JP2008130251A - 集束状態検出用部材、走査型電子顕微鏡、ならびに電子ビームの集束条件調整方法、焦点調整方法及び焦点深度測定方法 - Google Patents

集束状態検出用部材、走査型電子顕微鏡、ならびに電子ビームの集束条件調整方法、焦点調整方法及び焦点深度測定方法 Download PDF

Info

Publication number
JP2008130251A
JP2008130251A JP2006310510A JP2006310510A JP2008130251A JP 2008130251 A JP2008130251 A JP 2008130251A JP 2006310510 A JP2006310510 A JP 2006310510A JP 2006310510 A JP2006310510 A JP 2006310510A JP 2008130251 A JP2008130251 A JP 2008130251A
Authority
JP
Japan
Prior art keywords
electron beam
height
irradiation surface
beam irradiation
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006310510A
Other languages
English (en)
Inventor
Genya Matsuoka
玄也 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2006310510A priority Critical patent/JP2008130251A/ja
Publication of JP2008130251A publication Critical patent/JP2008130251A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】電子線装置における電子ビームの集束条件の設定の際に電子ビームを試料に照射する機会や時間を低減することを目的とする。
【解決手段】走査電子顕微鏡1の電子ビームBの集束状態を検出するために電子ビーム照射面13aを使用する。電子ビーム照射面13aは、電子ビームBの光軸方向である高さ方向の位置がその面内位置により異なり、また電子ビームBを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する。
【選択図】図1

Description

本発明は、走査型電子顕微鏡、その電子ビームの調整及びこれに用いる集束状態検出用部材に関する。
電子ビームを用いた装置(以下「電子線装置」と記すことがある)においては、試料面上での電子線の焦点位置及び非点収差(以下、これらを総称して「集束条件」と記すことがある)を最適化することが重要である。最適な集束条件の下では、ビーム径が最も小さくかつ真円に近いビーム断面を得ることができる。その結果、例えば走査型電子顕微鏡の場合では、高い分解能の画像が得られる。
試料面の位置が、高さ方向すなわち電子ビームの光軸方向に変動すると、集束条件は最適な条件から外れる。このため電子線装置では試料面の高さ方向の位置を求めて、この高さに応じて集束条件を最適化する必要がある。試料面の高さ方向の位置情報を求める従来方法として、試料面に斜めに入射させた光の反射光の位置を測定する方法がある(例えば、下記特許文献1及び2)。また反射光の位置を測定する測定装置を較正する手段として段差を有する構造物が考案されている(下記特許文献3)。
特開平8−273575号公報 特開平11−183575号公報 特開平6−3115号公報
電子線装置の構成によっては装置内部のスペースの制約によって、上述の光学式計測器が使用できない場合もある。このような場合には、電子ビームを試料に照射させて電子線鏡筒の電子レンズの条件を変えながら電子線画像を取得し、得られた画像から集束状態を求めることにより最適な集束条件を設定していた。
しかしながら、試料の厚さの差や、試料を上下するテーブル機構の機械的な誤差などによって試料面の高さの変動が大きくなると、集束条件の調整範囲が大きくなる。このような場合には、最適な集束条件を発見するのに時間がかかり、電子ビームの長時間の照射によって試料が汚染又は帯電するなどの問題があった。
上記問題に鑑み、本発明は、集束条件の設定の際に電子ビームを試料に照射する機会や時間を低減することを目的とする。
上記目的を達成するために、本発明では、走査型電子顕微鏡の電子ビームの集束状態を検出するために、以下の電子ビーム照射面を使用する。この電子ビーム照射面は、電子ビームの光軸方向である高さ方向の位置がその面内位置により異なり、また電子ビームを照射され反射電子及び二次電子のうちの少なくとも一方を発生する。
電子ビーム照射面は、電子ビームを照射され反射電子及び二次電子のうちの少なくとも一方を発生するので、電子ビーム照射面の電子線画像を観察することによって電子ビーム照射面の高さに電子ビームが集束していることを確認することができる。
そして電子ビーム照射面はその面内位置によって高さ方向位置が異なるので、任意の高さを選んでここに電子ビームが集束するように集束条件を選ぶことができる。また、電子ビーム照射面のうち電子ビームが集束する位置を見つけることによって電子ビームの集束位置を決定することができる。
本発明の第1形態によれば、走査型電子顕微鏡の電子ビームの集束状態を検出するために使用する集束状態検出用部材が提供される。ここに集束状態検出用部材は、電子ビームを照射され反射電子及び二次電子のうちの少なくとも一方を発生する電子ビーム照射面とこれに略対向する底面とを備え、該電子ビーム照射面はその面内位置によって底面からの高さが異なる部材である。
本発明の第2形態によれば、電子ビームを観察試料上で走査する走査型電子顕微鏡が提供される。ここで走査型電子顕微鏡は、電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する電子ビーム照射面を備え、電子ビーム照射面は電子ビームの光軸方向である高さ方向の位置がその面内位置により異なる。
本発明の第3形態によれば、電子ビームを観察試料上で走査する走査型電子顕微鏡の電子ビームの集束条件を調整する集束条件調整方法が提供される。本方法では、走査型電子顕微鏡内に設けられた所定の電子ビーム照射面のうち観察試料の観察面と同じ高さの部分に電子ビームが集束するように集束条件を調整する。ここで所定の電子ビーム照射面は、電子ビームの光軸方向である高さ方向の位置がその面内位置により異なり、かつ電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する。
本発明の第4形態によれば、電子ビームを観察試料上で走査する走査型電子顕微鏡の電子ビームの焦点を調整する焦点調整方法が提供される。本方法では、観察試料を昇降する昇降台上に設けられた所定の電子ビーム照射面のうち電子ビームが表面に集束する集束箇所を決定し、集束箇所における電子ビーム照射面の高さと、観察試料の試料面の高さとの間の高低差に基づいて、電子ビームの焦点高さを試料面の高さに調整する。ここで所定の電子ビーム照射面は、電子ビームの光軸方向である高さ方向の位置がその面内位置により異なり、かつ電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する。
本発明の第5形態によれば、電子ビームを観察試料上で走査する走査型電子顕微鏡の電子ビームの焦点深度を測定する焦点深度測定方法が提供される。本方法では、走査型電子顕微鏡内に設けられた所定の電子ビーム照射面の複数箇所を電子ビームで走査することにより複数箇所のそれぞれの電子線画像を生成し、これら電子線画像のうちの焦点が合った画像が得られた電子ビーム照射面の高さの範囲を走査型電子顕微鏡の焦点深度として求める。ここで所定の電子ビーム照射面は、電子ビームの光軸方向である高さ方向の位置がその面内位置により異なり、かつ電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する。
電子ビームの集束条件の調整のために試料に電子ビームを照射する時間や機会が低減するので、長時間の電子ビーム照射による試料の汚染及び帯電を防ぐことができる。
以下、添付する図面を参照して本発明の実施例を説明する。図1は、本発明の実施例による走査型電子顕微鏡の概略構成図である。走査型電子顕微鏡1は、ベース2及び筐体3を有し、電子線鏡筒4、及び観察試料S(以下単に「試料S」と記す)を保持する試料台5が筐体3の内部に設置されている。試料台5はZ方向に移動可能であり、試料Sを保持しながらこれを昇降することができる。
筐体3の内部は真空状態に保たれており、筐体3内に設けられた電子線鏡筒4は電子ビームBを試料Sに照射する。試料Sは電子ビームBを照射されることによって反射電子及び/又は二次電子を放出し、放出されたこれらの電子は電子線検出器6に検出され電気信号に変換される。電子線検出器6の検出信号はアナログディジタル変換器(A/D)11によってディジタル信号に変換され画像処理部9に入力される。
電子線鏡筒4が電子ビームBを偏向してXY方向に試料S上を走査し、各座標に電子ビームを照射したときの電子線検出器6の検出信号の強弱を、画像処理部9が二次元画像に構成することによって、試料Sの電子線画像が得られる。
図2は、電子線鏡筒4の概略構成図である。電子線鏡筒4は電子銃21、集束レンズ(コンデンサレンズ)コイル22、非点収差補正コイル23、X方向偏向コイル24X及びY方向偏向コイル24Y(これら偏向コイルをまとめて以下「偏向コイル24」と記すことがある)、対物レンズコイル25及び電子ビーム射出孔26を有している。
集束レンズコイル22は、集束レンズとして働く電磁レンズを発生させて電子銃21から生じた電子ビームを集束する。
非点収差補正コイル23は8極子コイル等により構成され、0°、45°、90°、135°の方向に電子ビームを集束あるいは発散させることにより、観察面において電子ビーム断面が真円となるようにビーム断面形状を補正する。非点収差補正コイル23の各コイルの励磁電流値は後述する制御部8の非点収差補正コイル制御部52により制御されて、観察面の高さに応じて補正量が制御される。
偏向コイル24は、電子ビームBをX及びY方向に偏向させることによって電子ビームBの照射位置を変える。電子ビームBの偏向量を定める偏向コイル24の励磁電流値は、後述する制御部8の偏向コイル制御部53により制御される。
対物レンズコイル25は、集束レンズコイル22により集束された電子ビームBを、さらに観察面上に細く集束させる。本実施例では電子ビームBは直径約5ナノメートル以下に集束される。対物レンズコイル25の励磁電流値は、後述する制御部8の対物レンズコイル制御部54により制御されて、観察面の高さに応じて電子ビームBの焦点位置が制御される。ディジタルアナログ変換回路32、33及び34は、それぞれ非点収差補正コイル制御部52、偏向コイル制御部53及び対物レンズコイル制御部54が制御するディジタル形式の励磁電流値をアナログ信号に変換して、非点収差補正コイル23、偏向コイル24及び対物レンズコイル25に供給する。
図1に戻り、本実施例の走査型電子顕微鏡1は、電子線鏡筒4をX及びY方向に移動させる電子線鏡筒移動機構7を有する。電子線鏡筒移動機構7は、電子線鏡筒4の視野を試料S上の任意の位置に移動させ、または試料Sの上以外の場所に移動する。図3に電子線鏡筒移動機構7の概略構成図を示す。
電子線鏡筒移動機構7は、電子線鏡筒4をX方向に沿って移動させるための1対のX方向ガイド70a及び70bと、Y方向に沿って電子線鏡筒4を移動させるための可動Y方向ガイド72と、可動Y方向ガイド72を支持したままX方向ガイド70a及び70bにそれぞれ沿って移動する1対のX移動部71a及び71bと、電子線鏡筒4を支持したまま可動Y方向ガイド72に沿って移動するY方向移動部73と、を備えて構成される。各移動部71a、71b及び73を移動させるために、例えばボールネジ機構のような様々な直線駆動機構を使用することが可能である。電子線鏡筒移動機構7は、後述する制御部8の電子線鏡筒制御部55により制御され、ディジタルアナログ変換回路13は、電子線鏡筒制御部55が出力するディジタル形式の駆動信号をアナログ信号に変換して電子線鏡筒移動機構7のモータ等(図示せず)に供給する。
図1に戻り、本実施例の走査型電子顕微鏡1は、Z方向に昇降可能な試料台5の上に設けられた集束状態検出用部材14と、ベース2上に設けられた集束状態検出用部材15を備える。図4の(A)は集束状態検出用部材14の第1実施例の平面図であり、図4の(B)は図4の(A)の集束状態検出用部材14の側面図である。図中の寸法の単位はミリメートルである。
集束状態検出用部材14は、電子ビームBが照射されたときにその表面から反射電子又は二次電子を放出するような非磁性体でかつ導電体の材料で構成され、好適には材料としてリン青銅等が使用される。アルミやステンレスを使用してもよい。
集束状態検出用部材14は、走査型電子顕微鏡1内に設置されたときに電子線鏡筒4側を向き電子ビームが照射される電子ビーム照射面14aと、これに略対向する底面14cとを備えており、電子ビーム照射面14aは底面14cに対して斜面をなす。したがって電子ビーム照射面14aはその長手方向位置によって底面14cからの高さが異なる。このため試料台5の上面が電子ビームBと直角をなすとき、この試料台5の上面に集束状態検出用部材14を設けることによって、電子ビーム照射面14aは電子ビームBに対して傾いた斜面をなす。
電子ビーム照射面14aの中間部分で60ミリメートルの範囲内14bには、目盛りが設けられている。その拡大図を図4の(C)に示す。本実施例では目盛りは幅及び深さが約0.1ミリメートルの溝として形成され、溝のピッチは約0.5ミリメートルである。このような溝は機械加工またはフォトリソグラフィ及びエッチングにより形成することが可能である。またこのような溝の代わりに重金属を等間隔に埋め込んで目盛りを形成してもよい。
集束状態検出用部材14の寸法を図4の(A)〜図4の(C)に示すように定めると、隣り合う目盛り間の距離0.5ミリメートに対する斜面14aの高さ変化は1.67マイクロメートルとなり、目盛りは斜面14aの高さ指標としての役割を果たす。
ベース2上に設けられた集束状態検出用部材15もまた、寸法は異なるが集束状態検出用部材14と同様の構造を有する。したがってベース2の上面が電子ビームBと直角をなすとき、ベース2の上面に設けられた集束状態検出用部材15の電子ビーム照射面も電子ビームBに対して傾いた斜面をなす。
図1に戻り、本実施例の走査型電子顕微鏡1は、電子線鏡筒4を制御する制御部8及び制御部8へのデータ入力部10を有する。図4に制御部8の概略構成図を示す。制御部8は、集束条件調整部41と、焦点深度決定部42と、焦点調整部43を備える。
集束条件調整部41は、試料Sの表面又は集束状態検出用部材14の電子ビーム照射面14a上に電子ビームBが照射されている状態で、この照射位置に電子ビームBが集束するように電子ビームBの焦点及び非点収差を調整する。
焦点深度決定部42は、集束状態検出用部材14の電子ビーム照射面14a上の高さが異なる複数の箇所に電子ビームBを各々照射させ、それぞれの照射箇所にて電子線画像を取得し、これら複数箇所のうち焦点が合った電子線画像を得られたものを選択して、走査型電子顕微鏡の焦点深度を求める。
また制御部8は、非点収差補正コイル制御部52、偏向コイル制御部53及び対物レンズ制御部54を備える。
非点収差補正コイル制御部52は、集束条件調整部41からの制御信号に従って非点収差補正コイル23の励磁電流値を増減することによって、電子ビームBの非点収差を変化させる。
偏向コイル制御部53は、集束条件調整部41、焦点深度決定部42及び焦点調整部43からの電子ビーム照射位置指示信号に従って偏向コイル24の励磁電流値を制御し、電子ビームの照射位置を所望の位置に移動させる。また偏向コイル制御部53は、走査信号生成部44が生成する走査信号に従って偏向コイル24の励磁電流値を制御することによって、電子線画像の生成の際に電子ビームBを走査させる。
対物レンズ制御部54は、集束条件調整部41及び焦点調整部43からの制御信号に従って対物レンズコイル25の励磁電流値を増減することによって、電子ビームBの焦点を変化させる。
さらに制御部8は、試料面高さ決定部61、電子ビーム位置決定部62、電子線鏡筒制御部55及びコントラスト決定部63を備える。
試料面高さ決定部61は、試料Sの厚さ情報が入力部10から入力されると、試料Sの厚さ情報から試料台5の上面から試料Sの表面までの高さを決定する。
電子ビーム位置決定部62は、集束状態検出用部材14の電子ビーム照射面14aのうち、試料面高さ決定部61により決定された試料面の高さと同じ高さとなる位置を決定する。
電子線鏡筒制御部55は、電子線鏡筒移動機構7の直動機構を駆動して、電子線鏡筒4のX及びY方向位置を制御する。
コントラスト決定部63は、画像処理部9が生成した電子線画像のコントラスト値を決定する。
図6は、本発明の実施例による集束条件調整方法のフローチャートである。
ステップS10において、試料Sの厚さ情報が入力部10から入力されると、試料Sの厚さ情報から試料台5の上面から試料Sの表面までの高さを決定する。
ステップS11において、電子ビーム位置決定部62は、その電子ビーム照射面14aのうち、試料面高さ決定部61により決定された試料面の高さと同じ高さとなる位置を決定する。このとき、集束状態検出用部材14の寸法とその配置位置とは既知であるので、電子ビーム位置決定部62は、電子ビーム照射面14aの各位置の高さを決定することができ、試料面の高さと同じ高さとなる電子ビーム照射面14aの面内位置を決定することができる。
例えば図7に示す電子ビーム照射面14aでは、基準点Aの位置及び高さが既知であるとすると、電子ビーム照射面14aの任意の位置Bと基準点Aとの高低差ΔHは、
ΔH=ΔD×tanθ
または、
ΔH=ΔP×sinθ
により求めることができる。ここで角度θは電子ビーム照射面14aが試料面(すなわち電子ビームBの光軸方向と直交する面)とのなす角度であり、ΔDは基準点Aと位置Bとの間の水平面上の距離であり、ΔPは基準点Aと位置Bとの間の電子ビーム照射面14a上の距離である。
ステップS12において、電子線鏡筒制御部55は、電子ビーム位置決定部62が決定した位置に電子ビームBを照射するように電子線鏡筒4の位置を移動させる。
ステップS13では、ステップS12で位置決めした位置に電子線鏡筒4を固定したまま、走査信号生成部44により生成した走査信号で電子ビームBを走査し、ステップS11で決定した位置の電子ビーム照射面14aの表面の電子線画像を取得する。この電子線画像のコントラスト値はコントラスト決定部63によって決定される。
集束条件調整部41は、非点収差補正コイル23の励磁電流値を変えながら各非点収差状態で撮像した電子線画像のコントラスト値を入力し、コントラスト値が最も高くなる状態に電子ビームBの非点収差の状態を調整することにより、非点収差コイル23の励磁電流値を、電子線画像の焦点が合う値に調整する。また集束条件調整部41は、対物レンズコイル25の励磁電流値を変えながら各焦点状態で撮像した電子線画像のコントラスト値を入力し、コントラスト値が最も高くなる状態に電子ビームBの焦点状態を調整することにより、対物レンズコイル25の励磁電流値を、電子線画像の焦点が合う値に調整する。
なお、本実施例では電子線画像の合焦の有無をコントラストにより判定するが、これはあくまで一例であり、合焦の有無を判定する方法として他の手法を用いてもよい。以下の実施例でも同様である。
ここで、電子ビーム照射面14aの表面には加工の際にできた微小な凹凸があるため、その電子線画像には凹凸に応じた明度差が生じる。したがって、コントラスト決定部63は、電子ビーム照射面14aの表面の加工の際にできた凹凸により生じる模様の明度差のコントラスト値を決定してよい。
また、図4の(A)を参照して上述したように電子ビーム照射面14aには目盛りが設けられ、この目盛りと目盛り以外の面との間により大きな明暗差を生じる。したがってコントラスト決定部63は、隣接する目盛り間と目盛り部分との明度差のコントラスト値を決定してもよい。
図6に戻り、ステップS14では、電子線鏡筒制御部55は、電子ビームBが試料S上を照射するように電子線鏡筒4の位置を移動させる。ステップS15では、走査信号生成部44により生成した走査信号で電子ビームBを試料S上で走査し試料面の電子線画像を取得する。そして、集束条件調整部41は、この電子線画像のコントラスト値に基づき電子ビームBが試料面上に集束している否かを判定する。ステップS15の判定において、電子ビームBが試料面上に集束していると判定した場合は集束条件調整処理を終了する。
ステップS15の判定において、電子ビームBが試料面上に集束していないと判定した場合には、ステップS16において集束条件調整部41は、非点収差補正コイル23の励磁電流値を変えながら各非点収差状態で撮像した電子線画像のコントラスト値を入力し、コントラスト値が最も高くなる状態に電子ビームBの非点収差の状態を調整する。また集束条件調整部41は、対物レンズコイル25の励磁電流値を変えながら各焦点状態で撮像した電子線画像のコントラスト値を入力し、コントラスト値が最も高くなる状態に電子ビームBの焦点状態を調整する。
本方法によれば、ステップS13において予め電子ビーム照射面14aを用いて、試料S上に集束するように集束条件を調整しているため、ステップS16において試料S上で電子ビームBの集束条件の調整を無くし、またはその調整量を低減するため、集束条件の調整のために試料Sに電子ビームSを照射する機会またはその照射量を低減することが可能となる。
なお本方法では、電子ビームBと、試料S又は集束状態検出用部材14との間の相対移動のために電子線鏡筒4を移動させることとしたが、その代わりに試料S又は集束状態検出用部材14側を移動させてもよい。または偏向コイル24による電子ビームBの偏向量が大きい場合には、ステップS12及びステップS14における電子ビームBの照射位置の移動を、単に電子ビームBを偏向させることによって行ってもよい。以下に説明する焦点深度決定方法及び焦点調整方法においても同様である。
またステップS12において、電子ビーム位置決定部62が決定した位置に電子ビームBの照射位置を移動させる際に、電子ビーム照射面14a上に設けられた目盛りを用いて、電子ビームBの照射位置がどれだけ移動したかを検出してもよい。電子ビームBが目盛り上に照射されているときと目盛り以外の部分に照射されているときとでは電子線検出器6の検出量が異なる。したがって、電子ビーム照射面14a上に予め定めた基準点から電子ビームBの照射位置を移動させ、その間、電子ビーム位置決定部62は電子線検出器6の出力信号を監視して、電子ビームBの照射位置が通過した目盛りの数をカウントすることによって、電子ビームBの現在の照射位置を検出することが可能である。
図8は、集束状態検出用部材14の第2実施例を示す図である。本実施例では集束状態検出用部材14を、上部構造14dと下部構造であるスペーサ14とで構成する。そして上部構造の底面14gを電子ビーム照射面14aと略平行に形成する一方で、スペーサ14の上面14fを集束状態検出用部材14の底面14cに対して傾けることによって、電子ビーム照射面14aは集束状態検出用部材14の底面14cに対して斜面をなす。
また、集束状態検出用部材14の電子ビーム照射面14aは、必ずしも平らな斜面上に形成される必要はなく、階段状又は曲面状に形成されてもよい。すなわち、電子ビーム照射面14aはその面内位置によって底面14cからの高さが異なり、かつ面内位置と底面からの高さとの関係が既知であればどのような形態であってもよい。
また電子ビーム照射面は、集束状態検出用部材14及び15のような電子線装置内に取り付けられる別個の部材の面として設けられるだけでなく、例えば試料台5やベース2の表面の一部を加工してこれらと一体に形成されてもよい。
図9は、本発明の実施例による焦点深度決定方法のフローチャートである。本方法では、焦点深度決定部42は、電子ビーム照射面14a上の異なる複数の箇所に電子ビームBを各々照射させてそれぞれの照射位置にて電子線画像を取得する。そして、そのうち所定のコントラストを有する画像が得られた照射位置同士の高低差を走査型電子顕微鏡の焦点深度として求める。
ステップS20では、焦点深度決定部42は、電子ビームBが集束状態検出用部材14の電子ビーム照射面14a上を照射するように電子線鏡筒制御部55に電子線鏡筒4の位置を移動させる。
ステップS21では、焦点深度決定部42は、図10の(A)に示すように電子ビームBの照射位置を電子ビーム照射面14a上の傾斜方向にずらすように電子線鏡筒制御部55に電子線鏡筒4の位置を移動させる。そして、電子ビーム照射面14a上の複数の異なるそれぞれの位置において電子線画像を生成し、それぞれの箇所の電子線画像のコントラスト値を所定の記憶手段(図示せず)に保存する。電子ビーム照射位置とコントラスト値との関係を示すと図10の(B)に示すとおりとなり、この例では焦点は試料面Sと同じ高さのA点に合わされており、A点にて生成した電子線画像のコントラスト値が最大値Cmaxとなる。
ステップS22では、焦点深度決定部42は、ステップS21にて得られた最大のコントラスト値Cmaxとの差が、所定のコントラスト差ΔC未満となるコントラストを有する画像が得られた電子ビーム照射位置の範囲(xmin〜xmax)を決定する。ここで所定のコントラスト差ΔCは、焦点があったものとして許容される画像が有すべきコントラスト値の最低値に応じて適宜顕微鏡装置の構成及び目的に応じて予め定められた値である。
ステップS23では焦点深度決定部42は、ステップS22で得られた電子ビーム照射位置の範囲の下限xminの高さと上限xmaxの高さを決定し、ステップS24では、これらの高さの高低差を焦点深度として決定する。
図1に戻り、走査型顕微鏡装置1は試料Sを昇降可能な試料台5を備えている。試料台5は、観察時には上昇して試料Sの表面を電子線鏡筒4へと接近させる一方で、その上面に試料Sを載置する際には試料台は下降して電子線鏡筒4から離れることで試料Sの搬送を容易にする。ここで試料台5を機械的機構により移動させると、移動機構の機械的誤差によって試料Sの高さに狂いが生じるため、試料台5を昇降させる度に、すなわち試料交換の度に電子ビームBの焦点の条件を変更する必要が生じる。
以下に示す焦点調整方法では、図6で示した焦点調整方法よりも簡易に電子ビームBの焦点を調整する方法を提供する。
図11は、図5に示す焦点調整部43の概略構成図である。焦点調整部43は、最適焦点位置決定部81と、高低差決定部82と、焦点変更部83と、焦点微調整部84とを備えている。
最適焦点位置決定部81は、集束状態検出用部材14の電子ビーム照射面14aのうち現在の集束条件の電子ビームBが最も良く集束する位置を決定する。
高低差決定部82は、最適焦点位置決定部81が決定した位置と試料Sの表面との間の高低差を決定する。
焦点変更部83は、高低差決定部82が決定した高低差に応じた補正量によって対物レンズ25の励磁電流値を補正し、電子ビームBの焦点が試料Sの表面となるように調整する。
焦点微調整部84は、焦点変更部83による焦点調整が済んだ後に、試料Sの表面に電子ビームBを照射させて電子ビームBの焦点の微調整を行う。
図12及び図13は、本発明の実施例による焦点調整方法のフローチャートである。
ステップS31において、試料Sの厚さ情報が入力部10から入力されると、高低差決定部82は、試料台5の上面から試料Sの表面まで高さを決定して図示しない記憶手段に記憶する。今、試料Sの表面の図14の(A)に示すようにL1であるとする。
ステップS32において、最適焦点位置決定部81は、電子ビームBの照射位置を試料台5上の集束状態検出用部材14の電子ビーム照射面14a上に移動する。このとき例えば、最適焦点位置決定部81は、電子線鏡筒制御部55に電子線鏡筒4の位置を移動させることによって、電子線鏡筒4と集束状態検出用部材14との相対位置を変えて電子ビームBの照射位置を変更してもよく、偏向コイル24による偏向量が大きい場合には、偏向コイル制御部53に電子ビームBを偏向させることによって電子ビームBの照射位置を変更してもよい。このとき電子ビームBの焦点は、図14の(A)に示すように、予めベース2上に設けられた集束状態検出用部材15を用いて、図示L2の高さに合わせておくものとする。
ステップS33において、電子ビームBの焦点を固定したまま、走査信号生成部44により生成した走査信号で電子ビームBを走査し、電子ビーム照射面14aの表面の電子線画像を取得する。この電子線画像のコントラスト値はコントラスト決定部63によって決定される。
最適焦点位置決定部81は、電子ビーム照射面14a上における電子ビームBの照射位置を変えながらそれぞれの位置で得られた電子線画像のコントラスト値を取得する。このとき得られるコントラスト値の変化を図14の(B)に示す。そして最適焦点位置決定部81は、コントラスト値が最も高くなる電子ビームBの照射位置を最適焦点位置として決定する。図14の(A)に示すように現在の電子ビームBの焦点はL2の高さに合っているので、最適焦点位置は電子ビーム照射面14a上のAの位置となる。
ステップS34では、ステップS33で最適焦点位置が見つかったか否かを判定する。最適焦点位置が見つからなかった場合には、ステップS35及びS36をスキップして図13に示すステップS37へ処理を移す。
ステップS35では、高低差決定部82は、ステップS33で決定した最適焦点位置と試料Sの表面との間の高低差を決定する。このとき、集束状態検出用部材14の寸法とその配置位置とは既知であるので、高低差決定部82は、最適焦点位置における電子ビーム照射面14aの試料台5の上面(すなわち集束状態検出用部材14の底面14c)からの高さを決定することができる。また、試料台5の上面から試料Sの表面までの高さもステップS31において決定されている。したがって高低差決定部82は、試料台5の上面から最適焦点位置までの相対高さと、試料台5の上面から試料Sの表面までの相対高さとの差を算出することにより、最適焦点位置と試料Sの表面との間の高低差を決定する。
ステップS36では焦点変更部83は、高低差決定部82が決定した高低差に応じて、電子ビームBの焦点をこの高低差分だけ移動させるために必要な偏向コイル24の励磁電流値の補正量を決定する。
焦点変更部83が補正量を決定するために、例えば、電子ビームBの焦点変化量と、焦点変化量を生じさせる励磁電流値の変動量との関係を近似する近似式を予め決定しておいてもよい。このとき焦点変更部83は、予め決定された近似式を使用して、高低差決定部82が決定した高低差分の焦点変化を生じさせる励磁電流値の補正量を算出する。
また例えば、電子ビームBの焦点変化量から、その焦点変化量を生じさせる励磁電流値の変動量を求めるルックアップテーブルを予め用意してもよい。
ステップS37では、電子線鏡筒制御部55は、電子ビームBが試料S上を照射するように電子線鏡筒4の位置を移動させる。ステップS38では、走査信号生成部44により生成した走査信号で電子ビームBを試料S上で走査し試料面の電子線画像を取得する。そして焦点微調整部84は、この電子線画像のコントラスト値に基づき電子ビームBが試料面上に集束している否かを判定する。ステップS38の判定において電子ビームBが試料面上に集束していると判定した場合は焦点調整処理を終了する。
ステップS38の判定において、電子ビームBが試料面上に集束していないと判定した場合には、焦点微調整部84はステップS39において、ステップS33で最適焦点位置決定部81が最適焦点位置を見つけることができたか否かを判定する。最適焦点位置決定部81が最適焦点位置を見つけることができなかった場合には、ステップS41にて、試料台5の昇降による試料Sの高さのずれが大きく焦点を合わせることはできないと判定して、焦点調整処理を終了する。
最適焦点位置決定部81が最適焦点位置を見つけることができた場合には、焦点微調整部84は、ステップS40において、レンズコイル25の励磁電流値を変えながら各焦点状態で撮像した電子線画像のコントラスト値を入力し、コントラスト値が最も高くなる状態に電子ビームBの焦点状態を微調整する。
本方法によれば、ステップS32〜ステップS36において、試料台5上の集束状態検出用部材14を用いて電子ビームBの焦点の粗調整を行う際に、ステップS33に示すように電子ビームBの照射位置を変えながら電子線画像を得る反復処理を行う必要はあるが、図6を参照して説明した集束条件調整方法のステップS13のように反復的に焦点条件を変える必要がないため、より簡単に焦点調整を行うことができる。
本発明は、走査型電子顕微鏡、その電子ビームの調整に利用可能である。
本発明の実施例による走査電子顕微鏡の概略構成図である。 図1に示す電子線鏡筒の概略構成図である。 図1に示す電子線鏡筒移動機構の概略構成図である。 (A)は図1に示す集束状態検出用部材の第1実施例の平面図であり、(B)は(A)の集束状態検出用部材の側面図であり、(C)は(A)の集束状態検出用部材の電子ビーム照射面に設けられた目盛りの拡大図である。 図1に示す制御部の概略構成図を示す。 本発明の実施例による集束条件調整方法のフローチャートである。 電子ビーム照射面上の各位置の高さを算出する方法を説明する図である。 図1に示す集束状態検出用部材の第2実施例を示す図である。 本発明の実施例による焦点深度決定方法のフローチャートである。 (A)は図9に示す焦点深度決定方法の説明図であり、(B)は図9に示す焦点深度決定方法において検出する電子線画像のコントラスト値の変化を示すグラフである。 図5に示す焦点調整部の概略構成図である。 本発明の実施例による焦点調整方法のフローチャート(その1)である。 本発明の実施例による焦点調整方法のフローチャート(その2)である。 本発明の実施例による焦点調整方法の説明図である。
符号の説明
1 走査型電子顕微鏡
4 電子線鏡筒
5 試料台
6 電子線検出器
7 電子線鏡筒移動機構
13、14 集束状態検出用部材
B 電子ビーム
S 試料

Claims (24)

  1. 走査型電子顕微鏡の電子ビームの集束状態を検出するために使用する集束状態検出用部材であって、
    前記電子ビームを照射され反射電子及び二次電子のうちの少なくとも一方を発生する電子ビーム照射面とこれに略対向する底面とを備え、該電子ビーム照射面はその面内位置によって前記底面からの高さが異なることを特徴とする集束状態検出用部材。
  2. 前記電子ビーム照射面に、走査型電子顕微鏡で検出可能な所定のマークを設けることを特徴とする請求項1に記載の集束状態検出用部材。
  3. 前記所定のマークは、前記電子ビーム照射面の高さ指標であることを特徴とする請求項2に記載の集束状態検出用部材。
  4. 前記電子ビーム照射面は、前記底面に対して傾斜した斜面であることを特徴とする請求項1に記載の集束状態検出用部材。
  5. 前記電子ビーム照射面に、前記走査型電子顕微鏡で検出可能な所定のマークを設けることを特徴とする請求項4に記載の集束状態検出用部材。
  6. 前記所定のマークは、前記電子ビーム照射面の高さ指標であることを特徴とする請求項5に記載の集束状態検出用部材。
  7. 前記所定のマークは、前記電子ビーム照射面に所定の間隔で設けられた目盛りであることを特徴とする請求項5に記載の集束状態検出用部材。
  8. 請求項1〜7のいずれか一項に記載の集束状態検出用部材を有する走査型電子顕微鏡であって、
    前記電子ビーム照射面のうち観察試料の観察面と同じ高さの位置を決定する電子ビーム位置決定手段と、電子ビームの集束条件を調整する集束条件調整手段と、をさらに備え、
    前記集束条件調整手段は、前記電子ビーム位置決定手段により決定した位置に前記電子ビームを照射した状態でこの位置に前記電子ビームを集束させることを特徴とする走査型電子顕微鏡。
  9. 請求項1〜7のいずれか一項に記載の集束状態検出用部材を、観察試料を昇降する昇降台上に備える走査型電子顕微鏡であって、
    前記電子ビームが表面に集束する前記電子ビーム照射面上の位置である集束位置を決定する集束位置決定手段と、
    前記集束位置における前記電子ビーム照射面の高さと、前記観察試料の試料面の高さとの間の高低差に基づいて、前記電子ビームの焦点高さを前記試料面の高さに調整する焦点調整手段と、
    を備えることを特徴とする走査型電子顕微鏡。
  10. 請求項1〜7のいずれか一項に記載の集束状態検出用部材を有する走査型電子顕微鏡であって、
    前記電子ビーム照射面の複数箇所を撮像した電子線画像から、焦点が合った電子線画像が得られる前記電子ビーム照射面の高さの範囲を、前記走査型電子顕微鏡の焦点深度として求める焦点深度決定手段を備えることを特徴とする走査型電子顕微鏡。
  11. 電子ビームを観察試料上で走査する走査型電子顕微鏡であって、
    前記電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する電子ビーム照射面を備え、
    前記電子ビーム照射面は、前記電子ビームの光軸方向である高さ方向の位置が、その面内位置により異なることを特徴とする走査型電子顕微鏡。
  12. 前記電子ビーム照射面に、前記走査型電子顕微鏡で検出可能な所定のマークを設けることを特徴とする請求項11に記載の走査型電子顕微鏡。
  13. 前記所定のマークは、前記電子ビーム照射面の高さ指標であることを特徴とする請求項12に記載の走査型電子顕微鏡。
  14. 前記電子ビーム照射面は、前記電子ビームのビーム光軸に対して傾斜した斜面であることを特徴とする請求項11に記載の走査型電子顕微鏡。
  15. 前記電子ビーム照射面に、前記走査型電子顕微鏡で検出可能な所定のマークを設けることを特徴とする請求項14に記載の走査型電子顕微鏡。
  16. 前記所定のマークは、前記電子ビーム照射面の高さ指標であることを特徴とする請求項15に記載の走査型電子顕微鏡。
  17. 前記所定のマークは、前記電子ビーム照射面に所定の間隔で設けられた目盛りであることを特徴とする請求項15に記載の走査型電子顕微鏡。
  18. 前記電子ビーム照射面のうち前記観察試料の観察面と同じ高さの位置を決定する電子ビーム位置決定手段と、電子ビームの集束条件を調整する集束条件調整手段と、をさらに備え、
    前記集束条件調整手段は、前記電子ビーム位置決定手段により決定した位置に前記電子ビームを照射した状態でこの位置に前記電子ビームを集束させることを特徴とする請求項11〜17のいずれか一項に記載の走査型電子顕微鏡。
  19. 前記観察試料を昇降する昇降台上に前記電子ビーム照射面を備え、
    前記電子ビームが表面に集束する前記電子ビーム照射面上の位置である集束位置を決定する集束位置決定手段と、
    前記集束位置における前記電子ビーム照射面の高さと、前記観察試料の試料面の高さとの間の高低差に基づいて、前記電子ビームの焦点高さを前記試料面の高さに調整する焦点調整手段と、
    をさらに備えることを特徴とする請求項11〜17のいずれか一項に走査型電子顕微鏡。
  20. 前記電子ビーム照射面の複数箇所を撮像した電子線画像から、焦点が合った電子線画像が得られる前記電子ビーム照射面の高さの範囲を、前記走査型電子顕微鏡の焦点深度として求める焦点深度決定手段を、さらに備えることを特徴とする請求項11〜17のいずれか一項に走査型電子顕微鏡。
  21. 電子ビームを観察試料上で走査する走査型電子顕微鏡の前記電子ビームの集束条件を調整する集束条件調整方法であって、
    前記走査型電子顕微鏡内に設けられた所定の電子ビーム照射面のうち観察試料の観察面と同じ高さの部分に前記電子ビームが集束するように前記集束条件を調整し、
    前記所定の電子ビーム照射面は、前記電子ビームの光軸方向である高さ方向の位置がその面内位置により異なり、かつ前記電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する面であることを特徴とする集束条件調整方法。
  22. 前記電子ビーム照射面のうち観察試料の観察面と同じ高さの部分の電子線画像を、複数の集束条件の下でそれぞれ作成し、
    前記複数の集束条件のうち、焦点が合った前記電子線画像が得られた条件に前記電子ビームの集束条件を調整することを特徴とする請求項21に記載の集束条件調整方法。
  23. 電子ビームを観察試料上で走査する走査型電子顕微鏡の前記電子ビームの焦点を調整する焦点調整方法であって、
    観察試料を昇降する昇降台上に設けられた所定の電子ビーム照射面のうち前記電子ビームが表面に集束する集束箇所を決定し、
    前記集束箇所における前記電子ビーム照射面の高さと、前記観察試料の試料面の高さとの間の高低差に基づいて、前記電子ビームの焦点高さを前記試料面の高さに調整し、
    前記所定の電子ビーム照射面は、前記電子ビームの光軸方向である高さ方向の位置がその面内位置により異なり、かつ前記電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する面であることを特徴とする焦点調整方法。
  24. 電子ビームを観察試料上で走査する走査型電子顕微鏡の前記電子ビームの焦点深度を測定する焦点深度測定方法であって、
    前記走査型電子顕微鏡内に設けられた所定の電子ビーム照射面の複数箇所を前記電子ビームで走査することにより前記複数箇所のそれぞれの電子線画像を生成し、
    これら電子線画像のうちの焦点が合った画像が得られた前記電子ビーム照射面の高さの範囲を前記走査型電子顕微鏡の焦点深度として求め、
    前記所定の電子ビーム照射面は、前記電子ビームの光軸方向である高さ方向の位置がその面内位置により異なり、かつ前記電子ビームを照射されることにより反射電子及び二次電子のうちの少なくとも一方を発生する面であることを特徴とする焦点深度測定方法。
JP2006310510A 2006-11-16 2006-11-16 集束状態検出用部材、走査型電子顕微鏡、ならびに電子ビームの集束条件調整方法、焦点調整方法及び焦点深度測定方法 Pending JP2008130251A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310510A JP2008130251A (ja) 2006-11-16 2006-11-16 集束状態検出用部材、走査型電子顕微鏡、ならびに電子ビームの集束条件調整方法、焦点調整方法及び焦点深度測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310510A JP2008130251A (ja) 2006-11-16 2006-11-16 集束状態検出用部材、走査型電子顕微鏡、ならびに電子ビームの集束条件調整方法、焦点調整方法及び焦点深度測定方法

Publications (1)

Publication Number Publication Date
JP2008130251A true JP2008130251A (ja) 2008-06-05

Family

ID=39555896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310510A Pending JP2008130251A (ja) 2006-11-16 2006-11-16 集束状態検出用部材、走査型電子顕微鏡、ならびに電子ビームの集束条件調整方法、焦点調整方法及び焦点深度測定方法

Country Status (1)

Country Link
JP (1) JP2008130251A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086882A (ja) * 2008-10-01 2010-04-15 Fujitsu Ltd 電子線装置及びその調節方法
JP2013020747A (ja) * 2011-07-08 2013-01-31 Jeol Ltd 試料観察方法、試料観察方法に用いる圧力測定用ホルダ及び電子顕微鏡
WO2017183167A1 (ja) * 2016-04-22 2017-10-26 株式会社 日立ハイテクノロジーズ 高さ調整治具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010086882A (ja) * 2008-10-01 2010-04-15 Fujitsu Ltd 電子線装置及びその調節方法
JP2013020747A (ja) * 2011-07-08 2013-01-31 Jeol Ltd 試料観察方法、試料観察方法に用いる圧力測定用ホルダ及び電子顕微鏡
WO2017183167A1 (ja) * 2016-04-22 2017-10-26 株式会社 日立ハイテクノロジーズ 高さ調整治具

Similar Documents

Publication Publication Date Title
US7154090B2 (en) Method for controlling charged particle beam, and charged particle beam apparatus
US20080067381A1 (en) Semiconductor wafer inspection tool and semiconductor wafer inspection method
KR102155621B1 (ko) 하전입자선 장치
TW201543179A (zh) 微影設備及方法、和製造物品的方法
CN116659427A (zh) 一种关键尺寸扫描电子显微镜标准样品、校准装置及校准方法
JP2008130251A (ja) 集束状態検出用部材、走査型電子顕微鏡、ならびに電子ビームの集束条件調整方法、焦点調整方法及び焦点深度測定方法
KR102164232B1 (ko) 하전 입자선 장치
KR102221957B1 (ko) 하전 입자 빔 묘화 장치 및 하전 입자 빔 묘화 방법
JP5663591B2 (ja) 走査電子顕微鏡
JP4928987B2 (ja) 荷電粒子線調整方法及び荷電粒子線装置
JP6309366B2 (ja) 荷電粒子線装置における高さ測定装置およびオートフォーカス装置
JP2018119981A (ja) オートフォーカス装置
JP2007003535A (ja) 試料寸法測定方法及び走査型電子顕微鏡
JP5103253B2 (ja) 荷電粒子線装置
JP6818588B2 (ja) サンプル傾斜自動補正装置およびサンプル傾斜自動補正方法
JP2003303758A5 (ja)
JP5514832B2 (ja) パターン寸法測定方法及びそれに用いる荷電粒子線顕微鏡
JP2019153602A (ja) オートフォーカス装置
JPH07245075A (ja) 自動焦点合わせ装置
KR102650476B1 (ko) 하전 입자 빔 조정 방법, 하전 입자 빔 묘화 방법, 및 하전 입자 빔 조사 장치
JP4231891B2 (ja) 荷電粒子線の調整方法、及び荷電粒子線装置
KR101618693B1 (ko) 하전입자 현미경의 주사신호 제어 방법 및 이를 이용한 장치
CN219956466U (zh) 一种关键尺寸扫描电子显微镜标准样品和校准装置
JP7280237B2 (ja) サンプル傾斜自動補正装置およびサンプル傾斜自動補正方法
JP6500055B2 (ja) 電子ビーム画像取得装置および電子ビーム画像取得方法