JP2006339037A - Manufacturing method of glass spacer - Google Patents

Manufacturing method of glass spacer Download PDF

Info

Publication number
JP2006339037A
JP2006339037A JP2005162632A JP2005162632A JP2006339037A JP 2006339037 A JP2006339037 A JP 2006339037A JP 2005162632 A JP2005162632 A JP 2005162632A JP 2005162632 A JP2005162632 A JP 2005162632A JP 2006339037 A JP2006339037 A JP 2006339037A
Authority
JP
Japan
Prior art keywords
glass
spacer
base material
manufacturing
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162632A
Other languages
Japanese (ja)
Inventor
Yoshinori Kurosawa
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005162632A priority Critical patent/JP2006339037A/en
Publication of JP2006339037A publication Critical patent/JP2006339037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method whereby a glass spacer having high dimensional accuracy can be obtained at a low cost. <P>SOLUTION: Glass, the arithmetic mean surface roughness Ra of which is within a range from 0.05μm to 1.2μm, is used as a glass base material, and after extending the glass while heating it, it is cut to a desired length to manufacture this glass spacer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガラススペーサの製造方法に関し、特に、高い寸法精度が要求される平面型ディスプレイ用途等のガラススペーサを低コストで得ることができる製造方法に関するものである。   The present invention relates to a method for manufacturing a glass spacer, and more particularly to a method for manufacturing a glass spacer for flat display applications and the like that require high dimensional accuracy at a low cost.

大きく重いブラウン管に代わるものとして、薄型で軽い自発光式のフラット型電子線励起ディスプレイがある。このフラット型電子線励起ディスプレイは、内面に画像形成部材が形成されたガラス基板から成る前面板と、電子放出素子群を搭載したガラス基板から成る背面板とを備える。画像形成部材は、電子放出素子からの電子ビームが照射されて発光する蛍光体を有する。前面板と背面板とは、支持枠を介して互いに気密的に接合されて支持枠と共に気密の耐大気圧構造をなす真空容器を形成する。   An alternative to a large and heavy cathode ray tube is a thin and light self-luminous flat electron beam excitation display. This flat electron beam excitation display includes a front plate made of a glass substrate having an image forming member formed on the inner surface, and a back plate made of a glass substrate on which an electron-emitting device group is mounted. The image forming member includes a phosphor that emits light when irradiated with an electron beam from an electron-emitting device. The front plate and the back plate are hermetically bonded to each other via a support frame to form a vacuum vessel that forms an airtight and atmospheric pressure resistant structure together with the support frame.

このようなフラット型電子線励起ディスプレイにあっては、電子ビームを蛍光体に照射して蛍光を発生させることにより画像を形成するため、電子線源、蛍光体、その他の構成部品が作り込まれる真空容器内は、約1.33×10−3Pa(約10−5torr)以下の真空雰囲気に保持される。このため、ディスプレイの表示画像が大きくなるに従って、真空容器内部と外部の気圧差によって前面板と背面板が変形又は接触する場合があった。この変形又は接触を防止して前面板と背面板との間隔を一定に保つために、前面板と背面板間には大気圧支持部材として複数のガラススペーサが挿入される。 In such a flat electron beam excitation display, an electron beam source, a phosphor, and other components are formed in order to form an image by irradiating the phosphor with an electron beam to generate fluorescence. The inside of the vacuum vessel is maintained in a vacuum atmosphere of about 1.33 × 10 −3 Pa (about 10 −5 torr) or less. For this reason, as the display image on the display becomes larger, the front plate and the rear plate may be deformed or brought into contact with each other due to a pressure difference between the inside and outside of the vacuum vessel. In order to prevent this deformation or contact and to keep the distance between the front plate and the back plate constant, a plurality of glass spacers are inserted as an atmospheric pressure support member between the front plate and the back plate.

このガラススペーサは、母材ガラスを加熱しつつ延伸し、次いで、延伸ガラスをカッター等により所望の長さに切断することにより製造される。   This glass spacer is manufactured by stretching the base glass while heating, and then cutting the stretched glass to a desired length with a cutter or the like.

具体的には、略直方断面を有する加熱炉内部にそれぞれ独立して制御装置により制御される2対のヒータを設け、加熱炉の直下に1対の延伸ロールを設置した製造装置を用い、この製造装置に架設された母材ガラスをモータ駆動により供給速度を制御しつつ下端から順次加熱炉に送り込み、加熱炉から引き出したスペーサガラスを挟持しながら所定の延伸速度で延伸する方法が提案されている(特許文献1参照)。   Specifically, using a manufacturing apparatus in which two pairs of heaters that are independently controlled by a control device are provided inside a heating furnace having a substantially rectangular cross section, and a pair of stretching rolls is installed immediately below the heating furnace, A method has been proposed in which the base glass erected in the manufacturing apparatus is sequentially fed from the lower end to the heating furnace while controlling the supply speed by motor drive, and is stretched at a predetermined stretching speed while sandwiching the spacer glass drawn from the heating furnace. (See Patent Document 1).

また、他の製造方法として、予め側面を研磨した多角形断面を有する素材棒(母材)を垂直降下可能な機械系設備に固定し、下端から順次リング状の加熱装置内に挿入・溶融し、加熱装置下方に設置された1対の駆動ベルトによって延伸する方法が提案されている(特許文献2参照)。
特開2004−14199号公報 特開平7−144939号公報
As another manufacturing method, a material bar (base material) having a polygonal cross section whose side has been polished in advance is fixed to a mechanical system that can be lowered vertically, and inserted and melted sequentially from the lower end into a ring-shaped heating device. A method of stretching by a pair of drive belts installed below the heating device has been proposed (see Patent Document 2).
JP 2004-14199 A JP-A-7-144939

近年、平面型ディスプレイの実用化に向けた開発が盛んになるに伴い、スペーサには従来にも増して高精度化の要求が出ており、例えば長方断面のスペーサでは長辺幅2〜3mmに対して10μm未満の偏差しか許容されないケースもある。従って、長手方向にわたり歩留り良くこの精度を確保するためには、線引装置の高精度化はもとより母材の表面状態も重要な要因となる。   In recent years, with the development for the practical application of flat display, the demand for higher accuracy is increasing for spacers compared to the conventional ones. In some cases, a deviation of less than 10 μm is allowed. Therefore, in order to ensure this accuracy with a good yield in the longitudinal direction, the surface condition of the base material is an important factor as well as the high accuracy of the drawing apparatus.

母材表面が鏡面もしくは鏡面に近い状態まで研磨される場合、装置が安定に運転していれば、目標寸法に対し、0.20%未満の外径寸法の変動で線引きが可能であると考えられる。なお、安定に運転できる条件として、装置としては加熱炉内での炉内ガス流れの安定化、引取りロールあるいはベルトの速度安定性、ガラスのパスラインの直線性等々が確保されている必要がある。これに対して、母材の表面が粗い場合では、線引炉内での溶融・延伸時にガラスの変形が必ずしも安定ではなく、装置が安定に運転しているにも拘わらず、目標寸法に対し、0.5〜1.0%程度の周期的な外径寸法が発生してしまう。   When the surface of the base material is polished to a mirror surface or a state close to the mirror surface, it is considered that if the apparatus is operating stably, drawing can be performed with a variation of the outer diameter dimension of less than 0.20% of the target dimension. It is done. As conditions for stable operation, the apparatus must ensure that the gas flow in the furnace is stabilized, the speed of the take-up roll or belt, the linearity of the glass pass line, etc. is there. On the other hand, when the surface of the base material is rough, the deformation of the glass is not always stable during melting and stretching in the drawing furnace, and the target dimension is not exceeded despite the fact that the device is operating stably. A periodic outer diameter of about 0.5 to 1.0% is generated.

ここで、特許文献1では、母材表面の粗さや線引後のスペーサの幅精度に関する詳細な記載はなく、母材ガラスの表面は加熱延伸時にほぼ火造り面となるので、元のガラスの加工精度はそれほど問題にならない、すなわち火造り面は母材ガラス成形型の微小な凹凸が転写されないので微視的に平坦であるとしている。しかし、線引後のスペーサ表面の微視的な平坦度は問題にならないとしても、長手方向の寸法安定性の点からは、ガラスの表面加工精度すなわち表面粗さが大きな問題となる。   Here, in Patent Document 1, there is no detailed description regarding the roughness of the surface of the base material and the width accuracy of the spacer after drawing, and the surface of the base material glass is almost fire-formed when heated and stretched. The processing accuracy does not matter so much, that is, the fired surface is microscopically flat because the minute unevenness of the base glass mold is not transferred. However, even if the microscopic flatness of the spacer surface after drawing is not a problem, the surface processing accuracy of the glass, that is, the surface roughness is a big problem from the viewpoint of dimensional stability in the longitudinal direction.

また、断面形状が真円形の母材は、ガラス旋盤に装着して、回転させながら火炎等の熱により表面を加熱研磨することによって比較的容易に鏡面加工できる。しかし、真円形以外の場合には熱による表面加工でガラスが軟化して表面張力が発生し、特に角部では丸みを帯びた形状に変形してしまうため、特許文献2のように断面形状が多角形の母材の側面を鏡面仕上げするのは容易ではない。   A base material having a true circular cross-sectional shape can be mirror-finished relatively easily by mounting it on a glass lathe and heating and polishing the surface with heat such as flame while rotating. However, in a case other than a true circle, the glass is softened by surface processing by heat and surface tension is generated. In particular, the corner portion is deformed into a rounded shape. It is not easy to mirror finish the side of the polygonal base material.

従って、多角形断面を有する母材の側面を鏡面もしくは鏡面に近い状態まで仕上げるために、メカニカルな研磨が適用されることが多い。しかし、メカニカル研磨によってガラス母材表面を鏡面に仕上げるためには、熱研磨に比べて多くの作業時間を要し、加工コストが高くなってしまう。   Therefore, in order to finish the side surface of the base material having a polygonal cross section to a mirror surface or a state close to the mirror surface, mechanical polishing is often applied. However, in order to finish the glass base material surface to a mirror surface by mechanical polishing, a lot of work time is required compared with thermal polishing, and the processing cost becomes high.

以上のことより、従来の方法では、母材表面の研磨仕上げレベルすなわち表面粗さの最適値は定量化されておらず、コストがかさむ母材表面の鏡面加工に依らない、高精度なガラススペーサの線引技術は未だ確立されていなかった。すなわち、母材表面仕上げの低コスト化と高精度スペーサの線引とが必ずしも両立できていなかった。   As described above, the conventional method does not quantify the polishing finish level of the base material surface, that is, the optimum value of the surface roughness, and does not rely on costly mirror surface processing of the base material surface. The drawing technique has not been established yet. That is, the cost reduction of the surface finish of the base material and the drawing of the high-precision spacer are not always compatible.

従って、本発明の目的は、上記の従来技術の欠点を解消し、高い寸法精度を有するガラススペーサを低コストで得ることができる製造方法を提供することにある。   Accordingly, it is an object of the present invention to provide a manufacturing method capable of eliminating the above-mentioned drawbacks of the prior art and obtaining a glass spacer having high dimensional accuracy at a low cost.

上記目的を達成するため、本発明のガラススペーサの製造方法は、ガラス母材を加熱しつつ延伸後、所望の長さに切断することによりガラススペーサを製造するガラススペーサの製造方法において、前記ガラス母材として、その算術平均表面粗さRaが0.05μm乃至1.2μmであるガラスを用いることを特徴とする。   In order to achieve the above object, the glass spacer manufacturing method of the present invention is the glass spacer manufacturing method in which the glass spacer is manufactured by stretching the glass base material while heating it, and then cutting the glass spacer into a desired length. As a base material, a glass having an arithmetic average surface roughness Ra of 0.05 μm to 1.2 μm is used.

また、本発明のガラススペーサの製造方法は、内面に画像形成部材が形成された前面板と電子放出素子群を搭載した背面板との両平板を隔てるガラススペーサを、ガラス母材を加熱しつつ延伸後、所望の長さに切断することにより製造するガラススペーサの製造方法において、前記ガラス母材として、スペーサ断面形状に対応した形状を有し、かつその算術平均表面粗さRaが0.05μm乃至1.2μmであるガラスを用いることを特徴とする。   In the glass spacer manufacturing method of the present invention, a glass spacer that separates both plates of a front plate having an inner surface on which an image forming member is formed and a back plate on which an electron-emitting device group is mounted is heated on the glass base material. In the method of manufacturing a glass spacer, which is manufactured by cutting to a desired length after stretching, the glass base material has a shape corresponding to the cross-sectional shape of the spacer, and its arithmetic average surface roughness Ra is 0.05 μm. A glass having a thickness of 1.2 μm to 1.2 μm is used.

前記ガラスをソーダライムガラスとすることができる。   The glass may be soda lime glass.

本発明によれば、母材表面の算術平均表面粗さRaが0.05μm乃至1.2μmの範囲となるように表面研磨を施すことにより、幅寸法精度が10μm以内の高精度なガラススペーサを低コストで製造することが可能となる。   According to the present invention, by performing surface polishing so that the arithmetic average surface roughness Ra of the base material surface is in the range of 0.05 μm to 1.2 μm, a high-precision glass spacer having a width dimension accuracy within 10 μm is obtained. It becomes possible to manufacture at low cost.

図1に、本実施形態で使用するガラススペーサ線引装置の概略図を示す。
このガラススペーサ線引装置10は、母材1を把持する母材把持部5と、母材把持部5を鉛直方向下方に移動させるためのスライドレール7と、母材1を溶融させる線引炉3と、線引炉3の下口から引き出したスペーサの外径寸法を測定するレーザ式の外径測定器9と、外径測定器9の下方に配置され、最終寸法を決定すると共にスペーサを引き取る引取ロール11と、外径測定器9からの信号を引取ロール11にフィードバックする制御系13とを備えている。
In FIG. 1, the schematic of the glass spacer drawing apparatus used by this embodiment is shown.
This glass spacer drawing apparatus 10 includes a base material gripping part 5 for gripping the base material 1, a slide rail 7 for moving the base material gripping part 5 downward in the vertical direction, and a drawing furnace for melting the base material 1. 3, a laser-type outer diameter measuring device 9 for measuring the outer diameter size of the spacer drawn out from the lower opening of the drawing furnace 3, and arranged below the outer diameter measuring device 9, determining the final size and removing the spacer A take-up roll 11 to be taken up and a control system 13 for feeding back a signal from the outer diameter measuring device 9 to the take-up roll 11 are provided.

母材把持部5は、図示しないサーボモータによって駆動される。線引炉3は、高純度カーボン製で内径140mmのマッフル炉であり、炉心内には酸化劣化防止のためにマスフローコントローラを介してHeガスを投入している。また、外径測定器9はレーザ照射方向がスペーサ板幅面と直交するように設置され、スペーサの幅寸法を常時計測している。外径測定器9で計測したスペーサの寸法データ、特に基準値(例えば本実施形態では3.0mm)からの偏差信号は制御系13を通して引取ロール11にフィードバックされ、スペーサの外径を一定にすべく引取ロール11の速度をコントロールするように構成されている。   The base material gripping part 5 is driven by a servo motor (not shown). The drawing furnace 3 is a muffle furnace made of high-purity carbon and having an inner diameter of 140 mm, and He gas is introduced into the core through a mass flow controller to prevent oxidative degradation. The outer diameter measuring device 9 is installed so that the laser irradiation direction is orthogonal to the spacer plate width surface, and always measures the width of the spacer. Spacer dimension data measured by the outer diameter measuring instrument 9, particularly a deviation signal from a reference value (for example, 3.0 mm in the present embodiment) is fed back to the take-up roll 11 through the control system 13 to make the outer diameter of the spacer constant. Accordingly, the speed of the take-up roll 11 is controlled.

次に、このガラススペーサ線引装置10を用いてガラススペーサを製造する方法について説明する。
まず、幅120mm、厚さ6.0mm、長さ1200mmの略長方断面を有するソーダライムガラスの母材1を、精密に垂直降下可能な母材把持部5に連結して、母材把持部5をサーボモータにより速度6.5mm/minの一定速で駆動させ、母材1を線引炉3の炉心へ送り込む。線引炉3の炉心は予め700℃に昇温しておき、線引炉3内で母材1を溶融させる。
次に、線引炉3内で溶融させた母材1をその断面形状を保持したまま炉下口より取り出し、対向配置された引取ロール11によって約10m/minの速度で挟持・引取る。
Next, a method for manufacturing a glass spacer using the glass spacer drawing apparatus 10 will be described.
First, a soda-lime glass base material 1 having a substantially rectangular cross section having a width of 120 mm, a thickness of 6.0 mm, and a length of 1200 mm is connected to a base material gripping part 5 capable of precisely descending vertically, and the base material gripping part 5 is driven at a constant speed of 6.5 mm / min by a servo motor, and the base material 1 is fed into the core of the drawing furnace 3. The core of the drawing furnace 3 is heated to 700 ° C. in advance, and the base material 1 is melted in the drawing furnace 3.
Next, the base material 1 melted in the drawing furnace 3 is taken out from the furnace lower opening while maintaining its cross-sectional shape, and is held and taken up at a speed of about 10 m / min by the take-up roll 11 arranged oppositely.

図2に、算術平均による表面粗さ(以下、「算術平均表面粗さ」と記す)Raが1.0μmとなるまで機械研削により予め表面を研磨したガラス母材を線引した場合のスペーサの外径寸法の変動を示す。約1.0mにわたるスペーサの幅寸法の変動幅は±5μm以内と高精度なスペーサが安定に線引きできた。   FIG. 2 shows the spacers when the glass base material whose surface has been previously ground by mechanical grinding until the surface roughness Ra by arithmetic average (hereinafter referred to as “arithmetic average surface roughness”) Ra is 1.0 μm is drawn. The fluctuation of the outer diameter is shown. The fluctuation width of the width dimension of the spacer over about 1.0 m was within ± 5 μm, and a highly accurate spacer could be stably drawn.

ガラス母材表面の上記算術平均表面粗さRaは0.05μm以上、1.2μm以下とすることが好ましい。
ガラス母材表面の算術平均表面粗さRaを1.2μm以下としたのは、後述の実施例の通り、線引き後のスペーサの寸法精度を10μm以内の高精度に収めることができるからである。
一方、ガラス母材表面の算術平均表面粗さRaが0.05μm以上としたのは、母材表面の機械研削による加工コストを考慮したためである。
The arithmetic average surface roughness Ra on the surface of the glass base material is preferably 0.05 μm or more and 1.2 μm or less.
The reason why the arithmetic average surface roughness Ra of the glass base material surface is set to 1.2 μm or less is that the dimensional accuracy of the spacer after drawing can be kept within a high accuracy of 10 μm or less as in the examples described later.
On the other hand, the reason why the arithmetic average surface roughness Ra of the glass base material surface is set to 0.05 μm or more is because the processing cost by mechanical grinding of the base material surface is taken into consideration.

通常の機械研削では、粗研磨、中研磨、仕上研磨と段階的に使用する砥石の粒径を小さくしていく。ただし、粒径が小さくなると切削速度も低くなる。そのため、表面粗さを小さく、すなわち鏡面に近づくにつれ、研磨に要する時間が加速度的に長くなっていく。   In normal mechanical grinding, the grain size of the grindstone used in stages is reduced in steps of rough polishing, medium polishing, and finish polishing. However, as the particle size decreases, the cutting speed also decreases. For this reason, as the surface roughness is reduced, that is, as it approaches the mirror surface, the time required for polishing is accelerated.

表1に、ソーダライムガラスを機械研削によって各表面粗さに研磨するための単位面積(1m)あたり所要加工時間を示す。 Table 1 shows the required processing time per unit area (1 m 2 ) for polishing soda-lime glass to each surface roughness by mechanical grinding.

Figure 2006339037
Figure 2006339037

表1の結果より、特に、Raが0.05μmより小さくなると急激に所要時間が長くなることが判る。加工時間はそのまま、母材加工コスト、ひいてはスペーサのコスト高につながる。スペーサの仕上り寸法精度上は鏡面が最も望ましいが、表1の結果より、スペーサの目標精度と加工コストの両立を考慮すると、Ra=0.05μm以上が望ましいと考えられる。   From the results in Table 1, it can be seen that the required time is abruptly increased particularly when Ra is smaller than 0.05 μm. The processing time is left as it is, which leads to the cost of processing the base material and the cost of the spacer. A mirror surface is most desirable in terms of the finished dimensional accuracy of the spacer, but from the results shown in Table 1, it is considered that Ra = 0.05 μm or more is desirable considering the balance between the target accuracy of the spacer and the processing cost.

母材表面粗さと線引スペーサの長手寸法変動との相関を明らかにして、外径変動幅を10μm未満に抑えることができる必要最小限の母材表面粗さを定量化すべく実験を行った。   An experiment was conducted to clarify the correlation between the base material surface roughness and the longitudinal dimension variation of the drawing spacer, and to quantify the minimum necessary base material surface roughness that can suppress the outer diameter variation width to less than 10 μm.

具体的には、図1に示すガラススペーサ線引装置10に、幅120mm、厚さ6.0mm、長さ1200mmの略長方断面のソーダライムガラスの母材1をセットして、幅3.0mmのガラススペーサを線引きした際の母材1の表面粗さとスペーサの長手寸法変動の相関を調べた。表面粗さについては、上記寸法を有する算術平均表面粗さRaが0.5、1.2、1.5μmの3種の母材を準備した。なお、算術平均表面粗さの測定には、株式会社キーエンス製の超深度形状測定顕微鏡VK−8550を用いた。   Specifically, a soda-lime glass base material 1 having a substantially rectangular cross section having a width of 120 mm, a thickness of 6.0 mm, and a length of 1200 mm is set in the glass spacer drawing apparatus 10 shown in FIG. The correlation between the surface roughness of the base material 1 when a 0 mm glass spacer was drawn and the longitudinal dimension variation of the spacer was examined. Regarding the surface roughness, three types of base materials having arithmetic average surface roughness Ra of 0.5, 1.2, and 1.5 μm having the above dimensions were prepared. For the measurement of the arithmetic average surface roughness, an ultra-deep shape measuring microscope VK-8550 manufactured by Keyence Corporation was used.

線引炉3の炉心温度は700℃に設定し、速度6.5mm/minで上記3種の母材1を一定速で炉心へ送り込んだ。線引炉3下方の1対の引取ロール11によって約10m/minでスペーサを引出し、幅約3.0mmのスペーサを線引きした際のスペーサの寸法変動を比較評価した。   The core temperature of the drawing furnace 3 was set to 700 ° C., and the above three kinds of base materials 1 were fed into the core at a constant speed at a speed of 6.5 mm / min. The spacer was pulled out at a rate of about 10 m / min by a pair of take-up rolls 11 below the drawing furnace 3, and the dimensional variation of the spacer when a spacer having a width of about 3.0 mm was drawn was comparatively evaluated.

ここで、本来は炉直下のレーザ式の外径測定器9でスペーサ幅を測定して、基準値からの偏差信号を制御系13から引取ロール11に入力してフィードバック制御を行なって均一幅のスペーサとなるように線引きを行うが、本実施例では母材表面粗さがスペーサ外径変動に及ぼす影響を確認するために、フィードバック制御を使用せずに10m/minの一定の速度で引取ロール11を運転した。   Here, the spacer width is originally measured by a laser-type outer diameter measuring device 9 directly under the furnace, and a deviation signal from a reference value is input from the control system 13 to the take-up roll 11 to perform feedback control, and a uniform width is obtained. In order to confirm the influence of the base material surface roughness on the outer diameter fluctuation of the spacer in this embodiment, the take-up roll is used at a constant speed of 10 m / min without using feedback control. 11 was driven.

図3〜図5に、算術平均表面粗さRaがそれぞれ、0.5、1.2、1.5μmのガラス母材を線引した後のスペーサの約1.0mにわたる外径寸法の変動を示す。
図3より、母材表面の算術平均表面粗さRaが0.5μmの比較的平滑な母材では、長さ1mでのスペーサの変動幅は±5μm以内に収まっていた。また、図4より、Raが1.2μmの母材では数10mm周期の変動が見られたが、その変動幅は±10μm以内に収まっていた。
一方、図5より、Raが1.5μmの母材では短周期の変動は見られなかったものの、その変動幅は±10μmを大きく超えてしまった。
3 to 5 show fluctuations in the outer diameter of the spacer over about 1.0 m after drawing a glass base material having arithmetic average surface roughness Ra of 0.5, 1.2, and 1.5 μm, respectively. Show.
As shown in FIG. 3, in the case of a relatively smooth base material having an arithmetic average surface roughness Ra of 0.5 μm on the surface of the base material, the variation width of the spacer at a length of 1 m was within ± 5 μm. Further, from FIG. 4, the base material with Ra of 1.2 μm showed a fluctuation of a period of several tens of mm, but the fluctuation width was within ± 10 μm.
On the other hand, from FIG. 5, although a short period of fluctuation was not observed in the base material with Ra of 1.5 μm, the fluctuation range greatly exceeded ± 10 μm.

本実施例の結果より、スペーサの外径変動幅を±10μm以内に収めるためには、母材表面の算術平均表面粗さRaを1.2μm以下とすることが必要であることが明らかとなった。   From the results of this example, it is clear that the arithmetic average surface roughness Ra of the base material surface needs to be 1.2 μm or less in order to keep the outer diameter variation width of the spacer within ± 10 μm. It was.

なお、上記実施例では、母材材質としてソーダライムガラスを用いた例を示したが、これに限定されるものではなく、例えばケイ酸塩系ガラス、アルミノケイ酸塩系ガラス、アルミノホウケイ酸塩系ガラス等を用いた場合もソーダライムガラスと同様の効果を得ることができる。   In addition, in the said Example, although the example which used soda-lime glass as a base material material was shown, it is not limited to this, For example, silicate type glass, aluminosilicate type glass, aluminoborosilicate type Even when glass or the like is used, the same effect as soda lime glass can be obtained.

本実施形態において用いたガラススペーサ線引装置の概略図である。It is the schematic of the glass spacer drawing apparatus used in this embodiment. 算術平均表面粗さRaが1.0μmの母材から線引したガラススペーサの長手位置での幅寸法のバラツキを示すグラフである。It is a graph which shows the dispersion | variation in the width dimension in the longitudinal position of the glass spacer drawn from the base material whose arithmetic mean surface roughness Ra is 1.0 micrometer. 算術平均表面粗さRaが0.5μmの母材から線引したガラススペーサの長手位置での幅寸法のバラツキを示すグラフである。It is a graph which shows the dispersion | variation in the width dimension in the longitudinal position of the glass spacer drawn from the base material whose arithmetic mean surface roughness Ra is 0.5 micrometer. 算術平均表面粗さRaが1.2μmの母材から線引したガラススペーサの長手位置での幅寸法のバラツキを示すグラフである。It is a graph which shows the dispersion | variation in the width dimension in the longitudinal position of the glass spacer drawn from the base material whose arithmetic mean surface roughness Ra is 1.2 micrometers. 算術平均表面粗さRaが1.5μmの母材から線引したガラススペーサの長手位置での幅寸法のバラツキを示すグラフである。It is a graph which shows the dispersion | variation in the width dimension in the longitudinal position of the glass spacer drawn from the base material whose arithmetic mean surface roughness Ra is 1.5 micrometers.

符号の説明Explanation of symbols

1 母材
3 線引炉
5 母材把持部
7 スライドレール
9 外径測定器
11 引取ロール
13 制御系
DESCRIPTION OF SYMBOLS 1 Base material 3 Wire drawing furnace 5 Base material holding part 7 Slide rail 9 Outer diameter measuring device 11 Take-up roll 13 Control system

Claims (3)

ガラス母材を加熱しつつ延伸後、所望の長さに切断することによりガラススペーサを製造するガラススペーサの製造方法において、前記ガラス母材として、その算術平均表面粗さRaが0.05μm乃至1.2μmであるガラスを用いることを特徴とするガラススペーサの製造方法。   In the glass spacer manufacturing method for manufacturing a glass spacer by stretching the glass base material while heating, and cutting the glass base material to a desired length, the arithmetic average surface roughness Ra is 0.05 μm to 1 as the glass base material. A method for producing a glass spacer, wherein glass having a thickness of 2 μm is used. 内面に画像形成部材が形成された前面板と電子放出素子群を搭載した背面板との両平板を隔てるガラススペーサを、ガラス母材を加熱しつつ延伸後、所望の長さに切断することにより製造するガラススペーサの製造方法において、前記ガラス母材として、スペーサ断面形状に対応した形状を有し、かつその算術平均表面粗さRaが0.05μm乃至1.2μmであるガラスを用いることを特徴とするガラススペーサの製造方法。   By stretching the glass spacer that separates both the front plate with the image forming member formed on the inner surface and the rear plate with the electron-emitting device group mounted thereon, while heating the glass base material, and then cutting it to a desired length In the manufacturing method of a glass spacer to be manufactured, glass having a shape corresponding to a spacer cross-sectional shape and an arithmetic average surface roughness Ra of 0.05 μm to 1.2 μm is used as the glass base material. A manufacturing method of a glass spacer. 前記ガラスがソーダライムガラスであることを特徴とする請求項1又は2記載のガラススペーサの製造方法。   The method for producing a glass spacer according to claim 1, wherein the glass is soda lime glass.
JP2005162632A 2005-06-02 2005-06-02 Manufacturing method of glass spacer Pending JP2006339037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162632A JP2006339037A (en) 2005-06-02 2005-06-02 Manufacturing method of glass spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162632A JP2006339037A (en) 2005-06-02 2005-06-02 Manufacturing method of glass spacer

Publications (1)

Publication Number Publication Date
JP2006339037A true JP2006339037A (en) 2006-12-14

Family

ID=37559417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162632A Pending JP2006339037A (en) 2005-06-02 2005-06-02 Manufacturing method of glass spacer

Country Status (1)

Country Link
JP (1) JP2006339037A (en)

Similar Documents

Publication Publication Date Title
JP6362583B2 (en) Method and apparatus for scoring sheet glass and scored sheet glass
JP4845034B2 (en) Manufacturing method of glass strip
US20120047951A1 (en) Methods and systems for forming continuous glass sheets
JP5380986B2 (en) Laser scribing method and laser scribing apparatus
US9682883B2 (en) Method for production of glass components
TWI485447B (en) Forming method for optical transmission medium, forming apparatus therefor, and production method for optical transmission medium
JP6818755B2 (en) Equipment and methods for plane formation of modifications in solids
JPWO2006038565A1 (en) Method and apparatus for scribing brittle materials
KR20200088907A (en) Glass sheet with improved edge quality and method for manufacturing same
US20080053973A1 (en) Method and apparatus for laser machining
JP2006225170A (en) Heat-drawing apparatus and method for producing glass spacer by using the same
US20070023134A1 (en) Producing method for drawn glass member, producing method for spacer, and producing method for image display apparatus
JP2006339037A (en) Manufacturing method of glass spacer
US20060112728A1 (en) Producing method of drawn glass member, producing method for spacer for image display apparatus and producing method for image display apparatus
US20080072624A1 (en) Manufacturing method of drawn glass member, manufacturing method of spacer for image display apparatus, and manufacturing method of image display apparatus
JP2008135337A (en) Glass spacer for flat display, and its manufacturing method
JP2009137788A (en) Glass substrate for flat panel
JP2007115706A (en) Sample processing device
JP2005320180A (en) Thermal treatment method for reducing heat-shrink rate of glass plate
JP2009277356A (en) Method of manufacturing support body
WO2012029157A1 (en) Apparatus for manufacturing bent optical transmission medium, and method for manufacturing bent optical transmission medium
JP2009126725A (en) Manufacturing method and heat drawing apparatus for glass member
JP4924226B2 (en) Surface processing method and surface processing apparatus
JP2008171769A (en) Manufacturing method of glass spacer for flat display
JP2007207653A (en) Manufacturing method and manufacturing device of glass spacer