JP2008130179A - Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium and information recording medium - Google Patents

Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium and information recording medium Download PDF

Info

Publication number
JP2008130179A
JP2008130179A JP2006315395A JP2006315395A JP2008130179A JP 2008130179 A JP2008130179 A JP 2008130179A JP 2006315395 A JP2006315395 A JP 2006315395A JP 2006315395 A JP2006315395 A JP 2006315395A JP 2008130179 A JP2008130179 A JP 2008130179A
Authority
JP
Japan
Prior art keywords
glass substrate
thermal conductivity
peripheral end
information recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006315395A
Other languages
Japanese (ja)
Inventor
Hideki Kawai
秀樹 河合
Yukitoshi Nakatsuji
幸敏 中辻
Kenichi Sasaki
賢一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2006315395A priority Critical patent/JP2008130179A/en
Publication of JP2008130179A publication Critical patent/JP2008130179A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate for an information recording medium having high strength and high flatness in combination and capable of maintaining high flatness even when being used in a condition of large temperature variation, a manufacturing method of the glass substrate for the information recording medium, and the information recording medium using the glass substrate for the information recording medium. <P>SOLUTION: Outer and inner peripheral end surfaces of the glass substrate have a high thermal conductivity layer having thermal conductivity higher than thermal conductivity of an inner part of the glass substrate, formed on their uppermost layers, wherein the high thermal conductivity layer on the outer and inner peripheral end surfaces at a center part in the thickness direction of the glass substrate has thickness of 5 to 20 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気、光、光磁気等の性質を利用した記録層を有する情報記録媒体に用いる情報記録媒体用ガラス基板、情報記録媒体用ガラス基板の製造方法及び情報記録媒体に関する。   The present invention relates to a glass substrate for an information recording medium used for an information recording medium having a recording layer utilizing properties such as magnetism, light, and magnetomagnetism, a method for producing a glass substrate for an information recording medium, and an information recording medium.

磁気、光、光磁気等の性質を利用した記録層を有する情報記録媒体のなかで、代表的なものとして磁気ディスクがある。磁気ディスク用基板として、従来アルミニウム基板が広く用いられていた。しかし、近年、記録密度向上のための磁気ヘッド浮上量の低減の要請に伴い、アルミニウム基板よりも表面の平滑性に優れ、しかも表面欠陥が少ないことから磁気ヘッド浮上量の低減を図ることができるガラス基板を磁気ディスク用基板として用いる割合が増えてきている。   Among information recording media having a recording layer utilizing properties such as magnetism, light, and magnetomagnetism, a typical example is a magnetic disk. Conventionally, aluminum substrates have been widely used as magnetic disk substrates. However, in recent years, with the demand for a reduction in the flying height of the magnetic head for improving the recording density, the surface smoothness is superior to that of an aluminum substrate and the surface defects are few, so that the flying height of the magnetic head can be reduced. The proportion of using glass substrates as magnetic disk substrates is increasing.

このような磁気ディスク等の情報記録媒体用ガラス基板の製造方法においては、ガラス基板の耐衝撃性や耐振動性を向上させ衝撃や振動によって基板が破損するのを防止する目的で、ガラス基板の表面に化学強化処理を施して基板を強化することが一般的に行われている。化学強化処理は、通常、化学強化処理液にガラス基板を浸漬し、ガラス基板に含まれるナトリウムイオン等のアルカリ金属イオンと、化学強化処理液に含まれるカリウムイオン等のアルカリ金属イオンとのイオン交換によってガラス基板の表面に強化層を形成するイオン交換法によって行われる。このような強化層には高い圧縮応力が存在し、ガラス基板が強化される。   In such a method for producing a glass substrate for an information recording medium such as a magnetic disk, for the purpose of improving the impact resistance and vibration resistance of the glass substrate and preventing the substrate from being damaged by impact and vibration, In general, a substrate is strengthened by applying a chemical strengthening treatment to the surface. Chemical strengthening treatment is usually performed by immersing a glass substrate in a chemical strengthening treatment liquid, and ion exchange between alkali metal ions such as sodium ions contained in the glass substrate and alkali metal ions such as potassium ions contained in the chemical strengthening treatment liquid. By an ion exchange method in which a reinforcing layer is formed on the surface of the glass substrate. Such a reinforcing layer has a high compressive stress, and the glass substrate is strengthened.

化学強化処理の後は、化学強化処理液による浸食や微細なキズ等を除去して必要な平滑性を確保するため、化学強化処理された主表面を研磨加工する場合が多い。しかし、この研磨加工でガラス基板の主表面に形成された強化層の一部が除去されることから、ガラス基板の表側の主表面と裏側の主表面との応力のバランスが崩れてガラス基板が反り、平坦度が劣化してしまうという問題があった。   After the chemical strengthening treatment, the main surface subjected to the chemical strengthening treatment is often polished to remove erosion or fine scratches from the chemical strengthening treatment liquid to ensure necessary smoothness. However, since a part of the reinforcing layer formed on the main surface of the glass substrate is removed by this polishing process, the balance of stress between the main surface on the front side and the main surface on the back side of the glass substrate is lost, and the glass substrate becomes There existed a problem that curvature and flatness will deteriorate.

このように、化学強化処理された主表面を研磨することによってガラス基板の平坦度が劣化することを防止するため、化学強化後に研磨処理を施してディスク基板主表面の強化層を除去し、内外周端面部にのみ30μm以上200μm以下の厚みの強化層を残存させたディスク基板が提案されている(例えば、特許文献1を参照。)。
特開2000−207730号公報
Thus, in order to prevent the flatness of the glass substrate from being deteriorated by polishing the main surface subjected to the chemical strengthening treatment, a polishing treatment is performed after the chemical strengthening to remove the reinforcing layer on the main surface of the disk substrate. There has been proposed a disk substrate in which a reinforcing layer having a thickness of 30 μm or more and 200 μm or less is left only on the peripheral end surface portion (see, for example, Patent Document 1).
JP 2000-207730 A

しかしながら、記録密度向上等に伴って、情報記録媒体用ガラス基板に要求される平坦度のレベルはますます高くなり、特許文献1の記載のように化学強化処理された主表面を研磨して主表面に形成された強化層を除去した場合であっても、そのような要求に十分応えることができないという問題があった。   However, as the recording density is improved, the level of flatness required for the glass substrate for information recording media becomes higher, and the main surface that has been chemically strengthened as described in Patent Document 1 is polished to the main surface. Even when the reinforcing layer formed on the surface is removed, there is a problem that such a request cannot be sufficiently met.

また、近年は磁気ディスクの用途が拡大し、オフィスに設置される機器のみならず、持ち歩いて使用するポータブル機器や車載用機器等にも磁気ディスクが採用されるケースが多くなっている。このように温度変化の大きな環境におかれると磁気ディスクの平坦度が更に悪化する場合があり、大きな問題となっていた。   In recent years, the use of magnetic disks has expanded, and in many cases, magnetic disks are employed not only in devices installed in offices, but also in portable devices and in-vehicle devices that are carried around. Thus, when placed in an environment with a large temperature change, the flatness of the magnetic disk may be further deteriorated, which is a serious problem.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、高い強度と高い平坦度を兼ね備え、温度変化の大きな環境で使用しても高い平坦度を保つことができる情報記録媒体用ガラス基板、該情報記録媒体用ガラス基板の製造方法及び該情報記録媒体用ガラス基板を用いた情報記録媒体を提供することである。   The present invention has been made in view of the technical problems as described above, and an object of the present invention is to have high strength and high flatness, and to maintain high flatness even when used in an environment with a large temperature change. An information recording medium glass substrate, a method for producing the information recording medium glass substrate, and an information recording medium using the information recording medium glass substrate are provided.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1. 中心孔を有する円板状ガラス基板であって、主表面、外周端面及び内周端面を有する情報記録媒体用ガラス基板において、前記外周端面及び前記内周端面は、前記ガラス基板の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層を最表面に有しており、前記ガラス基板の厚み方向中央部における、前記外周端面及び前記内周端面の前記高熱伝導率層の厚みが5μm〜20μmであることを特徴とする情報記録媒体用ガラス基板。   1. A disk-shaped glass substrate having a central hole, the glass substrate for an information recording medium having a main surface, an outer peripheral end surface, and an inner peripheral end surface, wherein the outer peripheral end surface and the inner peripheral end surface are heat conduction inside the glass substrate. The outermost surface has a high thermal conductivity layer having a thermal conductivity higher than the rate, and the thickness of the outer peripheral end surface and the inner peripheral end surface of the high thermal conductivity layer is 5 μm at the center in the thickness direction of the glass substrate. A glass substrate for an information recording medium, characterized in that it is ˜20 μm.

2. 前記主表面のうち、前記外周端面及び前記内周端面との境界領域を除いた部分は、前記高熱伝導率層を有していないことを特徴とする前記1に記載の情報記録媒体用ガラス基板。   2. 2. The glass substrate for an information recording medium according to 1, wherein a portion of the main surface excluding a boundary region between the outer peripheral end face and the inner peripheral end face does not have the high thermal conductivity layer. .

3. 前記高熱伝導率層は、前記ガラス基板に含まれるアルカリ金属イオンのうち少なくとも一部が、該イオン半径の大きい他のアルカリ金属イオンと置換された層であることを特徴とする前記1又は2に記載の情報記録媒体用ガラス基板。   3. The high thermal conductivity layer is a layer in which at least a part of alkali metal ions contained in the glass substrate is replaced with another alkali metal ion having a large ion radius. The glass substrate for information recording media as described.

4. 中心孔を有する円板状ガラス基板を化学強化処理液に浸漬し、イオン交換によって前記ガラス基板を化学強化する化学強化工程を含む情報記録媒体用ガラス基板の製造方法において、前記化学強化工程は、前記ガラス基板の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層を、前記ガラス基板の外周端面及び内周端面に形成する工程であり、前記ガラス基板の前記外周端面及び前記内周端面に形成された前記高熱伝導率層は、前記ガラス基板の厚み方向中央部における厚みが5μm〜20μmであることを特徴とする情報記録媒体用ガラス基板の製造方法。   4). In the method for manufacturing a glass substrate for an information recording medium including a chemical strengthening step of immersing a disk-shaped glass substrate having a center hole in a chemical strengthening treatment liquid and chemically strengthening the glass substrate by ion exchange, the chemical strengthening step includes: Forming a high thermal conductivity layer having a thermal conductivity higher than the thermal conductivity inside the glass substrate on an outer peripheral end surface and an inner peripheral end surface of the glass substrate; The method for producing a glass substrate for an information recording medium, wherein the high thermal conductivity layer formed on the peripheral end surface has a thickness of 5 μm to 20 μm at a central portion in the thickness direction of the glass substrate.

5. 前記化学強化工程によって、前記ガラス基板の前記主表面に、前記ガラス基板の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層が形成され、前記高熱伝導率層が形成された前記主表面を研磨して、前記主表面のうち前記外周端面及び前記内周端面との境界領域を除いた部分から、前記高熱伝導率層を除去する強化後研磨工程を有することを特徴とする前記4に記載の情報記録媒体用ガラス基板の製造方法。   5. By the chemical strengthening step, a high thermal conductivity layer having a thermal conductivity higher than the thermal conductivity inside the glass substrate is formed on the main surface of the glass substrate, and the high thermal conductivity layer is formed. Polishing the main surface, and having a post-strengthening polishing step of removing the high thermal conductivity layer from a portion of the main surface excluding a boundary region between the outer peripheral end surface and the inner peripheral end surface. 4. A method for producing a glass substrate for an information recording medium according to 4.

6. 前記1乃至3の何れか1項に記載された情報記録媒体用ガラス基板の上に、少なくとも記録層が形成されていることを特徴とする情報記録媒体。   6). An information recording medium, wherein at least a recording layer is formed on the glass substrate for an information recording medium described in any one of 1 to 3 above.

本発明によれば、ガラス基板の外周端面及び内周端面に、内部よりも高い熱伝導率を有する高熱伝導率層が存在することによって、ガラス基板の温度が変化した場合であっても、外周端面及び内周端面における応力のバランスを保つことができる。従って、高い強度と高い平坦度を兼ね備え、温度変化の大きな環境で使用しても高い平坦度を保つことができる情報記録媒体用ガラス基板、該情報記録媒体用ガラス基板の製造方法及び該情報記録媒体用ガラス基板を用いた情報記録媒体を提供することができる。   According to the present invention, even if the temperature of the glass substrate changes due to the presence of the high thermal conductivity layer having higher thermal conductivity than the inside on the outer peripheral end surface and the inner peripheral end surface of the glass substrate, It is possible to maintain the balance of stress at the end face and the inner peripheral end face. Accordingly, a glass substrate for an information recording medium that has both high strength and high flatness and can maintain high flatness even when used in an environment with a large temperature change, a method for manufacturing the glass substrate for information recording medium, and the information recording An information recording medium using the glass substrate for medium can be provided.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(情報記録媒体用ガラス基板)
図1及び図2は、本発明の情報記録媒体用ガラス基板の一例を示す図である。図1(a)はガラス基板10の全体を示す斜視図、図1(b)はその断面図である。また図2は、ガラス基板10の外周端面14近傍の拡大断面図である。ガラス基板10は、中心孔13を有する円板状ガラス基板であり、記録層が形成される主表面11を有する。外周端面14及び内周端面15には面取り部16及び17がそれぞれ設けられている。
(Glass substrate for information recording media)
1 and 2 are diagrams showing an example of a glass substrate for an information recording medium of the present invention. FIG. 1A is a perspective view showing the entire glass substrate 10, and FIG. 1B is a sectional view thereof. FIG. 2 is an enlarged cross-sectional view of the vicinity of the outer peripheral end face 14 of the glass substrate 10. The glass substrate 10 is a disk-shaped glass substrate having a central hole 13 and has a main surface 11 on which a recording layer is formed. Chamfered portions 16 and 17 are provided on the outer peripheral end surface 14 and the inner peripheral end surface 15, respectively.

ガラス基板10の外周端面14及び内周端面15は、ガラス基板10の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層18を最表面に有している。高熱伝導率層18は、ガラス基板を加熱された化学強化処理液に浸漬し、ガラス基板に含まれるナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換することで形成することができる。ナトリウムイオンとカリウムイオンのイオン半径の違いによって生じる歪みにより、イオン交換された領域である高熱伝導率層18の熱伝導率は、ガラス基板10の内部のイオン交換されていない領域19よりも高くなる。なお、図2は外周端面14近傍の図であるが、内周端面15も、外周端面14と同様に高熱伝導率層18を有している。   The outer peripheral end face 14 and the inner peripheral end face 15 of the glass substrate 10 have a high thermal conductivity layer 18 having a thermal conductivity higher than the thermal conductivity inside the glass substrate 10 on the outermost surface. The high thermal conductivity layer 18 immerses the glass substrate in a heated chemical strengthening treatment solution, and replaces alkali metal ions such as sodium ions contained in the glass substrate with alkali metal ions such as potassium ions having a larger ion radius. Can be formed. Due to the distortion caused by the difference in ionic radius between sodium ions and potassium ions, the thermal conductivity of the high thermal conductivity layer 18 which is an ion exchanged region is higher than the non-ion exchanged region 19 inside the glass substrate 10. . FIG. 2 is a view in the vicinity of the outer peripheral end face 14, but the inner peripheral end face 15 also has a high thermal conductivity layer 18 in the same manner as the outer peripheral end face 14.

本発明者は、ガラス基板の温度変化によって平坦度が悪化してしまうという従来の課題の解決に向け鋭意検討を行い、ガラス基板10の外周端面14及び内周端面15の熱伝導率が、ガラス基板10の平坦度に大きく影響していることを突き止めた。更に検討を継続した結果、外周端面14及び内周端面15は、ガラス基板10の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層を最表面に有しており、且つ、ガラス基板の厚み方向中央部における、外周端面14及び内周端面15の高熱伝導率層18の厚みDを5μm〜20μmとすることで、ガラス基板の温度が変化した場合であっても、外周端面14及び内周端面15における応力のバランスを保つことができることを見いだした。   The present inventor has intensively studied to solve the conventional problem that the flatness deteriorates due to the temperature change of the glass substrate, and the thermal conductivity of the outer peripheral end face 14 and the inner peripheral end face 15 of the glass substrate 10 is glass. It was found that the flatness of the substrate 10 is greatly affected. As a result of further investigation, the outer peripheral end face 14 and the inner peripheral end face 15 have a high thermal conductivity layer having a thermal conductivity higher than the thermal conductivity inside the glass substrate 10 on the outermost surface, and glass Even if the temperature of the glass substrate is changed by setting the thickness D of the high thermal conductivity layer 18 of the outer peripheral end surface 14 and the inner peripheral end surface 15 to 5 μm to 20 μm at the central portion in the thickness direction of the substrate, the outer peripheral end surface 14. And it was found that the stress balance in the inner peripheral end face 15 can be maintained.

ここで、ガラス基板10の内部の熱伝導率とは、ガラス基板10のうち化学強化によって熱伝導率が上昇した領域以外の領域、即ち、化学強化工程でイオン交換されていない領域19の熱伝導率である。ガラス基板10の内部の熱伝導率は、ガラスの種類によって異なるが、通常は1〜2W/(m・K)程度である。   Here, the thermal conductivity inside the glass substrate 10 is the thermal conductivity of the glass substrate 10 other than the region where the thermal conductivity is increased by chemical strengthening, that is, the region 19 not ion-exchanged in the chemical strengthening process. Rate. The thermal conductivity inside the glass substrate 10 varies depending on the type of glass, but is usually about 1 to 2 W / (m · K).

高熱伝導率層18の熱伝導率は、ガラス基板10の内部の熱伝導率よりも高ければ特に制限はないが、ガラス基板10の強度を確保するという観点から、ガラス基板10の内部の熱伝導率の1.001倍以上とすることが好ましい。また、イオン交換によって熱伝導率を上昇させることから、交換可能な全てのイオンが置換された場合の熱伝導率が上限となる。通常はガラス基板10の内部の熱伝導率の1.1倍程度が上限である。   The thermal conductivity of the high thermal conductivity layer 18 is not particularly limited as long as it is higher than the thermal conductivity inside the glass substrate 10, but from the viewpoint of securing the strength of the glass substrate 10, the thermal conductivity inside the glass substrate 10. The ratio is preferably 1.001 times or more. Further, since the thermal conductivity is increased by ion exchange, the upper limit is the thermal conductivity when all replaceable ions are replaced. Usually, the upper limit is about 1.1 times the thermal conductivity inside the glass substrate 10.

外周端面14及び内周端面15の高熱伝導率層18の厚みDは5μm〜20μmである。厚みDが5μmよりも薄いとガラス基板の強度が低下してしまう。また、20μmよりも厚いと、ガラス基板の温度が変化した場合に外周端面14及び内周端面15における応力のバランスを保つことができなくなる。なお、高熱伝導率層18は、化学強化工程によるイオン交換によって熱伝導率が上昇した層であるから、ナトリウムイオンやカリウムイオン等のイオン濃度分布を測定することにより厚みDを測定することができる。外周端面等の最表面から、イオン濃度が一定値となる深さまでの距離が高熱伝導率層18の厚みDである。イオン濃度は、EPMA(Electron Probe Micro Analyzer)や、飛行時間型二次イオン質量分析装置(Time of FLIGHT(TOF)−SIMS)等により測定することができる。   The thickness D of the high thermal conductivity layer 18 on the outer peripheral end face 14 and the inner peripheral end face 15 is 5 μm to 20 μm. If the thickness D is less than 5 μm, the strength of the glass substrate is lowered. On the other hand, if it is thicker than 20 μm, it becomes impossible to maintain the balance of stresses on the outer peripheral end face 14 and the inner peripheral end face 15 when the temperature of the glass substrate changes. Since the high thermal conductivity layer 18 is a layer whose thermal conductivity has been increased by ion exchange in the chemical strengthening process, the thickness D can be measured by measuring the ion concentration distribution of sodium ions, potassium ions, and the like. . The thickness D of the high thermal conductivity layer 18 is the distance from the outermost surface such as the outer peripheral end surface to the depth at which the ion concentration becomes a constant value. The ion concentration can be measured with an EPMA (Electron Probe Micro Analyzer), a time-of-flight secondary ion mass spectrometer (Time of FLIGHT (TOF) -SIMS), or the like.

ガラス基板10の主表面11には、外周端面等と同様の高熱伝導率層が存在していても良いし、存在していなくても良い。但し、主表面11のうち、外周端面14及び内周端面15との境界領域11aを除いた部分に存在する高熱伝導率層の厚さが、表裏の面で異なると、ガラス基板の温度が変化した場合に応力のバランスを保つことができなくなるため好ましくない。また、表側の主表面と裏側の主表面とで高熱伝導率層の厚さを正確に一致させるためには場合によっては多くの時間と労力が必要となる場合がある。そのため、ガラス基板10の主表面11のうち、外周端面14及び内周端面15との境界領域11aを除いた部分には、外周端面等と同様の高熱伝導率層が存在していない方が好ましい。ここで、境界領域11aとは、主表面11と外周端面14、及び、主表面11と内周端面15との境界領域であって、図2に示すように、外周端面14等の高熱伝導率層が主表面側から見えてしまう領域をいう。境界領域11aの範囲は、外周端面14(内周端面15)からの距離Lが、ガラス基板10の厚みtと同程度以下となるのが一般的である。   The main surface 11 of the glass substrate 10 may or may not have a high thermal conductivity layer similar to the outer peripheral end face. However, if the thickness of the high thermal conductivity layer existing in the main surface 11 excluding the boundary region 11a between the outer peripheral end surface 14 and the inner peripheral end surface 15 is different between the front and back surfaces, the temperature of the glass substrate changes. In this case, it is not preferable because the stress balance cannot be maintained. Further, in some cases, much time and labor may be required to make the thicknesses of the high thermal conductivity layers accurately match between the front main surface and the back main surface. Therefore, it is preferable that the same high thermal conductivity layer as the outer peripheral end face does not exist in the main surface 11 of the glass substrate 10 except for the boundary region 11a between the outer peripheral end face 14 and the inner peripheral end face 15. . Here, the boundary region 11a is a boundary region between the main surface 11 and the outer peripheral end surface 14 and between the main surface 11 and the inner peripheral end surface 15, and has a high thermal conductivity such as the outer peripheral end surface 14 as shown in FIG. An area where the layer is visible from the main surface side. As for the range of the boundary region 11a, the distance L from the outer peripheral end surface 14 (inner peripheral end surface 15) is generally equal to or less than the thickness t of the glass substrate 10.

ガラス基板の材料としては、化学強化処理液に浸漬することでイオン交換が可能なガラスであれば特に制限はない。例えば、SiO2、Na2O、CaOを主成分としたソーダライムガラス;SiO2、Al23、R2O(R=K、Na、Li)を主成分としたアルミノシリケートガラス;ボロシリケートガラス;Li2O−SiO2系ガラス;Li2O−Al23−SiO2系ガラス;R’O−Al23−SiO2系ガラス(R’=Mg、Ca、Sr、Ba)などを使用することができる。中でも、アルミノシリケートガラスやボロシリケートガラスは、耐衝撃性や耐振動性に優れるため特に好ましい。 The material of the glass substrate is not particularly limited as long as it is a glass capable of ion exchange by being immersed in a chemical strengthening treatment solution. For example, soda lime glass mainly composed of SiO 2 , Na 2 O, CaO; aluminosilicate glass mainly composed of SiO 2 , Al 2 O 3 , R 2 O (R = K, Na, Li); borosilicate Glass; Li 2 O—SiO 2 glass; Li 2 O—Al 2 O 3 —SiO 2 glass; R′O—Al 2 O 3 —SiO 2 glass (R ′ = Mg, Ca, Sr, Ba) Etc. can be used. Among these, aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance.

ガラス基板の大きさに限定はない。例えば、外径が2.5インチ、1.8インチ、1インチ、0.8インチなど種々の大きさのガラス基板を用いることができる。また、ガラス基板の厚みにも限定はない。例えば、2mm、1mm、0.64mm、0.4mm、0.25mmなど種々の厚みのガラス基板を用いることができる。中でも、厚みが1mm以下のガラス基板は特に平坦度が悪化しやすいガラス基板であるが、本発明の適用により平坦度の悪化を効果的に防止することができる。   There is no limitation on the size of the glass substrate. For example, glass substrates having various sizes such as 2.5 inches, 1.8 inches, 1 inch, and 0.8 inches in outer diameter can be used. Moreover, there is no limitation also on the thickness of a glass substrate. For example, glass substrates having various thicknesses such as 2 mm, 1 mm, 0.64 mm, 0.4 mm, and 0.25 mm can be used. Among them, a glass substrate having a thickness of 1 mm or less is a glass substrate whose flatness is particularly likely to deteriorate, but the application of the present invention can effectively prevent the flatness from being deteriorated.

(情報記録媒体用ガラス基板の製造工程)
図3は、本発明における情報記録媒体用ガラス基板の製造工程の一例を示すフローチャートである。
(Manufacturing process of glass substrate for information recording medium)
FIG. 3 is a flowchart showing an example of the manufacturing process of the glass substrate for information recording medium in the present invention.

本発明の情報記録媒体用ガラス基板は、ブランク材作製工程、内外周加工工程、ラッピング工程、第1研磨工程等の前工程を経た後、化学強化工程及び必要に応じて強化後研磨工程を行うことで製造される。   The glass substrate for an information recording medium of the present invention undergoes a chemical strengthening step and, if necessary, a post-strengthening polishing step after passing through pre-steps such as a blank material manufacturing step, an inner and outer peripheral processing step, a lapping step, and a first polishing step. It is manufactured by.

ブランク材作製工程、内外周加工工程、ラッピング工程、第1研磨工程等の前工程は、情報記録媒体用ガラス基板の製造方法として通常用いられている方法により行うことができる。ブランク材作製工程は情報記録媒体用ガラス基板の基になるブランク材を形成する工程であり、溶融ガラスをプレス成形して作製する方法や、シート状のガラスを切断して作製する方法が知られている。内外周加工工程は、中心孔の穿孔加工、外周端面や内周端面の形状や寸法精度確保のための研削加工、内外周端面の研磨加工等を行う工程である。ラッピング工程は、記録層が形成される面の平坦度、厚み、平行度等を満足させるためのラッピング加工を行う工程である。化学強化工程の前にガラス基板の主表面を研磨する工程であり、ガラス基板の表面のキズや凹凸を除去し、平滑性を向上させる工程である。   Pre-processes such as a blank material manufacturing process, an inner and outer peripheral processing process, a lapping process, and a first polishing process can be performed by a method that is usually used as a method for manufacturing a glass substrate for an information recording medium. The blank material production process is a process for forming a blank material that is the basis of a glass substrate for an information recording medium, and a method for producing a molten glass by press molding or a method for producing a sheet glass by cutting is known. ing. The inner and outer peripheral machining step is a step of performing drilling of the center hole, grinding for ensuring the shape and dimensional accuracy of the outer peripheral end surface and the inner peripheral end surface, polishing of the inner and outer peripheral end surfaces, and the like. The lapping process is a process of lapping for satisfying the flatness, thickness, parallelism, etc. of the surface on which the recording layer is formed. It is a step of polishing the main surface of the glass substrate before the chemical strengthening step, and is a step of removing scratches and irregularities on the surface of the glass substrate and improving smoothness.

これらの前工程の各工程の順序は、図3に示したものに限定されず、状況に応じて適宜変更して実施することができる。また全ての工程を行わずに、必要に応じて工程を省略することもできる。例えば、ブランク作製工程及びラッピング工程を行った後に内外周加工工程を行っても良い。また、ラッピング工程を前半工程と後半工程の二つの工程に分け、ラッピング工程の前半工程の後に内外周加工工程を行い、その後にラッピング工程の後半工程を行っても良い。更に、ラッピング工程の後、第1研磨工程を省略してそのまま化学強化工程を行うこともできる。   The order of each of these pre-processes is not limited to that shown in FIG. 3, and can be appropriately changed according to the situation. Moreover, a process can also be abbreviate | omitted as needed, without performing all the processes. For example, the inner and outer peripheral processing steps may be performed after performing the blank manufacturing step and the lapping step. Further, the lapping process may be divided into two processes, a first half process and a second half process, and the inner and outer peripheral machining processes may be performed after the first half process of the lapping process, and then the second half process of the lapping process may be performed. Further, after the lapping process, the chemical strengthening process can be performed as it is without the first polishing process.

なお、本発明の情報記録媒体用ガラス基板の製造方法においては、上記以外の種々の工程を有していても良い。例えば、ガラス基板の内部歪みを緩和するためのアニール工程、ガラス基板の強度の信頼性確認のためのヒートショック工程、ガラス基板の表面に残った研磨剤や化学強化処理液等の異物を除去する洗浄工程、種々の検査・評価工程等を有していても良い。   In addition, in the manufacturing method of the glass substrate for information recording media of this invention, you may have various processes other than the above. For example, an annealing process for relaxing internal distortion of the glass substrate, a heat shock process for confirming the reliability of the strength of the glass substrate, and removing foreign substances such as abrasives and chemical strengthening treatment liquid remaining on the surface of the glass substrate. You may have a washing process, various inspection and evaluation processes, etc.

(化学強化工程)
化学強化工程は、加熱された化学強化処理液にガラス基板を浸漬することによってガラス基板に含まれるナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンによって置換するイオン交換法によって行われる。イオン半径の違いによって生じる歪みより、イオン交換された領域に圧縮応力が発生し、ガラス基板が強化される。
(Chemical strengthening process)
The chemical strengthening step involves immersing the glass substrate in a heated chemical strengthening solution to replace alkali metal ions such as sodium ions contained in the glass substrate with alkali metal ions such as potassium ions having a larger ion radius. This is done by the exchange method. Compressive stress is generated in the ion-exchanged region due to the strain caused by the difference in ion radius, and the glass substrate is strengthened.

本発明においては、ガラス基板の厚み方向中央部における、外周端面及び内周端面の高熱伝導率層の厚みが5μm〜20μmとなるようにイオン交換を行う。このような高熱伝導率層の厚みは、化学強化処理液の種類の他、化学強化処理液の温度、浸漬時間によって決まる。従って、これらの条件を適宜設定することで高熱伝導率層の厚みを上記範囲とすることができる。通常、化学強化処理液の温度が高く、浸漬時間が長い方が高熱伝導率層の厚みは厚くなり、化学強化処理液の温度が低く、浸漬時間が短い方が高熱伝導率層の厚みは薄くなる。   In the present invention, ion exchange is performed so that the thicknesses of the high thermal conductivity layers on the outer peripheral end face and the inner peripheral end face are 5 μm to 20 μm at the center in the thickness direction of the glass substrate. The thickness of such a high thermal conductivity layer is determined by the temperature of the chemical strengthening treatment liquid and the immersion time in addition to the type of the chemical strengthening treatment liquid. Therefore, the thickness of the high thermal conductivity layer can be set in the above range by appropriately setting these conditions. In general, the higher the temperature of the chemical strengthening treatment liquid and the longer the immersion time, the thicker the high thermal conductivity layer, and the lower the temperature of the chemical strengthening treatment solution and the shorter the immersion time, the thinner the high thermal conductivity layer. Become.

本発明に用いる化学強化処理液に特に制限はなく、情報記録媒体用ガラス基板の製造に用いられる公知の化学強化処理液を用いることができる。通常、カリウムイオンを含む溶融塩又はカリウムイオンとナトリウムイオンをふくむ溶融塩を用いることが一般的である。カリウムイオンやナトリウムイオンを含む溶融塩としては、カリウムやナトリウムの硝酸塩、炭酸塩、硫酸塩やこれらの混合溶融塩が挙げられる。中でも、融点が低く、ガラス基板の変形を防止できるという観点からは、硝酸塩を用いることが好ましい。   There is no restriction | limiting in particular in the chemical strengthening process liquid used for this invention, The well-known chemical strengthening process liquid used for manufacture of the glass substrate for information recording media can be used. In general, a molten salt containing potassium ions or a molten salt containing potassium ions and sodium ions is generally used. Examples of the molten salt containing potassium ions and sodium ions include potassium and sodium nitrates, carbonates, sulfates, and mixed molten salts thereof. Among these, from the viewpoint that the melting point is low and deformation of the glass substrate can be prevented, it is preferable to use nitrate.

化学強化処理液は、上記の成分が融解する温度よりも高温になるよう加熱される。一方、化学強化処理液の加熱温度が高すぎると、ガラス基板の温度が上がりすぎ、ガラス基板の変形を招く虞がある。このため、化学強化処理液の加熱温度はガラス基板のガラス転移点(Tg)よりも低い温度が好ましく、ガラス転移点−50℃よりも低い温度とすることが更に好ましい。   The chemical strengthening treatment liquid is heated to a temperature higher than the temperature at which the above components melt. On the other hand, if the heating temperature of the chemical strengthening treatment liquid is too high, the temperature of the glass substrate is excessively increased, and the glass substrate may be deformed. For this reason, the heating temperature of the chemical strengthening treatment liquid is preferably lower than the glass transition point (Tg) of the glass substrate, more preferably lower than the glass transition point −50 ° C.

なお、加熱された化学強化処理液に浸漬される際の熱衝撃によるガラス基板の割れや微細なクラックの発生を防止するため、化学強化処理液への浸漬に先立って、予熱槽でガラス基板を所定温度に加熱する予熱工程を有していても良い。また、化学強化工程の後は、ガラス基板に付着した化学強化処理液を十分に除去するための洗浄工程を行うことが好ましい。   In addition, in order to prevent the occurrence of cracks and fine cracks in the glass substrate due to thermal shock when immersed in the heated chemical strengthening treatment liquid, the glass substrate is placed in a preheating tank prior to immersion in the chemical strengthening treatment liquid. You may have the preheating process heated to predetermined temperature. Moreover, it is preferable to perform the washing | cleaning process for fully removing the chemical strengthening process liquid adhering to the glass substrate after a chemical strengthening process.

(強化後研磨工程)
強化後研磨工程は、化学強化工程の後にガラス基板の主表面を研磨する工程である。本発明においては、必ずしも必須の工程ではない。しかし、ガラス基板の表裏の応力のバランスをとるという観点から、強化後研磨工程において、ガラス基板の主表面のうち外周端面及び内周端面との境界領域を除いた部分から、化学強化工程において形成された高熱伝導率層を除去することが好ましい。
(Polishing post-strengthening process)
The post-strengthening polishing step is a step of polishing the main surface of the glass substrate after the chemical strengthening step. In the present invention, this is not necessarily an essential step. However, from the viewpoint of balancing the stress on the front and back of the glass substrate, in the post-strengthening polishing step, the portion of the main surface of the glass substrate excluding the boundary region between the outer peripheral end surface and the inner peripheral end surface is formed in the chemical strengthening step. It is preferable to remove the formed high thermal conductivity layer.

研磨の方法は、情報記録媒体用ガラス基板の製造方法として用いられる公知の方法をそのまま用いることができる。例えば、対向配置した2つの回転可能な定盤の対向する面にパッドを貼り付け、2つのパッド間にガラス基板を配置し、ガラス基板表面にパッドを接触させながら回転させると同時に、ガラス基板表面に研磨剤を供給する方法で行うことができる。また、研磨剤の粒度やパッドの種類を変えて、粗研磨工程、精密研磨工程といったように複数の工程に分けて研磨を行うことも好ましい。   As a polishing method, a known method used as a method for producing a glass substrate for an information recording medium can be used as it is. For example, a pad is pasted on the opposing surface of two rotatable surface plates placed opposite to each other, a glass substrate is placed between the two pads, and the glass substrate surface is rotated simultaneously with the pad contacting the glass substrate surface. It can carry out by the method of supplying an abrasive | polishing agent to. Further, it is also preferable to perform polishing in a plurality of steps such as a rough polishing step and a precision polishing step by changing the particle size of the abrasive and the type of pad.

研磨剤としては、例えば、酸化セリウム、酸化ジルコニウム、酸化アルミニウム、酸化マンガン、コロイダルシリカ、ダイヤモンドなどが挙げられる。この中でも、ガラスとの反応性が高く、短時間で平滑な研磨面が得られる酸化セリウムを用いることが好ましい。   Examples of the abrasive include cerium oxide, zirconium oxide, aluminum oxide, manganese oxide, colloidal silica, and diamond. Among these, it is preferable to use cerium oxide which has high reactivity with glass and can obtain a smooth polished surface in a short time.

パッドは硬質パッドと軟質パッドとに分けられるが、必要に応じて適宜選択して用いることができる。硬質パッドとしては、硬質ベロア、ウレタン発泡、ピッチ含有スウェード等を素材とするパッドが挙げられ、軟質パッドとしては、スウェードやベロア等を素材とするパッドが挙げられる。   The pad is divided into a hard pad and a soft pad, but can be appropriately selected and used as necessary. Examples of the hard pad include pads made of hard velor, urethane foam, pitch-containing suede, etc., and examples of the soft pad include pads made of suede, velor, etc.

(情報記録媒体)
本発明の情報記録媒体用ガラス基板の上に、少なくとも記録層を形成することで情報記録媒体を得ることができる。記録層は特に限定されず、磁気、光、光磁気等の性質を利用した種々の記録層を用いることができるが、特に磁性層を記録層として用いた情報記録媒体(磁気ディスク)の製造に好適である。
(Information recording medium)
An information recording medium can be obtained by forming at least a recording layer on the glass substrate for information recording medium of the present invention. The recording layer is not particularly limited, and various recording layers utilizing properties such as magnetism, light, and magnetomagnetism can be used. In particular, for the production of an information recording medium (magnetic disk) using the magnetic layer as a recording layer. Is preferred.

磁性層に用いる磁性材料としては、特に限定はなく公知の材料を適宜選択して用いることができる。例えば、Coを主成分とするCoPt、CoCr、CoNi、CoNiCr、CoCrTa、CoPtCr、CoNiPt、CoNiCrPt、CoNiCrTa、CoCrPtTa、CoCrPtSiOなどが挙げられる。また、磁性層を非磁性膜(例えば、Cr、CrMo、CrVなど)で分割してノイズの低減を図った多層構成としてもよい。   The magnetic material used for the magnetic layer is not particularly limited, and a known material can be appropriately selected and used. Examples thereof include CoPt, CoCr, CoNi, CoNiCr, CoCrTa, CoPtCr, CoNiPt, CoNiCrPt, CoNiCrTa, CoCrPtTa, and CoCrPtSiO containing Co as a main component. The magnetic layer may be divided by a nonmagnetic film (for example, Cr, CrMo, CrV, etc.) to have a multilayer structure in which noise is reduced.

磁性層として、上記のCo系材料の他、フェライト系や鉄−希土類系の材料や、SiO2、BNなどからなる非磁性膜中にFe、Co、CoFe、CoNiPt等の磁性粒子が分散された構造のグラニュラーなどを用いることもできる。磁性層は、面内型、垂直型の何れであっても良い。 As the magnetic layer, in addition to the above-mentioned Co-based material, ferrite or iron - and material of the rare earth-based, Fe, Co, CoFe, magnetic particles such CoNiPt are dispersed in a non-magnetic film made of SiO 2, BN A granular structure can also be used. The magnetic layer may be either an in-plane type or a vertical type.

磁性膜の形成方法としては、公知の方法を用いることがでる。例えば、スパッタリング法、無電解メッキ法、スピンコート法などが挙げられる。   As a method for forming the magnetic film, a known method can be used. For example, a sputtering method, an electroless plating method, a spin coating method, and the like can be given.

磁気ディスクには、更に必要により下地層、保護層、潤滑層等を設けても良い。これらの層はいずれも公知の材料を適宜選択して用いることができる。下地層の材料としては、例えば、Cr、Mo、Ta、Ti、W、V、B、Al、Niなどが挙げられる。保護層の材料としては、例えば、Cr、Cr合金、C、ZrO2、SiO2などが挙げられる。また、潤滑層としては、例えば、パーフロロポリエーテル(PFPE)等からなる液体潤滑剤を塗布し、必要に応じ加熱処理を行ったものなどが挙げられる。 The magnetic disk may further be provided with an underlayer, a protective layer, a lubricating layer, and the like as necessary. Any of these layers can be used by appropriately selecting a known material. Examples of the material for the underlayer include Cr, Mo, Ta, Ti, W, V, B, Al, and Ni. Examples of the material for the protective layer include Cr, Cr alloy, C, ZrO 2 , and SiO 2 . Moreover, as a lubrication layer, the thing etc. which apply | coated the liquid lubricant which consists of perfluoro polyether (PFPE) etc., and heat-processed as needed are mentioned, for example.

(前工程)
ガラス材料としてアルミノシリケートガラスを用い、溶融ガラスをプレス成形してブランク材を作製した。内外周加工工程、ラッピング工程、第1研磨工程を経て、外径65mm、内径20mm、厚み0.64mmのガラス基板とした。ガラス基板の平坦度(PV値)は、表裏とも1μm未満であった。平坦度の測定は、0.1μm以下のレベルに仕上げられた平面原器を用いた干渉縞の測定により行った。
(pre-process)
Aluminosilicate glass was used as the glass material, and the blank glass was produced by press molding the molten glass. The glass substrate having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.64 mm was obtained through an inner and outer peripheral processing step, a lapping step, and a first polishing step. The flatness (PV value) of the glass substrate was less than 1 μm on both sides. The flatness was measured by measuring interference fringes using a flat plate finished to a level of 0.1 μm or less.

(化学強化工程と強化後研磨工程)
化学強化処理液として、硝酸カリウム(KNO3)と硝酸ナトリウム(NaNO3)の混合溶融塩を用意した。混合比は質量比で1:1とした。また、化学強化処理液の温度は400℃とした。
(Chemical strengthening process and post-strengthening polishing process)
A mixed molten salt of potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ) was prepared as a chemical strengthening treatment liquid. The mixing ratio was 1: 1 by mass ratio. The temperature of the chemical strengthening treatment liquid was 400 ° C.

20枚のガラス基板を搬送治具にセットし、搬送治具ごと化学強化処理液に浸漬した。下記表1に示すように、浸漬時間を10分から150分まで変化させた条件で、化学強化処理を行った。所定時間浸漬した後、搬送治具ごとガラス基板を取り出し、超音波洗浄機により残った化学強化処理液を洗浄して、搬送治具からガラス基板を取り出した。   Twenty glass substrates were set on a conveying jig, and the entire conveying jig was immersed in a chemical strengthening treatment liquid. As shown in Table 1 below, chemical strengthening treatment was performed under conditions where the immersion time was changed from 10 minutes to 150 minutes. After immersing for a predetermined time, the glass substrate was taken out together with the conveying jig, the remaining chemical strengthening treatment liquid was washed by an ultrasonic cleaner, and the glass substrate was taken out from the conveying jig.

その後、主表面の研磨を行い、主表面に形成されたイオン交換層を除去した。研磨剤は酸化セリウムを用いた。   Thereafter, the main surface was polished to remove the ion exchange layer formed on the main surface. As the abrasive, cerium oxide was used.

(高熱伝導率層の厚みの測定)
各条件ごとに2枚のガラス基板を抜き取り、ガラス基板の外周端面及び内周端面におけるナトリウムイオンのイオン濃度の分布を測定し、端面からイオン濃度が一定となる位置までの距離を高熱伝導率層の厚みとした。ナトリウムイオンのイオン濃度の測定は、EPMAにより行った。また、高熱伝導率層の厚みは、外周端面の測定値と内周端面の測定値の平均値とした。
(Measurement of the thickness of the high thermal conductivity layer)
Two glass substrates are extracted for each condition, the distribution of sodium ion ion concentration on the outer peripheral end surface and inner peripheral end surface of the glass substrate is measured, and the distance from the end surface to the position where the ion concentration is constant is determined as the high thermal conductivity layer. It was set as the thickness. The ion concentration of sodium ions was measured by EPMA. The thickness of the high thermal conductivity layer was the average of the measured value of the outer peripheral end face and the measured value of the inner peripheral end face.

(平坦度の測定)
次に、各条件ごとに5枚のガラス基板を抜き取り、平坦度(PV値)の測定を行った。平坦度の測定は、化学強化処理前の基板と同様に干渉縞の測定により行った。平坦度は小さい方が好ましく、5μmを超えると磁気ディスクとしての性能上問題になる。ここでは、平坦度の5枚の平均値が5μm以下の場合を良好(評価○)、5μmを超えた場合を問題有り(評価×)とした。
(Measurement of flatness)
Next, five glass substrates were extracted for each condition, and the flatness (PV value) was measured. The flatness was measured by measuring interference fringes in the same manner as the substrate before the chemical strengthening treatment. The flatness is preferably small, and if it exceeds 5 μm, there is a problem in performance as a magnetic disk. Here, the case where the average value of the five flatnesses was 5 μm or less was evaluated as good (evaluation ○), and the case where the average value exceeded 5 μm was regarded as problematic (evaluation x).

(円環曲げ強度試験による強度の測定)
更に、各条件ごとに10枚のガラス基板を抜き取り、円環曲げ強度試験によってガラス基板の強度を測定した。
(Measurement of strength by ring bending strength test)
Furthermore, ten glass substrates were extracted for each condition, and the strength of the glass substrate was measured by an annular bending strength test.

図4は、本実施例で用いた円環曲げ試験機20の模式図である。円環曲げ試験機20は、支持台23上にガラス基板30を乗せて外周31を円環状に支持し、鉄球22をガラス基板30の内周33に乗せ、鉄球22を介してロード21でガラス基板30の内周33に荷重を加えることによって破壊試験を行う。この方法は、ハードディスク用情報記録媒体の強度試験として業界で一般的に用いられている方法と同じである。   FIG. 4 is a schematic diagram of the annular bending test machine 20 used in this example. The annular bending test machine 20 places a glass substrate 30 on a support base 23 to support an outer periphery 31 in an annular shape, places an iron ball 22 on an inner periphery 33 of the glass substrate 30, and loads 21 via the iron ball 22. A destructive test is performed by applying a load to the inner periphery 33 of the glass substrate 30. This method is the same as a method generally used in the industry as a strength test of an information recording medium for hard disks.

支持台23は、内径d=63mmの円筒形である。鉄球22は、直径28.57mmの鉄製の球で、質量は100グラム程度であり、ロード21によって加えられる荷重に比べて無視できる程度の質量である。鉄球22は、ガラス基板30の内周33に当接して力を加えることで、支持台23に外周31を支持されたガラス基板30に曲げ応力を加える。ロード21の押し下げ速度は、0.5mm/分である。   The support base 23 has a cylindrical shape with an inner diameter d = 63 mm. The iron ball 22 is an iron ball having a diameter of 28.57 mm and has a mass of about 100 grams, which is negligible compared to the load applied by the load 21. The iron ball 22 abuts on the inner periphery 33 of the glass substrate 30 and applies a force, thereby applying a bending stress to the glass substrate 30 supported on the outer periphery 31 by the support base 23. The pressing speed of the load 21 is 0.5 mm / min.

本発明者の従来の経験によれば、破壊強度が100Nよりも小さいと情報記録媒体用ガラス基板の割れ、欠け等の破損による歩留まり低下が顕著となってくる。そのため、ここでは、測定した10枚のガラス基板の全てで破壊強度が100N以上の場合を最も良好(評価◎)、破壊強度が100N以上のガラス基板が7枚以上である場合を良好(評価○)、破壊強度が100N以上のガラス基板が7枚未満の場合を問題有り(評価×)として評価を行った。   According to the conventional experience of the present inventor, when the breaking strength is less than 100 N, the yield reduction due to breakage such as cracking or chipping of the glass substrate for information recording medium becomes remarkable. Therefore, here, the case where the breaking strength is 100 N or more in all of the 10 glass substrates measured is the best (evaluation ◎), and the case where the glass substrate having the breaking strength of 100 N or more is 7 or more is good (evaluation ○ ), The case where there were less than 7 glass substrates having a breaking strength of 100 N or more was evaluated as having a problem (evaluation x).

(評価結果)
評価結果を表1に示す。総合判定の欄の記号は以下の意味である。
○:平坦度、破壊強度が何れも評価○又は評価◎の場合。
×:平坦度、破壊強度の何れかが評価×の場合。
(Evaluation results)
The evaluation results are shown in Table 1. The symbols in the comprehensive judgment column have the following meanings.
○: Both flatness and fracture strength are evaluated as “good” or “good”.
X: When either flatness or breaking strength is evaluated x.

Figure 2008130179
Figure 2008130179

外周端面及び内周端面に存在する高熱伝導率層の厚みDが5μm〜20μmの場合(実施例1〜4)に、ガラス基板の強度と平坦度がともに良好であることが確認された。   It was confirmed that both the strength and flatness of the glass substrate were good when the thickness D of the high thermal conductivity layer existing on the outer peripheral end face and the inner peripheral end face was 5 μm to 20 μm (Examples 1 to 4).

外周端面及び内周端面に存在する高熱伝導率層の厚みDが5μm未満の場合の比較例(比較例1、2)は破壊強度の評価が×であり、また、外周端面及び内周端面に存在する高熱伝導率層の厚みDが20μmを超える場合の比較例(比較例3、4)は平坦度の評価が×であり、いずれの場合も良好な情報記録媒体用ガラス基板を得ることはできなかった。   In the comparative examples (Comparative Examples 1 and 2) in which the thickness D of the high thermal conductivity layer existing on the outer peripheral end face and the inner peripheral end face is less than 5 μm, the evaluation of the breaking strength is x, and the outer peripheral end face and the inner peripheral end face In the comparative examples (Comparative Examples 3 and 4) in which the thickness D of the existing high thermal conductivity layer exceeds 20 μm, the evaluation of the flatness is x, and in any case, it is possible to obtain a good glass substrate for an information recording medium. could not.

本発明の情報記録媒体用ガラス基板の一例を示す図であり、図1(a)はガラス基板10の全体を示す斜視図、図1(b)はその断面図である。It is a figure which shows an example of the glass substrate for information recording media of this invention, Fig.1 (a) is a perspective view which shows the whole glass substrate 10, and FIG.1 (b) is the sectional drawing. 本発明の情報記録媒体用ガラス基板10の外周端面14近傍の拡大断面図である。It is an expanded sectional view of the outer periphery end surface 14 vicinity of the glass substrate 10 for information recording media of this invention. 本発明における情報記録媒体用ガラス基板の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of the glass substrate for information recording media in this invention. 実施例で用いた円環曲げ試験機20の模式図である。It is a schematic diagram of the annular bending test machine 20 used in the Example.

符号の説明Explanation of symbols

10 ガラス基板
11 主表面
11a 境界領域
13 中心穴
14 外周端面
15 内周端面
18 高熱伝導率層
DESCRIPTION OF SYMBOLS 10 Glass substrate 11 Main surface 11a Boundary region 13 Center hole 14 Outer peripheral end surface 15 Inner peripheral end surface 18 High thermal conductivity layer

Claims (6)

中心孔を有する円板状ガラス基板であって、主表面、外周端面及び内周端面を有する情報記録媒体用ガラス基板において、
前記外周端面及び前記内周端面は、前記ガラス基板の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層を最表面に有しており、
前記ガラス基板の厚み方向中央部における、前記外周端面及び前記内周端面の前記高熱伝導率層の厚みが5μm〜20μmであることを特徴とする情報記録媒体用ガラス基板。
A disk-shaped glass substrate having a central hole, and a glass substrate for an information recording medium having a main surface, an outer peripheral end surface and an inner peripheral end surface,
The outer peripheral end surface and the inner peripheral end surface have a high thermal conductivity layer having a higher thermal conductivity than the thermal conductivity inside the glass substrate on the outermost surface,
The glass substrate for an information recording medium, wherein a thickness of the high thermal conductivity layer on the outer peripheral end surface and the inner peripheral end surface is 5 μm to 20 μm at a central portion in the thickness direction of the glass substrate.
前記主表面のうち、前記外周端面及び前記内周端面との境界領域を除いた部分は、前記高熱伝導率層を有していないことを特徴とする請求項1に記載の情報記録媒体用ガラス基板。 The glass for an information recording medium according to claim 1, wherein a portion of the main surface excluding a boundary region between the outer peripheral end face and the inner peripheral end face does not have the high thermal conductivity layer. substrate. 前記高熱伝導率層は、前記ガラス基板に含まれるアルカリ金属イオンのうち少なくとも一部が、該イオン半径の大きい他のアルカリ金属イオンと置換された層であることを特徴とする請求項1又は2に記載の情報記録媒体用ガラス基板。 The high thermal conductivity layer is a layer in which at least a part of alkali metal ions contained in the glass substrate is replaced with another alkali metal ion having a large ion radius. The glass substrate for information recording media described in 1. 中心孔を有する円板状ガラス基板を化学強化処理液に浸漬し、イオン交換によって前記ガラス基板を化学強化する化学強化工程を含む情報記録媒体用ガラス基板の製造方法において、
前記化学強化工程は、前記ガラス基板の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層を、前記ガラス基板の外周端面及び内周端面に形成する工程であり、
前記ガラス基板の前記外周端面及び前記内周端面に形成された前記高熱伝導率層は、前記ガラス基板の厚み方向中央部における厚みが5μm〜20μmであることを特徴とする情報記録媒体用ガラス基板の製造方法。
In the method for producing a glass substrate for an information recording medium comprising a chemical strengthening step of chemically strengthening the glass substrate by ion exchange by immersing a disk-shaped glass substrate having a center hole in a chemical strengthening treatment liquid,
The chemical strengthening step is a step of forming a high thermal conductivity layer having a thermal conductivity higher than the thermal conductivity inside the glass substrate on an outer peripheral end surface and an inner peripheral end surface of the glass substrate,
The glass substrate for an information recording medium, wherein the high thermal conductivity layer formed on the outer peripheral end surface and the inner peripheral end surface of the glass substrate has a thickness of 5 μm to 20 μm at a central portion in the thickness direction of the glass substrate. Manufacturing method.
前記化学強化工程によって、前記ガラス基板の前記主表面に、前記ガラス基板の内部の熱伝導率よりも高い熱伝導率を有する高熱伝導率層が形成され、
前記高熱伝導率層が形成された前記主表面を研磨して、前記主表面のうち前記外周端面及び前記内周端面との境界領域を除いた部分から、前記高熱伝導率層を除去する強化後研磨工程を有することを特徴とする請求項4に記載の情報記録媒体用ガラス基板の製造方法。
By the chemical strengthening step, a high thermal conductivity layer having a thermal conductivity higher than the thermal conductivity inside the glass substrate is formed on the main surface of the glass substrate,
After strengthening to polish the main surface on which the high thermal conductivity layer is formed and remove the high thermal conductivity layer from a portion of the main surface excluding a boundary region between the outer peripheral end face and the inner peripheral end face The method for producing a glass substrate for an information recording medium according to claim 4, further comprising a polishing step.
請求項1乃至3の何れか1項に記載された情報記録媒体用ガラス基板の上に、少なくとも記録層が形成されていることを特徴とする情報記録媒体。 An information recording medium comprising at least a recording layer formed on the glass substrate for an information recording medium according to any one of claims 1 to 3.
JP2006315395A 2006-11-22 2006-11-22 Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium and information recording medium Pending JP2008130179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315395A JP2008130179A (en) 2006-11-22 2006-11-22 Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium and information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315395A JP2008130179A (en) 2006-11-22 2006-11-22 Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium and information recording medium

Publications (1)

Publication Number Publication Date
JP2008130179A true JP2008130179A (en) 2008-06-05

Family

ID=39555843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315395A Pending JP2008130179A (en) 2006-11-22 2006-11-22 Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium and information recording medium

Country Status (1)

Country Link
JP (1) JP2008130179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253575A (en) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc Glass substrate for heat-assisted recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253575A (en) * 2010-05-31 2011-12-15 Konica Minolta Opto Inc Glass substrate for heat-assisted recording medium

Similar Documents

Publication Publication Date Title
JP4670957B2 (en) Glass substrate for information recording medium, method for producing glass substrate for information recording medium, and information recording medium
JP5860195B1 (en) Glass substrate for magnetic disk
JP5321594B2 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
WO2018182046A1 (en) Non-magnetic substrate for magnetic disk, and magnetic disk
JPWO2008062657A1 (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium, and information recording medium
JP6577501B2 (en) Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk
JPWO2010041537A1 (en) Manufacturing method of glass substrate and manufacturing method of magnetic recording medium
WO2008062662A1 (en) Method for producing glass substrate for information recording medium, glass substrate for information recording medium, and information recording medium
JP4867607B2 (en) Manufacturing method of glass substrate for information recording medium
JP5529011B2 (en) Glass substrate molding die, glass substrate manufacturing method, information recording medium glass substrate manufacturing method, and information recording medium manufacturing method
WO2011021478A1 (en) Method for manufacturing glass substrate, glass substrate, method for manufacturing magnetic recording medium, and magnetic recording medium
JP2009087483A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP2008130180A (en) Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium, and information recording medium
JP2008217918A (en) Glass substrate for magnetic recording medium, and magnetic recording medium
JP2008130179A (en) Glass substrate for information recording medium, manufacturing method of glass substrate for information recording medium and information recording medium
JP5755952B2 (en) Inspection and sorting method for HDD glass substrate, manufacturing method of HDD information recording medium, and HDD glass substrate
JP5870187B2 (en) Glass substrate for magnetic disk, magnetic disk, magnetic disk drive device
JP5719785B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING MEDIUM, INFORMATION RECORDING MEDIUM, AND INFORMATION RECORDING DEVICE
JP5706250B2 (en) Glass substrate for HDD
JP2012203960A (en) Manufacturing method for glass substrate for magnetic information recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP2010113783A (en) Holding tool, method of manufacturing glass substrate for recording medium using the holding tool and method of manufacturing recording medium
JPWO2008111427A1 (en) Information recording apparatus, glass substrate for information recording medium used in the information recording apparatus, and magnetic recording medium
JPWO2014103283A1 (en) Manufacturing method of glass substrate for information recording medium
JP5360331B2 (en) Manufacturing method of glass substrate for HDD