JP2008135308A - Polarized ion beam generating method, and polarized ion beam generating device used for its implementation - Google Patents

Polarized ion beam generating method, and polarized ion beam generating device used for its implementation Download PDF

Info

Publication number
JP2008135308A
JP2008135308A JP2006321044A JP2006321044A JP2008135308A JP 2008135308 A JP2008135308 A JP 2008135308A JP 2006321044 A JP2006321044 A JP 2006321044A JP 2006321044 A JP2006321044 A JP 2006321044A JP 2008135308 A JP2008135308 A JP 2008135308A
Authority
JP
Japan
Prior art keywords
ion beam
polarized
helium
polarized ion
beam generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006321044A
Other languages
Japanese (ja)
Other versions
JP5212962B2 (en
Inventor
Hiroshi Suzuki
拓 鈴木
Yasushi Yamauchi
泰 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2006321044A priority Critical patent/JP5212962B2/en
Priority to JP2008548251A priority patent/JP5322157B2/en
Priority to PCT/JP2007/073121 priority patent/WO2008069110A1/en
Priority to US12/516,351 priority patent/US8017920B2/en
Priority to EP07832821.8A priority patent/EP2091306A4/en
Publication of JP2008135308A publication Critical patent/JP2008135308A/en
Application granted granted Critical
Publication of JP5212962B2 publication Critical patent/JP5212962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for generating a polarized ion beam having a high polarization rate exceeding 18% so that highly precise measurement which has not be conventionally available becomes possible by shortening a measuring time. <P>SOLUTION: In the structure of this polarized ion beam generating method, circularly polarized light the wavelength of which is adjusted to D<SB>0</SB>rays corresponding to transition to 2<SP>3</SP>P<SB>0</SB>and linearly polarized light are irradiated to a metastable helium atom from a mutually perpendicular irradiating direction to carry out optical pumping. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、偏極イオンビームにより材料の表面及び界面の磁性を調べる検査装置における偏極イオンビーム発生方法とその実施に使用する偏極イオンビーム発生装置に関する。   The present invention relates to a polarized ion beam generating method in an inspection apparatus for examining the magnetism of the surface and interface of a material using a polarized ion beam, and a polarized ion beam generating apparatus used for the method.

本明細書において、以下の言葉を以下の意味で使用する。   In this specification, the following words are used in the following meanings.

偏極率
上向きと下向きのスピンを持つイオンの個数を、それぞれn↑とn↓とすれば、偏極率は(n↑-n↓)/ (n↑+n↓)で定義される。本明細書では、これに100を乗じて、%表示する。
Polarization rate is defined as (n ↑ -n ↓) / (n ↑ + n ↓), where n ↑ and n ↓ are the numbers of ions with upward and downward spin, respectively. In this specification, this is multiplied by 100 and expressed as%.

D0線、D1線、D2線、23S1などの記号
光ポンピングによる準安定ヘリウム原子23S1のスピン偏極では、23S1と23Pの間の遷移を使う。この23P準位はスピン−軌道相互作用により微細構造を持ち、23S1からこれらへの遷移のことを、遷移エネルギーが大きい方から、D0、D1、D2線と呼んでいる。(図4参照)
Spin polarization of metastable helium atom 2 3 S 1 by symbolic optical pumping such as D 0 line, D 1 line, D 2 line, 2 3 S 1 uses transition between 2 3 S 1 and 2 3 P . This 2 3 P level has a fine structure due to spin-orbit interaction, and the transition from 2 3 S 1 to these is called D 0 , D 1 , D 2 line from the one with the larger transition energy. Yes. (See Figure 4)

偏極イオンビームにより材料の表面及び界面の磁性を調べる検査方法においては、偏極イオンビームは表面に極めて敏感であることから、測定中の表面汚染を防ぐために測定時間は可能な限り短縮する必要がある。
従来は、非特許文献1に示されているように、準安定ヘリウム原子23S1の23P1への遷移に対応するD1線の波長を持つ円偏光を用いた光ポンピングにより、ヘリウムイオンの偏極がなされてきた。この従来技術によるヘリウムイオンの偏極率は18%であり、これ以上の偏極率を持つ偏極ヘリウムイオンの発生は不可能であった。
このため、測定中の表面汚染を避けることが困難でその測定結果にもおのずから限界が生じていた。
Review of Scientific Instruments, 70 (1999) 240, Bixler
In inspection methods that examine the magnetic properties of material surfaces and interfaces with polarized ion beams, polarized ion beams are extremely sensitive to surfaces, so the measurement time must be reduced as much as possible to prevent surface contamination during measurement. There is.
Conventionally, as shown in Non-Patent Document 1, by optical pumping using circularly polarized light having a wavelength of D 1 line corresponding to the transition of metastable helium atom 2 3 S 1 to 2 3 P 1 , Helium ion polarization has been made. The polarization rate of helium ions according to this prior art was 18%, and it was impossible to generate polarized helium ions having a polarization rate higher than that.
For this reason, it is difficult to avoid surface contamination during the measurement, and the measurement results are naturally limited.
Review of Scientific Instruments, 70 (1999) 240, Bixler

本発明は、このような実情に鑑み、測定時間を短縮して従来にはない高精度の測定が可能になるように、偏極率が18%を超える高い偏極率をもった偏極イオンビームを発生させる方法とその装置を提供することを目的とする。   In view of such circumstances, the present invention provides a polarized ion having a high polarization rate exceeding 18% so that measurement time can be shortened and highly accurate measurement not possible in the past is possible. It is an object to provide a method and apparatus for generating a beam.

上記課題を解決するために、発明1の偏極イオンビーム発生方法は、2への遷移に対応するD線に波長調整した円偏光と直線偏光とを互いに直角の照射方向から準安定ヘリウム原子へ照射して光ポンピングすることを特徴とする。 In order to solve the above-mentioned problem, the polarized ion beam generation method of the invention 1 quasi-circulates the circularly polarized light and the linearly polarized light that are wavelength-adjusted to the D 0 line corresponding to the transition to 2 3 P 0 from the mutually perpendicular irradiation directions. Light pumping is performed by irradiating stable helium atoms.

発明2は、発明1の偏極イオンビーム発生方法を実施する為の偏極イオンビーム発生装置であって、高周波ヘリウム放電管と、レーザ発振器と当該レーザ発振器からのレーザを二つに分岐し、一方を円偏光とし、他方を直線偏光として、相互に90°の照射角度差をもって前記高周波ヘリウム放電管に照射する光偏光器とにより構成されていることを特徴とする。   Invention 2 is a polarized ion beam generator for carrying out the polarized ion beam generation method of Invention 1, wherein the high frequency helium discharge tube, the laser oscillator, and the laser from the laser oscillator are branched into two, One of them is a circularly polarized light and the other is a linearly polarized light, and is composed of an optical polarizer that irradiates the high-frequency helium discharge tube with a 90 ° difference in irradiation angle.

発明1により、従来と比較して1.5倍以上の偏極率が得られ、従来と同様な精度での測定では、その測定時間を2/3以下に減少することができた。
また、発明2により、このような高偏極率の偏極ヘリウムイオンビームの発生を実現することができた。
According to the invention 1, a polarization ratio of 1.5 times or more as compared with the conventional one was obtained, and in the measurement with the same accuracy as the conventional one, the measurement time could be reduced to 2/3 or less.
In addition, Invention 2 can realize the generation of such a polarized helium ion beam having a high polarization rate.

以下の実施例は本発明の一例を示すもので、本発明の主旨に違わない限り、従来技術に基づき変更が可能なものである。   The following examples show an example of the present invention, and modifications can be made based on the prior art as long as they do not differ from the gist of the present invention.

図1は、光ポンピングのための照射装置を示している。
光ファイバーレーザー(1)の波長1083nm出力光を、光ファイバー経由で光ファイバー増幅器(2)に入力した。
この入力光を、光ファイバー増幅器(2)で増強し、光ファイバーコネクタ(3)から空間に放出した。
光ファイバー増幅器(2)は、出力が3Wとなるように調整した。
また、光ファイバーレーザー(1)内に設置された偏光器を用いて、この放出光が直線偏光となるように予め調整した。
空間に放出された光を、1/2波長板(5)を用いて偏光方向を調整し、その凡そ半分の強度の光の進路をハーフミラー(6)を用いて変えた。
この進路を変えた光を、次いで、1/4波長板(7)を用いて円偏光とし、高周波ヘリウム放電管(12)へ照射した。
この円偏光の照射方向を、コイル(13)で作られる磁場と平行となるように調整した。
また、コイル(13)で作られる磁場が1ガウス程度となるように直流電源(14)を調整した。
一方、ハーフミラー(6)を通過した光が放電管(12)を照射するようにミラー(9)と凹面鏡(11)を調整した。
この直線偏光の照射方向は、コイル(13)で作られる磁場と垂直となるよう調整した。
また、直線偏光の偏光成分がコイル(13)で作られる磁場と平行となるように、1/2波長板(10)で偏光方向を調整した。
光ポンピングの照射光の波長は、準安定ヘリウム原子23S1の23P0への遷移に対応するD0線へ調整した。
その際、プラズマ中の準安定ヘリウム原子の偏極率を文献1に記載の方法で観察しながら、その偏極率が最大となるように微調整した。
FIG. 1 shows an irradiation device for optical pumping.
The output light having a wavelength of 1083 nm of the optical fiber laser (1) was input to the optical fiber amplifier (2) via the optical fiber.
This input light was amplified by the optical fiber amplifier (2) and emitted from the optical fiber connector (3) into the space.
The optical fiber amplifier (2) was adjusted so that the output was 3W.
In addition, using a polarizer installed in the optical fiber laser (1), the emission light was adjusted in advance so as to be linearly polarized light.
The direction of polarization of the light emitted into the space was adjusted using the half-wave plate (5), and the path of the light having about half the intensity was changed using the half mirror (6).
Next, the light whose direction was changed was converted into circularly polarized light using a quarter-wave plate (7) and irradiated to the high frequency helium discharge tube (12).
The irradiation direction of this circularly polarized light was adjusted to be parallel to the magnetic field created by the coil (13).
The DC power source (14) was adjusted so that the magnetic field generated by the coil (13) was about 1 Gauss.
On the other hand, the mirror (9) and the concave mirror (11) were adjusted so that the light passing through the half mirror (6) irradiates the discharge tube (12).
The irradiation direction of this linearly polarized light was adjusted to be perpendicular to the magnetic field created by the coil (13).
Further, the polarization direction was adjusted by the half-wave plate (10) so that the polarization component of the linearly polarized light was parallel to the magnetic field generated by the coil (13).
The wavelength of the irradiation light of the optical pumping was adjusted to the D 0 line corresponding to the transition of the metastable helium atom 2 3 S 1 to 2 3 P 0 .
At that time, while observing the polarization rate of the metastable helium atom in the plasma by the method described in Document 1, the polarization rate was finely adjusted so as to maximize.

図2は、偏極ヘリウムイオン源において発生したイオンの偏極率を評価するシステムについて示している。
まず、高周波ヘリウム放電管(15)において、高周波電源等(16〜19)を用いてヘリウムプラズマを発生させた。
次いで、図1で示された光ポンピングによって、このプラズマ中の準安定ヘリウム原子23S1をスピン偏極した。
偏極ヘリウムイオンは、この偏極準安定ヘリウム原子のペニングイオン化反応を利用して発生させた。
この偏極ヘリウムイオンを、リペラー電極(20)、引き出し電極(17)、レンズ(21,22,24)、ディフレクター(23,26)、減速器(25)を用いて、O/Fe/MgO磁性体基板まで輸送した。
O/Fe/MgO磁性体基板は、下記の作成方法により得た。
・ まずMgO(001)単結晶基板にFe薄膜50nm程度を室温で成長させ、
・ これを真空中で約600℃で10分間加熱し、
・ この基板を100ラングミュアーの酸素雰囲気に曝した後、
・ 基板を真空中で約500℃で10分間加熱し、
・ 真空中でパルス磁化した。
このO/Fe/MgO基板に到達した偏極ヘリウムイオンの大部分は、基板表面との間の相互作用において中性化し、基底状態のヘリウム原子となる。
この相互作用において、O/Fe/MgO基板から電子が放出される。
この電子の強度をその運動エネルギーの関数として、偏極イオンのスピンの向き別に、静電アナライザ(28)、二次電子倍増管(29)、プリアンプ(30)、マルチチャンネルスケーラー(31)及びパーソナルコンピュータ(32)を用いて計測した。
ヘリウムイオンの偏極の向き(上向き又は下向き)は、図1の1/4波長板(7)の向きで制御した。
上向きと下向きのスピン成分を持つヘリウムイオンによる放出電子強度を、それぞれIpとIapとすれば、スピン非対称率は(Ip-Iap)/(Ip+Iap)で定義される。
測定されるスピン非対称率は、偏極イオンの偏極率に比例するので、このスピン非対称率を図2で示された装置で測定することで、偏極イオンの偏極率の変化が求まる。
FIG. 2 shows a system for evaluating the polarization rate of ions generated in a polarized helium ion source.
First, in the high frequency helium discharge tube (15), helium plasma was generated using a high frequency power source or the like (16 to 19).
Next, the metastable helium atom 2 3 S 1 in this plasma was spin-polarized by the optical pumping shown in FIG.
Polarized helium ions were generated using the Penning ionization reaction of this polarized metastable helium atom.
This polarized helium ion is converted into O / Fe / MgO magnetism using the repeller electrode (20), extraction electrode (17), lenses (21, 22, 24), deflectors (23, 26), and speed reducer (25). It was transported to the body substrate.
The O / Fe / MgO magnetic substrate was obtained by the following production method.
・ First, grow an Fe thin film of about 50 nm on an MgO (001) single crystal substrate
・ Heat this in vacuum at about 600 ℃ for 10 minutes,
After exposing this substrate to 100 Langmuir oxygen atmosphere,
・ Heat the substrate in vacuum at about 500 ° C for 10 minutes,
・ Pulse magnetized in vacuum.
Most of the polarized helium ions that have reached the O / Fe / MgO substrate are neutralized in the interaction with the substrate surface to become ground state helium atoms.
In this interaction, electrons are emitted from the O / Fe / MgO substrate.
As a function of the kinetic energy of this electron, the electrostatic analyzer (28), the secondary electron multiplier (29), the preamplifier (30), the multichannel scaler (31) and the personal are classified according to the spin direction of the polarized ions. Measurement was performed using a computer (32).
The direction of helium ion polarization (upward or downward) was controlled by the direction of the quarter-wave plate (7) in FIG.
If the emitted electron intensity due to helium ions having an upward and downward spin component is Ip and Iap, respectively, the spin asymmetry is defined as (Ip−Iap) / (Ip + Iap).
Since the measured spin asymmetry is proportional to the polarization rate of the polarized ions, the change in the polarization rate of the polarized ions can be obtained by measuring this spin asymmetry with the apparatus shown in FIG.

偏極イオンの絶対値は、準安定ヘリウム原子の偏極率を予めStern-Gerlach分析器で求めておいた上で、準安定ヘリウム原子の放出電子スペクトル(スピン偏極準安定原子脱励起分光)と、同一の表面における偏極イオンの放出電子スペクトル(スピン偏極イオン中性化分光)とを比較することで求めた。この方法により、ヘリウム圧力が20Paのときのヘリウムイオンの偏極率は16.6%であると予め求めておいた。詳しくは、第53回応用物理学関係連合講演会講演予稿集、2 (2006) 782、鈴木拓を参照。 The absolute value of the polarized ion is obtained by calculating the polarization rate of the metastable helium atom in advance using a Stern-Gerlach analyzer, and then the emission electron spectrum of the metastable helium atom (spin-polarized metastable atom deexcitation spectroscopy). And the emission electron spectrum (spin-polarized ion neutralization spectroscopy) of polarized ions on the same surface. By this method, the polarization rate of helium ions when the helium pressure was 20 Pa was previously determined to be 16.6%. For details, refer to Proceedings of the 53rd Joint Conference on Applied Physics, 2 (2006) 782, Taku Suzuki.

図3は、放電管中のヘリウムガス圧の関数として調べたヘリウムイオンの偏極率である。
ヘリウム圧力が15Paの時の偏極率が、上記の予め求めておいた20Paの時の偏極率16.6%と等しいと仮定してプロットしてある。
スピン非対称率は、運動エネルギーが7.7から9.4eVの電子を測定して求めた。
従来技術による光ポンピングは、図1のミラー(9)を傾けて直線偏光の照射光が放電管(12)を照射しない状態にした上で、照射光波長をD1線に調整して行われた。
図3より、本技術による偏極率の最大値は、従来技術のそれの1.5倍以上であることが示される。
図3は、高周波電源電力を1Wに調整して測定された。
FIG. 3 shows the polarization ratio of helium ions as a function of helium gas pressure in the discharge tube.
The plot is made on the assumption that the polarization rate when the helium pressure is 15 Pa is equal to the above-mentioned polarization rate of 16.6% when the pressure is 20 Pa.
The spin asymmetry was determined by measuring electrons with a kinetic energy of 7.7 to 9.4 eV.
Optical pumping according to the prior art, in terms of the irradiation light of the linearly polarized light by tilting the mirror of FIG. 1 (9) is in a state not irradiated discharge tube (12), on a wavelength of the irradiated light was adjusted to 1 line D It was.
FIG. 3 shows that the maximum value of the polarization rate according to the present technology is 1.5 times or more that of the conventional technology.
FIG. 3 was measured with the high frequency power supply adjusted to 1 W.

産業分野で広く用いられている磁気抵抗効果素子では、しばしば磁性体・非磁性体界面の磁気的構造の解明が求められている。本発明により可能となった高偏極イオンビームをプローブとして用いることによって、その詳細な解明が可能になると期待される。他方、イオン注入技術に代表されるように、イオンビームを用いた材料の改質や整形は広く行われている。本発明により可能となった高偏極イオンビームを用いることによって、新たにスピンを制御することで、より高度な材料創成が可能になると期待される。また、本技術では準安定ヘリウム原子の高偏極化が可能となったので、偏極ヘリウム原子による磁気共鳴画像等の偏極準安定ヘリウム原子利用分野における応用も期待される。
In magnetoresistive elements widely used in the industrial field, it is often required to elucidate the magnetic structure of the interface between the magnetic material and the nonmagnetic material. By using a highly polarized ion beam made possible by the present invention as a probe, it is expected that detailed elucidation will be possible. On the other hand, as represented by ion implantation techniques, material modification and shaping using an ion beam are widely performed. By using a highly polarized ion beam made possible by the present invention, it is expected that more advanced materials can be created by newly controlling spin. In addition, since this technology has made it possible to increase the polarization of metastable helium atoms, applications in the field of using polarized metastable helium atoms, such as magnetic resonance imaging with polarized helium atoms, are also expected.

実施例の偏極イオンビーム発生装置を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the polarized ion beam generator of an Example. 実施例の偏極イオンビームの偏極率を評価するシステムの概略図。The schematic of the system which evaluates the polarization rate of the polarized ion beam of an Example. 実施例と従来技術についてヘリウム圧力の変化に伴う偏極率の変化を示すグラフThe graph which shows the change of the polarization rate accompanying the change of helium pressure about an Example and a prior art 準安定ヘリウム原子23S1の光ポンピングに関与するエネルギー準位を説明する図Diagram explaining energy levels involved in optical pumping of metastable helium atom 2 3 S 1

符号の説明Explanation of symbols

1.光ファイバーレーザー
2.光ファイバー増幅器
3.光ファイバーコネクタ
4.レンズ
5.1/2波長板
6.ハーフミラー
7.1/4波長板
8.レンズ
9.ミラー
10.1/2波長板
11.凹面鏡
12.高周波ヘリウム放電管
13.コイル
14.直流電源
15.高周波ヘリウム放電管
16.高周波電極
17.引き出し電極
18.マッチングユニット
19.高周波電源
20.リペラー電極
21.コンデンサーレンズ
22.フォーカシングレンズ
23.ディフレクター
24.アインツェルレンズ
25.減速器
26.ディフレクター
27.O/Fe/MgO磁性体基板
28.静電アナライザ
29.二次電子増倍管
30.プリアンプ
31.マルチチャンネルスケーラー
32.パーソナルコンピュータ
1. 1. Optical fiber laser 2. Optical fiber amplifier Optical fiber connector 4. Lens 5. 1/2 wavelength plate 6. Half mirror 7. 1/4 wave plate 8. Lens 9. Mirror 10.1 / 2 wavelength plate 11. Concave mirror 12. High frequency helium discharge tube 13. Coil 14. DC power supply 15. High frequency helium discharge tube 16. High-frequency electrode 17. Extraction electrode 18. Matching unit 19. High frequency power supply 20. Repeller electrode 21. Condenser lens 22. Focusing lens 23. Deflector 24. Einzel lens 25. Reducer 26. Deflector 27. O / Fe / MgO magnetic substrate 28. Electrostatic analyzer 29. Secondary electron multiplier 30. Preamplifier 31. Multi-channel scaler 32. Personal computer

Claims (2)

偏極イオンビームにより材料の表面及び界面の磁性を調べる検査装置における偏極イオンビーム発生方法であって、準安定ヘリウム原子2から2への遷移に対応するD線に波長調整した円偏光と直線偏光とを互いに直角の照射方向から準安定ヘリウム原子へ照射して光ポンピングすることを特徴とする偏極イオンビーム発生方法 A method of generating a polarized ion beam in an inspection apparatus that examines the magnetism of the surface and interface of a material by using a polarized ion beam, which corresponds to a D 0 line corresponding to a transition from a metastable helium atom 2 3 S 1 to 2 3 P 0 A polarized ion beam generating method characterized in that optically pumping is performed by irradiating metastable helium atoms with wavelength-adjusted circularly polarized light and linearly polarized light from mutually perpendicular irradiation directions. 請求項1に記載の偏極イオンビーム発生方法を実施する為の偏極イオンビーム発生装置であって、高周波ヘリウム放電管と、レーザ発振器と当該レーザ発振器からのレーザを二つに分岐し、一方を円偏光とし、他方を直線偏光として、相互に90°の照射角度差をもって前記高周波ヘリウム放電管に照射する光偏光器とにより構成されていることを特徴とする偏極イオンビーム発生装置   A polarized ion beam generator for carrying out the polarized ion beam generating method according to claim 1, wherein the high frequency helium discharge tube, the laser oscillator, and the laser from the laser oscillator are branched into two, A polarized ion beam generator comprising: an optical polarizer that irradiates the high-frequency helium discharge tube with a difference in irradiation angle of 90 ° relative to each other, wherein
JP2006321044A 2006-11-29 2006-11-29 Polarized ion beam generating method and polarized ion beam generating apparatus used for the method Expired - Fee Related JP5212962B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006321044A JP5212962B2 (en) 2006-11-29 2006-11-29 Polarized ion beam generating method and polarized ion beam generating apparatus used for the method
JP2008548251A JP5322157B2 (en) 2006-11-29 2007-11-29 Spin-polarized ion beam generating apparatus, scattering spectroscopic apparatus and method using the spin-polarized ion beam, and sample processing apparatus
PCT/JP2007/073121 WO2008069110A1 (en) 2006-11-29 2007-11-29 Spin-polarization ion beam generator, scattering spectroscope using the spin-polarization ion beam, and specimen processing device
US12/516,351 US8017920B2 (en) 2006-11-29 2007-11-29 Spin polarized ion beam generation apparatus and scattering spectroscopy apparatus using the spin polarized ion beam and specimen processing apparatus
EP07832821.8A EP2091306A4 (en) 2006-11-29 2007-11-29 Spin-polarization ion beam generator, scattering spectroscope using the spin-polarization ion beam, and specimen processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321044A JP5212962B2 (en) 2006-11-29 2006-11-29 Polarized ion beam generating method and polarized ion beam generating apparatus used for the method

Publications (2)

Publication Number Publication Date
JP2008135308A true JP2008135308A (en) 2008-06-12
JP5212962B2 JP5212962B2 (en) 2013-06-19

Family

ID=39560011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321044A Expired - Fee Related JP5212962B2 (en) 2006-11-29 2006-11-29 Polarized ion beam generating method and polarized ion beam generating apparatus used for the method

Country Status (1)

Country Link
JP (1) JP5212962B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259476A (en) * 2004-03-10 2005-09-22 Institute Of Physical & Chemical Research Simultaneous generation method of spin polarized electron and spin polarized ion and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259476A (en) * 2004-03-10 2005-09-22 Institute Of Physical & Chemical Research Simultaneous generation method of spin polarized electron and spin polarized ion and its device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7012005098; D. L. Bixer et al.: 'Improved low-energy, electron-spin-polarized 4He+ ion source' Review of Scientific Instruments Vol. 70, No. 1, 199901, page 240-241, American Institute of Physics *

Also Published As

Publication number Publication date
JP5212962B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
US9640367B2 (en) Plasma source for a focused ion beam system
US7709807B2 (en) Magneto-optical trap ion source
Tandecki et al. Commissioning of the francium trapping facility at TRIUMF
Ciccacci et al. Spin‐polarized electron gun for electron spectroscopies
Hillert et al. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization
JP5322157B2 (en) Spin-polarized ion beam generating apparatus, scattering spectroscopic apparatus and method using the spin-polarized ion beam, and sample processing apparatus
Kanda et al. The Ultra-Slow Muon beamline at J-PARC: present status and future prospects
JP5212962B2 (en) Polarized ion beam generating method and polarized ion beam generating apparatus used for the method
Nürnberg Laser-accelerated proton beams as a new particle source
CN107219182B (en) The particle beams excites vacuum ultraviolet-visible light wave range magneto-optic spectrum test method and system
Tajima et al. Offline ion source for laser spectroscopy of RI at the SLOWRI
Germer et al. Quantitative low-energy ion beam characterization by beam profiling and imaging via scintillation screens
Wahlström et al. Test facility to study surface-interaction processes for particle detection in space
Leedle Laser acceleration and deflection of sub-100 keV electrons with silicon dielectric laser accelerator structures
Kiselev et al. Beam energy spread measurement at the VEPP-4M electron-positron collider
JP5051634B2 (en) Ion beam generating method and ion beam generating apparatus for carrying out the same
Hebeisen Generation, characterization and applications of femtosecond electron pulses
Stefani Commissioning & characterization of magnetized gridded thermionic electron source
Gardner et al. Transport dynamics in a high-brightness magneto-optical-trap Li ion source
Feng Next Generation Ultrafast Electron Diffractometers
JP2011029077A (en) Polarized ion beam generating device, and polarized ion beam generating method
Pasmans Ultrafast electron diffraction: an investigation of fundamental limits
Gall et al. Laser-optical and X-ray characterization of an operating high-voltage piezoelectric transformer in multiple vibrational modes
JP2008304276A (en) Manufacturing method of transmission type moderator for slow positron brightness enhancement, transmission type moderator for slow positron brightness enhancement, brightness enhancement method of slow positron beam, high brightness slow positron beam generation device, and positron microscope
Ash Combining Electron and Optical Spectroscopy to Study the Diamond Surface for NV Centre Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

R150 Certificate of patent or registration of utility model

Ref document number: 5212962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees