JP2008133157A - METHOD FOR PRODUCING SiO SINTERED COMPACT - Google Patents
METHOD FOR PRODUCING SiO SINTERED COMPACT Download PDFInfo
- Publication number
- JP2008133157A JP2008133157A JP2006320277A JP2006320277A JP2008133157A JP 2008133157 A JP2008133157 A JP 2008133157A JP 2006320277 A JP2006320277 A JP 2006320277A JP 2006320277 A JP2006320277 A JP 2006320277A JP 2008133157 A JP2008133157 A JP 2008133157A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- particle size
- sio
- vapor deposition
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、一酸化珪素の蒸着膜の形成に蒸着材料として使用するのに適したSiO焼結体の製造方法に関する。 The present invention relates to a method for producing a SiO sintered body suitable for use as a deposition material for forming a deposited film of silicon monoxide.
食品、医薬品などの包装材料や液晶、有機ELなどのフラットパネルディスプレイの樹脂基板においては、高度のガスバリア性をもつことが求められている。この観点からアルミニウムなどの金属、或いは酸化珪素、酸化アルミニウム、酸化マグネシウムなどの金属酸化物を高分子フィルム基材上に蒸着させたガスバリア性フィルムが知られており、なかでも一酸化珪素を蒸着させたものは、高い透明性と高いガスバリア性を合せもつことから注目を集めている。 Packaging materials for foods and pharmaceuticals, and resin substrates for flat panel displays such as liquid crystals and organic ELs are required to have a high gas barrier property. From this point of view, a gas barrier film in which a metal such as aluminum or a metal oxide such as silicon oxide, aluminum oxide, or magnesium oxide is vapor-deposited on a polymer film substrate is known, and in particular, silicon monoxide is vapor-deposited. Is attracting attention because it has both high transparency and high gas barrier properties.
一酸化珪素膜の形成に使用される蒸着材料は、通常、真空凝集法を用いて製造された一酸化珪素が使用される。真空凝集法とは、原料室内でSiとSiO2 とを混合して加熱し、原料室の上に連結された管状の凝集室の内面にSiOを気相析出させることにより、SiOを製造する方法である。製造されたSiOは緻密な析出体であり、これを所定のタブレット形状に切り出して蒸着材料に直接使用する場合もあれば、析出体を一旦破砕して粉末にし、これを所定のタブレット形状に焼結して使用する場合もある。嵩密度などの特性値を広範囲にコントロールできるために、焼結体を蒸着材料に使用する場合が比較的多い。 As a vapor deposition material used for forming the silicon monoxide film, silicon monoxide manufactured using a vacuum agglomeration method is usually used. The vacuum agglomeration method is a method for producing SiO by mixing and heating Si and SiO 2 in a raw material chamber, and vapor-depositing SiO on the inner surface of a tubular agglomeration chamber connected to the raw material chamber. It is. The produced SiO is a dense precipitate, which may be cut into a predetermined tablet shape and used directly as a vapor deposition material. In other cases, the precipitate is once crushed into a powder and then sintered into a predetermined tablet shape. In some cases, it may be used. Since characteristic values such as bulk density can be controlled over a wide range, a sintered body is relatively often used as a vapor deposition material.
このような蒸着材料に要求される品質因子の一つとして、蒸発残渣の少ないことがある。蒸発残渣とは蒸着後にルツボ内に残る渣(かす)のことで、二酸化珪素(SiO2 )やルツボを構成する金属(通常W)とのシリサイドなどからなり、粉末焼結型の蒸着材料で特に問題となる。なぜなら、粉末焼結型の蒸着材料では、原料であるSiO粉末の粒表面の酸化分(SiO2 )が残渣になるため、残渣量が必然的に多くなり、また同時に、粒表面の酸化膜が蒸着の障害となるため、結果として蒸着速度が低下する。また、蒸着材料の種類に関係なく、蒸着残渣が多いと、長時間の連続蒸着操業ではその連続操業が阻害されることになる。そして、粉末焼結型の蒸着材料での蒸発残渣を少なくする対策として、蒸着材料の製造に使用する粉末原料の粒径を大きくすること、具体的には250μm以上にすることの有効性が特許文献1に記載されている。 One of the quality factors required for such a vapor deposition material is that there is little evaporation residue. The evaporation residue is the residue remaining in the crucible after vapor deposition, which consists of silicon dioxide (SiO 2 ) and silicide with the metal (usually W) that constitutes the crucible. It becomes a problem. This is because in the powder-sintered vapor deposition material, the oxidized amount (SiO 2 ) on the grain surface of the raw material SiO powder becomes a residue, so the amount of residue is inevitably increased, and at the same time, the oxide film on the grain surface Since it becomes an obstacle of vapor deposition, the vapor deposition rate is lowered as a result. Regardless of the type of vapor deposition material, if there are many vapor deposition residues, the continuous operation for a long period of time will be hindered. And as a measure to reduce the evaporation residue in the powder-sintered evaporation material, it is patented that the effectiveness of increasing the particle size of the powder raw material used for the manufacture of the evaporation material, specifically 250 μm or more It is described in Document 1.
粉末焼結型の蒸着材料において原料粉末の粒径を大きくすると、粉末単位重量あたりの粒表面積が小さくなり、粒表面の酸化量が少なくなるので、蒸発残渣は減少し、蒸着速度も上昇する。ところが、焼結原料として大粒径粉末を使用すると、一方で焼結体の機械的強度が低下する。蒸着材料の機械的強度が低下すると、蒸着中に材料(タブレット)が割れ、この問題も連続蒸着の障害となる。例えばEB蒸着法では、電子ビーム(EB)によってタブレットの表面を加熱して蒸発させるが、その表面のみが高温に加熱されるために、タブレット内部に大きな熱応力が生じ、これが蒸着途中にタブレットを破壊する原因になると考えられる。この問題は、蒸着速度を高めるために電子ビーム出力を上げた場合に顕著となる。そして、この問題を解決するために、特許文献1では焼結温度が1200℃〜1350℃(実施例では1300℃)と非常に高く設定されている。すなわち、大粒径の粉末が高温で硬く焼き固められているのである。 When the particle size of the raw material powder is increased in the powder-sintered deposition material, the grain surface area per unit weight of the powder is reduced, and the amount of oxidation on the grain surface is reduced. However, when a large particle size powder is used as a sintering raw material, the mechanical strength of the sintered body is reduced. When the mechanical strength of the vapor deposition material decreases, the material (tablet) breaks during vapor deposition, and this problem also becomes an obstacle to continuous vapor deposition. For example, in the EB vapor deposition method, the surface of the tablet is heated and evaporated by an electron beam (EB), but only the surface is heated to a high temperature, so that a large thermal stress is generated inside the tablet, and this causes the tablet to be deposited during the vapor deposition. It is thought to cause destruction. This problem becomes prominent when the electron beam output is increased to increase the deposition rate. And in order to solve this problem, in patent document 1, sintering temperature is set very high as 1200 to 1350 degreeC (1300 degreeC in an Example). That is, the large particle size powder is hardened and hardened at a high temperature.
また、これらの問題とは別に、一酸化珪素蒸着膜の形成プロセスではスプラッシュも解決しなければならない技術課題となっている。スプラッシュは溶融材料の微細な飛び跳ね現象であり、膜形成中にこれが発生すると、形成された蒸着膜にピンホールなどの欠陥が発生し、膜品質が著しく低下する。この現象は成膜速度を高めるほど顕著になり、成膜速度を阻害する要因にもなっている。このため、一酸化珪素蒸着膜の形成作業では、スプラッシュの発生抑制が重要な技術課題になっており、その課題の解決に向けて各方面からアプローチが試みられている。 In addition to these problems, the formation process of the silicon monoxide vapor deposition film is a technical problem that must also be solved with splash. Splash is a fine jumping phenomenon of the molten material. If this occurs during film formation, defects such as pinholes are generated in the formed deposited film, and the film quality is significantly reduced. This phenomenon becomes more prominent as the film formation rate is increased, and it is a factor that hinders the film formation rate. For this reason, in the formation work of a silicon monoxide vapor deposition film, suppression of the occurrence of splash has become an important technical problem, and approaches have been attempted from various directions to solve the problem.
そして、このスプラッシュに関しては、蒸着材料の物理的性質が深く関与し、蒸着材料が緻密で硬いほどスプラッシュは発生し難いと考えられており、この観点から判断すれば、高温で焼結された硬い蒸着材料はスプラッシュを発生し難いということになる。しかしがら、実際は、高温で焼結された蒸着材料はスプラッシュを発生しやすく、これがために、特許文献1で提示された蒸着材料は、一酸化珪素蒸着膜の形成プロセスでのスプラッシュの発生が問題になることが判明した。 And regarding this splash, the physical properties of the vapor deposition material are deeply involved, and it is thought that the more dense and hard the vapor deposition material is, the less likely it is to splash. From this point of view, the hard material sintered at high temperature This means that the vapor deposition material hardly generates splash. However, in actuality, a vapor deposition material sintered at a high temperature is likely to generate splash. Therefore, the vapor deposition material presented in Patent Document 1 has a problem of occurrence of splash in the formation process of a silicon monoxide vapor deposition film. Turned out to be.
本発明の目的は、一酸化珪素蒸着膜の形成プロセスに使用して、スプラッシュの発生及び割れの発生を効果的に抑制でき、更には蒸発残渣も少なく抑制できる高品質なSiO焼結体の製造方法を提供することにある。 It is an object of the present invention to produce a high-quality SiO sintered body that can be used in a process for forming a silicon monoxide vapor deposition film and can effectively suppress the occurrence of splash and cracking, and can also reduce the amount of evaporation residue. It is to provide a method.
粉末焼結型蒸着材料を使用したときの蒸発残渣を少なくするためには、大粒径粉末の使用は不可欠である。この観点から、大粒径粉末を使用した蒸着材料で問題となる機械的強度の低下、及びスプラッシュの発生を同時に抑制する方法について、本発明者は多方面から検討を重ねた。その結果、以下の事実が判明した。 In order to reduce the evaporation residue when using the powder sintering type vapor deposition material, the use of a large particle size powder is indispensable. From this point of view, the present inventor has studied from various aspects about a method for simultaneously suppressing the decrease in mechanical strength and the occurrence of splash, which are problems in a vapor deposition material using a large particle size powder. As a result, the following facts were found.
前述したとおり、一酸化珪素の蒸着作業でのスプラッシュの原因は、これまでは蒸着材料の物理的性質、特に緻密性の低さにあると考えられていた。すなわち、材料の緻密性が低く、脆さが顕著であることがスプラッシュの原因と考えられていた。しかし、本発明者による種々の調査の結果からは、これとは別の新たな原因が浮上してきた。すなわち、本発明者は粉末焼結型蒸着材料における焼結温度のスプラッシュへの影響度に着目し、これを詳細に調査した。その結果は、意外にも焼結温度が従来の理想値よりも若干低い温度で焼結された蒸着材料を使用した場合に、スプラッシュが効果的に抑制されるというものであった。その理由を本発明者は次のように考えている。 As described above, the cause of the splash in the vapor deposition operation of silicon monoxide has hitherto been thought to be due to the low physical properties of the vapor deposition material, particularly the denseness. That is, it was considered that the splash was caused by the low density of the material and the remarkable brittleness. However, from the results of various investigations by the present inventors, another new cause has emerged. That is, the present inventor paid attention to the influence of the sintering temperature on the splash in the powder sintering type vapor deposition material, and investigated this in detail. The result was that the splash was effectively suppressed when a vapor deposition material sintered at a temperature slightly lower than the conventional ideal value was used. The inventor considers the reason as follows.
従来は緻密性を上げるために、粉末焼結温度は1200℃以上というような高温に設定されていた。大粒径粉末を使用する場合は特にこの高温焼結が必要とされていた。このような高温焼結の場合は、焼結プロセスでSiOが熱分解してSiが析出することになる。そして蒸着作業では、その析出Siが蒸発飛散し、これがスプラッシュとなる。蒸着材料の脆さがスプラッシュの一因である可能性は否定できないが、それよりも高温焼結において析出したSiの、蒸着プロセスでの蒸発現象の方が、スプラッシュに対して支配的である。実際、焼結温度を種々変更した蒸着材料にXRD(X-Ray Diffraction spectroscopy) を実施したところ、焼結温度の低下にともなってSiピークが消え、スプラッシュも激減することが確認された。 Conventionally, the powder sintering temperature has been set to a high temperature of 1200 ° C. or higher in order to increase the density. This high temperature sintering was particularly required when using large particle size powders. In the case of such high-temperature sintering, SiO is thermally decomposed and Si is precipitated in the sintering process. In the vapor deposition operation, the deposited Si is evaporated and splashed. Although the possibility that the brittleness of the vapor deposition material may contribute to the splash cannot be denied, the evaporation phenomenon in the vapor deposition process of Si deposited in the high temperature sintering is more dominant than the splash. Actually, when XRD (X-Ray Diffraction spectroscopy) was performed on the vapor deposition material having variously changed sintering temperatures, it was confirmed that the Si peak disappeared and the splash was drastically reduced as the sintering temperature decreased.
しかしながら、大粒径粉末の焼結において焼結温度を下げると、焼結体の機械的強度が極端に低下し、蒸着材料(タブレット)使用中の破損が一層顕著となる。 However, when the sintering temperature is lowered in the sintering of the large particle size powder, the mechanical strength of the sintered body is extremely lowered, and the damage during use of the vapor deposition material (tablet) becomes more remarkable.
このような事情から、本発明者は、蒸発残渣抑制のために大粒径粉末の使用は不可欠であり、また、スプラッシュの防止のために焼結温度の低下も不可欠であると考え、これらに悪影響を及ぼすことなく、大粒径粉末を低温焼結した場合に問題となる焼結体の機械的の強度の低下を補う方法について検討を行った。その結果、大粒径粉末に小粒径粉末を混合して使用することの有効性が判明した。その理由としては、大粒径粉末に小粒径粉末を混合して焼結すると、大粒径粉末粒子間に小粒径粉末粒子が入り込み、これがバインダーのような機能を果たして、大粒径粉末粒子同士を強固に結合することが考えられる。 Under these circumstances, the present inventor considers that the use of a large particle size powder is indispensable for suppressing evaporation residue, and that the reduction of the sintering temperature is also indispensable for preventing splash. A method for compensating for the decrease in mechanical strength of a sintered body, which becomes a problem when a large particle size powder is sintered at a low temperature without adverse effects, was studied. As a result, the effectiveness of mixing and using a small particle size powder in a large particle size powder was found. The reason is that when a small particle size powder is mixed with a large particle size powder and sintered, the small particle size powder particles enter between the large particle size powder particles, and this acts as a binder, It is conceivable that the particles are firmly bonded to each other.
本発明のSiO焼結体の製造方法は、かかる知見を基礎にして完成されたものであり、大粒径SiO粉と小粒径SiO粉を原料とし、これらを混合した後に成形して焼結するものである。 The manufacturing method of the SiO sintered body of the present invention has been completed on the basis of such knowledge, and a large particle size SiO powder and a small particle size SiO powder are used as raw materials, and these are mixed and then molded and sintered. To do.
本発明のSiO焼結体の製造方法においては、焼結原料粉末として大粒径SiO粉と小粒径SiO粉の混合粉末が使用される。本発明のSiO焼結体の製造方法において使用される原料粉末の粒度分布のイメージを図1に実線で示す。本発明のSiO焼結体の製造方法においては、SiO粉末を分級した上で細粒粉末と粗粒粉末の2種類を混合して使用するため、粒度分布ピークは2つ生じ、より詳しくは、粗粒が主体であるため、粗粒のピークは高く、細粒のピークは低い。参考のために、一般の粉末の粒度分布を図1に破線で示す。ツブが揃っていないブロードな粉末の場合、粗粒も細粒も含むが、粒度分布のピークは1つであり、この点が前記混合粉末と相違する。 In the method for producing a SiO sintered body of the present invention, a mixed powder of large particle size SiO powder and small particle size SiO powder is used as a sintering raw material powder. An image of the particle size distribution of the raw material powder used in the method for producing a SiO sintered body of the present invention is shown by a solid line in FIG. In the method for producing a SiO sintered body of the present invention, two types of fine powder and coarse powder are mixed and used after classifying the SiO powder, so that two particle size distribution peaks occur. Since coarse grains are the main component, the peak of coarse grains is high and the peak of fine grains is low. For reference, the particle size distribution of a general powder is shown by a broken line in FIG. In the case of a broad powder with no lumps, both coarse and fine particles are included, but the particle size distribution has one peak, which is different from the above mixed powder.
本発明のSiO焼結体の製造方法においては、焼結粉末の主体として大粒径SiO粉を使用するので、表面積が減少し、蒸着プロセスでは蒸発残渣が少なくなり、蒸着速度も向上する。小粒径SiO粉を混合使用するので、低温焼結により蒸着プロセスでのスプラッシュの発生を抑制する場合にも、蒸着材料の機械的強度の低下が抑制され、蒸着プロセスでのスプラッシュの発生が抑制される。 In the method for producing a SiO sintered body according to the present invention, since the large particle size SiO powder is used as the main component of the sintered powder, the surface area is reduced, the evaporation residue is reduced in the evaporation process, and the evaporation rate is improved. Since the small particle size SiO powder is mixed and used, even when the occurrence of splash in the vapor deposition process is suppressed by low-temperature sintering, the decrease in mechanical strength of the vapor deposition material is suppressed, and the occurrence of splash in the vapor deposition process is suppressed. Is done.
本発明のSiO焼結体の製造方法においては、原料中の小粒径SiO粉の混合比率、両粉末の粒径、及び焼結プロセスでの焼結温度が重要である。 In the method for producing a SiO sintered body of the present invention, the mixing ratio of the small particle size SiO powder in the raw material, the particle size of both powders, and the sintering temperature in the sintering process are important.
原料中の小粒径SiO粉の混合比率は10〜30wt%が好ましい。小粒径SiO粉の混合比率が小さすぎると、焼結体の機械的強度の低下を十分に補うことができない。反対に小粒径SiO粉の混合比率が大きすぎると、粉末単位重量あたりの表面積が増大し、蒸発残渣や蒸着速度低下が問題になるおそれがある。 The mixing ratio of the small particle size SiO powder in the raw material is preferably 10 to 30 wt%. If the mixing ratio of the small particle size SiO powder is too small, the decrease in the mechanical strength of the sintered body cannot be sufficiently compensated. On the other hand, if the mixing ratio of the small particle size SiO powder is too large, the surface area per unit weight of the powder increases, which may cause a problem of evaporation residue and a decrease in deposition rate.
図2は粉末の累積分布を示す。径が異なる粒子の集合体である粉末では、粒子径と累積の関係は図のようになる。累積重量が50%となる粒径径をメディアン径と呼び、D50で表す。換言すれば、粉末をある粒子径で2分したとき、大きい側と小さい側が等重量となる径のことでもある。このD50で表して、小粒径SiO粉の粒径は0.1〜45μmが好ましく、0.3〜20μmがより好ましい。また、大粒径SiO粉の粒径は100〜300μmが好ましい。小粒径SiO粉の粒径が小さすぎると、原料粉末の表面積が過大となり、粒子表面の酸化による蒸発残渣の問題、蒸着速度低下の問題を生じるおそれがある。反対に大きすぎると、焼結体の機械的強度が不十分となるおそれがある。大粒径SiO粉の粒径が小さすぎる場合は、原料粉末の表面積が過大となり、大粒径粉末を使用する本来目的、すなわち粒子表面の酸化による蒸発残渣の問題、蒸着速度低下の問題を解決する効果が不十分となる。反対に大きすぎる場合は焼結体の機械的強度の低下が問題になるおそれがある。 FIG. 2 shows the cumulative distribution of the powder. In the case of powder that is an aggregate of particles having different diameters, the relationship between the particle diameter and the accumulation is as shown in the figure. The particle径径the cumulative weight becomes 50% is referred to as a median diameter, expressed in D 50. In other words, when the powder is divided into two parts by a certain particle diameter, it is also a diameter in which the large side and the small side are of equal weight. Expressed by this D 50 , the particle size of the small particle size SiO powder is preferably from 0.1 to 45 μm, more preferably from 0.3 to 20 μm. The particle size of the large particle size SiO powder is preferably 100 to 300 μm. If the particle size of the small particle size SiO powder is too small, the surface area of the raw material powder becomes excessive, which may cause a problem of evaporation residue due to oxidation of the particle surface and a problem of a decrease in deposition rate. On the contrary, if it is too large, the mechanical strength of the sintered body may be insufficient. If the particle size of the large particle size SiO powder is too small, the surface area of the raw material powder becomes excessive, which solves the original purpose of using the large particle size powder, that is, the problem of evaporation residue due to oxidation of the particle surface, and the problem of reduced deposition rate Effect is insufficient. On the other hand, if it is too large, the mechanical strength of the sintered body may be lowered.
焼結温度は700〜1000℃が好ましい。700〜1000℃は従来に比べると低温である。このような低温焼結でも、小粒径粉末の使用により、必要な機械的強度が確保されることは前述したとおりである。低温焼結といえども700℃未満というような極端な低温の場合は必要な機械的強度が確保されない。焼結温度が1000℃を超えると焼結過程でSiが析出し、これがスプラッシュの原因となる。 The sintering temperature is preferably 700 to 1000 ° C. 700-1000 degreeC is low temperature compared with the past. As described above, the necessary mechanical strength is ensured by using a small particle size powder even in such low temperature sintering. Even in the case of low temperature sintering, the necessary mechanical strength is not ensured at an extremely low temperature of less than 700 ° C. When the sintering temperature exceeds 1000 ° C., Si precipitates during the sintering process, which causes splash.
本発明の製造方法により製造されたSiO焼結体は、蒸着材料、特に蒸着プロセスでの温度差によるタブレット割れが顕著なEB蒸着材料として好適である。 The SiO sintered body produced by the production method of the present invention is suitable as a vapor deposition material, particularly an EB vapor deposition material in which tablet cracking due to a temperature difference in the vapor deposition process is remarkable.
本発明のSiO焼結体の製造方法は、焼結原料粉末として、大粒径SiO粉に小粒径SiO粉を混合して使用するにより、大粒径SiO粉を低温焼結する場合に問題となる焼結体の機械的強度の低下を回避でき、蒸着プロセスでの蒸着材料の損傷を防止できる。そして、大粒径SiO粉の使用により蒸着プロセスでの蒸発残渣を少なくでき、蒸着速度の低下を阻止できる。また、低温焼結により蒸着プロセスでのスプラッシュの発生を顕著に抑制できる。 The method for producing a SiO sintered body according to the present invention has a problem when a large particle size SiO powder is sintered at a low temperature by using a large particle size SiO powder mixed with a small particle size SiO powder as a sintering raw material powder. Decrease in mechanical strength of the sintered body can be avoided, and damage to the vapor deposition material in the vapor deposition process can be prevented. And by using large particle size SiO powder, the evaporation residue in a vapor deposition process can be decreased, and the fall of a vapor deposition rate can be prevented. Moreover, the occurrence of splash in the vapor deposition process can be remarkably suppressed by low temperature sintering.
以下に本発明の実施形態を図面に基づいて説明する。図3は本発明の一酸化珪素系蒸着材料の製造工程の説明図である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is an explanatory view of the production process of the silicon monoxide-based vapor deposition material of the present invention.
本実施形態では、次の工程を経て蒸着材料が製造される。第1工程は原料(析出SiO)の製造である。この工程では、真空凝集装置で析出SiOを製造する。真空凝集装置は、原料室とその上に連結された円管状の凝集室とを備えている。操業では、Si粉末とSiO2 粉末の混合物を原料室にチャージする。室内を所定の真空度に減圧し、所定温度(1200〜1400℃)に加熱する。これより、原料室でSiOの蒸気が発生し、これが上方の凝集室に導入される。凝集室では、凝集管温度が外面温度で数百度に管理されており、その内面にSiOが析出する。 In this embodiment, a vapor deposition material is manufactured through the following steps. The first step is the production of the raw material (deposited SiO). In this step, deposited SiO is produced with a vacuum aggregating apparatus. The vacuum agglomeration apparatus includes a raw material chamber and a circular agglomeration chamber connected thereto. In operation, the raw material chamber is charged with a mixture of Si powder and SiO 2 powder. The chamber is depressurized to a predetermined degree of vacuum and heated to a predetermined temperature (1200 to 1400 ° C.). As a result, SiO vapor is generated in the raw material chamber and introduced into the upper coagulation chamber. In the coagulation chamber, the coagulation tube temperature is controlled to several hundred degrees at the outer surface temperature, and SiO is deposited on the inner surface.
真空凝集装置で析出SiOが製造されると、その析出SiOを粉砕機により所定粒度に粉砕する。粉砕により製造されたSiO粉末を分級する。種々粒径の粉末のなかからD50が1〜45μmの小粒径粉と同じくD50が100〜300μmの大粒径粉を選択し、小粒径粉の比率が10〜30wt%となるように混合する。混合が終わると、その混合粉末を所定のバインダーにより蒸着材料(タブレット)の形状(通常は円柱形状)に成形し、焼結する。焼結温度は700〜1000℃とする。 When the deposited SiO is produced by the vacuum aggregating apparatus, the deposited SiO is pulverized to a predetermined particle size by a pulverizer. The SiO powder produced by grinding is classified. Various particle sizes of well D 50 D 50 is the particle径粉of 1~45μm among powder selects the large径粉of 100 to 300 [mu] m, as the ratio of small径粉is 10 to 30 wt% To mix. When mixing is completed, the mixed powder is formed into a vapor deposition material (tablet) shape (usually a cylindrical shape) with a predetermined binder and sintered. The sintering temperature is 700 to 1000 ° C.
D50が100〜300μmの粉末は粗粒子の集合である。また700〜1000℃は従来に比べると低温である。このような粗粒の低温焼結においても、小粒径粉末の混合により所定の機械的強度が確保されることは前述したとおりである。 A powder having a D 50 of 100 to 300 μm is an aggregate of coarse particles. Moreover, 700-1000 degreeC is low temperature compared with the past. Even in such low-temperature sintering of coarse grains, as described above, a predetermined mechanical strength is ensured by mixing small-diameter powders.
焼結はホットプレスでもよいが、成形にバインダーを使用して焼結を行う方が経済的である。バインダーを使用すると緻密性が低下し、従来はその使用が問題視されていたが、前述したとおり、その緻密性はスプラッシュの発生に大きな影響を及ぼさない。バインダーの使用による経済的メリットは少なくない。バインダーとしては、一般に市販されているもので問題ないが、特に500℃以下の低温で脱バインダーをできるものが好ましい。バインダーの添加量は15〜30重量%が好ましい。バインダーが少なすぎると成形性が悪化し、多すぎる場合はスラリー状となって成形が困難となる。 Sintering may be performed by hot pressing, but it is more economical to perform sintering using a binder for molding. When the binder is used, the denseness is lowered, and its use has been regarded as a problem in the past. However, as described above, the denseness does not greatly affect the occurrence of splash. There are many economic benefits of using binders. As the binder, commercially available ones are not a problem, but those that can be removed at a low temperature of 500 ° C. or lower are particularly preferable. The addition amount of the binder is preferably 15 to 30% by weight. If the amount of the binder is too small, the moldability deteriorates. If the amount is too large, it becomes a slurry and the molding becomes difficult.
焼結時の雰囲気・圧力については、不活性雰囲気・大気圧でよく、特に細かい制御は不要である。 The atmosphere and pressure during sintering may be an inert atmosphere and atmospheric pressure, and no fine control is required.
次に、このような方法で製造したSiO焼結体の蒸着材料としての特性を調査した結果について説明する。 Next, the result of investigating the characteristics of the SiO sintered body produced by such a method as a vapor deposition material will be described.
真空凝集装置で析出SiOを製造した。その析出SiOから粉砕、分級を経て得たD50が0.5μmの小粒径粉末とD50が125μmの大粒径粉末を、重量比20:80の比率で混合し、直径30mm、高さ40mmのタブレット形状にバインダー成形し焼結した。焼結温度は850℃とした。焼結雰囲気・圧力は不活性雰囲気・大気圧とした。バインダーは市販のものを使用し、添加量は20重量%とした。 Precipitated SiO was produced with a vacuum aggregator. A small particle size powder having a D 50 of 0.5 μm and a large particle size powder having a D 50 of 125 μm obtained by pulverization and classification from the deposited SiO were mixed at a weight ratio of 20:80, and the diameter was 30 mm and the height was high. The binder was molded into a 40 mm tablet shape and sintered. The sintering temperature was 850 ° C. The sintering atmosphere and pressure were inert atmosphere and atmospheric pressure. A commercially available binder was used, and the amount added was 20% by weight.
製造されたタブレット(蒸着材料)の蒸発残渣、圧縮破壊強度、及びスプラッシュ特性を測定評価した。蒸発残渣は、熱重量測定器によりサンプルを蒸発させたときの重量変化を測定し、重量変化がなくなったとき重量を測定前の重量に対する比率で表し、5%以下を良好とした。加熱条件は、温度1300℃、圧力10Pa以下の真空雰囲気とした。圧縮破壊強度は10MPa以上を良好とした。スプラッシュ特性については、製造された蒸着材料を実際に真空蒸着試験(イオンプレーティング)に用い、基材フィルムにおけるピンホール数をカウントし、10以下を良好とした。 The produced tablet (deposition material) was measured and evaluated for evaporation residue, compressive fracture strength, and splash characteristics. The evaporation residue was measured by measuring the weight change when the sample was evaporated by a thermogravimetric instrument. When the weight change disappeared, the weight was expressed as a ratio with respect to the weight before the measurement, and 5% or less was good. The heating conditions were a vacuum atmosphere at a temperature of 1300 ° C. and a pressure of 10 Pa or less. The compressive fracture strength was 10 MPa or more. About the splash characteristic, the manufactured vapor deposition material was actually used for the vacuum vapor deposition test (ion plating), the number of pinholes in a base film was counted, and 10 or less was made favorable.
焼結体の製造に使用した小粒径粉末と大粒径粉末の粒度分布を表1に示し、スプラッシュ特性を評価するための真空蒸着試験の試験条件を表2に示す。そして、各特性の評価結果を表3に示す。また、比較のために、上記本発明例において、焼結原料粉末をD50が125μmの大粒径粉末のみとした場合(比較例1)、比較例1において焼結温度を1200℃に高めた場合(比較例2)、上記本発明例において、焼結原料粉末をD50が0.5μmの小粒径粉末のみとした場合(比較例3)についても、同様に焼結体の蒸着材料としての評価を行った。結果を表3に併記する。 Table 1 shows the particle size distribution of the small particle size powder and the large particle size powder used in the production of the sintered body, and Table 2 shows the test conditions of the vacuum deposition test for evaluating the splash characteristics. And the evaluation result of each characteristic is shown in Table 3. For comparison, in the above-described example of the present invention, when the sintering raw material powder was only a large particle size powder having D 50 of 125 μm (Comparative Example 1), the sintering temperature was increased to 1200 ° C. in Comparative Example 1. In the case (Comparative Example 2), in the case of the above invention example, the sintering raw material powder is only a small particle size powder having a D 50 of 0.5 μm (Comparative Example 3) as the vapor deposition material for the sintered body. Was evaluated. The results are also shown in Table 3.
焼結原料粉末として小粒径粉末と大粒径粉末の混合粉末を使用した本発明例では、蒸発残渣特性、圧縮破壊強度特性、及びスプラッシュ特性ともに良好である。焼結原料粉末として大粒径の単独粉末を使用した比較例1では、大粒径粉末を低温で焼結したため、圧縮破壊強度特性が不良である。比較例1において焼結温度を高めた比較例2では、圧縮破壊強度特性は良好に転じるが、スプラッシュ特性は不良となる。比較例1及び2では、大粒径粉末を使用しているために、蒸発残渣特性は良好である。これらに対し、比較例3では、小粒径の単独粉末を低温焼結しているために、圧縮破壊強度特性、及びスプラッシュ特性は良好であるが、蒸発残渣特性は不良である。 In the example of the present invention in which a mixed powder of a small particle size powder and a large particle size powder is used as the sintering raw material powder, the evaporation residue characteristics, the compression fracture strength characteristics, and the splash characteristics are good. In Comparative Example 1 in which a single powder having a large particle size was used as the sintering raw material powder, the large particle size powder was sintered at a low temperature, and thus the compression fracture strength characteristics were poor. In Comparative Example 2 in which the sintering temperature is increased in Comparative Example 1, the compressive fracture strength characteristics turn well, but the splash characteristics are poor. In Comparative Examples 1 and 2, since a large particle size powder is used, the evaporation residue characteristics are good. On the other hand, in Comparative Example 3, since the single powder having a small particle size is sintered at low temperature, the compression fracture strength characteristic and the splash characteristic are good, but the evaporation residue characteristic is poor.
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006320277A JP4771544B2 (en) | 2006-11-28 | 2006-11-28 | Method for producing SiO sintered body |
PCT/JP2007/071194 WO2008065845A1 (en) | 2006-11-28 | 2007-10-31 | METHOD FOR FABRICATING SiO SINTERED BODY |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006320277A JP4771544B2 (en) | 2006-11-28 | 2006-11-28 | Method for producing SiO sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008133157A true JP2008133157A (en) | 2008-06-12 |
JP4771544B2 JP4771544B2 (en) | 2011-09-14 |
Family
ID=39467641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006320277A Expired - Fee Related JP4771544B2 (en) | 2006-11-28 | 2006-11-28 | Method for producing SiO sintered body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4771544B2 (en) |
WO (1) | WO2008065845A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235966A (en) * | 2009-03-30 | 2010-10-21 | Toppan Printing Co Ltd | SiOx MOLDED BODY AND GAS BARRIER FILM |
CN102795848A (en) * | 2012-08-02 | 2012-11-28 | 江苏锡阳研磨科技有限公司 | Low-temperature sintered zirconium silicate grinding ball and preparation method thereof |
JP2016050339A (en) * | 2014-08-29 | 2016-04-11 | キヤノンオプトロン株式会社 | Vapor deposition material, method of manufacturing vapor deposition material, method of manufacturing optical element, and method of manufacturing gas barrier film |
JPWO2015037462A1 (en) * | 2013-09-12 | 2017-03-02 | コニカミノルタ株式会社 | Method for producing sintered silicon oxide and sintered silicon oxide |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109249030A (en) * | 2018-09-06 | 2019-01-22 | 晋城鸿刃科技有限公司 | The preparation method of tungsten-cobalt series hard alloy |
CN115928025A (en) * | 2022-12-02 | 2023-04-07 | 成都海威华芯科技有限公司 | Vacuum coating method, substrate and equipment based on granular coating material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005035846A (en) * | 2003-07-16 | 2005-02-10 | Nippon Denko Kk | Zirconia powder, zirconia sintered compact and method of manufacturing the same |
JP3725200B2 (en) * | 1995-04-26 | 2005-12-07 | 住友チタニウム株式会社 | Vapor deposition material and method for producing molded article thereof |
JP3828434B2 (en) * | 2002-02-22 | 2006-10-04 | 住友チタニウム株式会社 | Sintered silicon monoxide and method for producing the same |
-
2006
- 2006-11-28 JP JP2006320277A patent/JP4771544B2/en not_active Expired - Fee Related
-
2007
- 2007-10-31 WO PCT/JP2007/071194 patent/WO2008065845A1/en active Search and Examination
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3725200B2 (en) * | 1995-04-26 | 2005-12-07 | 住友チタニウム株式会社 | Vapor deposition material and method for producing molded article thereof |
JP3828434B2 (en) * | 2002-02-22 | 2006-10-04 | 住友チタニウム株式会社 | Sintered silicon monoxide and method for producing the same |
JP2005035846A (en) * | 2003-07-16 | 2005-02-10 | Nippon Denko Kk | Zirconia powder, zirconia sintered compact and method of manufacturing the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010235966A (en) * | 2009-03-30 | 2010-10-21 | Toppan Printing Co Ltd | SiOx MOLDED BODY AND GAS BARRIER FILM |
CN102795848A (en) * | 2012-08-02 | 2012-11-28 | 江苏锡阳研磨科技有限公司 | Low-temperature sintered zirconium silicate grinding ball and preparation method thereof |
CN102795848B (en) * | 2012-08-02 | 2013-10-23 | 江苏锡阳研磨科技有限公司 | Low-temperature sintered zirconium silicate grinding ball and preparation method thereof |
JPWO2015037462A1 (en) * | 2013-09-12 | 2017-03-02 | コニカミノルタ株式会社 | Method for producing sintered silicon oxide and sintered silicon oxide |
JP2016050339A (en) * | 2014-08-29 | 2016-04-11 | キヤノンオプトロン株式会社 | Vapor deposition material, method of manufacturing vapor deposition material, method of manufacturing optical element, and method of manufacturing gas barrier film |
Also Published As
Publication number | Publication date |
---|---|
WO2008065845A1 (en) | 2008-06-05 |
JP4771544B2 (en) | 2011-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4771544B2 (en) | Method for producing SiO sintered body | |
US20110309311A1 (en) | Nanoparticles prepared using carbon nanotube and preparation method therefor | |
JP7269407B2 (en) | Tungsten silicide target member, manufacturing method thereof, and manufacturing method of tungsten silicide film | |
JP2019534832A (en) | Novel tungsten carbide powder and its manufacturing method | |
JP6768575B2 (en) | Tungsten silicide target and its manufacturing method | |
JP2009242181A (en) | Tungsten carbide powder and method for producing the same | |
JP4374330B2 (en) | Silicon monoxide-based vapor deposition material and method for producing the same | |
TWI579243B (en) | 钌Sintered sputtering target and bismuth alloy sintered body sputtering target | |
JPWO2018037651A1 (en) | Hard material and cutting tool | |
JP2012007218A (en) | Sputtering target, manufacturing method therefor, and raw material for target material | |
JP6845715B2 (en) | Hard sintered body | |
JP2016156055A (en) | Thermal insulation material | |
JP5988140B2 (en) | Manufacturing method of MoTi target material and MoTi target material | |
JP4993297B2 (en) | SiO sintered vapor deposition material | |
JP2008031016A (en) | Tantalum carbide powder, tantalum carbide-niobium composite powder and their production method | |
JP6368448B1 (en) | Tungsten carbide powder | |
JP6686699B2 (en) | Sputtering target | |
TWI773218B (en) | Cr-Si-based sintered body, sputtering target, and method for producing thin film | |
JPWO2019098183A1 (en) | Powder containing tungsten carbide | |
WO2021241522A1 (en) | METAL-Si BASED POWDER, METHOD FOR PRODUCING SAME, METAL-Si BASED SINTERED BODY, SPUTTERING TARGET, AND METAL-Si BASED THIN FILM MANUFACTURING METHOD | |
CN110317053B (en) | Sputtering target member and method for producing same | |
KR20160085756A (en) | Sputtering target and production method | |
KR102718697B1 (en) | Tungsten silicide target and method for manufacturing same, and method for manufacturing tungsten silicide film | |
TWI821015B (en) | Sputtering target and manufacturing method | |
JP2010235966A (en) | SiOx MOLDED BODY AND GAS BARRIER FILM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110411 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110620 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |