JP2008135337A - Glass spacer for flat display, and its manufacturing method - Google Patents

Glass spacer for flat display, and its manufacturing method Download PDF

Info

Publication number
JP2008135337A
JP2008135337A JP2006322031A JP2006322031A JP2008135337A JP 2008135337 A JP2008135337 A JP 2008135337A JP 2006322031 A JP2006322031 A JP 2006322031A JP 2006322031 A JP2006322031 A JP 2006322031A JP 2008135337 A JP2008135337 A JP 2008135337A
Authority
JP
Japan
Prior art keywords
glass
spacer
base material
center
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006322031A
Other languages
Japanese (ja)
Inventor
Yoshinori Kurosawa
芳宣 黒沢
Masanori Ito
正宣 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006322031A priority Critical patent/JP2008135337A/en
Publication of JP2008135337A publication Critical patent/JP2008135337A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass spacer for a flat display allowing a glass spacer of a nearly-oblong cross-sectional shape formed by optimizing the difference between the thickest part in the vicinities of both ends of a long side and the thinnest part in the vicinity of the center; and its manufacturing method. <P>SOLUTION: An end of a glass base material 10 of an oblong cross section having a width of 60-180 mm is sequentially heated and melted to be continuously linearly drawn into a generally similar shape, and formed into this spacer 12 of a nearly-oblong cross-sectional shape where its center is recessed, and the difference between the thickest part in the vicinities of both ends of a long side and the thinnest part in the vicinity of the center is not smaller than 10 μm and smaller than 45 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、平面型ディスプレイ用ガラススペーサの製造方法、特にガラス母材を溶融・延伸することにより低コストな平面型ディスプレイ用ガラススペーサおよびその製造方法に関するものである。   The present invention relates to a method for producing a glass spacer for flat display, and more particularly to a glass spacer for flat display and a method for producing the same by melting and stretching a glass base material.

フラットパネルディスプレイ(FPD)は、デジタル放送、ブロードバンドの普及に伴い今後大きな市場拡大が見込まれ、フィールドエミッションディスプレイ(Field Emission Display)もこのFPDの一つとして、実用化に向けた開発が行われている。   The flat panel display (FPD) is expected to expand greatly in the future with the spread of digital broadcasting and broadband, and the field emission display is being developed for practical use as one of the FPDs. Yes.

このFEDは、内面に、電子の入射により可視光を発生する画像形成用の蛍光体が形成された前面ガラス基板と、電子放出素子がマトリックス状に配列された背面ガラス基板とからなり、これらガラス基板間が高真空に保持されると共に、ガラス基板を大気圧から支持するためにガラス基板間に複数のガラススペーサが設けられている。   This FED is composed of a front glass substrate on the inner surface of which a phosphor for image formation that generates visible light upon incidence of electrons is formed, and a rear glass substrate on which electron-emitting devices are arranged in a matrix. A plurality of glass spacers are provided between the glass substrates in order to maintain a high vacuum between the substrates and to support the glass substrates from atmospheric pressure.

このガラススペーサの高さ(幅)は1〜5mmであり、厚さとしては0.03〜0.30mmであり、例えば幅2mm、厚さ150μmのガラススペーサが製造されつつある。   The glass spacer has a height (width) of 1 to 5 mm and a thickness of 0.03 to 0.30 mm. For example, glass spacers having a width of 2 mm and a thickness of 150 μm are being manufactured.

ところで、平面型ディスプレイ用ガラススペーサを、ガラス母材を溶融・延伸することによって製造することは既に公知である。   By the way, it is already known that a glass spacer for a flat display is manufactured by melting and stretching a glass base material.

例えば、特許文献1では、予め側面を研磨した多角形断面を有する素材棒(母材)を垂直降下可能な機械系設備に結合し、下端から順次リング状の加熱装置内に挿入・溶融する。加熱装置は低電圧の熱線を熱源とし、±0.1℃に調整することができる。そして、加熱装置下方に設置された1対の駆動ベルトによって延伸する方法が提案されている。   For example, in Patent Document 1, a raw material rod (base material) having a polygonal cross section whose side has been polished in advance is coupled to a mechanical equipment that can be vertically lowered, and inserted and melted sequentially from the lower end into a ring-shaped heating device. The heating device can be adjusted to ± 0.1 ° C. using a low-voltage hot wire as a heat source. And the method of extending | stretching with a pair of drive belt installed below the heating apparatus is proposed.

特許文献2でも溶融・延伸によるスペーサの製造方法が提案されている。架設された母材ガラスはモータ駆動により供給速度を制御しつつ、下端から順次加熱炉に送り込まれる。加熱炉は略直方断面であり2対のヒータが設けられている。各ヒータ対は独立して各制御装置により制御されている。一方、加熱炉の直下には1対の延伸ロールが設置され、加熱炉から引き出したスペーサガラスを挟持しながら所定の延伸速度で延伸する。   Patent Document 2 also proposes a spacer manufacturing method by melting and stretching. The installed base glass is sequentially fed into the heating furnace from the lower end while controlling the supply speed by driving the motor. The heating furnace has a substantially rectangular cross section and is provided with two pairs of heaters. Each heater pair is independently controlled by each control device. On the other hand, a pair of stretching rolls is installed immediately below the heating furnace, and stretches at a predetermined stretching speed while sandwiching the spacer glass drawn from the heating furnace.

特開平07―144939号公報Japanese Patent Application Laid-Open No. 07-144939 特開2004−014199号公報JP 2004-014199 A

しかしながら、母材断面形状と線引後のスペーサ断面形状の僅かな差異に関する記述は見られない。   However, there is no description regarding a slight difference between the cross-sectional shape of the base material and the cross-sectional shape of the spacer after drawing.

線引法による製造法は、スペーサの低コスト化に好適であるが、更なる低コスト化を図るためには母材の大型化と線引速度の高速化が有効である。   Although the manufacturing method by the drawing method is suitable for reducing the cost of the spacer, it is effective to increase the size of the base material and increase the drawing speed in order to further reduce the cost.

線引後のスペーサの断面形状に関しては、特許文献3で種々の形状が提案されている。しかしながら、ガラススペーサの線引量産性に関する詳細な検討は、本公知例も含め、現在までなされていない。   With respect to the cross-sectional shape of the spacer after drawing, Patent Document 3 proposes various shapes. However, a detailed study on the drawing productivity of the glass spacer, including this known example, has not been made so far.

従来スペーサの断面形状は、略長方形で、長辺両端部の厚みが中央部に比べて若干大きい形状が、FEDパネルに搭載した場合、各種特性が最も良好であるとされ、スペーサを線引で製造するには、開発初期段階では、図4に示すように、幅30mm、厚さ2.4mm、長さ1000mmの長方断面ガラス母材の両面に、ボールエンドミル刃による切削加工で、中央部で深さ0.15mmの凹面31を施して母材30とし、これを線引により幅2.0mm、両端最大厚さ0.15mm、中央部厚さ130μmのスペーサ32としていた。   The cross-sectional shape of a conventional spacer is substantially rectangular, and the shape of which the thickness of both ends of the long side is slightly larger than that of the central part is considered to have the best characteristics when mounted on an FED panel. In order to manufacture, at the initial stage of development, as shown in FIG. 4, the center portion is formed by cutting with a ball end mill blade on both sides of a rectangular cross section glass base material having a width of 30 mm, a thickness of 2.4 mm, and a length of 1000 mm. Then, a concave surface 31 having a depth of 0.15 mm was provided to form a base material 30, which was drawn to form a spacer 32 having a width of 2.0 mm, a maximum thickness of both ends of 0.15 mm, and a central portion thickness of 130 μm.

しかしながら、長方形断面ガラス母材に切削加工で凹面を形成するため、単純な長方断面母材に比べて加工コストが嵩むという問題があった。   However, since the concave surface is formed on the rectangular cross-section glass base material by cutting, there is a problem that the processing cost increases compared to a simple rectangular cross-section base material.

そこで、本発明の目的は、前記した従来技術の欠点を解消し、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差を最適化した中央が窪んだ略長方断面形状のガラススペーサを低コストに製造することができる平面型ディスプレイ用ガラススペーサおよびその製造方法を提供することにある。   Therefore, the object of the present invention is to eliminate the drawbacks of the prior art described above, and optimize the difference in thickness between the thickest part near both ends of the long side and the thinnest part near the center. An object of the present invention is to provide a glass spacer for flat display and a method for manufacturing the same, which can manufacture a glass spacer having a cross-sectional shape at a low cost.

上記目的を達成するために請求項1の発明は、幅60mm乃至180mmの長方断面のガラス母材端部を順次加熱溶融し、ほぼ相似形に連続的に線引して、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満の中央が窪んだ略長方形断面形状に形成することを特徴とする平面型ディスプレイ用ガラススペーサの製造方法。   In order to achieve the above object, the invention of claim 1 is to heat and melt the glass base material end of a rectangular cross section having a width of 60 mm to 180 mm in order, and draw it continuously in a substantially similar shape. A method for producing a glass spacer for a flat display, characterized in that the difference in thickness between the thickest part in the vicinity and the thinnest part in the vicinity of the center is formed in a substantially rectangular cross-sectional shape having a depressed center with a thickness of 10 μm or more and less than 45 μm.

請求項2の発明は、ガラス母材が、遷移金属酸化物を含む導電性ガラスからなり、そのガラス母材の幅が60mm乃至150mmの長方断面形状であり、その幅に応じた線引速度で線引して、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満の中央が窪んだ略長方形断面形状に形成する請求項1項記載の平面型ディスプレイ用ガラススペーサの製造方法である。   In the invention of claim 2, the glass base material is made of conductive glass containing a transition metal oxide, and the glass base material has a rectangular cross-sectional shape with a width of 60 mm to 150 mm, and a drawing speed according to the width. 2. The substantially rectangular cross-sectional shape in which the difference between the thickness of the thickest part near both ends of the long side and the thinnest part of the center is 10 μm or more and less than 45 μm is recessed. It is a manufacturing method of the glass spacer for flat type displays.

請求項3の発明は、導電性ガラス内に含まれる遷移金属酸化物が、タングステン、バナジウム、バリウム、ニオブ等の遷移金属からなる酸化物を主要成分とする請求項2記載の平面型ディスプレイ用ガラススペーサの製造方法である。   The invention according to claim 3 is the glass for flat display according to claim 2, wherein the transition metal oxide contained in the conductive glass is mainly composed of an oxide made of a transition metal such as tungsten, vanadium, barium or niobium. It is a manufacturing method of a spacer.

請求項4の発明は、ガラス母材が、絶縁ガラスからなり、そのガラス母材の幅が80mm乃至180mmの長方断面形状であり、その幅に応じた線引速度で線引して、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満の中央が窪んだ略長方形断面形状に形成する請求項1項記載の平面型ディスプレイ用ガラススペーサの製造方法である。   According to a fourth aspect of the present invention, the glass base material is made of insulating glass, and the glass base material has a rectangular cross-sectional shape with a width of 80 mm to 180 mm. The glass base material is drawn at a drawing speed corresponding to the width. 2. The glass spacer for a flat display according to claim 1, wherein the difference in thickness between the thickest portion near both ends of the side and the thinnest portion near the center is formed in a substantially rectangular cross-sectional shape with the center being 10 μm or more and less than 45 μm. It is a manufacturing method.

請求項5の発明は、絶縁ガラスは、酸化ケイ素、酸化アルミニウム、アルカリ土類金属酸化物、アルカリ金属酸化物を含み、さらに望ましくはアルミノケイ酸塩系ガラス、アルミノホウケイ酸塩系ガラスを主要成分とする請求項4記載の平面型ディスプレイ用ガラススペーサの製造方法である。   According to a fifth aspect of the present invention, the insulating glass contains silicon oxide, aluminum oxide, alkaline earth metal oxide, and alkali metal oxide, and more preferably an aluminosilicate glass or an aluminoborosilicate glass as a main component. The method for producing a glass spacer for a flat display according to claim 4.

請求項6の発明は、請求項1〜5いずれか記載の平面型ディスプレイ用ガラススペーサの製造方法で製造され、断面形状が中央が窪んだ略長方形であり、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満であることを特徴とする平面型ディスプレイ用ガラススペーサである。   Invention of Claim 6 is manufactured by the manufacturing method of the glass spacer for flat displays in any one of Claims 1-5, and the cross-sectional shape is a substantially rectangular shape in which the center was depressed, and the thickest part near both ends of a long side And a difference in thickness of the thinnest part in the vicinity of the center is 10 μm or more and less than 45 μm.

本発明によれば、幅60〜180mmの長方断面のガラス母材を用いて線引きすることにより、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満の中央が窪んだ略長方断面のガラススペーサを量産線引することができる。また、母材の加工コストを低減でき、また大型母材による高速線引を実施できることから、低コストなガラススペーサを提供することができる。   According to the present invention, the difference in thickness between the thickest part near both ends of the long side and the thinnest part near the center is 10 μm or more by drawing using a glass base material having a rectangular section with a width of 60 to 180 mm. A glass spacer having a substantially rectangular cross section with a depressed center of less than 45 μm can be drawn in mass production. In addition, since the processing cost of the base material can be reduced and high-speed drawing with a large base material can be performed, a low-cost glass spacer can be provided.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

先ず、発明者らがガラススペーサの形状を検討した結果では、スペーサの断面形状は、略長方形で、長辺両端部の厚み(tmax )が中央部(tmin )に比べて若干大きい形状が、FEDパネルに搭載した場合、各種特性が最も良好であることが分かった。 First, as a result of the inventors examining the shape of the glass spacer, the cross-sectional shape of the spacer is substantially rectangular, and the thickness (t max ) at both ends of the long side is slightly larger than the central portion (t min ). When mounted on an FED panel, various characteristics were found to be the best.

具体的には長辺2.0〜3.0mm、短辺0.15mmのガラススペーサの場合
10μm<{(tmax)−(tmin)}<45μm
の範囲が好適であった。
Specifically, in the case of a glass spacer having a long side of 2.0 to 3.0 mm and a short side of 0.15 mm, 10 μm <{(t max ) − (t min )} <45 μm
The range of was suitable.

本最適数値範囲の根拠は以下の通りである。   The basis for this optimum numerical range is as follows.

スペーサ厚差が10μm以下のケースでは、完成後のFEDパネルで印加電圧によってはスペーサ近傍のエミッタから放出された電子のビーム軌道が乱れ易い傾向がある。そのためパネル点灯時にスペーサの残像が見えてしまうことがあった。スペーサ高さ方向の中央部付近では、電子ビーム軌道から離れるようにスペーサの厚みが僅かに小さい方が好ましい。   In the case where the spacer thickness difference is 10 μm or less, the beam trajectory of electrons emitted from the emitter near the spacer tends to be disturbed depending on the applied voltage in the completed FED panel. Therefore, an afterimage of the spacer may be seen when the panel is turned on. In the vicinity of the central portion in the spacer height direction, it is preferable that the spacer thickness is slightly smaller so as to be away from the electron beam trajectory.

一方、スペーサ厚差が45μm以上の場合は、中央部の厚みが100μm以下となり長辺(幅)方向に関して座屈強度が低下し、FEDパネルの製造工程でパネル内を真空引きを行なった際に一部のスペーサが座屈破壊してしまった。また、パネルにスペーサを実装する際にスペーサの搬送用に真空チャック式の把持具を用いたところ、スペーサの側面が凹面であるため把持具先端全面がスペーサに密着しないため真空漏れをおこしチャック部から脱落することがあった。   On the other hand, when the spacer thickness difference is 45 μm or more, the thickness of the central portion is 100 μm or less, the buckling strength is reduced in the long side (width) direction, and the inside of the panel is evacuated in the FED panel manufacturing process. Some spacers were buckled and destroyed. In addition, when mounting a spacer on the panel, a vacuum chuck type gripper was used to transport the spacer, and the side of the spacer was concave, so the entire tip of the gripper was not in close contact with the spacer, causing a vacuum leak and the chuck part Sometimes dropped out.

従って、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満であることが良いことが判明した。   Therefore, it has been found that the difference in thickness between the thickest part near both ends of the long side and the thinnest part near the center is preferably 10 μm or more and less than 45 μm.

更に本発明では、幅60mm乃至180mmの比較的大きなガラス母材を用いて線引きすることで、線引時の熱プロセスにより線引後のスペーサ断面の長辺両端部付近の最厚部と中央付近の最薄部の厚さに差をもたせること、また線引条件によって、厚差を10μm以上45μm未満とすることができることを新規に見出した。   Furthermore, in the present invention, by drawing using a relatively large glass base material having a width of 60 mm to 180 mm, the thickest part near the both ends of the long side of the spacer cross section after drawing by the thermal process during drawing and the vicinity of the center It was newly found that the thickness difference can be made 10 μm or more and less than 45 μm depending on the drawing conditions.

次に、本発明によるガラススペーサの線引作業の線引装置を図1を基に説明する。   Next, a drawing apparatus for drawing a glass spacer according to the present invention will be described with reference to FIG.

幅(W0 )120mm、厚さ(t0 )10.5mm、長さ1200mmの長方断面のアルミノケイ酸塩系ガラス母材10を、精密に垂直降下可能な母材把持部20に連結して、炉心を予め約760℃に昇温した線引炉21に挿入する。 An aluminosilicate glass base material 10 having a width (W 0 ) of 120 mm, a thickness (t 0 ) of 10.5 mm, and a length of 1200 mm is connected to a base material gripping part 20 capable of precisely descending vertically. The core is inserted into the drawing furnace 21 that has been heated to about 760 ° C. in advance.

母材10表面は機械研削により算術平均表面粗さRaが約1.0μmとなるまで研磨済みである。   The surface of the base material 10 is polished by mechanical grinding until the arithmetic average surface roughness Ra becomes about 1.0 μm.

線引炉21は高純度カーボン製の内径140mmのマッフル炉であり、炉心内には酸化劣化防止のためにマスフローコントローラを介してHeガスを投入している。   The drawing furnace 21 is a high-purity carbon muffle furnace having an inner diameter of 140 mm, and He gas is introduced into the core through a mass flow controller to prevent oxidative degradation.

母材把持部20はサーボモータによって駆動され、速度12mm/minの一定速度で母材10は線引炉21へ送り込まれる。線引炉21直下にはレーザ式の外径測定器22が、さらにその下には引取ロール23が設置されている。   The base material gripping part 20 is driven by a servo motor, and the base material 10 is fed into the drawing furnace 21 at a constant speed of 12 mm / min. A laser-type outer diameter measuring device 22 is installed immediately below the drawing furnace 21, and a take-up roll 23 is installed therebelow.

線引炉21内で溶融された母材10はその断面形状を保持したまま炉下口より取り出され、対向配置された引取ロール23によって約50m/minの速度で挟持・引取りされる。   The base material 10 melted in the wire drawing furnace 21 is taken out from the furnace lower opening while maintaining its cross-sectional shape, and is sandwiched and taken up at a speed of about 50 m / min by a take-up roll 23 arranged oppositely.

外径測定器22はレーザ照射方向がガラススペーサ板幅面と直交するように設置され、ガラススペーサ12の幅寸法を常時計測している。   The outer diameter measuring device 22 is installed so that the laser irradiation direction is orthogonal to the glass spacer plate width surface, and always measures the width dimension of the glass spacer 12.

外径測定器22で計測したスペーサ12の寸法データ、特に基準値(例えばW1 =2.0mm)からの偏差信号は制御盤24を通して引取ロール23にフィードバックされ、ガラススペーサ12の外径(幅)を一定にするが如くローラの速度を微妙にコントロールしている。 The dimensional data of the spacer 12 measured by the outer diameter measuring device 22, particularly a deviation signal from a reference value (for example, W 1 = 2.0 mm) is fed back to the take-up roll 23 through the control panel 24, and the outer diameter (width) of the glass spacer 12 is measured. The speed of the roller is finely controlled so that the

線引スペーサの断面寸法は、線引後のガラススペーサ全長に亘つて均―であり、両端部で厚さt1 =150μm、中央部で128μmであった(図2)。 The cross-sectional dimension of the drawing spacer was uniform over the entire length of the glass spacer after drawing, and the thickness t 1 = 150 μm at both ends and 128 μm at the center (FIG. 2).

表1及び表2に示す通りの断面寸法が異なる種々のガラス材質からなる長方断面母材を用いてガラススペーサを線引きし、得られたスペーサの端部の厚さtmax と中央部の厚さtmin との差(tmax−tmin)を評価した。 As shown in Table 1 and Table 2, the glass spacer is drawn using a rectangular cross-section base material made of various glass materials having different cross-sectional dimensions, and the thickness t max of the end portion of the obtained spacer and the thickness of the central portion are obtained. The difference from t min (t max −t min ) was evaluated.

Figure 2008135337
Figure 2008135337

Figure 2008135337
Figure 2008135337

ガラス材質は絶縁ガラスと導電ガラスの2種類を用いた。   Two types of glass materials were used: insulating glass and conductive glass.

具体的には、絶縁ガラスはアルミノケイ酸塩系ガラス、導電ガラスは酸化鉄含有のシリカ系ガラスである。   Specifically, the insulating glass is an aluminosilicate glass, and the conductive glass is an iron oxide-containing silica glass.

線引炉内でのガラス母材の溶融時間を一定にするため、母材の送り込み速度は12mm/分で一定とした。   In order to make the melting time of the glass base material in the drawing furnace constant, the feeding speed of the base material was constant at 12 mm / min.

各種の母材における幅寸法と線引き後に得られたガラススペーサの厚み差(tmax−tmin)の関係を図3に示す。 FIG. 3 shows the relationship between the width dimension of various base materials and the thickness difference (t max −t min ) of the glass spacer obtained after drawing.

母材の幅寸法が大きくなるに従い、ガラススペーサの厚み差も大きくなることが分かる。   It can be seen that the thickness difference of the glass spacer increases as the width of the base material increases.

特に、ガラス材質の観点からは絶縁ガラスよりも導電ガラスの方が、同一の幅寸法である場合において厚み差が大きくなる。そして、ガラス材質が絶縁ガラスである場合、表1のとおり80〜180mmの幅寸法を有する母材を用いて、線引速度を21〜133m/minの範囲で線引きすることにより、端部と中央部の厚み差が10μm以上45μm以下のガラススペーサを得ることができる。   In particular, from the viewpoint of the glass material, the difference in thickness is greater when the conductive glass has the same width than the insulating glass. When the glass material is insulating glass, as shown in Table 1, by using a base material having a width of 80 to 180 mm and drawing the drawing speed in the range of 21 to 133 m / min, the end and the center are drawn. A glass spacer having a thickness difference of 10 μm or more and 45 μm or less can be obtained.

また、ガラス材質が導電ガラスである場合には、表2のとおり60〜150mmの幅寸法を有する母材を線引速度11〜85m/minの範囲で線引きすることにより、端部と中央部の厚み差が10μm以上45μm以下のガラススペーサを得ることができる。   Further, when the glass material is conductive glass, by drawing a base material having a width of 60 to 150 mm as shown in Table 2 within a drawing speed range of 11 to 85 m / min, A glass spacer having a thickness difference of 10 μm to 45 μm can be obtained.

なお、スペーサ化後に両端部に比べて中央部で厚みが薄くなるのは、線引炉21内の最高温度位置より僅か下方のガラス固化開始位置において、水平方向に関しガラスの粘度差が生じるためである。ガラススペーサに用いる母材10は板状であるため、冷却過程では表面積の大きい両端部から先に冷める。つまり両端部で粘度が高く中央部で低い状態で線引張力が印加されるので、粘度の低い中央部でより変形が進み厚さが減じるのである。   In addition, the reason why the thickness is thinner at the center than at both ends after the spacer is formed is that a difference in glass viscosity occurs in the horizontal direction at the glass solidification start position slightly below the maximum temperature position in the drawing furnace 21. is there. Since the base material 10 used for the glass spacer is plate-shaped, it is cooled first from both ends having a large surface area in the cooling process. That is, since the drawing tension is applied in a state where the viscosity is high at both ends and low at the center, the deformation progresses more and the thickness decreases at the center where the viscosity is low.

一方、ガラス材質による差は電子導電性の有無ではなく、熱伝導性の差によるものである。   On the other hand, the difference due to the glass material is not due to the presence or absence of electronic conductivity, but due to the difference in thermal conductivity.

本発明における酸化ケイ素を主成分とするガラスの熱伝導率は1.0〜1.5(W/m・K)であるのに対し、遷移金属酸化物を主成分とする導電性ガラスでは0.5〜0.8(W/m・K)と小さい。そのため同一断面寸法の母材でも、導電性ガラスの方が前述の冷却過程で水平方向の温度差すなわちガラスの粘度差が大きくなり、ガラススペーサの厚み差が大きくなる。   The thermal conductivity of the glass mainly composed of silicon oxide in the present invention is 1.0 to 1.5 (W / m · K), whereas it is 0 for the conductive glass mainly composed of a transition metal oxide. .5 to 0.8 (W / m · K) and small. Therefore, even with a base material having the same cross-sectional dimensions, the conductive glass has a larger temperature difference in the horizontal direction, that is, a difference in viscosity of the glass in the above-described cooling process, resulting in a larger thickness difference in the glass spacer.

電子導電性ガラス内に含まれる遷移金属酸化物が、タングステン、バナジウム、バリウム、ニオブ等の遷移金属からなる酸化物を主要成分とするガラス材料を母材とすることが望ましい。   It is desirable that the transition metal oxide contained in the electron conductive glass is based on a glass material whose main component is an oxide composed of a transition metal such as tungsten, vanadium, barium, or niobium.

また、絶縁ガラスの材料としては、酸化ケイ素を主成分とするガラスであることが望ましい。具体的には酸化ケイ素、酸化アルミニウム、アルカリ土類金属酸化物、アルカリ金属酸化物を少なくとも含むガラスである。さらに望ましくは、アルミノケイ酸塩系ガラス、アルミノホウケイ酸塩系ガラスなどであり、これらは電子照射によるアルカリイオンの拡散やガラス構造の崩壊が起き難く、FEDパネル用ガラススペーサに適当なガラス材といえる。   In addition, the material of the insulating glass is desirably glass mainly composed of silicon oxide. Specifically, a glass containing at least silicon oxide, aluminum oxide, alkaline earth metal oxide, or alkali metal oxide. More desirable are aluminosilicate glass, aluminoborosilicate glass, and the like, which are difficult to cause diffusion of alkali ions and collapse of the glass structure due to electron irradiation, and can be said to be suitable glass materials for glass spacers for FED panels. .

以上は長辺2.0mm、短辺0.15mmのガラススペーサについて述べたが、長辺3.0mm、短辺0.15mmのスペーサに関しても、厚み差の最適範囲はほぼ同値であった。   Although the glass spacer having the long side of 2.0 mm and the short side of 0.15 mm has been described above, the optimum range of the thickness difference is almost the same for the spacer having the long side of 3.0 mm and the short side of 0.15 mm.

また、本発明における実施の形態では、母材の送り込み速度を12mm/minで行ったが、各母材で3〜25mm/minの範囲内で送り込み速度を変化させた場合でも、各々のスペーサの端部と中央部の厚みの差は10μm以上45μm以下の範囲内であった。なお、母材の送り込み速度が3mm/min未満では、スペーサの四隅の曲率が大きくなってパネル組立性が悪くなり、35mm/minを超えると線引炉内での母材の加熱が追いつかず、スムーズにガラスを溶融・線引きできなくなる。   In the embodiment of the present invention, the feeding speed of the base material is 12 mm / min. However, even when the feeding speed is changed within a range of 3 to 25 mm / min for each base material, The difference in thickness between the end portion and the central portion was in the range of 10 μm or more and 45 μm or less. In addition, if the feeding speed of the base material is less than 3 mm / min, the curvature of the four corners of the spacer becomes large and the panel assemblability deteriorates, and if it exceeds 35 mm / min, the heating of the base material in the drawing furnace cannot catch up, The glass cannot be melted or drawn smoothly.

本発明において、ガラススペーサ線引装置の概略図である。In this invention, it is the schematic of a glass spacer drawing apparatus. 本発明により線引したガラススペーサの断面図である。It is sectional drawing of the glass spacer drawn by this invention. 母材幅とそれにより線引したガラススペーサの厚み差の相関を示す図である。It is a figure which shows the correlation of the base material width | variety and the thickness difference of the glass spacer drawn by it. 従来技術による母材断面寸法と線引後のガラススペーサ断面寸法である。It is the base material cross-sectional dimension by a prior art, and the glass spacer cross-sectional dimension after drawing.

符号の説明Explanation of symbols

10 母材
12 ガラススペーサ
21 線引炉
23 引取ロール
10 Base Material 12 Glass Spacer 21 Drawing Furnace 23 Take-up Roll

Claims (6)

幅60mm乃至180mmの長方断面のガラス母材端部を順次加熱溶融し、ほぼ相似形に連続的に線引して、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満の中央が窪んだ略長方形断面に形成することを特徴とする平面型ディスプレイ用ガラススペーサの製造方法。   Thickness of the thickest part near both ends of the long side and the thinnest part near the center of the glass base material with a width of 60 mm to 180 mm is sequentially heated and melted and continuously drawn in a similar shape. A method for producing a glass spacer for a flat display, characterized in that the difference in thickness is formed in a substantially rectangular cross section with a depressed center having a difference of 10 μm or more and less than 45 μm. ガラス母材が、遷移金属酸化物を含む導電性ガラスからなり、そのガラス母材の幅が60mm乃至150mmの長方断面形状であり、その幅に応じた線引速度で線引して、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満の中央が窪んだ略長方形断面形状に形成する請求項1項記載の平面型ディスプレイ用ガラススペーサの製造方法。   The glass base material is made of conductive glass containing a transition metal oxide, and the glass base material has a rectangular cross-sectional shape with a width of 60 mm to 150 mm. The glass base material is drawn at a drawing speed according to the width, 2. The glass spacer for a flat display according to claim 1, wherein the difference in thickness between the thickest portion near both ends of the side and the thinnest portion near the center is formed in a substantially rectangular cross-sectional shape with the center being 10 μm or more and less than 45 μm. Production method. 導電性ガラス内に含まれる遷移金属酸化物が、タングステン、バナジウム、バリウム、ニオブ等の遷移金属からなる酸化物を主要成分とする請求項2記載の平面型ディスプレイ用ガラススペーサの製造方法。   The method for producing a glass spacer for a flat display according to claim 2, wherein the transition metal oxide contained in the conductive glass is mainly composed of an oxide composed of a transition metal such as tungsten, vanadium, barium, or niobium. ガラス母材が、絶縁ガラスからなり、そのガラス母材の幅が80mm乃至180mmの長方断面形状であり、その幅に応じた線引速度で線引して、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満の中央が窪んだ略長方形断面形状に形成する請求項1項記載の平面型ディスプレイ用ガラススペーサの製造方法。   The glass base material is made of insulating glass, and the glass base material has a rectangular cross-sectional shape with a width of 80 mm to 180 mm. The glass base material is drawn at a drawing speed corresponding to the width, and the maximum thickness near both ends of the long side. 2. The method for producing a glass spacer for a flat display according to claim 1, wherein the difference in thickness between the portion and the thinnest portion in the vicinity of the center is formed in a substantially rectangular cross-sectional shape in which the center is depressed in the range of 10 to 45 [mu] m. 絶縁ガラスは、酸化ケイ素、酸化アルミニウム、アルカリ土類金属酸化物、アルカリ金属酸化物を含み、さらに望ましくはアルミノケイ酸塩系ガラス、アルミノホウケイ酸塩系ガラスを主要成分とする請求項4記載の平面型ディスプレイ用ガラススペーサの製造方法。   5. The planar surface according to claim 4, wherein the insulating glass contains silicon oxide, aluminum oxide, alkaline earth metal oxide, and alkali metal oxide, and more preferably, the main component is aluminosilicate glass or aluminoborosilicate glass. Of manufacturing glass spacer for flat panel display. 請求項1〜5いずれか記載の平面型ディスプレイ用ガラススペーサの製造方法で製造され、断面形状が、中央が窪んだ略長方形であり、長辺両端部付近の最厚部と中央付近の最薄部の厚さの差が10μm以上45μm未満であることを特徴とする平面型ディスプレイ用ガラススペーサ。   It is manufactured by the method for manufacturing a glass spacer for a flat display according to any one of claims 1 to 5, wherein the cross-sectional shape is a substantially rectangular shape with a depressed center, and the thickest portion near both ends of the long side and the thinnest portion near the center. The difference in thickness of the part is 10 μm or more and less than 45 μm, a glass spacer for flat display.
JP2006322031A 2006-11-29 2006-11-29 Glass spacer for flat display, and its manufacturing method Pending JP2008135337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322031A JP2008135337A (en) 2006-11-29 2006-11-29 Glass spacer for flat display, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322031A JP2008135337A (en) 2006-11-29 2006-11-29 Glass spacer for flat display, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008135337A true JP2008135337A (en) 2008-06-12

Family

ID=39560038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322031A Pending JP2008135337A (en) 2006-11-29 2006-11-29 Glass spacer for flat display, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008135337A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046593A (en) * 2009-07-30 2011-03-10 Nippon Electric Glass Co Ltd Glass ribbon and method for producing the same
JP2017124949A (en) * 2016-01-12 2017-07-20 日本電気硝子株式会社 Production method and production apparatus of glass ribbon
JP2021054675A (en) * 2019-09-30 2021-04-08 日本電気硝子株式会社 Glass article and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046593A (en) * 2009-07-30 2011-03-10 Nippon Electric Glass Co Ltd Glass ribbon and method for producing the same
JP2017124949A (en) * 2016-01-12 2017-07-20 日本電気硝子株式会社 Production method and production apparatus of glass ribbon
JP2021054675A (en) * 2019-09-30 2021-04-08 日本電気硝子株式会社 Glass article and production method thereof
WO2021065082A1 (en) * 2019-09-30 2021-04-08 日本電気硝子株式会社 Glass article and manufacturing method therefor
CN114222719A (en) * 2019-09-30 2022-03-22 日本电气硝子株式会社 Glass article and method for producing glass article
JP7385812B2 (en) 2019-09-30 2023-11-24 日本電気硝子株式会社 Glass articles and their manufacturing method

Similar Documents

Publication Publication Date Title
US6385998B1 (en) Method of manufacturing glass spacers
US9517961B2 (en) Glass ribbon and method for producing the same
JP2007119322A (en) Glass roll and manufacturing method of glass substrate with functional film using the same
KR101845575B1 (en) Method for manufacturing molded glass plate, and device for manufacturing molded glass plate
US8082759B2 (en) Producing method for drawn glass member, producing method for spacer, and producing method for image display apparatus
JP2006225170A (en) Heat-drawing apparatus and method for producing glass spacer by using the same
JP2008135337A (en) Glass spacer for flat display, and its manufacturing method
US20060112728A1 (en) Producing method of drawn glass member, producing method for spacer for image display apparatus and producing method for image display apparatus
JP4886452B2 (en) Method for manufacturing stretched glass member, method for manufacturing spacer for image display device, and method for manufacturing image display device
JP2005093324A (en) Glass substrate used for image display device, manufacturing method and apparatus therefor
US20090126406A1 (en) Manufacturing method and heat drawing apparatus for glass member
US7867052B2 (en) Method of manufacturing support member
JP3724457B2 (en) Glass spacer for electron beam excitation display
JP4685063B2 (en) Manufacturing method of glass spacer for electron beam excitation display
JP2004014199A (en) Glass spacer for electron beam excitation display
JP2001266775A (en) Spacer for electron beam excitation display and its production
JP2003317649A (en) Glass spacer for electron-exciting display
JP2003317648A (en) Glass spacer for electron-beam-exciting display and its manufacturing method
JP2003317651A (en) Glass spacer for electron-exciting display
JP2003317653A (en) Glass spacer for electron-exciting display and its manufacturing method
JP2004241129A (en) Manufacturing method of glass spacer for electron beam-excited display, and glass spacer for electron beam-excited display manufactured by the same
JP2003317652A (en) Glass spacer for electron-exciting display
JP2003317650A (en) Glass spacer for electron-beam-exciting display
JP2006339037A (en) Manufacturing method of glass spacer
KR20160002392A (en) Method of making glass substrate and glass substrate