure and exists, it is excellent in sound absorption, etc., and by using these in structures, electronics, electricity, automobiles, etc., its strength and Taking advantage of the beauty of the surface bullion itself, pulling up and down, creating compression as strength, and the sandwiched three-dimensional inner layer absorbs all sound waves and micro-vibrations, so this material is sealed in a box shape The interior space is extremely quiet, and the noise and heat insulation effects can be used to reduce reactive energy and reduce weight in all aspects. Reliable shape strength members can be covered with this material. In other words, the compression direction and the pulling direction are supplemented with the same material, and it plays a mental role that is rich in compound direction strength and fatigue resistance that the three-dimensional structure is made from the surface of the supplemented material to the inside. Furthermore, when the intermediate layer is rolled over several tens of stages, the scale-like three-dimensional formed ultrafine particles absorb fine vibrations and sound waves from different directions, and form a shape with excellent deformation recovery properties. Next, in the present invention, the inside obtained by rolling, continuous casting, continuous drawing, intermittent drawing, etc. is heat-sealed with a three-dimensional lattice body, and there are strengths to obtain, a silencing effect, etc. . Although these are rough states, it is possible to form a three-dimensional tissue shape lattice in the guiding area of the three-dimensional shape lattice, and to maintain a strong integral structural quality. Due to the characteristics of the three-dimensional grid and the product consisting of the three-dimensional formation by the thermal transformation induction action, it gives a strong structural strength, and the direction extends to three dimensions. It is a structure that does not lose its strength in any direction as a coefficient. Taking advantage of these advantages, there is no doubt that it is a three-dimensional tissue product that accompanies a new composite three-dimensional shape lattice based on the lightness of everything.
今まであらゆる角度で軽合金に対する複合材が試みられたが、応力を吸収する部分が一点に限られ、応力破壊による限界があった。これらの研究は現状でも進められているが、複合材故、何らかのメリットが無いと複合化は市場的に要求されないのが現状であった。又尚かつ、軽合金系アルミニウム、マグネシウム等は精錬段階で大量のエネルギーを必要とする為、コストが高く低温で形を得ていくと言うことと、軽いということのみが殆どの場合メリットとして考えられてきた。これらの課題を根底から見直そうというのが本発明3次元形成体を使用し、その内部に熱力学的要素を取り入れ、更にそれを微細化延長して強度を得、3次元形成体をも複合3次元形成させることにより、更にあらゆる面でメリットを提供できる課題であること。So far, composite materials for light alloys have been tried at all angles, but there is only one point that absorbs stress and there is a limit due to stress fracture. Although these researches are still underway, because they are composite materials, there is no need for compositing in the market without any merit. In addition, light alloy aluminum, magnesium, etc. require a large amount of energy at the refining stage, so the cost is high and the shape is obtained at low temperature, and only lightness is considered as a merit in most cases. Has been. In order to reexamine these issues from the ground up, the three-dimensional formed body of the present invention is used, a thermodynamic element is incorporated in the interior, and it is further refined and extended to obtain strength, and the three-dimensional formed body is also combined. It is a problem that can provide merit in every aspect by forming in three dimensions.
本発明は資源エネルギーをバランス良く使用して、今までアルミニウムを含む軽合金系素材は鉄系に比べコストがエネルギー代=地金という非常に高いものであった。原料にはボーキサイトを使用するものの、精錬にコストがかかり、なかなか普及に問題点があった。本発明はそれを複合化し、使用容積率を今までの100%から任意のパーセンテージまで引き下げ、地金使用量を抑え、更に同等以上の強度を3次元形成体を使用することで、鋳湯時の熱の封止を3次元形状格子体ではかることにより、3次元形状格子体に沿って基材の凝固方向に対して、3次元のミクロン組織を生成させ、更に圧延等の場合、3次元形成体は圧縮される為、基材の3次元形成、及びそれから連なる3次元形成ミクロン組織を破壊せずに圧延できることに本発明はメリットを出したものの、それ以外にも用途の多様化と構造用母材、及び化粧母材として使用することができる様、圧延前インゴット時、基材層を3次元形成物周囲に計画的に作ることで、圧延はみ出しなどを防止し、更にその周囲の層を化粧層として使用し、強度メンバーとしては圧縮、引っ張りの2方向のバランスが取れる様、目的物を上下で表した場合、上方、下方が引っ張り、圧縮曲げ強度に付随して有効とするが、中央部に位置した3次元形成物層、形成物層の内部には基材が入り込み、その基材の周辺には3次元ミクロン組織が尾っぽを連ね、3次元の発信点を上部から下部へ、下部から上部へと延長し、これらを圧延圧縮、プレス圧縮することにより、中層には幾重にも重なった複合組織を鱗状に隣接し、更にその鱗組織は朱記で提供したように、3次元ミクロン構造を色濃く残す為、あらゆる方向からの引っ張り圧縮に対して極めて頑丈な組成を構築し、鱗状に重なり合ったミクロ的、マクロ的3次元構造物内部のマクロ3次元面に3次元誘導形状格子体が組成し、音波に対しては、全周波数帯で吸収し、熱に変え、尚かつ内部に残留した酸素などを吸収して、増大をはからない炭化ケイ素3次元形成体を使用する為、例をあげれば、自動車などに使用した場合、本発明のアルミ複合材に微振動を強制的に与えることにより、共振して振動を打ち消す為、そのエネルギーを熱に変え、暖房効果をはかることも可能なものであり、本3次元形成体を使用し、連続鋳造、又は引き抜き、又は単一鋳造等でも同様のことが言え、複雑形状物ではシップ処理等を施すことにより、より高い剛性を得ることができる。このように3次元形成体を使用することで、それに付随する3次元組織が生成され、更にそれがナノ単位まで延長され、今まで無かった用途にまで波及し、尚かつ資源のリサイクル上、比重差で簡単に分別でき、再溶解時も同じように比重差により極めて簡単に分離、回収ができることを提供します。The present invention uses resource energy in a well-balanced manner, and so far, light alloy materials containing aluminum have been very expensive in terms of energy costs = bullion compared to iron-based materials. Although bauxite is used as a raw material, the refining cost is high, and it has been difficult to disseminate. In the present invention, by combining it, lowering the usage volume ratio from 100% so far to an arbitrary percentage, reducing the amount of metal used, and using a three-dimensional formed body with a strength equal to or higher than that at the time of casting. In the case of rolling or the like, a three-dimensional micron structure is generated along the three-dimensionally shaped lattice body in the solidification direction of the base material by sealing the heat of the three-dimensionally shaped lattice body. Since the formed body is compressed, the present invention has an advantage in that it can be rolled without destroying the three-dimensional formation of the base material and the three-dimensional formation micron structure continuous from the base material. In order to be able to be used as a base material for cosmetics and a decorative base material, by rolling a base material layer around the three-dimensional product at the time of ingot before rolling, it prevents rolling out and the surrounding layers. Used as a makeup layer, As the degree member, if the object is represented in the upper and lower directions so that the balance of compression and tension can be taken, the upper and lower parts are pulled and effective along with the compression bending strength, but the three-dimensional position located in the center A base material enters the inside of the formation layer and the formation layer, and a three-dimensional micron structure is connected to the periphery of the base material, and the three-dimensional transmission point is from top to bottom, from bottom to top. By extending and compressing them by rolling and pressing, the composite structure that overlaps the middle layer is adjoined in a scale shape, and the scale structure leaves a three-dimensional micron structure darkly as provided in red Therefore, a very robust composition against tension and compression from all directions is constructed, and a three-dimensional guided lattice is formed on the macro three-dimensional surface inside the microscopic and macroscopic three-dimensional structures overlapping in a scale. For For example, when used in automobiles, etc., because it uses a silicon carbide three-dimensional formed body that absorbs in the frequency band, changes to heat, absorbs oxygen remaining inside, and does not increase. The three-dimensional formed body of the present invention can be used to forcibly apply micro-vibration to the aluminum composite material of the present invention, thereby resonating and canceling the vibration. The same can be said for continuous casting, drawing, or single casting, etc., and for a complex shaped object, higher rigidity can be obtained by performing ship processing or the like. By using a three-dimensional formed body in this way, a three-dimensional structure associated therewith is generated, which is further extended to the nano-unit, spreading to uses that have never existed, and in terms of resource recycling, the specific gravity is increased. It can be easily separated by the difference, and can be separated and collected by refining as well.
本発明は、今までアルミニウムは合金化することにより、その効果と強度を増していたが、地金になる基材は全て精錬によって作られており、この過程では大変多くのエネルギーを使う割に生産量が限られてきた。これらの問題を使用上の事と平行して解決し、複合化することによりアルミニウム、及びアルミニウム合金などの使用量を激減しながらもアルミニウム本来の化粧体が表層部で形成でき、従来は構造物、機械、自動車、建築物、船舶、航空宇宙、電子、電気、防音壁、吸音壁、家電、OA機器、農機具、その他多大な構造物に本発明の複合3次元形状格子体を使用して、更に形状格子体に付随するミクロン3次元組織と複合材3次元形状格子体の混在により、強度を得た軽合金系3次元複合体は、朱記のような用途にも強度メンバーとして使用できる事を可能にしたもので、その最も優位的な効果は音波を全流域で吸収でき、他接合物に対して有害な微振動など伝えないアブソーパー的な働きをし、金属疲労などを激減させるものであり、それと共に今まで強度メンバーとして使用できなかったものを使用可能にしたことと、連続鋳造や引き抜き、異形引き抜き、異形ロールなどで同じように表層に化粧層を残し、内部を3次元構造組織にすることにより、使用用途が異なり、軽くて強い異形、又は強制プレスなどによる形状係数も大幅に向上することができ、軽さと耐久性を求めるものの化粧母材と構造母材が両立するものであることを提供致します。In the present invention, the effect and strength of aluminum have been increased by alloying until now, but all the base materials that become bullion are made by refining, and in this process, much energy is used. Production has been limited. By solving these problems in parallel with usage and compounding, the original cosmetic body of aluminum can be formed on the surface layer while drastically reducing the amount of aluminum and aluminum alloy used. Using the composite three-dimensional lattice of the present invention for machinery, automobiles, buildings, ships, aerospace, electronics, electricity, soundproof walls, sound absorbing walls, home appliances, OA equipment, farm equipment, and many other structures, Furthermore, the light alloy-based 3D composite that has gained strength by mixing the micron 3D structure and the composite 3D shape lattice that accompanies the shaped grid can be used as a strength member for uses such as red. The most advantageous effect is that it can absorb sound waves in the entire flow area, acts as an absorber that does not transmit harmful micro vibrations to other joints, and drastically reduces metal fatigue. Yes, there In addition, it has become possible to use materials that could not be used as strength members until now, and leave a decorative layer on the surface layer in the same way by continuous casting, drawing, deformed drawing, deformed roll, etc., and making the inside a three-dimensional structure Depending on the application, the shape factor due to light and strong deformed shape or forced press can be greatly improved, and the cosmetic base material and structural base material are compatible, although lightness and durability are required. I will provide it.
本発明の例として、次のようなことを提供致します。本発明は製造段階で資源の省エネルギーを実現させ、更に大幅なコストダウンを実現し、比重的に複合化することにより、軽量化方向に行くことで輸送量などが大幅に増大する可能性を秘めるものであり、尚かつ製造段階では各接種材を使用する場合と使用しない場合があり、使用した場合、3次元形状物の内部にミクロ組織として3次元化する組織の機密度が高くなり、更に温度勾配による方向性凝固結晶が3次元形成物により遮られ、形成物から形成物間に対して更に3次元組織をミクロ的に増幅した組織ができ、3次元構造物の隙間の基材全てがミクロン3次元構造と成長し、それらで得たインゴット(化粧構造部分を全ての面に残した物)圧延し、これら圧延した3次元構造物を化粧面から発した3次元構造体を板で言えば中心層に持ち、板断面で表現すれば、上部断面化粧肉、下部断面化粧肉があり、プレス成形などで形状成型する場合、両化粧面が引っ張りと圧縮で形成され、それから発生する内部に向けて3次元層がアブソーバーの役目を果たし、滑らかな、そして強固な両表面化粧構造を得ることができ、板にした薄さの中でも拡大解釈すれば、3次元層は化粧面から内部に向けて徐々に成長し、例えば自動車などに使用した場合、プレス成形性を損なわず、溶接性を兼ね備える。又端面の折り曲げに対してもアブソーバーになる内部3次元層がある為、極めてエッジの立たない綺麗な折り曲げができるのが特徴であり、更に化粧層の下は3次元層に支えられている為、化粧層を支える為の3次元構造体圧縮形状が基材の3次元構造体が鱗状に重なり合い、破断などを避けるような構造を有し、その部分も強度メンバーとして形状係数を稼ぐ為、強度的には鋼板構造と比較して上回る構造を有することになる。それ故、全体を軽量化でき、省エネルギーに繋がる物である。更に複合材故に言えることであるが、防音効果が極めて高い為、樹脂マスキング、アスファルトマスキングなどを施す必要性が無くなる為、製造工程が簡素化され、電蝕性や耐候性に富み、極めて使いやすい複合材として本発明の3次元構造組織化粧面持ち板の用途は計り知れない物がある。The following is provided as an example of the present invention. The present invention realizes the energy saving of resources at the manufacturing stage, realizes a significant cost reduction, and combines with specific gravity, so that there is a possibility that the transportation amount etc. will increase significantly by going in the direction of weight reduction. In addition, in the production stage, each inoculum may or may not be used, and if used, the sensitivity of the structure that is three-dimensionalized as a microstructure inside the three-dimensional shape increases. Directionally solidified crystals due to the temperature gradient are blocked by the three-dimensional formation, and a structure in which the three-dimensional structure is further microscopically amplified from the formation to the formation can be formed. A micron three-dimensional structure grows, and the ingot obtained by them (the one that leaves the makeup structure part on all surfaces) is rolled, and the three-dimensional structure that originates the rolled three-dimensional structure from the decorative surface can be said to be a plate In the center layer In other words, if expressed in terms of plate cross-section, there are upper cross-section and bottom cross-section, and when shape molding is performed by press molding, both decorative faces are formed by pulling and compressing, and then three-dimensionally toward the interior generated from it The layer acts as an absorber, and a smooth and strong both-surface makeup structure can be obtained. If it is interpreted in the thinness of the board, the three-dimensional layer gradually grows from the decorative surface toward the inside. However, when used in, for example, an automobile, the press formability is not impaired and the weldability is also achieved. In addition, because there is an internal 3D layer that becomes an absorber even when bending the end face, it is characterized by being able to bend beautifully without any edges, and further, the bottom of the decorative layer is supported by the 3D layer The three-dimensional structure compression shape to support the decorative layer has a structure where the three-dimensional structure of the base material overlaps like a scale and avoids breakage, etc., and that part also gains a shape factor as a strength member, Specifically, it has a structure that exceeds that of the steel plate structure. Therefore, the whole can be reduced in weight, leading to energy saving. Furthermore, it can be said that it is a composite material, but because the soundproofing effect is extremely high, there is no need to perform resin masking, asphalt masking, etc., so the manufacturing process is simplified, and it is rich in electric corrosion resistance and weather resistance and extremely easy to use. As the composite material, there are immeasurable uses of the three-dimensional structure organization face plate of the present invention.
選択図の符号の説明Explanation of selection diagram symbols
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006339186A JP2008126312A (en) | 2006-11-17 | 2006-11-17 | Strengthening of aluminum, magnesium alloy and light alloy, three-dimensionally formed composite having noise shielding property, electrical and electronic property or the like, and micron three-dimensional double-bonded high toughness light alloy stock |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006339186A JP2008126312A (en) | 2006-11-17 | 2006-11-17 | Strengthening of aluminum, magnesium alloy and light alloy, three-dimensionally formed composite having noise shielding property, electrical and electronic property or the like, and micron three-dimensional double-bonded high toughness light alloy stock |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008126312A true JP2008126312A (en) | 2008-06-05 |
Family
ID=39552674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006339186A Pending JP2008126312A (en) | 2006-11-17 | 2006-11-17 | Strengthening of aluminum, magnesium alloy and light alloy, three-dimensionally formed composite having noise shielding property, electrical and electronic property or the like, and micron three-dimensional double-bonded high toughness light alloy stock |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008126312A (en) |
-
2006
- 2006-11-17 JP JP2006339186A patent/JP2008126312A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103331305B (en) | Method for asymmetric sink-type cast-rolling preparation of magnesium alloy strip under action of composite energy field | |
CN103273026B (en) | Multiple-energy-field asymmetric sunken type cast-rolling method for preparing aluminium alloy plates and strips for deep drawing | |
Eskin | Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys | |
CN101435064B (en) | High sound intensity ultrasonic processing apparatus for metal and alloy solidification and processing method thereof | |
CN102021472B (en) | Production method for continuous annealing process high strength and plasticity automobile steel plate | |
CN102189103B (en) | Light alloy electromagnetic ultrasonic casting and rolling integration device and method | |
CN101876000B (en) | Method for producing high-toughness ultra-thick plate by using continuous casting blank | |
CN105108080B (en) | Suppress the Semi-continuous casting crystallizer and its using method of magnesium alloy ingot blank cracking | |
CN102069165B (en) | Method for preparing non-oriented silicon steel columnar crystal thin strip blank by twin-roll thin strip continuous casting | |
CN100560763C (en) | A kind of aperture is porous Al alloy of micro-meter scale and preparation method thereof | |
CN113020261B (en) | Rolling method of metal composite plate with prefabricated corrugated interface | |
CN108220692A (en) | The preparation method of drawing aluminum alloy plate materials is thinned in a kind of high intensity | |
CN103774015B (en) | A kind of forming technology of middle strength heatproof magnesium alloy triangular section | |
CN106636933B (en) | A kind of method for preparing multiphase reinforced ferrite alloy | |
KR20040035646A (en) | Manufacturing method and high formability magnesium alloy wrought product | |
CN109097640B (en) | Manufacturing method of etchable high-strength aluminum for middle plate of mobile phone | |
CN104894445B (en) | Production method of ultrahigh-ductility Mg-Zn-Y alloy | |
CN107695318B (en) | A kind of foam magnesium sandwich plate and its Semi-Solid Thixoforming Seepage Foundry method | |
CN202192235U (en) | Low-frequency pulsed magnetic field aided semi-continuous casting mold for magnesium alloys | |
JP2008138280A (en) | Compound strengthened iron-based product which comprises iron as substrate and uses three-dimensional grid object to enable production of three-dimensional structure of composite therein | |
JP2008126312A (en) | Strengthening of aluminum, magnesium alloy and light alloy, three-dimensionally formed composite having noise shielding property, electrical and electronic property or the like, and micron three-dimensional double-bonded high toughness light alloy stock | |
CN1693505A (en) | Aluminium alloy foil for air conditioner radiation fin and its manufacturing method | |
CN103572164A (en) | Hot-rolled pickled plate and production method thereof | |
Hangai et al. | Foaming conditions of porous aluminum in fabrication of ADC12 aluminum alloy die castings by friction stir processing | |
CN110042313B (en) | High strength iron-based alloy, method of making same, and articles therefrom |