JP4993297B2 - SiO sintered vapor deposition material - Google Patents

SiO sintered vapor deposition material Download PDF

Info

Publication number
JP4993297B2
JP4993297B2 JP2007310510A JP2007310510A JP4993297B2 JP 4993297 B2 JP4993297 B2 JP 4993297B2 JP 2007310510 A JP2007310510 A JP 2007310510A JP 2007310510 A JP2007310510 A JP 2007310510A JP 4993297 B2 JP4993297 B2 JP 4993297B2
Authority
JP
Japan
Prior art keywords
sio
vapor deposition
deposition material
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007310510A
Other languages
Japanese (ja)
Other versions
JP2009132979A (en
Inventor
義丈 夏目
誠 山口
新二 下崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2007310510A priority Critical patent/JP4993297B2/en
Priority to PCT/JP2008/070934 priority patent/WO2009069506A1/en
Publication of JP2009132979A publication Critical patent/JP2009132979A/en
Application granted granted Critical
Publication of JP4993297B2 publication Critical patent/JP4993297B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica

Description

本発明は、SiO(一酸化珪素)の蒸着膜の形成に使用されるSiO焼結蒸着材料に関する。 The present invention relates to SiO sintered deposition material used to form the deposited film of SiO (silicon monoxide).

食品、医薬品などの包装材料や液晶、有機ELなどのフラットパネルディスプレイの樹脂基板においては、高度のガスバリア性をもつことが求められている。この観点からアルミニウムなどの金属、或いは酸化珪素、酸化アルミニウム、酸化マグネシウムなどの金属酸化物を高分子フィルム基材上に蒸着させたガスバリア性フィルムが知られており、なかでもSiOを蒸着させたものは、高い透明性と高いガスバリア性を合せもつことから注目を集めている。   Packaging materials for foods and pharmaceuticals, and resin substrates for flat panel displays such as liquid crystals and organic ELs are required to have a high gas barrier property. From this point of view, a gas barrier film is known in which a metal such as aluminum or a metal oxide such as silicon oxide, aluminum oxide or magnesium oxide is deposited on a polymer film substrate. Attracts attention because it has both high transparency and high gas barrier properties.

このようなSiO蒸着膜の形成に使用される蒸着材料は、通常、真空凝集法を用いて製造されたSiOが使用される。真空凝集法とは、原料室内でSiとSiO2 とを混合して加熱し、原料室の上に連結された管状の凝集室の内面にSiOを気相析出させることにより、SiOを製造する方法である。製造されたSiOは緻密な析出体であり、これを所定のタブレット形状に切り出して蒸着材料に直接使用する場合もあれば、析出体を一旦破砕して粉末にし、これを所定のタブレット形状に焼結して使用する場合もある。嵩密度などの特性値を広範囲にコントロールできるために、焼結体を蒸着材料に使用する場合が比較的多い。 As a vapor deposition material used for forming such a SiO vapor deposition film, SiO manufactured using a vacuum agglomeration method is usually used. The vacuum agglomeration method is a method for producing SiO by mixing and heating Si and SiO 2 in a raw material chamber, and vapor-depositing SiO on the inner surface of a tubular agglomeration chamber connected to the raw material chamber. It is. The produced SiO is a dense precipitate, which may be cut into a predetermined tablet shape and used directly as a vapor deposition material. In other cases, the precipitate is once crushed into a powder and then sintered into a predetermined tablet shape. In some cases, it may be used. Since characteristic values such as bulk density can be controlled over a wide range, a sintered body is relatively often used as a vapor deposition material.

ところで、SiO蒸着膜の形成プロセスで問題になる現象の一つにスプラッシュがある。この現象は、蒸着材料からの溶融体の微細な飛び跳ね現象であり、膜形成中にこれが発生すると、形成された蒸着膜にピンホールなどの欠陥が発生し、膜品質が著しく低下する。このスプラッシュ現象は、成膜速度を高めるほど顕著になり、成膜速度を阻害する要因にもなっている。このため、SiO蒸着膜の形成作業では、スプラッシュの発生抑制が重要な技術課題になっており、その課題の解決に向けて各方面からアプローチが試みられている。そして蒸着材料面からは、材料の密度や脆さといった物理的性質の改善が試みられている。   By the way, splash is one of the phenomena which become a problem in the formation process of SiO vapor deposition film. This phenomenon is a fine jumping phenomenon of the melt from the vapor deposition material. When this occurs during film formation, defects such as pinholes are generated in the formed vapor deposition film, and the film quality is remarkably deteriorated. This splash phenomenon becomes more prominent as the film formation rate is increased, and it is a factor that hinders the film formation rate. For this reason, in the formation work of SiO vapor deposition film, suppression of the occurrence of splash has become an important technical problem, and approaches have been attempted from various directions to solve the problem. From the vapor deposition material side, attempts have been made to improve physical properties such as material density and brittleness.

すなわち、蒸着材料の物理的性質に関しては、緻密で硬いほどスプラッシュは発生し難いと考えられており、この考えに沿って、ラトラ試験での重量減少率(ラトラ値)が1.0%以下である気相析出型のSiO蒸着材料は特許文献1により提示されている。   That is, regarding the physical properties of the vapor deposition material, it is considered that the more dense and hard the splash is, the less likely it is that splash occurs. In accordance with this idea, the weight reduction rate (Ratra value) in the Latra test is 1.0% or less. A certain vapor deposition type SiO vapor deposition material is proposed in US Pat.

特表2003/025246号公報Special Table 2003/025246

一方、粉末焼結型のSiO蒸着材料に関しては、高温高圧のホットプレスにより嵩密度を1.60g/cm3 以上に高めることの有効性が特許文献2に記載されている。また、粉末焼結型SiO蒸着材料の場合、焼結プロセスでの焼結温度が高いほど緻密さが増すため、焼結温度は1200℃以上というような高温に設定されているが、逆にこの焼結温度の高さによってSiOが熱分解してSiが析出することがスプラッシュの原因になるとの考えから、焼結温度を低くしてSiの析出を抑制することによりスプラッシュを抑制する技術が特許文献3により提示されている。 On the other hand, regarding the powder sintered type SiO vapor deposition material, Patent Document 2 describes the effectiveness of increasing the bulk density to 1.60 g / cm 3 or more by hot pressing at high temperature and high pressure. In the case of powder sintered SiO deposition material, the higher the sintering temperature in the sintering process, the higher the density, so the sintering temperature is set to a high temperature of 1200 ° C. or higher. The technology that suppresses splash by lowering the sintering temperature and suppressing the precipitation of Si is patented from the idea that SiO is thermally decomposed due to the high sintering temperature and Si is precipitated. Presented by reference 3.

特表2003/010112号公報Special table 2003/010112 特開2006−348348号公報JP 2006-348348 A

物性を改良された蒸着材料(緻密で硬い材料)は、使用中の破損が少なく、使用性は良好である。しかしながら、スプラッシュの抑制に関しては、期待されるような効果をあげることができていない。   Vapor deposition materials with improved physical properties (dense and hard materials) are less likely to break during use and have good usability. However, with respect to the suppression of splash, the expected effect has not been achieved.

これに対し、焼結温度を低くしてSiOの熱分解によるSi析出を抑制する対策は、スプラッシュの抑制に有効である。しかし、蒸着材料の機械的強度が低下し、使用中の破損を招くおそれがある。焼結温度を低下させたときの機械的強度の低下を回避するため、特許文献3の技術では、粉末焼結型蒸着材料の原料であるSiO、すなわち真空凝集法で製造される析出SiOのうち、凝集管内の低温箇所で析出したSiOを選択的に使用する対策が提案されているが、原料コストが上る問題がある。また、焼結温度の上昇ほどの機械的強度の向上は困難である。   On the other hand, a measure for suppressing the Si precipitation due to the thermal decomposition of SiO by lowering the sintering temperature is effective in suppressing the splash. However, the mechanical strength of the vapor deposition material is reduced, which may cause damage during use. In order to avoid a decrease in mechanical strength when the sintering temperature is lowered, in the technology of Patent Document 3, SiO that is a raw material of powder sintering type vapor deposition material, that is, out of deposited SiO produced by vacuum agglomeration method Measures have been proposed to selectively use SiO deposited at a low temperature in the aggregation tube, but there is a problem that the raw material cost increases. Moreover, it is difficult to improve the mechanical strength as the sintering temperature increases.

これに加え、近年の蒸着膜の高品質化の要求に伴い、蒸着材料に対する品質要求は年々厳しくなっており、スプラッシュよりも更に微細なパーティクルの発生についても、抑制が強く求められるようになってきた。   In addition to this, with the recent demand for higher quality of the deposited film, the quality requirements for the deposited material have become stricter year by year, and the suppression of the generation of finer particles than the splash has been strongly demanded. It was.

すなわち、スプラッシュは蒸着膜形成プロセスで蒸着材料から飛散する比較的大きな粒子であり、蒸着膜にピンホールを発生させる原因になる。大きさは目視可能な程度であり、代表的なもので0.1mm程度である。これに対し、パーティクルは蒸着材料から飛散する、スプラッシュより遥かに小さい粒子であり、蒸着膜上に付着する。大きさは目視不可能なμmオーダー或いはそれ以下である。   That is, the splash is relatively large particles scattered from the vapor deposition material in the vapor deposition film forming process, and causes a pinhole in the vapor deposition film. The size is visible, and is typically about 0.1 mm. On the other hand, the particles are particles that are much smaller than the splash scattered from the vapor deposition material, and adhere to the vapor deposition film. The size is in the order of μm which is invisible or less.

このパーティクルは、従来は問題視されていなかったが、有機ELなどの基板構造が微細化するにつれて問題化するようになり、その低減が求められ始めた。しかしながら、引用文献3に記載のスプラッシュ対策でさえも、このパーティクルの低減までは困難である。   This particle has not been regarded as a problem in the past, but it has become a problem as the substrate structure of organic EL or the like is miniaturized, and the reduction of the problem has begun to be demanded. However, even with the splash countermeasure described in the cited document 3, it is difficult to reduce the particles.

本発明の目的は、スプラッシュ、更にはパーティクルの発生を顕著に抑制でき、しかも高強度で低コストなSiO焼結蒸着材料を提供することにある。 An object of the present invention is to provide a high-strength and low-cost SiO sintered vapor deposition material that can remarkably suppress the generation of splash and particles.

SiO蒸着膜の形成過程におけるスプラッシュの原因が、蒸着材料中の未反応のSiにあることは事実と考えられる。なぜなら、Siの蒸気圧はSiOの蒸気圧より低く、SiOより低いSiO2 よりも更に低い。このため、蒸着プロセスでSiが蒸発せずに蒸着材料の表面に残り、これがスプラッシュの原因になり、パーティクルの原因にもなる。この観点から、蒸着材料中のSi量を材料製造プロセス(焼結プロセス)で低減するのが、特許文献3に記載の技術である。しかし、この技術に二次的な問題のあることは前述したとおりである。 It is considered that the cause of splash in the formation process of the SiO vapor deposition film is unreacted Si in the vapor deposition material. This is because the vapor pressure of Si is lower than that of SiO and even lower than SiO 2 which is lower than that of SiO. For this reason, Si does not evaporate in the vapor deposition process, but remains on the surface of the vapor deposition material, causing splash and particles. From this viewpoint, the technique described in Patent Document 3 reduces the amount of Si in the vapor deposition material by a material manufacturing process (sintering process). However, as described above, there are secondary problems in this technology.

本発明者は、様々な方面からスプラッシュ抑制のためのアプローチを続けており、その過程で以下の事実を知見した。   The present inventor has continued the approach for suppressing the splash from various directions, and has found the following facts in the process.

蒸着プロセスでのスプラッシュ発生を抑制するためには、必ずしも蒸着材料中のSi量を低減する必要はなく、蒸着材料中のSi量が多くても、蒸着プロセス(蒸着膜形成プロセス)でSiが問題化しなければスプラッシュの発生を抑制できる可能性がある。すなわち、蒸着材料中にSiが存在していても、そのSiを、蒸着プロセスで蒸気圧が低いSi酸化物に変化させることができれば、Siによるスプラッシュの問題を解決できるのである。そして、この観点から実験データの解析、検討を行った結果、蒸着材料中のO量を多くするのが有効なことが判明した。   In order to suppress the occurrence of splash in the vapor deposition process, it is not always necessary to reduce the amount of Si in the vapor deposition material. Even if the amount of Si in the vapor deposition material is large, Si is a problem in the vapor deposition process (deposition film formation process). If this is not done, the occurrence of splash may be suppressed. That is, even if Si is present in the vapor deposition material, the problem of splash due to Si can be solved if the Si can be changed into a Si oxide having a low vapor pressure by the vapor deposition process. As a result of analyzing and examining experimental data from this point of view, it has been found effective to increase the amount of O in the vapor deposition material.

蒸着材料中のOが有効なことの理由は後で詳しく説明するが、蒸着材料中に余剰のOが存在すると、蒸着材料中のSiが蒸着プロセスで酸化されて蒸気圧の低いSi酸化物に変化し、そのSiが未反応のまま残らないことことが考えられる。また、蒸着材料中のO量を多くする方法としては、製造プロセスにおいて強度を確保するために不活性雰囲気炉中で1000℃以上の温度で本焼結する前に、大気中等の酸素含有雰囲気中で900℃以下の低温焼結工程を入れることが簡便で効果的であることが判明した。そして、こうして蒸着材料中のSiの存在が許容されると、蒸着材料製造プロセスにおいては高温焼結が可能となり、蒸着材料の緻密化も図られる。   The reason why O in the vapor deposition material is effective will be described in detail later. However, if excessive O is present in the vapor deposition material, Si in the vapor deposition material is oxidized in the vapor deposition process to form a Si oxide having a low vapor pressure. It is considered that the Si does not remain unreacted. In addition, as a method of increasing the amount of O in the vapor deposition material, in order to ensure strength in the manufacturing process, before performing main sintering at a temperature of 1000 ° C. or higher in an inert atmosphere furnace, in an oxygen-containing atmosphere such as the air It has been found that it is convenient and effective to insert a low-temperature sintering step of 900 ° C. or lower. If the presence of Si in the vapor deposition material is allowed in this way, high temperature sintering is possible in the vapor deposition material manufacturing process, and the vapor deposition material is densified.

粉末焼結型SiO蒸着材料の製造プロセスにおける焼結温度の上昇、これによる蒸着材料の緻密化は、Si析出の問題を別にすれば、依然としてスプラッシュの抑制、機械的強度の確保に非常に有効な手段であり得る。このため、蒸着材料中のO量の増加は、これによる高温焼結の許容とあいまって、蒸着プロセスでの未反応Siの低減、蒸着材料の緻密化の両面から、スプラッシュの発生を効果的に抑制でき、合わせてパーティクルの発生も効果的に抑制できるようになるのである。   Increasing the sintering temperature in the production process of powder-sintered SiO vapor deposition material, and the densification of the vapor deposition material due to this, are still very effective in suppressing splash and ensuring mechanical strength, apart from the problem of Si precipitation. It can be a means. For this reason, the increase in the amount of O in the vapor deposition material, combined with the allowance of high-temperature sintering, effectively reduces the occurrence of splash in terms of reducing unreacted Si in the vapor deposition process and densifying the vapor deposition material. In addition, the generation of particles can be effectively suppressed.

本発明は係る知見を基礎として開発されたものであり、SiOの蒸着膜の形成に使用されるSiO焼結蒸着材料であって、SiO2 からなる標準試料をEPMAにより定量分析したときのO/Si比aの理論値a0 (≒1.14)に対する比(a/a0 )を補正係数Kとし、EPMAによるO/Si比の実測値Aを前記補正係数Kにより補正して得たO/Si比の補正値A1 (=1/K・A)から求めた酸素定量分析値O1 〔=100/(1+1/A1 )〕が、44〜49wt%であり、かつ圧縮破壊強度が15MPa以上であるSiO焼結蒸着材料である。 The present invention has been developed on the basis of such knowledge, and is an SiO sintered vapor deposition material used for forming a SiO vapor deposition film, which is obtained by quantitative analysis of a standard sample made of SiO 2 by EPMA. The ratio (a / a 0 ) of the Si ratio a to the theoretical value a 0 (≈1.14) is set as a correction coefficient K, and the O / Si ratio measured value A by EPMA is corrected by the correction coefficient K. The oxygen quantitative analysis value O 1 [= 100 / (1 + 1 / A 1 )] obtained from the correction value A 1 (= 1 / K · A) of the / Si ratio is 44 to 49 wt%, and the compression fracture strength is It is a SiO sintered vapor deposition material of 15 MPa or more.

本発明のSiO焼結蒸着材料は、SiOからなる原料粉末を蒸着材料形状に成形する成形工程と、SiOの成形体を酸素含有雰囲気中で低温焼結する弱酸化工程と、低温焼結体を非酸化性雰囲気中で高温焼結する本焼結工程とを含む方法により製造される The SiO sintered vapor deposition material of the present invention comprises a molding step of forming raw material powder made of SiO into a vapor deposition material shape, a weak oxidation step of low-temperature sintering of a molded body of SiO in an oxygen-containing atmosphere, and a low-temperature sintered body. and the sintering step of high temperature sintering in a non-oxidizing atmosphere is produced by including methods.

本発明のSiO焼結蒸着材料においては、材料中の酸素量の評価にSiO2 からなる標準試料をEPMAにより定量分析したときのO/Si比aの理論値a0 (≒1.14)に対する比(補正係数K=a/a0 )、EPMAによるO/Si比の実測値Aを前記補正係数Kにより補正して得たO/Si比の補正値A1 (=1/K・A)、O/Si比の補正値A1 (=1/K・A)から求めた酸素定量分析値O1 〔=100/(1+1/A1 )〕を用いる。その理由を以下に説明する。 In the SiO sintered vapor deposition material of the present invention, with respect to the theoretical value a 0 (≈1.14) of the O / Si ratio a when a standard sample made of SiO 2 is quantitatively analyzed by EPMA for evaluating the amount of oxygen in the material. Ratio (correction coefficient K = a / a 0 ), O / Si ratio correction value A 1 (= 1 / K · A) obtained by correcting the actual measurement value A of the O / Si ratio by EPMA with the correction coefficient K The oxygen quantitative analysis value O 1 [= 100 / (1 + 1 / A 1 )] obtained from the correction value A 1 (= 1 / K · A) of the O / Si ratio is used. The reason will be described below.

SiOのような金属酸化物中のO量を直接的に且つ簡便に測定できる方法は存在しない。このため、金属酸化物の組成は、一般に金属量換算による含有比で表現される。このような状況にあってEPMAは、金属酸化物断面における元素分布状況調査から金属酸化物中のO量を間接的にではあるが、高い再現性で正確に測定することができる。しかし、酸素定量分析値の絶対値を直接的に測定することはできない。例えば、モル比が1:1のSiO中の酸素量は約36wt%(Si原子量:28.0855、O原子量:15.9994)であるが、EPMAによる酸素定量分析値はこれより相当に小さくなる。   There is no method capable of directly and simply measuring the amount of O in a metal oxide such as SiO. For this reason, the composition of a metal oxide is generally expressed by a content ratio in terms of metal amount. Under such circumstances, EPMA can accurately measure the amount of O in the metal oxide with high reproducibility, although indirectly, from the element distribution state survey in the cross section of the metal oxide. However, the absolute value of the quantitative oxygen analysis value cannot be directly measured. For example, the amount of oxygen in SiO with a molar ratio of 1: 1 is about 36 wt% (Si atomic weight: 28.0855, O atomic weight: 15.99994), but the quantitative oxygen analysis value by EPMA is considerably smaller than this. .

このようなことから、本発明者はEPMAによる定量分析からSiO中の酸素量を正確に求める方法についても合わせて検討した。その結果、SiO中のO量のみを測定するのではなく、O量とSi量の両方を測定してO/Si比を求めること、SiO2 からなる標準試料から、定量分析値の理論値に対する補正係数Kを予め求めておくことが必要であるとの結論に達し、これらから、SiO中のO量の正確な定量分析値を得ることに成功した。 For this reason, the present inventor also examined a method for accurately obtaining the amount of oxygen in SiO from quantitative analysis by EPMA. To that effect, rather than measuring only the O content in the SiO, to obtain the O / Si ratio by measuring both the O amount and the Si amount, the standard sample consisting of SiO 2, the theoretical value of quantitative analysis It was concluded that it was necessary to obtain the correction coefficient K in advance, and from these, an accurate quantitative analysis value of the amount of O in SiO was successfully obtained.

EPMAとは波長分散型電子線マクロアナライザー(Electron Probe Micro Analyzer) のことであり、これによる測定原理は次のとおりである。加速した電子線を物質に照射すると、特性X線、二次電子、オージェ電子等々が物質から飛び出す。EPMAはこれらのうらの特性X線に注目して、電子線が照射されている微小領域における構成元素の検出及び同定、並びに各構成元素の濃度を分析する定量分析装置であり、面分析によるサンプル全体の定量分析も行うことができる。しかし、本発明での被検出物であるSiOは粉末焼結体であり、多孔質体で表面が粗くて乱反射が大きく、サンプル間の表面性状によるバラツキも大きいために、EPMAでO量を定量分析しても、その分析値はサンプル中の正確なO量を表さない。   EPMA is a wavelength dispersive electron beam macro analyzer (Electron Probe Micro Analyzer), and the measurement principle by this is as follows. When an accelerated electron beam is irradiated onto a material, characteristic X-rays, secondary electrons, Auger electrons, etc. jump out of the material. EPMA is a quantitative analysis device that focuses on these characteristic X-rays and detects and identifies constituent elements in the micro-region irradiated with the electron beam, and analyzes the concentration of each constituent element. An overall quantitative analysis can also be performed. However, since SiO, which is an object to be detected in the present invention, is a powder sintered body, the porous body has a rough surface, large irregular reflection, and large variations due to surface properties between samples, the amount of O is quantified with EPMA. Even if analyzed, the analytical value does not represent the exact amount of O in the sample.

第1の問題であるサンプル間の表面性状によるバラツキに対しては、O/Si比を導入した。SiOサンプルのO量とSi量を測定してO/Si比を求めるならば、サンプル間の表面性状による反射率の相違等の影響を排除することができる。サンプル間で反射率が相違した場合、Oの定量解析値もSiの定量解析値も同じように変化するために、EPMAにより求めたO/Si比は、サンプル間での反射率等のバラツキの影響を受けないのである。   The O / Si ratio was introduced for the variation due to the surface property between samples, which is the first problem. If the O / Si ratio is determined by measuring the O amount and Si amount of the SiO sample, it is possible to eliminate the influence of the difference in reflectance due to the surface properties between the samples. When the reflectivity differs between samples, the quantitative analysis value of O and the quantitative analysis value of Si change in the same way. Therefore, the O / Si ratio obtained by EPMA is not uniform in the reflectance between samples. It is not affected.

第2の問題は、定量分析値と実値とのずれである。EPMAは特性X線にのみ注目して構成元素の定量分析を行う。このため定量分析の測定値と実際の元素量は一致しない。この問題に対しては、予め構成元素量が判明している標準試料を用い、標準試料を定量分析したときの分析値と実際の分析値との関係から補正係数Kを求める。ここで、標準試料であるが、SiOサンプルを定量分析するのであるから、本来はSiOの標準試料も用いるべきである。しかし、SiOは酸化しやすく物質的に不安定であり、必ずしもO/Si比が1:1とは限らない。それに対して、SiO2 は組成が非常に安定しているので、SiOに代えてSiO2 を標準試料として用いる。 The second problem is the difference between the quantitative analysis value and the actual value. EPMA conducts quantitative analysis of constituent elements focusing only on characteristic X-rays. For this reason, the measured value of the quantitative analysis does not match the actual element amount. To solve this problem, a correction coefficient K is obtained from the relationship between the analytical value obtained when the standard sample is quantitatively analyzed and the actual analytical value using a standard sample whose constituent element amount is known in advance. Here, although it is a standard sample, since a SiO sample is quantitatively analyzed, a standard sample of SiO should be used. However, SiO is easily oxidized and unstable in material, and the O / Si ratio is not always 1: 1. In contrast, since SiO 2 has a very stable composition, SiO 2 is used as a standard sample instead of SiO 2 .

SiO2 は物質的に安定であり、石英ガラスとして使用されることから、緻密で鏡面加工も容易である。そして、SiOもSiO2 も共に硅素酸化物であるから、SiO2 からなる標準試料から求めた補正係数Kは、SiOからなるサンプルの補正係数としても用いることができる。こうして求めたSiOの酸素定量分析値O1 は、SiOの実際の酸素量と正確に対応する。以下に、酸素定量分析値O1 の妥当性について説明する。 Since SiO 2 is materially stable and used as quartz glass, it is dense and easy to mirror. Since both SiO and SiO 2 are silicon oxides, the correction coefficient K obtained from the standard sample made of SiO 2 can be used as the correction coefficient of the sample made of SiO 2 . The SiO oxygen quantitative analysis value O 1 thus obtained corresponds precisely to the actual oxygen amount of SiO. The validity of the oxygen quantitative analysis value O 1 will be described below.

第1ステップ(補正係数Kの算出)
SiO2 からなる標準試料をEPMAにより定量分析してO量及びSi量を求める。O量の測定値とSi量の測定値の比を求める。O量の測定値をO0 (wt%)、SiOの測定値をSi0 (wt%)とすると、標準試料の測定値から求めたO/Si比aはO0 /Si0 となる。一方、 SiO2 からなる標準試料の実際のO/Si比a(理論値)は53.26/46.74(≒1.14)である。よって、SiO2 からなる標準試料をEPMAにより定量分析したときのO/Si比aの、理論値a0 (≒1.14)に対する比(a/a0 )が求まる。この比(a/a0 )が、O/Siの測定値を実値に変換するための補正係数Kとなる。すなわち、a=K・a0 、K=a/a0 である。
First step (calculation of correction coefficient K)
A standard sample made of SiO 2 is quantitatively analyzed by EPMA to determine the amount of O and the amount of Si. The ratio of the measured value of O amount to the measured value of Si amount is obtained. When the measured value of O amount is O 0 (wt%) and the measured value of SiO is Si 0 (wt%), the O / Si ratio a obtained from the measured value of the standard sample is O 0 / Si 0 . On the other hand, the actual O / Si ratio a (theoretical value) of the standard sample made of SiO 2 is 53.26 / 46.74 (≈1.14). Therefore, the ratio (a / a 0 ) to the theoretical value a 0 (≈1.14) of the O / Si ratio a when a standard sample made of SiO 2 is quantitatively analyzed by EPMA is obtained. This ratio (a / a 0 ) is a correction coefficient K for converting the measured value of O / Si into a real value. That is, a = K · a 0 and K = a / a 0 .

第2ステップ(酸素定量分析値O1 の測定)
SiOのサンプルをEPMAにより定量分析してO量及びSi量を求める。O量の測定値をO1 (wt%)、Si量の測定値をSi1 (wt%)とすると、SiOのサンプルの測定値から求めたO/Si比AはO1 /Si1 で求まる。SiOサンプルの補正後のO/Si比A1 は、A=K・A1 であるから、A1 =1/K・Aとなる。ここで、O1 (wt%)+Si1 (wt%)=100(wt%)であり、O1 (wt%)=A1 ・Si1 (wt%)である。これらの式からSi1 (wt%)を削除すると、 O1 (wt%)が、100/(1+1/A1 )として求まる。こうして求めたSiOサンプルの酸素定量分析値O1 (wt%)〔=100/(1+1/A1 )〕は、実際の酸素量を正確に反映するものとなる。
Second step (Measurement of oxygen quantitative analysis value O 1 )
A sample of SiO is quantitatively analyzed by EPMA to determine the amount of O and the amount of Si. When the measured value of O amount is O 1 (wt%) and the measured value of Si amount is Si 1 (wt%), the O / Si ratio A obtained from the measured value of the SiO sample is determined by O 1 / Si 1 . . Since the corrected O / Si ratio A 1 of the SiO sample is A = K · A 1 , A 1 = 1 / K · A. Here, O 1 (wt%) + Si 1 (wt%) = 100 (wt%), and O 1 (wt%) = A 1 · Si 1 (wt%). When Si 1 (wt%) is deleted from these equations, O 1 (wt%) is obtained as 100 / (1 + 1 / A 1 ). The oxygen quantitative analysis value O 1 (wt%) [= 100 / (1 + 1 / A 1 )] of the SiO sample thus obtained accurately reflects the actual oxygen amount.

本発明のSiO焼結蒸着材料においては、この酸素定量分析値O1 が44〜49wt%であり、かつ圧縮破壊強度が15MPa以上である。O1 =44〜49wt%は、概ねSiOx(1.3〜1.4≦x≦1.6〜1.7)に相当する。ちなみに、引用文献3に記載の方法で製造されたSiO焼結蒸着材料のO量は、低温焼結によってSiOの熱分解によるSiの析出を抑制しているので、SiOx(x≒1)であり、この酸素定量解析値(wt%)は約36%である。 In the SiO sintered vapor deposition material of the present invention, this oxygen quantitative analysis value O 1 is 44 to 49 wt%, and the compression fracture strength is 15 MPa or more. O 1 = 44 to 49 wt% generally corresponds to SiO x (1.3 to 1.4 ≦ x ≦ 1.6 to 1.7). Incidentally, the amount of O of the SiO sintered vapor deposition material manufactured by the method described in the cited document 3 is SiOx (x≈1) because the precipitation of Si due to thermal decomposition of SiO is suppressed by low-temperature sintering. The oxygen quantitative analysis value (wt%) is about 36%.

本発明のSiO焼結蒸着材料において、酸素定量分析値O1 を44〜49wt%とした理由は、44重量%未満では材料中のO量が不足し、蒸着プロセスにおいて材料中の余剰のSiが未反応のまま残り、スプラッシュ、パーティクルの発生を十分に抑制できない。反対に49wt%を超えると、蒸気圧の高いSiO2 に特性が近づくことにより、蒸着プロセスにおいて成膜速度の低下が顕著となり、生産性の点から問題が生じる。特に好ましい酸素定量分析値O1 は44〜47wt%である。 In the SiO sintered vapor deposition material of the present invention, the reason why the oxygen quantitative analysis value O 1 is set to 44 to 49 wt% is that if it is less than 44 wt%, the amount of O in the material is insufficient, and excess Si in the material in the vapor deposition process. It remains unreacted and cannot sufficiently suppress the occurrence of splash and particles. On the other hand, if it exceeds 49 wt%, the characteristics approach that of SiO 2 having a high vapor pressure, so that the film formation rate is significantly reduced in the vapor deposition process, which causes a problem in terms of productivity. A particularly preferable oxygen quantitative analysis value O 1 is 44 to 47 wt%.

本発明のSiO焼結蒸着材料においては又、圧縮破壊強度が15MPa以上に規定される。これは、例えば材料製造プロセスにおける焼結温度の上昇により簡単に実現できる。圧縮破壊強度が15MPa以上であることにより、材料が緻密化し、この点からスプラッシュの発生が抑制される。また、使用中の破壊が防止され、使用性が向上する。この圧縮破壊強度はスプラッシュ防止、使用性などの観点からは高いほど好ましく、具体的には30MPa以上が好ましいが、高くなり過ぎることは焼結温度の過度の上昇を意味し、SiOの熱分解によるSiの析出量を過剰に増加させるので、スプラッシュ、パーティクルの抑制の点で問題を生じる危険性がある。ただし、本発明者は51MPaまでは問題のないことを確認している。   In the SiO sintered vapor deposition material of the present invention, the compressive fracture strength is specified to be 15 MPa or more. This can be easily realized, for example, by increasing the sintering temperature in the material manufacturing process. When the compressive fracture strength is 15 MPa or more, the material is densified, and the occurrence of splash is suppressed from this point. Moreover, destruction during use is prevented, and usability is improved. This compressive fracture strength is preferably as high as possible from the viewpoints of splash prevention, usability, and the like. Specifically, it is preferably 30 MPa or more, but excessively high means an excessive increase in the sintering temperature, and is due to thermal decomposition of SiO. Since the precipitation amount of Si is excessively increased, there is a risk of causing problems in terms of splash and particle suppression. However, the present inventor has confirmed that there is no problem up to 51 MPa.

一方、本発明のSiO焼結蒸着材料製造する方法においては、SiOの成形体を酸素含有雰囲気中で低温焼結する弱酸化工程が特に重要である。この工程を経ることにより、成形体を構成するSiOが低温焼結工程で若干酸化されて、低温焼結体中のO量が増加する。具体的には、低温焼結体中のO量が前記酸素定量分析値O1 で44〜49wt%とされる。 On the other hand, in the method for producing a SiO sintered vapor deposition material of the present invention, a weak oxidation step of sintering a molded body of SiO at a low temperature in an oxygen-containing atmosphere is particularly important. By passing through this process, SiO which comprises a molded object is a little oxidized in a low temperature sintering process, and the amount of O in a low temperature sintered body increases. Specifically, the amount of O in the low-temperature sintered body is 44 to 49 wt% in terms of the oxygen quantitative analysis value O1.

ここにおける焼結雰囲気中の酸素量は18〜25vol%が好ましく、大気中で問題ない。焼結温度は焼結雰囲気中の酸素量よって調整され、大気中の場合で700〜900℃が好ましい。焼結温度が低すぎると、低温焼結体中のO量が十分に増加しない。高すぎる場合はO量が増えすぎる。大気中で低温焼結を行う場合の特に好ましい焼結温度は700〜800℃である。   The oxygen amount in the sintering atmosphere here is preferably 18 to 25 vol%, and there is no problem in the air. The sintering temperature is adjusted by the amount of oxygen in the sintering atmosphere, and is preferably 700 to 900 ° C. in the air. If the sintering temperature is too low, the amount of O in the low-temperature sintered body will not increase sufficiently. If it is too high, the amount of O increases too much. A particularly preferable sintering temperature when performing low-temperature sintering in the atmosphere is 700 to 800 ° C.

弱酸化工程に続く本焼結工程では、低温焼結体を高温で焼結して硬さ、緻密性を高める。この工程での焼結温度を高めると、SiOが熱分解してSiが生じるが、低温焼結で増加したOが、蒸着プロセスでこのSiを酸化して、余剰Siの発生を防ぎ、余剰Siに起因するスプラッシュの発生、パーティクルの発生を抑制する。また、蒸着材料が緻密化されているため、この点からもスプラッシュの発生、パーティクルの発生が抑制される。   In the main sintering process following the weak oxidation process, the low-temperature sintered body is sintered at a high temperature to increase the hardness and density. When the sintering temperature in this process is increased, SiO is thermally decomposed to produce Si, but O increased by low temperature sintering oxidizes this Si in the vapor deposition process to prevent the generation of surplus Si, and surplus Si Prevents the occurrence of splash and particles caused by Moreover, since the vapor deposition material is densified, the occurrence of splash and particles are also suppressed from this point.

本焼結工程における焼結温度は1000〜1400℃が好ましい。この焼結温度が低すぎると、蒸着材料の緻密性、硬さが不足し、蒸着プロセスでのスプラッシュの発生、パーティクルの発生が問題になる懸念がある。また、蒸着中に破壊が起こる懸念も生じる。反対に高すぎる場合は2SiO→Si+SiO2 の反応が進みやすくなる。この結果、生成するSi量が多くなりすぎ、弱酸化による抑制の効果が失われる懸念が生じる。特に好ましい焼結温度は1200〜1400℃である。 The sintering temperature in the main sintering step is preferably 1000 to 1400 ° C. If this sintering temperature is too low, the denseness and hardness of the vapor deposition material will be insufficient, and there is a concern that the occurrence of splash and particles in the vapor deposition process will be problematic. There is also a concern that destruction may occur during the deposition. On the other hand, if it is too high, the reaction of 2SiO → Si + SiO 2 tends to proceed. As a result, there is a concern that the amount of Si to be generated becomes excessive and the effect of suppression by weak oxidation is lost. A particularly preferable sintering temperature is 1200 to 1400 ° C.

本発明のSiO焼結蒸着材料は、SiO2 からなる標準試料をEPMAにより定量分析したときのO/Si比aの理論値a0 (≒1.14)に対する比(a/a0 )を補正係数Kとし、EPMAによるO/Si比の実測値Aを前記補正係数Kにより補正して得たO/Si比の補正値A1 (=1/K・A)から求めた酸素定量分析値O1 〔=100/(1+1/A1 )〕が44〜49%と、高Oであることにより、材料中に余剰のSiが存在していても、蒸着膜形成プロセスにおいてこのSiを酸化でき、蒸気圧の低いSi酸化物に変化させることができるので、蒸気圧の高いSiに起因するスプラッシュの発生を阻止でき、合わせてパーティクルの発生についても効果的に抑制できる。また、圧縮破壊強度が15MPa以上と高強度であり、緻密性が高いので、これによるスプラッシュの抑制、パーティクルの抑制も期待できる。更に又、蒸着膜形成プロセスにおける破壊が防止され、使用性に優れる。 The SiO sintered vapor deposition material of the present invention corrects the ratio (a / a 0 ) to the theoretical value a 0 (≈1.14) of the O / Si ratio a when a standard sample made of SiO 2 is quantitatively analyzed by EPMA. The oxygen quantitative analysis value O obtained from the correction value A 1 (= 1 / K · A) of the O / Si ratio obtained by correcting the actual measurement value A of the O / Si ratio by EPMA with the correction coefficient K. 1 [= 100 / (1 + 1 / A 1 )] is as high as 44 to 49%, so even if surplus Si is present in the material, this Si can be oxidized in the deposited film forming process. Since it can be changed to a Si oxide having a low vapor pressure, the occurrence of splash due to Si having a high vapor pressure can be prevented, and the generation of particles can also be effectively suppressed. Moreover, since the compressive fracture strength is as high as 15 MPa or more and the denseness is high, it can be expected to suppress splash and particles. Furthermore, destruction in the vapor deposition film forming process is prevented, and the usability is excellent.

すなわち、従来は緻密化のための高温焼結が高Si化につながり、緻密性を確保した場合はSiに起因するスプラッシュやパーティクルの発生を阻止できなかったが、本発明のSiO焼結蒸着材料では、高O化により、緻密性の確保と高Siに起因するスプラッシュやパーティクルの抑制が両立されるのである。   That is, in the past, high-temperature sintering for densification led to high Si, and when densification was ensured, generation of splash and particles due to Si could not be prevented. Then, the high O makes it possible to ensure the denseness and suppress the splash and particles caused by the high Si.

本発明のSiO焼結蒸着材料製造する方法は、SiOの成形体を焼結する前に、酸素含有雰囲気中で低温焼結による微酸化を行い、O量を増加させるので、その後の本焼結で焼結温度を高くし、緻密性を高めても、その高温焼結で生成するSiが蒸着プロセスで酸化されるため、緻密でしかも余剰のSiに起因するスプラッシュやパーティクルを効果的に抑制できる高品質の蒸着材料を製造できる。また、酸素含有雰囲気中での低温焼結は低コストであるので、前記高品質材料を安価に製造でき、経済性にも優れる。 In the method for producing the SiO sintered vapor deposition material of the present invention, before the sintered body of SiO is sintered, fine oxidation by low-temperature sintering is performed in an oxygen-containing atmosphere to increase the amount of O. Even if the sintering temperature is increased and the denseness is increased, Si produced by the high-temperature sintering is oxidized by the vapor deposition process, so it is possible to effectively suppress the splash and particles caused by the excessive and excessive Si. High quality vapor deposition material that can be produced. In addition, since low-temperature sintering in an oxygen-containing atmosphere is low in cost, the high-quality material can be manufactured at low cost and excellent in economic efficiency.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明のSiO焼結蒸着材料の製造工程の説明図、図2は原料(析出SiO)の製造に使用される真空凝集装置の構成図、図3は蒸着膜形成プロセスでのスプラッシュ生成・抑制の原理を示すイメージ図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of a manufacturing process of a SiO sintered vapor deposition material of the present invention, FIG. 2 is a configuration diagram of a vacuum aggregating apparatus used for manufacturing a raw material (deposited SiO), and FIG. 3 is a splash generation in a vapor deposition film forming process. -It is an image figure which shows the principle of suppression.

本実施形態では、次の工程を経て蒸着材料が製造される。第1工程は原料(析出SiO)の製造である。この工程では、例えば図2に示す真空凝集装置が使用される。図2に示された真空凝集装置は、原料室1とその上に連結された円管状の凝集室2とを備えている。操業では、Si粉末とSiO2 粉末の混合物を原料室1にチャージする。室内を所定の真空度に減圧し、原料室1の外側に配置されたヒータで原料室1内を所定温度(1200〜1400℃)に加熱する。これより、原料室1内でSiOの蒸気が発生し、これが上方の凝集室2内に導入される。 In this embodiment, a vapor deposition material is manufactured through the following steps. The first step is the production of the raw material (deposited SiO). In this step, for example, a vacuum aggregating apparatus shown in FIG. 2 is used. The vacuum aggregating apparatus shown in FIG. 2 includes a raw material chamber 1 and a circular agglomerating chamber 2 connected thereon. In operation, the raw material chamber 1 is charged with a mixture of Si powder and SiO 2 powder. The chamber is depressurized to a predetermined degree of vacuum, and the inside of the raw material chamber 1 is heated to a predetermined temperature (1200 to 1400 ° C.) with a heater disposed outside the raw material chamber 1. As a result, SiO vapor is generated in the raw material chamber 1 and introduced into the upper coagulation chamber 2.

凝集室2では、凝集管温度が外面温度で数百度に管理されている。より詳しくは、凝集管の外面温度は下部から上部にかけて低下しており、約800℃から200℃にかけての領域にSiOが析出する。そして、析出SiOのうち800℃から400℃前後までの高温領域に析出したSiOが蒸着材料に通常使用される。これは、低温領域で析出したものほど脆く、高温領域で析出したものは緻密性に優れるからである。   In the coagulation chamber 2, the coagulation tube temperature is controlled to several hundred degrees as the outer surface temperature. More specifically, the outer surface temperature of the aggregation tube decreases from the lower part to the upper part, and SiO is deposited in a region from about 800 ° C. to 200 ° C. Of the deposited SiO, SiO deposited in a high temperature region from 800 ° C. to around 400 ° C. is usually used as a deposition material. This is because the precipitates in the low temperature region are more fragile, and those precipitated in the high temperature region are excellent in denseness.

真空凝集装置で析出SiOが製造されると、これを粉砕機により所定粒度に粉砕する。製造されるSiO粉末においては、粒度が重要であり、その粒度は平均粒度で5〜50μmが好ましく、10〜30μmが特に好ましい。なぜなら、粉末が余りに細かすぎると成形体密度が上がらず、高強度を達成し難くなるからである。一方、粗粒の場合は成形性が困難になる。   When the deposited SiO is produced by the vacuum aggregating apparatus, it is pulverized to a predetermined particle size by a pulverizer. In the produced SiO powder, the particle size is important, and the particle size is preferably 5 to 50 μm, particularly preferably 10 to 30 μm, in terms of average particle size. This is because if the powder is too fine, the density of the compact does not increase and it becomes difficult to achieve high strength. On the other hand, in the case of coarse particles, moldability becomes difficult.

焼結原料としてのSiO粉末が製造されると、所定のバインダーを用いて蒸着材料用タブレット形状(通常は円柱形状)に成形し、大気中で低温焼結する。焼結温度は、前述かたとおり700〜900℃が好ましく、700〜800℃が特に好ましい。この大気中での低温焼結により、成形体を構成するSiOが微酸化され、析出SiO粉末を直接高温焼結したものよりも、O量が増加する。   When the SiO powder as a sintering raw material is manufactured, it is formed into a tablet shape for vapor deposition material (usually a cylindrical shape) using a predetermined binder, and is sintered at low temperature in the atmosphere. As described above, the sintering temperature is preferably 700 to 900 ° C, particularly preferably 700 to 800 ° C. By this low-temperature sintering in the atmosphere, SiO constituting the compact is slightly oxidized, and the amount of O is increased as compared with the case where the deposited SiO powder is directly subjected to high-temperature sintering.

焼結はホットプレスで行うこともできるが、成形にバインダーを使用して焼結を行う方が経済的である。バインダーとしては、一般に市販されているもので問題ないが、特に500℃以下の低温で脱バインダーをできるものが好ましい。バインダーの添加量は15〜30重量%が好ましい。バインダーが少なすぎると成形性が悪化し、多すぎる場合はスラリー状となって成形が困難となる。   Sintering can be performed by hot pressing, but it is more economical to perform sintering using a binder for molding. As the binder, commercially available ones are not a problem, but those that can be removed at a low temperature of 500 ° C. or lower are particularly preferable. The addition amount of the binder is preferably 15 to 30% by weight. If the amount of the binder is too small, the moldability deteriorates. If the amount is too large, it becomes a slurry and the molding becomes difficult.

低温焼結が終わると、非酸化性雰囲気中で高温焼結を行う。焼結温度は、前述したとおり1000〜1400℃が好ましく、1200〜1400℃が特に好ましい。この高温焼結により、成形体は高レベルに緻密化し、機械的強度も向上する。その反面、SiOが熱分解してSiが析出し、余剰のSiが生じる。しかし、この余剰のSiは、低温焼結プロセスで増加したOにより、蒸着プロセスで酸化され、蒸気圧の低いSi酸化物に変化するため、スプラッシュやパーティクルを発生させることはない。   When the low temperature sintering is completed, high temperature sintering is performed in a non-oxidizing atmosphere. As described above, the sintering temperature is preferably 1000 to 1400 ° C, particularly preferably 1200 to 1400 ° C. By this high-temperature sintering, the compact is densified to a high level and the mechanical strength is improved. On the other hand, SiO is thermally decomposed and Si is precipitated, and surplus Si is generated. However, this surplus Si is oxidized by the vapor deposition process due to O increased in the low temperature sintering process, and is changed to a Si oxide having a low vapor pressure, so that splash and particles are not generated.

かくして、SiO2 からなる標準試料をEPMAにより定量分析したときのO/Si比aの理論値a0 (≒1.14)に対する比(a/a0 )を補正係数Kとし、EPMAによるO/Si比の実測値Aを前記補正係数Kにより補正して得たO/Si比の補正値A1 (=1/K・A)から求めた酸素定量分析値O1 〔=100/(1+1/A1 )〕が44〜49%で、圧縮破壊強度が15MPa以上であるSiO焼結蒸着材料が製造される。このようなSiO焼結蒸着材料は高強度でありながら、蒸着プロセスでのスプラッシュの発生を阻止でき、更にはパーティクルの発生をも効果的に抑制できる。ここにおけるスプラッシュ、パーティクルの抑制メカニズムを図3により説明する。 Thus, the ratio (a / a 0 ) to the theoretical value a 0 (≈1.14) of the O / Si ratio a when a standard sample made of SiO 2 is quantitatively analyzed by EPMA is set as a correction coefficient K, and O / O by EPMA Quantitative oxygen analysis value O 1 [= 100 / (1 + 1 //) obtained from correction value A 1 (= 1 / K · A) of O / Si ratio obtained by correcting measured value A of Si ratio with correction coefficient K. A 1)] is at 44-49%, SiO sintered deposition material compression breaking strength of more than 15MPa is manufactured. Although such a SiO sintered vapor deposition material is high in strength, it can prevent the occurrence of splash in the vapor deposition process and can also effectively suppress the generation of particles. The mechanism of suppressing splash and particles will be described with reference to FIG.

SiO焼結蒸着材料を使用した蒸着膜形成プロセスでの蒸着材料の挙動を本発明者は図3のように推定している。すなわち、SiO焼結蒸着材料を使用した蒸着膜形成プロセスでは、蒸着材料の表面にプラズマ、電子ビーム等の加熱用エネルギーが照射される。これにより、蒸着材料の表面からSiOが蒸発し、蒸着材料10の表面に対向して配置された基板等のターゲット表面にSiO膜が形成される。   The present inventor estimates the behavior of the vapor deposition material in the vapor deposition film forming process using the SiO sintered vapor deposition material as shown in FIG. That is, in the vapor deposition film forming process using the SiO sintered vapor deposition material, the surface of the vapor deposition material is irradiated with heating energy such as plasma or electron beam. Thereby, SiO evaporates from the surface of the vapor deposition material, and an SiO film is formed on the surface of the target such as a substrate disposed opposite to the surface of the vapor deposition material 10.

このとき、加熱用エネルギーが照射される蒸着材料の表面近傍では、一部のSiOに熱分解反応が起き、SiO2 及びSiが生じる。熱分解反応で生じたSiは、表面の消費に伴って表面に集まる。なぜなら、SiO、SiO2 、Siの蒸気圧はこの順番で低くなり、蒸発もこの順番で起こりにくいからである。つまり、熱分解反応でSiO2 及びSiが生じるが、SiO2 は比較的容易に蒸発し、Siは蒸発し難く残留し易いのである。ただし、SiO及びSiは再反応してSiOに戻り蒸発するので、SiO2 の実際の蒸発量は多くない。Siも再反応により消費されるが、蒸発量が僅かであるので、蒸着材料の表面に粒状に残留する。この材料表面に残留する凝集Si粒がスプラッシュの原因になり、ひいてはパーティクルの原因にもなると考えられる。実際、スプラッシュやパーティクルに起因する膜品質低下が生じた使用後の蒸着材料の表面には、目視でも明確に確認できる凝集Si粒が残留している。 At this time, in the vicinity of the surface of the vapor deposition material to which the heating energy is irradiated, a thermal decomposition reaction occurs in a part of SiO to generate SiO 2 and Si. Si generated by the thermal decomposition reaction collects on the surface as the surface is consumed. This is because the vapor pressure of SiO, SiO 2 , and Si decreases in this order, and evaporation does not easily occur in this order. That is, SiO 2 and Si are generated by the thermal decomposition reaction, but SiO 2 evaporates relatively easily, and Si hardly evaporates and remains easily. However, since SiO and Si react again and return to SiO and evaporate, the actual evaporation amount of SiO 2 is not large. Si is also consumed by the re-reaction, but since the evaporation amount is small, it remains granular on the surface of the vapor deposition material. It is considered that the agglomerated Si particles remaining on the surface of the material cause a splash, and as a result, a particle. Actually, agglomerated Si particles that can be clearly confirmed visually remain on the surface of the vapor deposition material after use where film quality deterioration due to splash or particles has occurred.

これから分かるように、スプラッシュやパーティクルに起因する膜品質低下は、蒸着材料中のSiに原因がある。このSiは蒸着プロセスだけでなく、蒸着材料製造プロセスにおける焼結過程でも生じる。焼結過程で生じるSi量を低減するのが、特許文献3に記載された低温焼結であるが、その二次弊害は少なくない。そこで、本発明では膜形成過程における上記反応に着目し、材料製造プロセスで材料中のO量を増加させておく。そうすると、未反応で残るSiが材料中の余剰のOにより酸化され、そのSiが酸化物に変化することにより、材料表面におけるSi粒の凝集が阻止され、凝集Si粒に起因するスプラッシュの発生、更にはパーティクルの発生が抑制される。   As can be seen, the film quality degradation caused by splash and particles is caused by Si in the vapor deposition material. This Si is generated not only in the vapor deposition process but also in the sintering process in the vapor deposition material manufacturing process. The low-temperature sintering described in Patent Document 3 reduces the amount of Si generated in the sintering process, but there are many secondary problems. Therefore, in the present invention, paying attention to the above reaction in the film formation process, the amount of O in the material is increased in the material manufacturing process. Then, Si that remains unreacted is oxidized by surplus O in the material, and the Si changes to an oxide, thereby preventing aggregation of Si particles on the material surface, and generation of splash due to the aggregated Si particles, Furthermore, the generation of particles is suppressed.

本発明のSiO焼結蒸着材料でスプラッシュ、パーティクルの発生が効果的に抑制される原因を、本発明者は以上のように推定している。実際、本発明のSiO焼結蒸着材料を使用して蒸着膜の形成操作を行った場合、使用後の蒸着材料の表面に凝集Si粒は認められない。   As described above, the present inventor presumes the reason why the generation of splash and particles is effectively suppressed by the SiO sintered vapor deposition material of the present invention. Actually, when the deposited film is formed using the SiO sintered vapor deposition material of the present invention, no agglomerated Si particles are observed on the surface of the vapor deposition material after use.

次に、本発明のSiO焼結蒸着材料及びその蒸着材料を製造する方法の有効性を比較材料の場合と対比することにより明らかにする。 Next, the effectiveness of the SiO sintered vapor deposition material of the present invention and the method for producing the vapor deposition material will be clarified by comparing with the case of the comparative material.

真空凝集装置で製造した析出SiO(凝集管外面温度で400℃以上の高温領域に析出した高温析出SiO)を平均粒径20μmに粉砕した。そのSiO粉末を直径30mm、高さ40mmのタブレット形状にバインダー成形した。その成形体を大気中で低温焼結し、その後に不活性ガス雰囲気(Arガス雰囲気中)中で高温焼結した。   Precipitated SiO produced by a vacuum aggregating apparatus (high-temperature precipitated SiO deposited in a high temperature region of 400 ° C. or higher at the outer surface temperature of the aggregating tube) was pulverized to an average particle size of 20 μm. The SiO powder was binder-molded into a tablet shape having a diameter of 30 mm and a height of 40 mm. The molded body was sintered at a low temperature in the air, and then sintered at a high temperature in an inert gas atmosphere (in an Ar gas atmosphere).

比較参照のために、低温焼結での焼結温度及び高温焼結での焼結温度を種々変更すると共に、低温焼結を省略した蒸着材料、及び高温焼結を省略した蒸着材料も製造した。成形プロセスで使用したバインダーは市販のものであり、添加量は20重量%とした。   For comparison reference, various sintering temperatures for low-temperature sintering and high-temperature sintering were used, and vapor-deposited materials that omit low-temperature sintering and vapor-deposited materials that omit high-temperature sintering were also manufactured. . The binder used in the molding process was commercially available, and the amount added was 20% by weight.

製造されたSiO焼結蒸着材料(タブレット)に対して、前記酸素定量分析値O1 を求めた。また圧縮破壊強度を測定した。使用したEPMAはJEOL/JXA−8100であり、分析領域は42.5mm角、分析元素はO及びSiの2元素とした。 The oxygen quantitative analysis value O 1 was determined for the manufactured SiO sintered vapor deposition material (tablet). The compressive fracture strength was also measured. The EPMA used was JEOL / JJA-8100, the analysis area was 42.5 mm square, and the analysis elements were O and Si.

また、製造されたSiO焼結蒸着材料(タブレット)を実際に真空蒸着試験(イオンプレーティング)に用いて、各材料の耐スプラッシュ特性及び耐パーティクル特性を調査した。蒸着膜形成条件を表1に示し、調査結果を製造条件と共に表2に示す。耐スプラッシュ特性の調査では、スプラッシュを、基材フィルムにおけるピンホール数として検出しカウントした。耐パーティクル特性の調査では、膜上の5μm以上のパーティクル数をレーザー式パーティクルカウンターによりカウントした。成膜速度は、蒸着材料Aを用いた比較例1を100とした相対値で表した。   Moreover, the manufactured SiO sintered vapor deposition material (tablet) was actually used for the vacuum vapor deposition test (ion plating), and the splash resistance characteristic and the particle resistance characteristic of each material were investigated. The vapor deposition film forming conditions are shown in Table 1, and the investigation results are shown in Table 2 together with the manufacturing conditions. In the investigation of the splash resistance characteristics, the splash was detected and counted as the number of pinholes in the base film. In the investigation of particle resistance, the number of particles of 5 μm or more on the film was counted with a laser type particle counter. The film formation rate was expressed as a relative value with Comparative Example 1 using the vapor deposition material A as 100.

蒸着材料A〜C(比較例1〜3)は、非酸化性雰囲気下での高温焼結のみを実施した従来材料である。大気中での低温焼結を実施していないので、前記酸素解析値O1 は44wt%未満と小さい。Arガス雰囲気中での高温焼結を行ってるので、圧縮破壊強度は高い。圧縮破壊強度は高いが、その高温焼結過程でSiが析出したため、ピンホール数、パーティクル数ともに多い。ピンホール数は焼結温度が高くなるほど多くなり、パーティクル数は焼結温度が高くなるほど減少する。 The vapor deposition materials A to C (Comparative Examples 1 to 3) are conventional materials in which only high-temperature sintering is performed in a non-oxidizing atmosphere. Since the low-temperature sintering is not performed in the atmosphere, the oxygen analysis value O 1 is as small as less than 44 wt%. Since high-temperature sintering is performed in an Ar gas atmosphere, the compression fracture strength is high. Although the compressive fracture strength is high, both the number of pinholes and the number of particles are large because Si is precipitated during the high-temperature sintering process. The number of pinholes increases as the sintering temperature increases, and the number of particles decreases as the sintering temperature increases.

蒸着材料D(比較例4)は、本焼結前に大気中での低温焼結を実施したものの、その温度が低いために、前記酸素定量解析値O1 は44wt%に達しない。このため、蒸着膜形成プロセスでは、本焼結で析出したSiの影響を受け、ピンホール数は減少せず、パーティクル数は多い。 Although the vapor deposition material D (Comparative Example 4) was subjected to low-temperature sintering in the atmosphere before the main sintering, the oxygen quantitative analysis value O 1 does not reach 44 wt% because the temperature is low. For this reason, in the deposited film forming process, the number of pinholes does not decrease and the number of particles is large due to the influence of Si deposited in the main sintering.

蒸着材料E〜Gは、本焼結前に大気中で適正温度の低温焼結を実施した本発明例である。前記酸素定量解析値O1 は44〜49wt%を満足し、圧縮破壊強度も15MPa以上を示す。1000℃の高温焼結を実施しているにもかかわらず、ピンホール数は少ない。パーティクル数は、高温焼結とはいえ焼結温度が1000℃と比較的低いために若干多い。大気中での低温焼結の温度が高くなるほど、前記酸素定量解析値O1 は高くなり、ピンホール数、パーティクル数ともに減少する。高温焼結での温度が同一なので、圧縮破壊強度は若干高くなる程度である。 The vapor deposition materials E to G are examples of the present invention in which low temperature sintering at an appropriate temperature is performed in the air before the main sintering. The oxygen quantitative analysis value O 1 satisfies 44 to 49 wt%, and the compressive fracture strength is 15 MPa or more. Despite the high temperature sintering at 1000 ° C., the number of pinholes is small. The number of particles is slightly higher because the sintering temperature is relatively low at 1000 ° C. although it is a high temperature sintering. As the temperature of the low-temperature sintering in the atmosphere increases, the oxygen quantitative analysis value O 1 increases, and both the number of pinholes and the number of particles decrease. Since the temperature at the high temperature sintering is the same, the compression fracture strength is only slightly higher.

蒸着材料H(比較例5)は、大気中での焼結温度が高いために、前記酸素定量解析値O1 は49wt%を超えている。特性が蒸気圧がSiOより低いSiO2 に近づくため成膜速度が低下し、生産性に悪影響が生じる。 Since the vapor deposition material H (Comparative Example 5) has a high sintering temperature in the atmosphere, the oxygen quantitative analysis value O 1 exceeds 49 wt%. Since the characteristics approach that of SiO 2 whose vapor pressure is lower than that of SiO, the film formation rate is lowered, and productivity is adversely affected.

蒸着材料I,Jは、本焼結前に大気中で適正温度の低温焼結を実施した本発明例である。低温焼結後の高温焼結の温度を高くしたため、材料中のSi量が増加しているはずであるが、ピンホール数は少ない。高温焼結温度の上昇により、圧縮破壊強度は大幅に向上し、パーティクル数も激減している。   The vapor deposition materials I and J are examples of the present invention in which low-temperature sintering at an appropriate temperature is performed in the atmosphere before the main sintering. Since the temperature of high-temperature sintering after low-temperature sintering is increased, the amount of Si in the material should have increased, but the number of pinholes is small. With the increase in the high temperature sintering temperature, the compression fracture strength has been greatly improved and the number of particles has been drastically reduced.

本発明の一酸化珪素系蒸着材料の製造工程の説明図である。It is explanatory drawing of the manufacturing process of the silicon monoxide type vapor deposition material of this invention. 原料(析出SiO)の製造に使用される真空凝集装置の構成図である。It is a block diagram of the vacuum coagulation apparatus used for manufacture of a raw material (deposition SiO). 蒸着膜形成プロセスでのスプラッシュ生成・抑制の原理を示すイメージ図である。It is an image figure which shows the principle of splash production | generation and suppression in a vapor deposition film formation process.

符号の説明Explanation of symbols

1 原料室
2 凝集室
1 Raw material chamber 2 Coagulation chamber

Claims (2)

SiOの蒸着膜の形成に使用されるSiO焼結蒸着材料であって、SiO2 からなる標準試料をEPMAにより定量分析したときのO/Si比aの理論値a0 (≒1.14)に対する比(a/a0 )を補正係数Kとし、EPMAによるO/Si比の実測値Aを前記補正係数Kにより補正して得たO/Si比の補正値A1 (=1/K・A)から求めた酸素定量分析値O1 〔=100/(1+1/A1 )〕が、44〜49wt%であり、かつ圧縮破壊強度が15MPa以上であるSiO焼結蒸着材料。   A ratio of the O / Si ratio a to the theoretical value a0 (≈1.14) when a standard sample made of SiO2 is quantitatively analyzed by EPMA. a / a0) is the correction coefficient K, and the actual measurement value A of the O / Si ratio by EPMA is obtained from the correction value A1 (= 1 / K · A) of the O / Si ratio obtained by correcting with the correction coefficient K. An SiO sintered vapor deposition material having an oxygen quantitative analysis value O1 [= 100 / (1 + 1 / A1)] of 44 to 49 wt% and a compressive fracture strength of 15 MPa or more. 請求項1に記載のSiO焼結蒸着材料において、圧縮破壊強度が30MPa以上であるSiO系焼結蒸着材料。   The SiO sintered vapor deposition material according to claim 1, wherein the compressive fracture strength is 30 MPa or more.
JP2007310510A 2007-11-30 2007-11-30 SiO sintered vapor deposition material Expired - Fee Related JP4993297B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007310510A JP4993297B2 (en) 2007-11-30 2007-11-30 SiO sintered vapor deposition material
PCT/JP2008/070934 WO2009069506A1 (en) 2007-11-30 2008-11-18 Sio sintering and vapor depositing material and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007310510A JP4993297B2 (en) 2007-11-30 2007-11-30 SiO sintered vapor deposition material

Publications (2)

Publication Number Publication Date
JP2009132979A JP2009132979A (en) 2009-06-18
JP4993297B2 true JP4993297B2 (en) 2012-08-08

Family

ID=40678408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007310510A Expired - Fee Related JP4993297B2 (en) 2007-11-30 2007-11-30 SiO sintered vapor deposition material

Country Status (2)

Country Link
JP (1) JP4993297B2 (en)
WO (1) WO2009069506A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634515B2 (en) * 2009-06-19 2011-02-16 株式会社大阪チタニウムテクノロジーズ Negative electrode material for silicon oxide and lithium ion secondary battery
JPWO2015037462A1 (en) * 2013-09-12 2017-03-02 コニカミノルタ株式会社 Method for producing sintered silicon oxide and sintered silicon oxide
JP6335071B2 (en) * 2014-08-29 2018-05-30 キヤノンオプトロン株式会社 Vapor deposition material, vapor deposition material production method, optical element production method, and gas barrier film production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5268701A (en) * 2000-05-08 2001-11-20 Denki Kagaku Kogyo Kabushiki Kaisha Low relative permittivity SIOx film, production method, semiconductor device comprising the film
JP2001348656A (en) * 2000-06-07 2001-12-18 Denki Kagaku Kogyo Kk SiOx POROUS COMPACT
JP4729253B2 (en) * 2001-07-26 2011-07-20 株式会社大阪チタニウムテクノロジーズ Silicon monoxide sintered body and silicon monoxide sintered target
JP3828434B2 (en) * 2002-02-22 2006-10-04 住友チタニウム株式会社 Sintered silicon monoxide and method for producing the same
JP2006342022A (en) * 2005-06-09 2006-12-21 Sumitomo Heavy Ind Ltd MANUFACTURING METHOD OF SiO TABLET, AND SiO TABLET
JP4374330B2 (en) * 2005-06-16 2009-12-02 株式会社大阪チタニウムテクノロジーズ Silicon monoxide-based vapor deposition material and method for producing the same

Also Published As

Publication number Publication date
WO2009069506A1 (en) 2009-06-04
JP2009132979A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
CN105143931B (en) Light absorbing layer and containing system, layer system manufacturing method and the applicable sputter target layer by layer
TWI493066B (en) Planar or tubular sputtering target and method for the production thereof
Koch et al. Oxidation behaviour of silicon-free tungsten alloys for use as the first wall material
CN105683407B (en) Sputter target and its manufacturing method
JP6446538B2 (en) Metal coating for thin film components, method for producing the same, and sputtering target
Dellasega et al. Boron films produced by high energy Pulsed Laser Deposition
JP4993297B2 (en) SiO sintered vapor deposition material
WO2019176552A1 (en) Oxide thin film, and oxide sintered body for sputtering target for producing oxide thin film
JP4771544B2 (en) Method for producing SiO sintered body
Rane et al. Tungsten/molybdenum thin films for application as interdigital transducers on high temperature stable piezoelectric substrates La3Ga5SiO14 and Ca3TaGa3Si2O14
JP4374330B2 (en) Silicon monoxide-based vapor deposition material and method for producing the same
Stelzer et al. Autonomously Self‐Reporting Hard Coatings: Tracking the Temporal Oxidation Behavior of TiN by In Situ Sheet Resistance Measurements
Yan et al. Effect of thermal activation energy on the structure and conductivity corrosion resistance of Cr doped TiN films on metal bipolar plate
Eyrich et al. Planar Au/TiO2 model catalysts: fabrication, characterization and catalytic activity
EP2194158B1 (en) ZnO VAPOR DEPOSITION MATERIAL AND PROCESS FOR PRODUCING THE SAME
Walczak et al. Pulsed laser deposition of TiO 2: Diagnostic of the plume and characterization of nanostructured deposits
Nebatti et al. Compositional mapping of Mo-doped ZnO thin films: Mechanical, nano-surface and ToF-SIMS analyses
JP2003246670A (en) Sintered compact of silicon monoxide and production method thereof
JP2016156055A (en) Thermal insulation material
Li et al. Achieving Diamond‐Like Wear in Ta‐Rich Metallic Glasses
JP2015113512A (en) Oxide sputtering target
CN105074045A (en) Oxide sputtering target and method for producing same, and protective film for optical recording media
KR102316360B1 (en) Sputtering target and production method
JP5240228B2 (en) Sputtering target and method for manufacturing perpendicular magnetic recording medium
Kumar et al. Study of carbon doped cobalt mononitride thin films

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees