JP2008136022A - Surface acoustic wave device and communication device - Google Patents

Surface acoustic wave device and communication device Download PDF

Info

Publication number
JP2008136022A
JP2008136022A JP2006321146A JP2006321146A JP2008136022A JP 2008136022 A JP2008136022 A JP 2008136022A JP 2006321146 A JP2006321146 A JP 2006321146A JP 2006321146 A JP2006321146 A JP 2006321146A JP 2008136022 A JP2008136022 A JP 2008136022A
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
idt
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321146A
Other languages
Japanese (ja)
Other versions
JP5019858B2 (en
Inventor
Takeshi Nakai
剛 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006321146A priority Critical patent/JP5019858B2/en
Publication of JP2008136022A publication Critical patent/JP2008136022A/en
Application granted granted Critical
Publication of JP5019858B2 publication Critical patent/JP5019858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave device that reduces an insertion loss by suppressing small ripples in a passband. <P>SOLUTION: A surface acoustic wave element 14 has n electrode fingers for ground between electrode fingers for a signal at both ends of a central IDT electrode 3 and electrode fingers for a signal at the ends on the IDT electrode 3 sides of the IDT electrodes 2 and 4, wherein polarities of adjacent electrode fingers between the IDT electrodes are symmetrical with respect to the IDT electrode 3. A surface acoustic wave element 15 has (n-1) electrode fingers for ground between electrode fingers for a signal at one end of the central IDT electrode 6 and electrode fingers for a signal at the end on one end side of an IDT electrode 5 and has (n+1) electrode fingers for ground between electrode fingers for a signal on the other end of the IDT electrode 6 and electrode fingers for a signal at an end on the other end side of an IDT electrode 7, wherein the polarities of adjacent electrode fingers between the IDT electrodes are symmetrical with respect to the centers C and D of gaps between electrode fingers between the IDT electrodes. Electrode finger pitches of the IDT electrodes are symmetrical with respect to the center E of a gap between central electrode fingers of the IDT electrode 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば携帯電話等の移動体通信機器に用いられる弾性表面波フィルタや弾性表面波共振器等の弾性表面波装置及びこれを備えた通信装置に関するものである。   The present invention relates to a surface acoustic wave device such as a surface acoustic wave filter or a surface acoustic wave resonator used in a mobile communication device such as a mobile phone, and a communication device including the same.

従来、携帯電話や自動車電話等の移動体通信機器のRF(無線周波数)段に用いられる周波数選択フィルタ(以下、フィルタともいう)として、弾性表面波フィルタが広く用いられている。一般に、周波数選択フィルタに求められる特性としては、広通過帯域、低損失、通過帯域外の高減衰量等の諸特性が挙げられる。近年、特に移動体通信機器における受信感度の向上、低消費電力化のために、さらに弾性表面波フィルタに対する低損失化の要求が高まっている。また、近年、移動体通信機器において、小型化のために、アンテナが従来のホイップアンテナから誘電体セラミックス等を用いた内蔵アンテナに移行してきている。そのため、アンテナのゲインを充分に得ることが難しくなり、弾性表面波フィルタに対してさらに挿入損失を改善させる要求が増大している。   Conventionally, a surface acoustic wave filter has been widely used as a frequency selection filter (hereinafter also referred to as a filter) used in an RF (radio frequency) stage of a mobile communication device such as a mobile phone or a car phone. In general, characteristics required for a frequency selection filter include various characteristics such as a wide passband, low loss, and high attenuation outside the passband. In recent years, there has been an increasing demand for lower loss for surface acoustic wave filters in order to improve reception sensitivity and lower power consumption particularly in mobile communication devices. In recent years, in mobile communication devices, the antenna has shifted from a conventional whip antenna to a built-in antenna using dielectric ceramics or the like for miniaturization. For this reason, it is difficult to obtain a sufficient antenna gain, and there is an increasing demand for further improving the insertion loss of the surface acoustic wave filter.

このような広帯域化、低損失化を実現するために、例えば、圧電基板上に3つのIDT電極(Inter Digital Transducer)を設け、縦1次モードと縦3次モードを利用した2重モード弾性表面波共振器フィルタが提案されている。   In order to realize such a broad band and low loss, for example, three IDT electrodes (Inter Digital Transducer) are provided on a piezoelectric substrate, and a dual mode elastic surface using a longitudinal primary mode and a longitudinal tertiary mode is used. Wave resonator filters have been proposed.

特に、隣り合うIDT電極の端部に電極指の狭ピッチ部を設けることにより、IDT電極間におけるバルク波の放射損を低減して、共振モードの状態を制御することにより広帯域化及び低損失化が図られていた(例えば、特許文献1を参照。)。   In particular, by providing a narrow pitch portion of electrode fingers at the ends of adjacent IDT electrodes, the radiation loss of bulk waves between the IDT electrodes is reduced, and the state of the resonance mode is controlled to achieve a wider band and lower loss. (For example, refer to Patent Document 1).

また、近年、移動体通信機器等の小型化、軽量化及び低コスト化のために、使用部品の削減が進められ、弾性表面波フィルタに新たな機能の付加が要求されてきている。その1つに、不平衡入力−平衡出力型または平衡入力−不平衡出力型に構成できるようにするといった要求がある。ここで、平衡入力または平衡出力とは、信号が2つの信号線路間の電位差として入力または出力するものをいい、各信号線路の信号は振幅が等しく、位相が逆相になっている。これに対して、不平衡入力または不平衡出力とは、信号がグランド電位に対する1本の線路の電位として入力または出力するものをいう。   In recent years, in order to reduce the size, weight, and cost of mobile communication devices, the number of parts used has been reduced, and a new function has been required for the surface acoustic wave filter. One of the requirements is that it can be configured as an unbalanced input-balanced output type or a balanced input-unbalanced output type. Here, the balanced input or balanced output means that a signal is input or output as a potential difference between two signal lines, and the signals of each signal line have the same amplitude and the phases are reversed. On the other hand, unbalanced input or unbalanced output means that a signal is input or output as the potential of one line with respect to the ground potential.

従来の弾性表面波フィルタは、一般的に不平衡入力−不平衡出力型弾性表面波フィルタ(以下、不平衡型弾性表面波フィルタという)であるため、弾性表面波フィルタの後段に接続される回路や電子部品が平衡入力型となっている場合は、弾性表面波フィルタと後段との間に、不平衡−平衡変換器(以下、バランともいう)を挿入した回路構成を採っていた。同様に弾性表面波フィルタの前段の回路や電子部品が平衡出力型となっている場合は、前段と弾性表面波フィルタとの間にバランを挿入した回路構成となっていた。   Since the conventional surface acoustic wave filter is generally an unbalanced input-unbalanced output type surface acoustic wave filter (hereinafter referred to as an unbalanced surface acoustic wave filter), a circuit connected to the subsequent stage of the surface acoustic wave filter. When the electronic component is a balanced input type, a circuit configuration in which an unbalanced-balanced converter (hereinafter also referred to as a balun) is inserted between the surface acoustic wave filter and the subsequent stage is employed. Similarly, in the case where the circuit or electronic component in the previous stage of the surface acoustic wave filter is a balanced output type, the circuit configuration is such that a balun is inserted between the previous stage and the surface acoustic wave filter.

現在、バランを削除するために、弾性表面波フィルタに不平衡−平衡変換機能または平衡−不平衡変換機能を持たせた、不平衡入力−平衡出力型弾性表面波フィルタまたは平衡入力−不平衡出力型弾性表面波フィルタ(以下、平衡型弾性表面波フィルタという)の実用化が進められている。不平衡−平衡変換機能の要求を満たすため、縦結合二重モードフィルタが多く用いられている。また、RF用フィルタとしては、接続端子の一方を不平衡接続で入出力インピーダンスが50Ω、他方を平衡接続で入出力インピーダンスが100〜200Ωに整合させるという要求が多い。   Currently, an unbalanced input-balanced output type surface acoustic wave filter or balanced input-unbalanced output, in which a surface acoustic wave filter is provided with an unbalanced-balanced conversion function or balanced-unbalanced conversion function to eliminate the balun. A surface acoustic wave filter (hereinafter referred to as a balanced surface acoustic wave filter) has been put into practical use. In order to satisfy the requirement of the unbalance-balance conversion function, a longitudinally coupled double mode filter is often used. In addition, as an RF filter, there is a great demand to match one input terminal of an unbalanced connection with an input / output impedance of 50Ω and the other balanced connection with an input / output impedance of 100 to 200Ω.

また、図8に示すように、両側を反射器電極210,211に挟まれた3個のIDT電極202,203,204を有する1段目の縦結合型二重モードフィルタのうち、中央のIDT電極203に不平衡端子221を接続し、その両側のIDT電極202,204がそれぞれ2段目のIDT電極205,207に縦続接続され、2段目の中央IDT電極206を2分割して、逆位相にして平衡信号端子222,223に接続している。これにより、入力インピーダンス50Ωの不平衡入力で、出力インピーダンス200Ωの平衡出力である構成が提案されている(例えば、特許文献2を参照。)。なお、図8において、212,213は反射器電極である。   Further, as shown in FIG. 8, among the first-stage vertically coupled double mode filters having three IDT electrodes 202, 203, and 204 sandwiched between reflector electrodes 210 and 211 on both sides, the center IDT The unbalanced terminal 221 is connected to the electrode 203, the IDT electrodes 202 and 204 on both sides thereof are cascade-connected to the second-stage IDT electrodes 205 and 207, respectively, and the second-stage central IDT electrode 206 is divided into two parts, The phase is connected to the balanced signal terminals 222 and 223. Accordingly, a configuration has been proposed in which an unbalanced input with an input impedance of 50Ω and a balanced output with an output impedance of 200Ω are used (see, for example, Patent Document 2). In FIG. 8, reference numerals 212 and 213 denote reflector electrodes.

図9は、従来の平衡−不平衡変換機能を有する弾性表面波フィルタの電極構造を模式的に示す平面図である。圧電基板201上に並列接続させた弾性表面波フィルタ212,213を配置し、縦結合共振器型弾性表面波素子212,213は、それぞれ3個のIDT電極202,203,204及び205,206,207と、その両側に配置された反射器電極208,209及び210,211とから構成されている。   FIG. 9 is a plan view schematically showing an electrode structure of a surface acoustic wave filter having a conventional balance-unbalance conversion function. The surface acoustic wave filters 212 and 213 connected in parallel on the piezoelectric substrate 201 are arranged, and the longitudinally coupled resonator type surface acoustic wave elements 212 and 213 include three IDT electrodes 202, 203, 204 and 205, 206, respectively. 207, and reflector electrodes 208, 209 and 210, 211 arranged on both sides thereof.

縦結合共振器型弾性表面波素子212,213は、並列接続されて不平衡信号端子214に接続されている。不平衡信号端子214に接続されたIDT電極202,204及びIDT電極205,207は、一対の互いに対向した櫛歯状電極に電界が印加され、弾性表面波を励振する。励振された弾性表面波が中央のIDT電極203,206に伝搬される。また、中央のIDT電極203の位相は、中央のIDT電極206の位相に対して180°異なった逆相となっており、最終的に中央のIDT電極203,206の一方の櫛歯状電極から平衡出力信号端子215,216へ信号が伝わり平衡出力される。このような構成により、平衡−不平衡変換機能を実現している。また、図8に示した2段縦続接続したタイプの縦結合共振器型弾性表面波フィルタと比べて、IDT電極の電極指の交差幅を従来の半分まで小さくし、さらに、並列接続することにより、縦結合共振器型弾性表面波フィルタにおける抵抗損失を小さくすることができ、低損失な縦結合共振器型弾性表面波フィルタを実現することができる。(例えば、特許文献3を参照。)。
特開2002−9587号公報 特開平11−97966号公報 特開2002−84164号公報
The longitudinally coupled resonator type surface acoustic wave elements 212 and 213 are connected in parallel and connected to the unbalanced signal terminal 214. In the IDT electrodes 202 and 204 and the IDT electrodes 205 and 207 connected to the unbalanced signal terminal 214, an electric field is applied to a pair of mutually opposed comb-like electrodes to excite surface acoustic waves. The excited surface acoustic wave propagates to the center IDT electrodes 203 and 206. In addition, the phase of the center IDT electrode 203 is a reverse phase that is 180 ° different from the phase of the center IDT electrode 206, and finally from one of the comb-like electrodes of the center IDT electrodes 203 and 206. A signal is transmitted to the balanced output signal terminals 215 and 216 and is output in a balanced manner. With such a configuration, a balanced-unbalanced conversion function is realized. Compared with the longitudinally coupled resonator type surface acoustic wave filter of the two-stage cascade connection type shown in FIG. 8, the crossing width of the electrode fingers of the IDT electrode is reduced to half that of the prior art, and further connected in parallel. The resistance loss in the longitudinally coupled resonator type surface acoustic wave filter can be reduced, and a low-loss longitudinally coupled resonator type surface acoustic wave filter can be realized. (For example, see Patent Document 3).
Japanese Patent Laid-Open No. 2002-9587 JP 11-97966 A JP 2002-84164 A

図9に示すような従来の弾性表面波フィルタを用いることにより、不平衡−平衡変換機能を実現することができる。しかしながら、隣り合うIDT電極間で互いに隣接する電極指の極性、即ち隣接する電極指が信号用であるか接地用であるかの配置及び組合せ、及び各IDT電極の電極指ピッチの分布により、図10の通過帯域近傍の周波数特性に示すように、フィルタ特性における通過帯域内で微小リップル(図10の矢印部)が発生するために、通過帯域内における挿入損失が劣化する問題点があった。   By using a conventional surface acoustic wave filter as shown in FIG. 9, an unbalance-balance conversion function can be realized. However, depending on the polarity of the electrode fingers adjacent to each other between adjacent IDT electrodes, that is, the arrangement and combination of whether the adjacent electrode fingers are for signal or ground, and the distribution of the electrode finger pitch of each IDT electrode As shown in the frequency characteristics in the vicinity of the 10 passbands, there is a problem that the insertion loss in the passband deteriorates because minute ripples (arrow portions in FIG. 10) are generated in the passband in the filter characteristics.

また、従来、弾性表面波フィルタを通過帯域外で高減衰量化させる手段として、弾性表面波の伝搬方向に沿って3個のIDT電極を近接配置し、その両側に反射器電極を配設した縦結合共振器型弾性表面波素子を複数段縦続接続して弾性表面波フィルタとする構成が広く用いられている。この構成を用いると、縦結合共振器型弾性表面波素子を複数段に縦続接続するため、通過帯域内の挿入損失が大きくなるが、通過帯域外を高減衰量化できる。しかし、この縦結合共振器型弾性表面波素子を複数段縦続接続した構成により、通過帯域幅の広い弾性表面波フィルタを得ようとすると、要求される挿入損失を向上させるには不充分であった。   Conventionally, as a means for increasing the attenuation of the surface acoustic wave filter outside the pass band, three IDT electrodes are arranged close to each other along the propagation direction of the surface acoustic wave, and reflector electrodes are arranged on both sides thereof. A configuration in which a coupled resonator type surface acoustic wave element is cascade-connected to form a surface acoustic wave filter is widely used. When this configuration is used, the longitudinally coupled resonator type surface acoustic wave elements are cascaded in a plurality of stages, so that the insertion loss in the passband increases, but the attenuation outside the passband can be increased. However, when a surface acoustic wave filter having a wide pass bandwidth is obtained by using a configuration in which the longitudinally coupled resonator type surface acoustic wave elements are connected in cascade, it is insufficient to improve the required insertion loss. It was.

また、特許文献1,2に開示されている弾性表面波装置では、IDT電極の端部に狭ピッチ部を設けると、弾性表面波が結合した状態で電極指ピッチが異なる部分が存在するため、通過帯域におけるフィルタ特性のリップルが大きくなり、肩特性が劣化して通過帯域の平坦な特性が得られない。また、IDT電極の端部に狭ピッチ部を設けるだけでは、弾性表面波の励振に利用できる基本的な共振モードの数が縦1次モードと縦3次モードに限定され、他の共振モードが利用できないので、設計の自由度が小さくなっていた。そのため、通過帯域におけるフィルタ特性の平坦性を向上させ、広帯域化しつつ、挿入損失を向上させるには不充分であった。   In addition, in the surface acoustic wave devices disclosed in Patent Documents 1 and 2, when a narrow pitch portion is provided at the end of the IDT electrode, there are portions where the electrode finger pitch is different in a state where the surface acoustic waves are combined. The ripple of the filter characteristic in the pass band increases, the shoulder characteristic deteriorates, and the flat characteristic of the pass band cannot be obtained. Also, simply providing a narrow pitch portion at the end of the IDT electrode limits the number of basic resonance modes that can be used for excitation of surface acoustic waves to the longitudinal first-order mode and the longitudinal third-order mode. Since it cannot be used, the degree of freedom in design was small. Therefore, it has been insufficient to improve the insertion loss while improving the flatness of the filter characteristics in the passband and increasing the bandwidth.

従って、本発明は、上述した従来の諸問題に鑑み提案されたものであり、その目的は、弾性表面波フィルタの通過帯域におけるスパイク状のスプリアス(微小リップル)を改善して挿入損失特性が向上した、高品質な平衡型弾性表面波フィルタとしても機能できる弾性表面波装置及びそれを用いた通信装置を提供することにある。   Accordingly, the present invention has been proposed in view of the above-described conventional problems, and its purpose is to improve spike loss (micro ripple) in the pass band of the surface acoustic wave filter and improve insertion loss characteristics. Another object of the present invention is to provide a surface acoustic wave device that can also function as a high-quality balanced surface acoustic wave filter and a communication device using the same.

本発明の弾性表面波装置は、圧電基板上に、前記圧電基板上を伝搬する弾性表面波の伝搬方向に沿って、前記伝搬方向に直交する方向に長い電極指を複数備えた3個のIDT電極と、それらの両側にそれぞれ配置され、前記伝搬方向に直交する方向に長い電極指を複数備えた反射器電極とを有する第1及び第2の弾性表面波素子が形成されており、前記第1及び第2の弾性表面波素子は不平衡信号端子に並列接続されているとともにそれぞれが平衡出力部または平衡入力部とされており、前記第1及び第2の弾性表面波素子のそれぞれの中央の前記IDT電極に平衡信号端子が接続されている弾性表面波装置であって、
前記第1及び第2の弾性表面波素子のうち一方は、中央の前記IDT電極の両端の信号用電極指と、中央の前記IDT電極の両側の前記IDT電極における中央の前記IDT電極側の端の信号用電極指との間に配置された接地用電極指の本数がそれぞれn本であるとともに、隣り合う前記IDT電極間で互いに隣接する電極指の極性が中央の前記IDT電極を中心にして対称的な配置とされており、さらに3個の前記IDT電極の電極指ピッチが中央の前記IDT電極の中心に位置する電極指を中心にして対称的な分布とされており、
前記第1及び第2の弾性表面波素子のうち他方は、中央の前記IDT電極の一端の信号用電極指と、前記一端側で中央の前記IDT電極に隣接する一方の前記IDT電極の前記一端側の端の信号用電極指との間に配置された接地用電極指の本数がn−1本で、中央の前記IDT電極の他端の信号用電極指と、前記他端側で中央の前記IDT電極に隣接する他方の前記IDT電極の前記他端側の端の信号用電極指との間に配置された接地用電極指の本数がn+1本であるとともに、隣り合う前記IDT電極間で互いに隣接する電極指の極性が隣り合う前記IDT電極間の電極指間ギャップの中心に対して対称的な配置とされており、さらに前記IDT電極の電極指ピッチが中央の前記IDT電極の中心に位置する電極指間ギャップの中心に対して対称的な分布とされていることを特徴とする。
The surface acoustic wave device of the present invention includes three IDTs each having a plurality of electrode fingers that are long in the direction orthogonal to the propagation direction along the propagation direction of the surface acoustic wave propagating on the piezoelectric substrate. There are formed first and second surface acoustic wave elements each having an electrode and a reflector electrode that is disposed on both sides of each of the electrodes and includes a plurality of long electrode fingers in a direction orthogonal to the propagation direction, The first and second surface acoustic wave elements are connected in parallel to the unbalanced signal terminal and are each a balanced output section or a balanced input section, and the respective centers of the first and second surface acoustic wave elements are A surface acoustic wave device in which a balanced signal terminal is connected to the IDT electrode.
One of the first and second surface acoustic wave elements includes a signal electrode finger on both ends of the central IDT electrode and an end on the IDT electrode side in the center of the IDT electrode on both sides of the central IDT electrode. The number of ground electrode fingers arranged between each of the signal electrode fingers is n, and the polarity of the electrode fingers adjacent to each other between the adjacent IDT electrodes is centered on the IDT electrode at the center. The electrode finger pitch of the three IDT electrodes is a symmetrical distribution centering on the electrode finger located at the center of the center IDT electrode,
The other of the first and second surface acoustic wave elements includes a signal electrode finger at one end of the central IDT electrode and the one end of one IDT electrode adjacent to the central IDT electrode on the one end side. The number of ground electrode fingers arranged between the signal electrode fingers on the side end is n−1, the signal electrode fingers on the other end of the center IDT electrode, and the center on the other end side. The number of ground electrode fingers arranged between the other electrode side electrode finger of the other IDT electrode adjacent to the IDT electrode is n + 1 and between the adjacent IDT electrodes The polarities of the electrode fingers adjacent to each other are arranged symmetrically with respect to the center of the gap between the electrode fingers between the adjacent IDT electrodes, and the electrode finger pitch of the IDT electrodes is set to the center of the center IDT electrode. To the center of the gap between the electrode fingers Characterized in that it is a symmetrical distribution.

また、本発明の弾性表面波装置は好ましくは、前記第1及び第2の弾性表面波素子のうちの一方における3個の前記IDT電極の電極指ピッチの分布と、前記第1及び第2の弾性表面波素子のうちの他方における3個の前記IDT電極の電極指ピッチの分布とが同じであることを特徴とする。   In the surface acoustic wave device according to the present invention, preferably, the electrode finger pitch distribution of the three IDT electrodes in one of the first and second surface acoustic wave elements, and the first and second The electrode finger pitch distribution of the three IDT electrodes in the other of the surface acoustic wave elements is the same.

また、本発明の弾性表面波装置は好ましくは、前記第1及び第2の弾性表面波素子は、弾性表面波共振子を介して前記不平衡信号端子に並列接続されていることを特徴とする。   In the surface acoustic wave device according to the present invention, preferably, the first and second surface acoustic wave elements are connected in parallel to the unbalanced signal terminal via a surface acoustic wave resonator. .

また、本発明の弾性表面波装置は好ましくは、前記第1及び第2の弾性表面波素子は、それらが隣り合う箇所における反射器電極が一体的に形成された1つの反射器電極からなることを特徴とする。   In the surface acoustic wave device according to the present invention, it is preferable that the first and second surface acoustic wave elements include one reflector electrode formed integrally with a reflector electrode at a location where they are adjacent to each other. It is characterized by.

また、本発明の通信装置は、上記本発明の弾性表面波装置を有する、受信回路及び送信回路の少なくとも一方を備えたことを特徴とする。   A communication apparatus according to the present invention includes at least one of a reception circuit and a transmission circuit having the surface acoustic wave device according to the present invention.

本発明の弾性表面波装置は、圧電基板上に、圧電基板上を伝搬する弾性表面波の伝搬方向に沿って、伝搬方向に直交する方向に長い電極指を複数備えた3個のIDT電極と、それらの両側にそれぞれ配置され、伝搬方向に直交する方向に長い電極指を複数備えた反射器電極とを有する第1及び第2の弾性表面波素子が形成されており、第1及び第2の弾性表面波素子は不平衡信号端子に並列接続されているとともにそれぞれが平衡出力部または平衡入力部とされており、第1及び第2の弾性表面波素子のそれぞれの中央のIDT電極に平衡信号端子が接続されている弾性表面波装置であって、
第1及び第2の弾性表面波素子のうち一方は、中央のIDT電極の両端の信号用電極指と、中央のIDT電極の両側のIDT電極における中央のIDT電極側の端の信号用電極指との間に配置された接地用電極指の本数がそれぞれn本であるとともに、隣り合うIDT電極間で互いに隣接する電極指の極性が中央のIDT電極を中心にして対称的な配置とされており、さらに3個の前記IDT電極の電極指ピッチが中央のIDT電極の中心に位置する電極指を中心にして対称的な分布とされており、
第1及び第2の弾性表面波素子のうち他方は、中央のIDT電極の一端の信号用電極指と、一端側で中央のIDT電極に隣接する一方のIDT電極の一端側の端の信号用電極指との間に配置された接地用電極指の本数がn−1本で、中央のIDT電極の他端の信号用電極指と、他端側で中央のIDT電極に隣接する他方のIDT電極の他端側の端の信号用電極指との間に配置された接地用電極指の本数がn+1本であるとともに、隣り合うIDT電極間で互いに隣接する電極指の極性が隣り合うIDT電極間の電極指間ギャップの中心に対して対称的な配置とされており、さらにIDT電極の電極指ピッチが中央のIDT電極の中心に位置する電極指間ギャップの中心に対して対称的な分布とされていることから、以下の作用効果を奏する。
The surface acoustic wave device of the present invention includes three IDT electrodes each having a plurality of electrode fingers that are long in the direction orthogonal to the propagation direction along the propagation direction of the surface acoustic wave propagating on the piezoelectric substrate. The first and second surface acoustic wave elements having reflector electrodes provided with a plurality of long electrode fingers in the direction orthogonal to the propagation direction are respectively formed on both sides of the first and second surface acoustic wave elements. These surface acoustic wave elements are connected in parallel to the unbalanced signal terminal and are each a balanced output section or a balanced input section, and are balanced with the IDT electrodes at the center of the first and second surface acoustic wave elements. A surface acoustic wave device to which a signal terminal is connected,
One of the first and second surface acoustic wave elements includes a signal electrode finger at both ends of the central IDT electrode and a signal electrode finger at the end of the IDT electrode on both sides of the central IDT electrode on the central IDT electrode side. The number of grounding electrode fingers arranged between each electrode is n, and the polarity of the electrode fingers adjacent to each other between adjacent IDT electrodes is symmetrical with respect to the center IDT electrode. Further, the electrode finger pitch of the three IDT electrodes is symmetric with respect to the electrode finger located at the center of the center IDT electrode,
The other of the first and second surface acoustic wave elements is a signal electrode finger at one end of the center IDT electrode and a signal at one end of one IDT electrode adjacent to the center IDT electrode on one end side. The number of ground electrode fingers arranged between the electrode fingers is n−1, the other electrode electrode finger of the other end of the center IDT electrode and the other IDT adjacent to the center IDT electrode on the other end side. IDT electrodes in which the number of ground electrode fingers arranged between the signal electrode fingers on the other end side of the electrodes is n + 1 and the polarities of the electrode fingers adjacent to each other between adjacent IDT electrodes are adjacent to each other The electrode finger pitch of the IDT electrodes is symmetrically distributed with respect to the center of the gap between the electrode fingers located at the center of the center IDT electrode. Therefore, the following effects are achieved.

即ち、IDT電極の隣接部分において電極指の極性配置が非対称の場合には、励振された弾性表面波の高次モードの分布が非対称となること、弾性表面波の励振フィールドが非対称になること、及び弾性表面波のIDT電極(励振電極)及び反射器電極において励振効率が悪くなることにより、微小リップルが発生するという問題が生じていたが、電極指が隣接する部分における接地端子に接続された電極指の本数を一定にし、2つの弾性表面波素子の電極指ピッチの対称性を確保した本発明の上記構成により、微小リップルが発生するという問題を解消できる。   That is, when the polarity arrangement of the electrode fingers is asymmetric in the adjacent portion of the IDT electrode, the distribution of higher-order modes of the excited surface acoustic wave becomes asymmetric, and the excitation field of the surface acoustic wave becomes asymmetric. In addition, a problem that minute ripples are generated due to deterioration of excitation efficiency in the IDT electrode (excitation electrode) and the reflector electrode of the surface acoustic wave occurred, but the electrode finger was connected to the ground terminal in the adjacent portion With the above configuration of the present invention in which the number of electrode fingers is constant and the symmetry of the electrode finger pitches of the two surface acoustic wave elements is ensured, the problem of generation of minute ripples can be solved.

本発明のように電極指の極性配置が対称性を有する場合には、励振された弾性表面波の高次モードの分布が対称となり、また、弾性表面波の励振フィールドが対称になり、さらに、IDT電極及び反射器電極の反射係数が小さくなることがなく反射特性が良好となり、励振効率が劣化することがないために、局所的に微小リップルが発生するという問題が発生しない。   When the polarity arrangement of the electrode fingers has symmetry as in the present invention, the distribution of the higher-order modes of the excited surface acoustic wave is symmetric, the excitation field of the surface acoustic wave is symmetric, Since the reflection coefficient of the IDT electrode and the reflector electrode is not reduced and the reflection characteristics are improved and the excitation efficiency is not deteriorated, there is no problem that a minute ripple is locally generated.

また、本発明の弾性表面波装置は好ましくは、第1及び第2の弾性表面波素子のうちの一方における3個のIDT電極の電極指ピッチの分布と、第1及び第2の弾性表面波素子のうちの他方における3個のIDT電極の電極指ピッチの分布とが同じであることにより、励振される弾性表面波の分布を2つの弾性表面波素子において対称にすることができ、そのため通過帯域内における微小リップルの発生をより有効に防止することができる。   In the surface acoustic wave device of the present invention, it is preferable that the electrode finger pitch distribution of the three IDT electrodes in one of the first and second surface acoustic wave elements and the first and second surface acoustic waves. The distribution of the electrode finger pitches of the three IDT electrodes on the other of the elements is the same, so that the distribution of the excited surface acoustic waves can be made symmetric in the two surface acoustic wave elements, so that it passes therethrough. Generation of minute ripples in the band can be prevented more effectively.

また、本発明の弾性表面波装置は好ましくは、第1及び第2の弾性表面波素子は、弾性表面波共振子を介して不平衡信号端子に並列接続されていることにより、弾性表面波共振子を接続することで減衰極を形成することができ、また、電極指の周期を調整することにより要求される仕様を満たすように特性を制御できることができる。さらに、複数の弾性表面波共振子を接続するとともにそれらの電極指の周期を異なるように構成することにより、減衰極を複数形成するとともに減衰極の周波数位置を制御することができ、さらに高度に要求される仕様を満たす構成とすることができる。   In the surface acoustic wave device according to the present invention, preferably, the first and second surface acoustic wave elements are connected in parallel to the unbalanced signal terminal via the surface acoustic wave resonator, thereby causing surface acoustic wave resonance. Attenuation poles can be formed by connecting the elements, and characteristics can be controlled to meet the required specifications by adjusting the period of the electrode fingers. Furthermore, by connecting multiple surface acoustic wave resonators and making their electrode finger periods different, it is possible to form multiple attenuation poles and control the frequency position of the attenuation poles. It can be configured to meet the required specifications.

また、インピーダンス50Ωで不平衡信号端子に高周波信号が入力または出力された場合、インピーダンス50Ωで第1及び第2の弾性表面波素子に接続することが難しく、要求されるインピーダンス整合を取ることが困難になる。しかしながら、初段が弾性表面波共振子(単一のIDT電極及び反射器電極から成る弾性表面波素子)の場合は、インピーダンス整合を容易に取ることができる。   Further, when a high frequency signal is input or output to an unbalanced signal terminal with an impedance of 50Ω, it is difficult to connect to the first and second surface acoustic wave elements with an impedance of 50Ω, and it is difficult to obtain the required impedance matching. become. However, when the first stage is a surface acoustic wave resonator (surface acoustic wave element comprising a single IDT electrode and a reflector electrode), impedance matching can be easily taken.

また、本発明の弾性表面波素子は好ましくは、第1及び第2の弾性表面波素子は、それらが隣り合う箇所における反射器電極が一体的に形成された1つの反射器電極からなることにより、2つの弾性表面波素子で励振された弾性表面波が、一体的に形成された反射器電極において、位相がそれぞれプラス側、マイナス側で打ち消し合い、反射特性が良好になることにより、さらに通過帯域内の微小リップルの発生を抑制することができる。   The surface acoustic wave element according to the present invention is preferably configured such that each of the first and second surface acoustic wave elements includes one reflector electrode formed integrally with a reflector electrode at a location where they are adjacent to each other. Surface acoustic waves excited by two surface acoustic wave elements further pass through the integrally formed reflector electrode by canceling out the phases on the plus side and minus side, respectively, and improving the reflection characteristics. Generation of minute ripples in the band can be suppressed.

本発明の通信装置は、上記いずれかの本発明の弾性表面波装置を有する、受信回路及び送信回路の少なくとも一方を備えたことにより、従来より要求されていた厳しい挿入損失を満たすことができるものが得られ、消費電力が低減され、かつ感度が格段に良好な通信装置を実現することができる。   The communication device according to the present invention can satisfy the severe insertion loss that has been conventionally required by including at least one of the reception circuit and the transmission circuit having any one of the surface acoustic wave devices according to the present invention. Thus, it is possible to realize a communication device with reduced power consumption and significantly improved sensitivity.

以下、本発明の弾性表面波装置の実施の形態について図面を参照にしつつ詳細に説明する。また、本発明の弾性表面波装置について、簡単な構造の共振器型の弾性表面波フィルタを例にとり説明する。なお、以下に説明する図面において同一構成には同一符号を付すものとする。また、各電極の大きさや電極間の距離等、電極指の本数や間隔等については、説明のために模式的に図示している。   Embodiments of a surface acoustic wave device according to the present invention will be described below in detail with reference to the drawings. The surface acoustic wave device of the present invention will be described by taking a resonator type surface acoustic wave filter having a simple structure as an example. In addition, in drawing demonstrated below, the same code | symbol shall be attached | subjected to the same structure. In addition, the number of electrodes and the distance between the electrodes, such as the size of each electrode and the distance between the electrodes, are schematically illustrated for the purpose of explanation.

図1に、本発明の弾性表面波装置の電極構造について実施の形態の一例の平面図を示す。図1に示すように、本発明の弾性表面波装置は、圧電基板上1に、圧電基板1上を伝搬する弾性表面波の伝搬方向に沿って、この伝搬方向に直交する方向に長い電極指を複数備えた3個のIDT電極2〜7と、それらの両側にそれぞれ配置され、伝搬方向に直交する方向に長い電極指を複数備えた反射器電極8〜11とを有する第1及び第2の弾性表面波素子14,15が形成されており、第1及び第2の弾性表面波素子14,15は不平衡信号端子21に並列接続されているとともにそれぞれが平衡出力部または平衡入力部とされており、第1及び第2の弾性表面波素子14,15のそれぞれの中央のIDT電極3,6に平衡信号端子22,23が接続されている。   FIG. 1 shows a plan view of an example of an embodiment of an electrode structure of a surface acoustic wave device according to the present invention. As shown in FIG. 1, the surface acoustic wave device of the present invention has an electrode finger that is long on a piezoelectric substrate 1 along the direction of propagation of surface acoustic waves propagating on the piezoelectric substrate 1. First and second having three IDT electrodes 2 to 7 having a plurality of electrodes and reflector electrodes 8 to 11 each having a plurality of long electrode fingers arranged on both sides thereof and orthogonal to the propagation direction. The surface acoustic wave elements 14 and 15 are formed, and the first and second surface acoustic wave elements 14 and 15 are connected in parallel to the unbalanced signal terminal 21 and each is connected to a balanced output section or a balanced input section. The balanced signal terminals 22 and 23 are connected to the IDT electrodes 3 and 6 at the center of the first and second surface acoustic wave elements 14 and 15, respectively.

また、第1及び第2の弾性表面波素子14,15のうち一方(たとえば、弾性表面波素子14)は、中央のIDT電極3の両端の信号用電極指と、中央のIDT電極3の両側のIDT電極2,4における中央のIDT電極3側の端の信号用電極指との間に配置された接地用電極指の本数がそれぞれn本(図1の場合1本)であるとともに、隣り合うIDT電極間(IDT電極2,3間、及びIDT電極3,4間)で互いに隣接する電極指の極性が中央のIDT電極3を中心にして対称的な配置とされている。   Further, one of the first and second surface acoustic wave elements 14 and 15 (for example, the surface acoustic wave element 14) includes signal electrode fingers at both ends of the central IDT electrode 3 and both sides of the central IDT electrode 3. The number of ground electrode fingers arranged between the IDT electrodes 2 and 4 and the signal electrode fingers at the end on the center IDT electrode 3 side is n (one in the case of FIG. 1) and adjacent to each other. The polarities of the electrode fingers adjacent to each other between the matching IDT electrodes (between the IDT electrodes 2 and 3 and between the IDT electrodes 3 and 4) are arranged symmetrically with respect to the center IDT electrode 3.

なお、対称的な配置とは、図1の弾性表面波素子14に関していえば、IDT電極3の中心Aの軸(弾性表面波の伝搬方向に直交する方向に沿った軸)に対して線対称とされた配置をいう。以下、同様とする。   Note that the symmetrical arrangement means that the surface acoustic wave element 14 in FIG. 1 is line symmetric with respect to the axis of the center A of the IDT electrode 3 (the axis along the direction orthogonal to the propagation direction of the surface acoustic wave). Refers to the arrangement. The same shall apply hereinafter.

ここで、平衡信号端子(平衡信号出力(入力)端子:信号ライン)に接続された電極指をS、接地端子に接続された電極指をGとすると、例えば、第1の弾性表面波素子14は、上記隣接箇所において、図の左側より、SGS,SGSの配置であり、接地用電極指の本数がそれぞれ1本である。さらに、図1(b)に示すように、3個のIDT電極2〜4の電極指ピッチが中央のIDT電極3の中心Aに位置する電極指を中心にして対称的な分布とされている。なお、図1(b)において、縦軸の電極指ピッチp(X)の単位はμmである。また図2(b)〜図5(b)においても同様である。   Here, when the electrode finger connected to the balanced signal terminal (balanced signal output (input) terminal: signal line) is S and the electrode finger connected to the ground terminal is G, for example, the first surface acoustic wave element 14 is used. Is the arrangement of SGS and SGS from the left side of the figure at the adjacent location, and the number of ground electrode fingers is one each. Further, as shown in FIG. 1B, the electrode finger pitch of the three IDT electrodes 2 to 4 is symmetric with respect to the electrode finger located at the center A of the center IDT electrode 3. . In FIG. 1B, the unit of the electrode finger pitch p (X) on the vertical axis is μm. The same applies to FIGS. 2B to 5B.

また、第1及び第2の弾性表面波素子14,15のうち他方(たとえば、弾性表面波素子15)は、中央のIDT電極6の一端の信号用電極指と、その一端側で中央のIDT電極6に隣接する一方のIDT電極5の一端側の端の信号用電極指との間に配置された接地用電極指の本数がn−1本(図1の場合0本)で、中央のIDT電極6の他端の信号用電極指と、その他端側で中央のIDT電極6に隣接する他方のIDT電極7の他端側の端の信号用電極指との間に配置された接地用電極指の本数がn+1本(図1の場合2本)であるとともに、隣り合うIDT電極間(IDT電極5,6間、及びIDT電極6,7間)で互いに隣接する電極指の極性が隣り合うIDT電極間(IDT電極5,6間、及びIDT電極6,7間)の電極指間ギャップの中心C,Dに対して対称的な配置とされている。   The other of the first and second surface acoustic wave elements 14 and 15 (for example, the surface acoustic wave element 15) includes a signal electrode finger at one end of the central IDT electrode 6 and a central IDT at one end thereof. The number of ground electrode fingers arranged between the signal electrode fingers on one end side of one IDT electrode 5 adjacent to the electrode 6 is n−1 (0 in the case of FIG. 1). The ground electrode disposed between the signal electrode finger on the other end of the IDT electrode 6 and the signal electrode finger on the other end side of the other IDT electrode 7 adjacent to the center IDT electrode 6 on the other end side. The number of electrode fingers is n + 1 (two in the case of FIG. 1), and the polarity of electrode fingers adjacent to each other between adjacent IDT electrodes (between IDT electrodes 5 and 6 and between IDT electrodes 6 and 7) is adjacent. The electrode finger gap between the matching IDT electrodes (between IDT electrodes 5 and 6 and between IDT electrodes 6 and 7). Center C of flops, are arranged symmetrically with respect to relative D.

例えば、第2の弾性表面波素子15は、上記隣接箇所において、図の左側より、GSSG,SGGSの配置であり、中央のIDT電極6の一端の信号用電極指と、その一端側で中央のIDT電極6に隣接する一方のIDT電極5の一端側の端の信号用電極指との間に配置された接地用電極指の本数がn−1本、つまり1−1=0本であり、中央のIDT電極6の他端の信号用電極指と、他端側で中央のIDT電極6に隣接する他方のIDT電極7の他端側の端の信号用電極指との間に配置された接地用電極指の本数がn+1本、つまり1+1=2本となっている。   For example, the second surface acoustic wave element 15 has an arrangement of GSSG and SGGS from the left side of the drawing in the adjacent portion, and the signal electrode finger at one end of the center IDT electrode 6 and the center at the one end side. The number of ground electrode fingers arranged between the signal electrode fingers at one end of one IDT electrode 5 adjacent to the IDT electrode 6 is n−1, that is, 1-1 = 0. The signal electrode finger at the other end of the center IDT electrode 6 and the signal electrode finger at the other end of the other IDT electrode 7 adjacent to the center IDT electrode 6 on the other end side are disposed. The number of ground electrode fingers is n + 1, that is, 1 + 1 = 2.

さらに、図1(b)に示すように、IDT電極の電極指ピッチが中央のIDT電極6の中心に位置する電極指間ギャップの中心Eに対して対称的な分布とされている。   Furthermore, as shown in FIG. 1B, the electrode finger pitch of the IDT electrodes is symmetric with respect to the center E of the gap between the electrode fingers located at the center of the center IDT electrode 6.

nはできるだけ小さい方がよく、その場合入出力信号による振動(弾性表面波の腹に相当する振動)ではない振動(弾性表面波の節に相当する振動)をする接地用電極指が減るので、低域側の減衰の急峻度に優れ、帯域幅も広くなる。従って、nは1〜3が好適である。nが3を超えると、入出力信号による振動(弾性表面波の腹に相当する振動)ではない振動(弾性表面波の節に相当する振動)をする接地用電極指が増加するため、低域側の減衰の急峻度が劣化し、帯域幅も狭くなる。   n should be as small as possible, in which case the number of grounding electrode fingers that perform vibrations (vibrations corresponding to nodes of surface acoustic waves) that are not vibrations (vibrations corresponding to antinodes of surface acoustic waves) due to input / output signals is reduced. Excellent steepness of attenuation on the low frequency side, and wide bandwidth. Accordingly, n is preferably 1 to 3. If n exceeds 3, the number of electrode fingers for grounding that is not vibration (vibration corresponding to antinodes of surface acoustic waves) due to input / output signals increases (vibration corresponding to nodes of surface acoustic waves) increases. The steepness of the attenuation on the side deteriorates and the bandwidth becomes narrower.

2つの弾性表面波素子14,15の電極指ピッチの対称性を確保した本発明の上記構成により、通過帯域内に発生する微小リップルの問題を解消できる。即ち、本発明のように電極指の極性配置が対称性を有する場合、励振された弾性表面波の高次モードの分布が対称となり、また、弾性表面波の励振フィールドが対称になり、さらに、IDT電極及び反射器電極の反射係数が小さくなることがなく反射特性が良好となり、励振効率が劣化することがないために、局所的に微小リップルが発生する問題が発生しない。   With the above-described configuration of the present invention in which the symmetry of the electrode finger pitch between the two surface acoustic wave elements 14 and 15 is ensured, the problem of minute ripples generated in the passband can be solved. That is, when the polarity arrangement of the electrode fingers has symmetry as in the present invention, the distribution of the higher-order modes of the excited surface acoustic wave is symmetric, the excitation field of the surface acoustic wave is symmetric, Since the reflection coefficient of the IDT electrode and the reflector electrode is not reduced, the reflection characteristics are improved, and the excitation efficiency is not deteriorated. Therefore, the problem of generating minute ripples does not occur.

また、本発明の弾性表面波装置は、上記の構成において好ましくは、第1及び第2の弾性表面波素子14,15のうちの一方における3個のIDT電極の電極指ピッチの分布と、第1及び第2の弾性表面波素子14,15のうちの他方における3個のIDT電極の電極指ピッチの分布とが同じであることにより、励振される弾性表面波の分布を2つの弾性表面波素子14,15において対称にすることができ、そのため通過帯域内における微小リップルの発生をより有効に防止することができる。   In the surface acoustic wave device according to the present invention, preferably, the electrode finger pitch distribution of the three IDT electrodes in one of the first and second surface acoustic wave elements 14 and 15 and the first Since the distribution of the electrode finger pitches of the three IDT electrodes in the other of the first and second surface acoustic wave elements 14 and 15 is the same, the distribution of the excited surface acoustic waves is changed to two surface acoustic waves. The elements 14 and 15 can be symmetric, so that the generation of minute ripples in the passband can be more effectively prevented.

なお、電極指ピッチの分布が同じであるとは、フォトリソグラフィ法による電極指のパターン形成の精度(約0.1μm以下)の範囲内において同じであればよい。その場合、励振される弾性表面波の分布が実質的に同じになる。   Note that the distribution of the electrode finger pitch is the same as long as it is within the range of the accuracy of electrode finger pattern formation by photolithography (about 0.1 μm or less). In that case, the distribution of the excited surface acoustic waves becomes substantially the same.

図2に、本発明の弾性表面波装置の電極構造について実施の形態の他例の平面図を示す。図2に示すように、第1及び第2の弾性表面波素子14,15は、弾性表面波共振子16を介して不平衡信号端子21に並列接続されていることがよい。これにより、弾性表面波共振子16を接続することで減衰極を形成することができ、電極指の周期を調整することにより要求される仕様を満たすように特性を制御することができる。さらに、複数の弾性表面波共振子16を接続してそれらの電極周期を異なるように構成することにより、減衰極を複数形成するとともに減衰極の周波数位置を制御することができ、さらに高度に要求される仕様を満たす設計ができる。   FIG. 2 shows a plan view of another example of the embodiment of the electrode structure of the surface acoustic wave device of the present invention. As shown in FIG. 2, the first and second surface acoustic wave elements 14 and 15 are preferably connected in parallel to the unbalanced signal terminal 21 via the surface acoustic wave resonator 16. Thereby, the attenuation pole can be formed by connecting the surface acoustic wave resonator 16, and the characteristics can be controlled to satisfy the required specifications by adjusting the period of the electrode fingers. Furthermore, by connecting a plurality of surface acoustic wave resonators 16 so that their electrode periods are different, it is possible to form a plurality of attenuation poles and to control the frequency position of the attenuation poles. Can be designed to meet the specifications.

また、インピーダンス50Ωで不平衡信号端子21に高周波信号が入力または出力された場合、インピーダンス50Ωで第1及び第2の弾性表面波素子14,15に接続することが難しく、要求されるインピーダンス整合を取ることが困難になる。しかしながら、本発明のように初段が弾性表面波共振子(単一のIDT電極及び反射器電極から成る弾性表面波素子)16である場合、インピーダンス整合を容易に取ることができる。   Further, when a high frequency signal is input or output to the unbalanced signal terminal 21 with an impedance of 50Ω, it is difficult to connect to the first and second surface acoustic wave elements 14 and 15 with an impedance of 50Ω, and the required impedance matching is achieved. It becomes difficult to take. However, when the first stage is a surface acoustic wave resonator (surface acoustic wave element comprising a single IDT electrode and reflector electrode) 16 as in the present invention, impedance matching can be easily achieved.

図3に、本発明の弾性表面波装置の電極構造について実施の形態の他例の平面図を示す。図3に示すように、第1及び第2の弾性表面波素子14,15は、それらが隣り合う箇所における反射器電極30が一体的に形成された1つの反射器電極30からなるものであることがよい。この構成により、2つの弾性表面波素子14,15で励振された弾性表面波が、一体的に形成された反射器電極30において、位相がそれぞれプラス側、マイナス側で打ち消し合い、反射特性が良好になることにより、さらに通過帯域内の微小リップルの発生を抑制することができる。その結果、弾性表面波フィルタのフィルタ特性において厳しく要求されている、通過帯域内の挿入損失をさらに改善した弾性表面波フィルタを提供することができる。   FIG. 3 shows a plan view of another example of the embodiment of the electrode structure of the surface acoustic wave device of the present invention. As shown in FIG. 3, each of the first and second surface acoustic wave elements 14 and 15 is composed of a single reflector electrode 30 in which the reflector electrodes 30 are integrally formed at a location where they are adjacent to each other. It is good. With this configuration, the surface acoustic waves excited by the two surface acoustic wave elements 14 and 15 cancel each other on the plus side and the minus side in the integrally formed reflector electrode 30, and the reflection characteristics are good. As a result, the generation of minute ripples in the passband can be further suppressed. As a result, it is possible to provide a surface acoustic wave filter that further improves the insertion loss in the pass band, which is strictly required in the filter characteristics of the surface acoustic wave filter.

図4に、本発明の弾性表面波装置の電極構造について実施の形態の他例の平面図を示す。図4に示すように、弾性表面波の伝搬方向において隣り合うIDT電極の間に、弾性表面波の伝搬方向に直交する方向に長い電極指から成る反射器電極(中間反射器電極)が配設されていることがよい。即ち、IDT電極2,3間に反射器電極61が、IDT電極3,4間に反射器電極62が、IDT電極5,6間に反射器電極63が、IDT電極6,7間に反射器電極64が、それぞれ配設されている。この構成により、第1の弾性表面波素子14と第2の弾性表面波素子15との間の弾性表面波の振幅の差を小さくすることができ、良好な振幅平衡度特性を得ることができる。   FIG. 4 shows a plan view of another example of the embodiment of the electrode structure of the surface acoustic wave device of the present invention. As shown in FIG. 4, a reflector electrode (intermediate reflector electrode) composed of electrode fingers that are long in a direction perpendicular to the propagation direction of the surface acoustic wave is disposed between adjacent IDT electrodes in the propagation direction of the surface acoustic wave. It should be done. That is, the reflector electrode 61 is provided between the IDT electrodes 2 and 3, the reflector electrode 62 is provided between the IDT electrodes 3 and 4, the reflector electrode 63 is provided between the IDT electrodes 5 and 6, and the reflector is provided between the IDT electrodes 6 and 7. Electrodes 64 are respectively disposed. With this configuration, the difference in the amplitude of the surface acoustic wave between the first surface acoustic wave element 14 and the second surface acoustic wave element 15 can be reduced, and good amplitude balance characteristics can be obtained. .

図5に、本発明の弾性表面波装置の電極構造について実施の形態の他例の平面図を示す。図5に示すように、弾性表面波素子52,53がそれぞれ、第1及び第2の弾性表面波素子14,15に縦続接続されていることがよい。この構成により、弾性表面波装置の通過特性において、局所的に微小リップルが発生する問題が発生しない。さらに、弾性表面波素子52,53が縦続接続されていることにより、良好な通過帯域外の減衰特性を得ることができる。   FIG. 5 shows a plan view of another example of the embodiment of the electrode structure of the surface acoustic wave device of the present invention. As shown in FIG. 5, the surface acoustic wave elements 52 and 53 are preferably cascade-connected to the first and second surface acoustic wave elements 14 and 15, respectively. With this configuration, there is no problem that a minute ripple is locally generated in the pass characteristic of the surface acoustic wave device. Furthermore, since the surface acoustic wave elements 52 and 53 are connected in cascade, a good attenuation characteristic outside the pass band can be obtained.

なお、図5において、42〜44,45〜47はIDT電極、48〜51は反射器電極である。   In FIG. 5, 42 to 44 and 45 to 47 are IDT electrodes, and 48 to 51 are reflector electrodes.

なお、IDT電極2〜7,反射器電極8〜11,17,18,30,弾性表面波共振子16の電極指の本数は数本〜数100本にも及ぶので、簡単のため、図においてはそれら形状を簡略化して図示している。   The number of electrode fingers of the IDT electrodes 2 to 7, the reflector electrodes 8 to 11, 17, 18, and 30 and the surface acoustic wave resonator 16 ranges from several to several hundreds. Shows the shapes in a simplified manner.

また、弾性表面波フィルタ用の圧電基板1としては、36°±3°YカットX伝搬タンタル酸リチウム単結晶、42°±3°YカットX伝搬タンタル酸リチウム単結晶、64°±3°YカットX伝搬ニオブ酸リチウム単結晶、41°±3°YカットX伝搬ニオブ酸リチウム単結晶、45°±3°XカットZ伝搬四ホウ酸リチウム単結晶は電気機械結合係数が大きく、かつ、周波数温度係数が小さいため圧電基板1として好ましい。また、これらの焦電性圧電単結晶のうち、酸素欠陥やFe等の固溶により焦電性を著しく減少させた圧電基板1であれば、デバイスの信頼性上良好である。圧電基板1の厚みは0.1〜0.5mm程度がよく、0.1mm未満では圧電基板1が脆くなり、0.5mm超では材料コストと部品寸法が大きくなり使用に適さない。   Further, as the piezoelectric substrate 1 for the surface acoustic wave filter, 36 ° ± 3 ° Y-cut X propagation lithium tantalate single crystal, 42 ° ± 3 ° Y cut X propagation lithium tantalate single crystal, 64 ° ± 3 ° Y Cut X-propagating lithium niobate single crystal, 41 ° ± 3 ° Y-cut X-propagating lithium niobate single crystal, 45 ° ± 3 ° X-cut Z-propagating lithium tetraborate single crystal has a large electromechanical coupling coefficient and frequency Since the temperature coefficient is small, it is preferable as the piezoelectric substrate 1. Of these pyroelectric piezoelectric single crystals, if the piezoelectric substrate 1 has a significantly reduced pyroelectric property due to solid solution of oxygen defects or Fe, the reliability of the device is good. The thickness of the piezoelectric substrate 1 is preferably about 0.1 to 0.5 mm. If the thickness is less than 0.1 mm, the piezoelectric substrate 1 becomes brittle, and if it exceeds 0.5 mm, the material cost and component dimensions become large, which is not suitable for use.

また、IDT電極及び反射器電極は、AlもしくはAl合金(Al−Cu系、Al−Ti系)からなり、蒸着法、スパッタリング法、またはCVD法等の薄膜形成法により形成される。電極厚みは0.1〜0.5μm程度とすることが、弾性表面波フィルタとしての所期の特性を得る上で好適である。   The IDT electrode and the reflector electrode are made of Al or an Al alloy (Al—Cu type, Al—Ti type), and are formed by a thin film forming method such as a vapor deposition method, a sputtering method, or a CVD method. An electrode thickness of about 0.1 to 0.5 μm is suitable for obtaining desired characteristics as a surface acoustic wave filter.

さらに、本発明に係る弾性表面波フィルタの電極及び圧電基板1上の弾性表面波の伝搬部に、SiO,SiN,Si,Alを保護膜として形成して、導電性異物による通電防止や耐電力向上を図ることもできる。 Furthermore, SiO 2 , SiN x , Si, Al 2 O 3 is formed as a protective film on the surface acoustic wave propagation portion on the surface of the surface acoustic wave filter and the piezoelectric substrate 1 according to the present invention. It is also possible to prevent energization and improve power durability.

また、本発明の弾性表面波フィルタを通信装置90(図11)に適用することができる。即ち、少なくとも受信回路及び送信回路の一方を備え、これらの回路に含まれるバンドパスフィルタとして用いる。例えば、図11に示すように、送信回路から出力された送信信号をミキサでキャリア周波数にのせて、不要信号をバンドパスフィルタ(弾性表面波フィルタ)91で減衰させ、その後、パワーアンプ92で送信信号を増幅して、アイソレータ93を通してデュプレクサ94を通ってアンテナ99より送信することができる送信回路を備えた通信装置、または、受信信号をアンテナ99で受信し、デュプレクサ94を通った受信信号をローノイズアンプ95で増幅し、その後、バンドパスフィルタ(弾性表面波フィルタ)96で不要信号を減衰して、パワーアンプ97で受信信号を増幅し、ミキサ98でキャリア周波数から信号を分離し、この信号を取り出す受信回路へ伝送するような受信回路を備えた通信装置に適用可能である。したがって、本発明の弾性表面波装置を採用すれば、弾性表面波装置の挿入損失が改善されたため、消費電力が低減され感度が格段に良好な優れた通信装置を提供できる。   Further, the surface acoustic wave filter of the present invention can be applied to the communication device 90 (FIG. 11). That is, at least one of a receiving circuit and a transmitting circuit is provided and used as a bandpass filter included in these circuits. For example, as shown in FIG. 11, a transmission signal output from the transmission circuit is put on a carrier frequency by a mixer, an unnecessary signal is attenuated by a band pass filter (surface acoustic wave filter) 91, and then transmitted by a power amplifier 92. A communication device including a transmission circuit capable of amplifying a signal and transmitting from the antenna 99 through the duplexer 94 through the isolator 93, or a reception signal received by the antenna 99, and a reception signal passing through the duplexer 94 being low noise Amplified by an amplifier 95, and then an unnecessary signal is attenuated by a band pass filter (surface acoustic wave filter) 96. A received signal is amplified by a power amplifier 97. A signal is separated from a carrier frequency by a mixer 98. The present invention can be applied to a communication device including a receiving circuit that transmits to a receiving circuit to be extracted. Therefore, if the surface acoustic wave device of the present invention is employed, the insertion loss of the surface acoustic wave device is improved, so that it is possible to provide an excellent communication device with reduced power consumption and remarkably good sensitivity.

本発明の実施例について以下に説明する。   Examples of the present invention will be described below.

図1に示す弾性表面波装置を具体的に作製した実施例1について説明する。38.7°YカットのX方向伝搬とするLiTaO単結晶からなる圧電基板(多数個取り用の母基板)1上に、Al(99質量%)−Cu(1質量%)による微細電極パターンを形成した。 Example 1 in which the surface acoustic wave device shown in FIG. 1 is specifically manufactured will be described. A fine electrode pattern made of Al (99 mass%)-Cu (1 mass%) on a piezoelectric substrate (mother substrate for multiple production) 1 made of LiTaO 3 single crystal for X-direction propagation of 38.7 ° Y-cut. Formed.

また、各電極のパターン作製には、スパッタリング装置、縮小投影露光機(ステッパー)、及びRIE(Reactive Ion Etching)装置によりフォトリソグラフィを施すことにより行った。   The pattern of each electrode was produced by photolithography using a sputtering apparatus, a reduction projection exposure machine (stepper), and an RIE (Reactive Ion Etching) apparatus.

まず、圧電基板1をアセトン,IPA(イソプロピルアルコール)等によって超音波洗浄し、有機成分を落とした。次に、クリーンオーブンによって充分に圧電基板1の乾燥を行った後、各電極となる金属層の成膜を行った。金属層の成膜にはスパッタリング装置を使用し、金属層の材料としてAl(99質量%)−Cu(1質量%)合金を用いた。このときの金属層の厚みは約0.18μmとした。   First, the piezoelectric substrate 1 was ultrasonically cleaned with acetone, IPA (isopropyl alcohol) or the like to remove organic components. Next, after sufficiently drying the piezoelectric substrate 1 with a clean oven, a metal layer to be each electrode was formed. A sputtering apparatus was used for forming the metal layer, and an Al (99 mass%)-Cu (1 mass%) alloy was used as the material of the metal layer. The thickness of the metal layer at this time was about 0.18 μm.

次に、金属層上にフォトレジストを約0.5μmの厚みにスピンコートし、縮小投影露光装置により、所望形状にパターニングを行い、現像装置によって不要部分のフォトレジストをアルカリ現像液で溶解させ、所望パターンを表出させた。その後、RIE装置により金属層のエッチングを行い、パターニングを終了し、弾性表面波素子を構成する各電極のパターンを得た。   Next, a photoresist is spin-coated on the metal layer to a thickness of about 0.5 μm, patterned into a desired shape with a reduction projection exposure apparatus, and an unnecessary portion of the photoresist is dissolved with an alkaline developer by a developing device, The desired pattern was revealed. Thereafter, the metal layer was etched by an RIE apparatus, patterning was completed, and a pattern of each electrode constituting the surface acoustic wave element was obtained.

この後、電極の所定領域上に保護膜を形成した。即ち、CVD(Chemical Vapor Deposition)装置により、各電極のパターン及び圧電基板1上にSiOを約0.02μmの厚みで形成した。 Thereafter, a protective film was formed on a predetermined region of the electrode. That is, SiO 2 was formed with a thickness of about 0.02 μm on each electrode pattern and the piezoelectric substrate 1 by a CVD (Chemical Vapor Deposition) apparatus.

その後、フォトリソグラフィによりパターニングを行い、RIE装置等でフリップチップ用窓開け部のエッチングを行った。その後、そのフリップチップ用窓開け部に、スパッタリング装置を使用してAlを主体とするパッド電極を成膜した。このときのパッド電極の膜厚は約1.0μmとした。その後、フォトレジスト及び不要箇所のAlをリフトオフ法により同時に除去し、弾性表面波装置を外部回路基板等にフリップチップするための導体バンプを形成するためのパッド電極を完成した。   Thereafter, patterning was performed by photolithography, and the flip-chip window opening portion was etched by an RIE apparatus or the like. Thereafter, a pad electrode mainly composed of Al was formed on the flip chip window opening using a sputtering apparatus. The film thickness of the pad electrode at this time was about 1.0 μm. Thereafter, the photoresist and unnecessary Al were removed at the same time by a lift-off method, and a pad electrode for forming a conductor bump for flip-chipping the surface acoustic wave device on an external circuit board or the like was completed.

次に、上記パッド電極上にAuからなるフリップチップ用の導体バンプをバンプボンディング装置を使用して形成した。導体バンプの直径は約80μm、その高さは約30μmであった。   Next, a flip-chip conductor bump made of Au was formed on the pad electrode using a bump bonding apparatus. The conductor bump had a diameter of about 80 μm and a height of about 30 μm.

次に、圧電基板1に分割線に沿ってダイシング加工を施し、各弾性表面波装置(チップ)ごとに分割した。その後、各チップをフリップチップ実装装置にて電極パッドの形成面を下面にしてパッケージ内に収容し接着した。その後、N雰囲気中でベーキングを行い、パッケージ化された弾性表面波装置を完成した。パッケージは、セラミック層を多層積層して成る2.5×2.0mm角の積層構造のものを用いた。 Next, the piezoelectric substrate 1 was diced along a dividing line, and divided into each surface acoustic wave device (chip). Thereafter, each chip was accommodated in a package with a flip chip mounting apparatus with the electrode pad forming surface facing down, and bonded. Thereafter, baking was performed in an N 2 atmosphere to complete a packaged surface acoustic wave device. As the package, a 2.5 × 2.0 mm square laminated structure formed by laminating ceramic layers was used.

また、比較例1のサンプルとして、図9に示す構成の弾性表面波装置を、上記実施例1と同様にして作製した。比較例1の弾性表面波装置は、第1の弾性表面波素子212において、隣り合うIDT電極間(IDT電極202,203間、及びIDT電極203,204間)で、互いに隣接する電極指の極性が中央のIDT電極203を中心にして非対称的な配置とされた構成であって、接地端子に接続された電極指の本数が図1の構成とは異なっており、第1の弾性表面波素子212において、3個のIDT電極202〜204の電極指ピッチが中央のIDT電極203の中心に位置する電極指を中心にして非対称的な分布とされている。また、第2の弾性表面波素子213において、隣り合うIDT電極間(IDT電極205,206間、及びIDT電極206,207間)で互いに隣接する電極指の極性が、隣り合うIDT電極間(IDT電極205,206間、及びIDT電極206,207間)の電極指間ギャップの中心に対して非対称的な配置とされている。   In addition, as a sample of Comparative Example 1, a surface acoustic wave device having the configuration shown in FIG. In the surface acoustic wave device of Comparative Example 1, in the first surface acoustic wave element 212, the polarity of electrode fingers adjacent to each other between adjacent IDT electrodes (between IDT electrodes 202 and 203 and between IDT electrodes 203 and 204) is Is a configuration in which the IDT electrode 203 at the center is asymmetrical, and the number of electrode fingers connected to the ground terminal is different from that in FIG. In 212, the electrode finger pitch of the three IDT electrodes 202 to 204 is asymmetrically distributed around the electrode finger located at the center of the center IDT electrode 203. In the second surface acoustic wave element 213, the polarities of electrode fingers adjacent to each other between adjacent IDT electrodes (between IDT electrodes 205 and 206 and IDT electrodes 206 and 207) are set between adjacent IDT electrodes (IDT). Asymmetric arrangement with respect to the center of the gap between the electrode fingers between the electrodes 205 and 206 and between the IDT electrodes 206 and 207).

また、比較例1の弾性表面波装置の上記以外の構成は、本実施例である図1に示す弾性表面波装置の構成と同様である。   The other configuration of the surface acoustic wave device of Comparative Example 1 is the same as that of the surface acoustic wave device shown in FIG.

次に、本実施例1及び比較例1の弾性表面波装置について、それぞれ特性測定を行った。0dBmの信号を入力し、周波数1640〜2140MHz、測定ポイントを801ポイントの条件において、通過帯域の通過特性(挿入損失)を測定した。サンプル数は30個、測定機器はマルチポートネットワークアナライザ(アジレントテクノロジー社製「E5071A」)である。   Next, the characteristics of the surface acoustic wave devices of Example 1 and Comparative Example 1 were measured. A signal of 0 dBm was input, and the pass band characteristics (insertion loss) were measured under the conditions of a frequency of 1640 to 2140 MHz and a measurement point of 801 points. The number of samples is 30, and the measuring instrument is a multi-port network analyzer (“E5071A” manufactured by Agilent Technologies).

測定の結果得られた、通過帯域近傍の周波数特性のグラフを図6に示す。図6は、フィルタの伝送特性を表す通過帯域の通過特性(挿入損失)の周波数依存性を示すグラフである。本実施例1の弾性表面波装置のフィルタ特性は非常に良好であった。即ち、図6の実線で示すように、本実施例1の弾性表面波装置の通過帯域内には微小リップルの発生は見られず、挿入損失が向上した良好なフィルタ特性が得られた。   FIG. 6 shows a graph of frequency characteristics in the vicinity of the pass band obtained as a result of the measurement. FIG. 6 is a graph showing the frequency dependence of the pass characteristic (insertion loss) of the pass band representing the transmission characteristic of the filter. The filter characteristics of the surface acoustic wave device of Example 1 were very good. That is, as shown by the solid line in FIG. 6, the generation of minute ripples was not observed in the pass band of the surface acoustic wave device of Example 1, and good filter characteristics with improved insertion loss were obtained.

一方、図6の破線で示すように、比較例1の弾性表面波装置の通過帯域内には微小リップルが発生し、挿入損失が劣化した。   On the other hand, as shown by a broken line in FIG. 6, a minute ripple was generated in the pass band of the surface acoustic wave device of Comparative Example 1, and the insertion loss was deteriorated.

実施例2として、図3の構成の弾性表面波装置を実施例1と同様の方法で作製し、評価した。   As Example 2, a surface acoustic wave device having the configuration shown in FIG. 3 was produced and evaluated in the same manner as in Example 1.

また、比較例2として、図3の構成において、第1及び第2の弾性表面波素子14,15の両方が、IDT電極2〜4及び5〜7の電極指ピッチが、中央のIDT電極3,6の中心に位置する電極指を中心にして対称的な分布とされたものを作製した。   As Comparative Example 2, in the configuration of FIG. 3, both the first and second surface acoustic wave elements 14 and 15 have IDT electrodes 2 to 4 and 5 to 7 having electrode finger pitches in the center of the IDT electrode 3. , 6 is produced with a symmetrical distribution around the electrode finger located at the center of the.

次に、本実施例2及び比較例2の弾性表面波装置について、それぞれ特性測定を行った。0dBmの信号を入力し、周波数1640〜2140MHz、測定ポイントを801ポイントの条件において、通過帯域の通過特性(挿入損失)を測定した。サンプル数は30個、測定機器はマルチポートネットワークアナライザ(アジレントテクノロジー社製「E5071A」)である。   Next, the characteristics of the surface acoustic wave devices of Example 2 and Comparative Example 2 were measured. A signal of 0 dBm was input, and the pass band characteristics (insertion loss) were measured under the conditions of a frequency of 1640 to 2140 MHz and a measurement point of 801 points. The number of samples is 30, and the measuring instrument is a multi-port network analyzer (“E5071A” manufactured by Agilent Technologies).

測定の結果得られた、通過帯域近傍の周波数特性のグラフを図7に示す。実施例1の場合と同様に、図7の実線で示すように、本実施例2の弾性表面波装置の通過帯域内には微小リップルの発生は見られず、挿入損失が向上した良好なフィルタ特性が得られた。   FIG. 7 shows a graph of frequency characteristics in the vicinity of the passband obtained as a result of the measurement. As in the case of the first embodiment, as shown by the solid line in FIG. 7, the generation of minute ripples is not observed in the passband of the surface acoustic wave device of the second embodiment, and a good filter with improved insertion loss is obtained. Characteristics were obtained.

一方、図7の破線で示すように、比較例2の弾性表面波装置の通過帯域内には微小リップルが発生し、挿入損失が劣化した。   On the other hand, as shown by the broken line in FIG. 7, a minute ripple was generated in the pass band of the surface acoustic wave device of Comparative Example 2, and the insertion loss was deteriorated.

以上より、本発明の弾性表面波装置によれば、通過帯域内に発生する微小リップルの発生を抑制して、挿入損失を向上した弾性表面波装置を実現することができた。   As described above, according to the surface acoustic wave device of the present invention, it is possible to realize the surface acoustic wave device that suppresses the generation of minute ripples generated in the passband and improves the insertion loss.

(a)は本発明の弾性表面波装置について実施の形態の1例を示す平面図であり、(b)は(a)の弾性表面波装置の電極指位置と電極指ピッチとの関係を示すグラフである。(A) is a top view which shows an example of embodiment about the surface acoustic wave apparatus of this invention, (b) shows the relationship between the electrode finger position of the surface acoustic wave apparatus of (a), and electrode finger pitch. It is a graph. (a)は本発明の弾性表面波装置について実施の形態の他例を示す平面図であり、(b)は(a)の弾性表面波装置の電極指位置と電極指ピッチとの関係を示すグラフである。(A) is a top view which shows the other example of embodiment about the surface acoustic wave apparatus of this invention, (b) shows the relationship between the electrode finger position and electrode finger pitch of the surface acoustic wave apparatus of (a). It is a graph. (a)は本発明の弾性表面波装置について実施の形態の他例を示す平面図であり、(b)は(a)の弾性表面波装置の電極指位置と電極指ピッチとの関係を示すグラフである。(A) is a top view which shows the other example of embodiment about the surface acoustic wave apparatus of this invention, (b) shows the relationship between the electrode finger position and electrode finger pitch of the surface acoustic wave apparatus of (a). It is a graph. (a)は本発明の弾性表面波装置について実施の形態の他例を示す平面図であり、(b)は(a)の弾性表面波装置の電極指位置と電極指ピッチとの関係を示すグラフである。(A) is a top view which shows the other example of embodiment about the surface acoustic wave apparatus of this invention, (b) shows the relationship between the electrode finger position and electrode finger pitch of the surface acoustic wave apparatus of (a). It is a graph. (a)は本発明の弾性表面波装置について実施の形態の他例を示す平面図であり、(b)は(a)の弾性表面波装置の電極指位置と電極指ピッチとの関係を示すグラフである。(A) is a top view which shows the other example of embodiment about the surface acoustic wave apparatus of this invention, (b) shows the relationship between the electrode finger position and electrode finger pitch of the surface acoustic wave apparatus of (a). It is a graph. 本発明の実施例1の弾性表面波装置及び比較例1の弾性表面波装置の通過帯域及びその近傍における挿入損失の周波数特性をそれぞれ示すグラフである。It is a graph which respectively shows the frequency characteristic of the insertion loss in the pass band of the surface acoustic wave apparatus of Example 1 of this invention and the surface acoustic wave apparatus of the comparative example 1, and its vicinity. 本発明の実施例2の弾性表面波装置及び比較例2の弾性表面波装置の通過帯域及びその近傍における挿入損失の周波数特性をそれぞれ示すグラフである。It is a graph which respectively shows the frequency characteristic of the insertion loss in the pass band of the surface acoustic wave apparatus of Example 2 of this invention, and the surface acoustic wave apparatus of the comparative example 2 and its vicinity. 従来の弾性表面波装置の電極構造の1例を模式的に示す平面図である。It is a top view which shows typically an example of the electrode structure of the conventional surface acoustic wave apparatus. 従来例(比較例1)の弾性表面波装置の電極構造の1例を模式的に示す平面図である。It is a top view which shows typically an example of the electrode structure of the surface acoustic wave apparatus of a prior art example (comparative example 1). 従来の弾性表面波装置の通過帯域及びその近傍における挿入損失の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the insertion loss in the pass band of the conventional surface acoustic wave apparatus, and its vicinity. 本発明の通信装置のブロック回路図である。It is a block circuit diagram of the communication apparatus of this invention.

符号の説明Explanation of symbols

1:圧電基板
14:第1の弾性表面波素子
15:第2の弾性表面波素子
16:弾性表面波共振子
52,53:縦続接続された弾性表面波素子
2〜7,42〜47:IDT電極
8〜11,17,18,48〜51,61〜64:反射器電極
21:不平衡信号端子
22,23:平衡信号端子
1: Piezoelectric substrate 14: First surface acoustic wave element 15: Second surface acoustic wave element 16: Surface acoustic wave resonators 52, 53: Cascaded surface acoustic wave elements 2-7, 42-47: IDT Electrodes 8-11, 17, 18, 48-51, 61-64: Reflector electrode 21: Unbalanced signal terminal 22, 23: Balanced signal terminal

Claims (5)

圧電基板上に、前記圧電基板上を伝搬する弾性表面波の伝搬方向に沿って、前記伝搬方向に直交する方向に長い電極指を複数備えた3個のIDT電極と、それらの両側にそれぞれ配置され、前記伝搬方向に直交する方向に長い電極指を複数備えた反射器電極とを有する第1及び第2の弾性表面波素子が形成されており、前記第1及び第2の弾性表面波素子は不平衡信号端子に並列接続されているとともにそれぞれが平衡出力部または平衡入力部とされており、前記第1及び第2の弾性表面波素子のそれぞれの中央の前記IDT電極に平衡信号端子が接続されている弾性表面波装置であって、
前記第1及び第2の弾性表面波素子のうち一方は、中央の前記IDT電極の両端の信号用電極指と、中央の前記IDT電極の両側の前記IDT電極における中央の前記IDT電極側の端の信号用電極指との間に配置された接地用電極指の本数がそれぞれn本(nは1以上の整数)であるとともに、隣り合う前記IDT電極間で互いに隣接する電極指の極性が中央の前記IDT電極を中心にして対称的な配置とされており、さらに3個の前記IDT電極の電極指ピッチが中央の前記IDT電極の中心に位置する電極指を中心にして対称的な分布とされており、
前記第1及び第2の弾性表面波素子のうち他方は、中央の前記IDT電極の一端の信号用電極指と、前記一端側で中央の前記IDT電極に隣接する一方の前記IDT電極の前記一端側の端の信号用電極指との間に配置された接地用電極指の本数がn−1本で、中央の前記IDT電極の他端の信号用電極指と、前記他端側で中央の前記IDT電極に隣接する他方の前記IDT電極の前記他端側の端の信号用電極指との間に配置された接地用電極指の本数がn+1本であるとともに、隣り合う前記IDT電極間で互いに隣接する電極指の極性が隣り合う前記IDT電極間の電極指間ギャップの中心に対して対称的な配置とされており、さらに前記IDT電極の電極指ピッチが中央の前記IDT電極の中心に位置する電極指間ギャップの中心に対して対称的な分布とされていることを特徴する弾性表面波装置。
Three IDT electrodes having a plurality of long electrode fingers in the direction orthogonal to the propagation direction along the propagation direction of the surface acoustic wave propagating on the piezoelectric substrate on the piezoelectric substrate, and arranged on both sides thereof, respectively And the first and second surface acoustic wave elements having a reflector electrode provided with a plurality of long electrode fingers in a direction orthogonal to the propagation direction. Are connected in parallel to the unbalanced signal terminal and each is used as a balanced output unit or a balanced input unit, and a balanced signal terminal is connected to the IDT electrode at the center of each of the first and second surface acoustic wave elements. A connected surface acoustic wave device,
One of the first and second surface acoustic wave elements includes a signal electrode finger on both ends of the central IDT electrode and an end on the IDT electrode side in the center of the IDT electrode on both sides of the central IDT electrode. The number of ground electrode fingers arranged between each of the signal electrode fingers is n (n is an integer of 1 or more), and the polarity of the electrode fingers adjacent to each other between the adjacent IDT electrodes is the center. And the electrode finger pitch of the three IDT electrodes is symmetrically distributed about the electrode finger located at the center of the center IDT electrode. Has been
The other of the first and second surface acoustic wave elements includes a signal electrode finger at one end of the central IDT electrode and the one end of one IDT electrode adjacent to the central IDT electrode on the one end side. The number of ground electrode fingers arranged between the signal electrode fingers on the side end is n−1, the signal electrode fingers on the other end of the center IDT electrode, and the center on the other end side. The number of ground electrode fingers arranged between the other electrode side electrode finger of the other IDT electrode adjacent to the IDT electrode is n + 1 and between the adjacent IDT electrodes The polarities of the electrode fingers adjacent to each other are arranged symmetrically with respect to the center of the gap between the electrode fingers between the adjacent IDT electrodes, and the electrode finger pitch of the IDT electrodes is set to the center of the center IDT electrode. To the center of the gap between the electrode fingers A surface acoustic wave device which characterized by being a symmetrical distribution.
前記第1及び第2の弾性表面波素子のうちの一方における3個の前記IDT電極の電極指ピッチの分布と、前記第1及び第2の弾性表面波素子のうちの他方における3個の前記IDT電極の電極指ピッチの分布とが同じであることを特徴とする請求項1記載の弾性表面波装置。   Distribution of electrode finger pitches of the three IDT electrodes in one of the first and second surface acoustic wave elements, and the three in the other of the first and second surface acoustic wave elements 2. The surface acoustic wave device according to claim 1, wherein the electrode finger pitch distribution of the IDT electrodes is the same. 前記第1及び第2の弾性表面波素子は、弾性表面波共振子を介して前記不平衡信号端子に並列接続されていることを特徴とする請求項1または2記載の弾性表面波装置。   3. The surface acoustic wave device according to claim 1, wherein the first and second surface acoustic wave elements are connected in parallel to the unbalanced signal terminal via a surface acoustic wave resonator. 前記第1及び第2の弾性表面波素子は、それらが隣り合う箇所における反射器電極が一体的に形成された1つの反射器電極からなることを特徴とする請求項1乃至3のいずれか記載の弾性表面波装置。   The said 1st and 2nd surface acoustic wave element consists of one reflector electrode in which the reflector electrode in the location which adjoins them is formed integrally, The one of the Claims 1 thru | or 3 characterized by the above-mentioned. Surface acoustic wave device. 請求項1乃至4のいずれか記載の弾性表面波装置を有する、受信回路及び送信回路の少なくとも一方を備えたことを特徴とする通信装置。   A communication apparatus comprising at least one of a receiving circuit and a transmitting circuit having the surface acoustic wave device according to claim 1.
JP2006321146A 2006-11-29 2006-11-29 Surface acoustic wave device and communication device Active JP5019858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321146A JP5019858B2 (en) 2006-11-29 2006-11-29 Surface acoustic wave device and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321146A JP5019858B2 (en) 2006-11-29 2006-11-29 Surface acoustic wave device and communication device

Publications (2)

Publication Number Publication Date
JP2008136022A true JP2008136022A (en) 2008-06-12
JP5019858B2 JP5019858B2 (en) 2012-09-05

Family

ID=39560540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321146A Active JP5019858B2 (en) 2006-11-29 2006-11-29 Surface acoustic wave device and communication device

Country Status (1)

Country Link
JP (1) JP5019858B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124776A (en) * 2001-10-12 2003-04-25 Murata Mfg Co Ltd Surface acoustic wave device and communication apparatus
JP2004194027A (en) * 2002-12-12 2004-07-08 Murata Mfg Co Ltd Surface acoustic wave device
JP2004304513A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Surface acoustic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124776A (en) * 2001-10-12 2003-04-25 Murata Mfg Co Ltd Surface acoustic wave device and communication apparatus
JP2004194027A (en) * 2002-12-12 2004-07-08 Murata Mfg Co Ltd Surface acoustic wave device
JP2004304513A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Surface acoustic wave device

Also Published As

Publication number Publication date
JP5019858B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4641036B2 (en) Surface acoustic wave device and communication device
JP5033876B2 (en) Surface acoustic wave device and communication device
JP5094074B2 (en) Surface acoustic wave device and surface acoustic wave device
JP4901398B2 (en) Surface acoustic wave device
JP4583243B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP4467296B2 (en) Surface acoustic wave device
JP4480490B2 (en) Surface acoustic wave device and communication device using the same
JP2008028825A (en) Surface acoustic wave device and communication device
JP4637718B2 (en) Surface acoustic wave element and communication device
JP4646700B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP2008028826A (en) Surface acoustic wave device and communication device
JP4931615B2 (en) Surface acoustic wave device and communication device
JP4502779B2 (en) Surface acoustic wave element and communication device
JP5019858B2 (en) Surface acoustic wave device and communication device
JP5111585B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP4550549B2 (en) Surface acoustic wave element and communication device
JP4709622B2 (en) Surface acoustic wave device and communication device
JP4688572B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP2004235909A (en) Acoustic surface wave filter and communication device using the same
JP4741387B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP2008028824A (en) Surface acoustic wave device and communication device
JP4698362B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP4562517B2 (en) Surface acoustic wave element and communication device
JP5111586B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP2007318607A (en) Surface acoustic wave device and communication equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Ref document number: 5019858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3