JP2008128613A - Dilution refrigerator - Google Patents

Dilution refrigerator Download PDF

Info

Publication number
JP2008128613A
JP2008128613A JP2006316864A JP2006316864A JP2008128613A JP 2008128613 A JP2008128613 A JP 2008128613A JP 2006316864 A JP2006316864 A JP 2006316864A JP 2006316864 A JP2006316864 A JP 2006316864A JP 2008128613 A JP2008128613 A JP 2008128613A
Authority
JP
Japan
Prior art keywords
vacuum pump
oil
gas
valve
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006316864A
Other languages
Japanese (ja)
Other versions
JP4824530B2 (en
Inventor
Shigeru Yoshida
茂 吉田
Tomonobu Sano
智信 佐野
Yoshihiro Koike
良浩 小池
Yoshiaki Suzuki
佳明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2006316864A priority Critical patent/JP4824530B2/en
Publication of JP2008128613A publication Critical patent/JP2008128613A/en
Application granted granted Critical
Publication of JP4824530B2 publication Critical patent/JP4824530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce cost by substantially reducing the number of valves in a path to circulatingly force feed He gas, and to facilitate automatic operation by simplifying operation procedures in a dilution refrigerator. <P>SOLUTION: An oil-free vacuum pump is used as a vacuum pump for circulation He gas feeding, and a buffer tank is provided in an inlet side. By using an oil-free vacuum pump as the vacuum pump, an oil filter and an oil trap conventionally provided for removing oil mixed into circulation gas from the vacuum pump becomes unnecessary, thereby, the number of valves is reduced, and bothersome operation at shutdown is eliminated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液体ヘリウム(3He,4He)を用いて1〜10−3Kの超低温を得る希釈冷凍機に関する。 The present invention relates to a dilution refrigerator that uses liquid helium (3He, 4He) to obtain an ultra-low temperature of 1 to 10 −3 K.

周知のように、3Heと4Heの混合液は、0.8K(800mK)以下の極低温下で、3Heが4Heより多い3He濃厚相(以下、単に「濃厚相」と言う。)と、3Heが4Heより少ない3He希薄相(以下、単に「希薄相」と言う。)とに分離し、濃厚相が上部に、希薄相が下部に形成される。   As is well known, a mixed liquid of 3He and 4He has a 3He rich phase (hereinafter, simply referred to as “rich phase”) in which 3He is greater than 4He and 3He at a cryogenic temperature of 0.8 K (800 mK) or less. It separates into a 3He dilute phase (hereinafter simply referred to as “dilute phase”) less than 4He, and a rich phase is formed at the top and a dilute phase is formed at the bottom.

そして、濃厚相中の3Heが希薄相中に入る際、濃厚相中の3He分子のエントロピーは希薄相中で小さくなり(これを「希釈」と呼ぶ。)、このエントロピーの減少に伴う吸熱を利用した冷凍機が希釈冷凍機であり、各種材料の超低温下での実験に利用されている。   When 3He in the rich phase enters the dilute phase, the entropy of 3He molecules in the rich phase becomes smaller in the dilute phase (this is called “dilution”), and the endotherm associated with the decrease in entropy is used. The refrigerating machine is a dilution refrigerating machine, and is used for experiments at various temperatures under ultra-low temperatures.

なお、希釈冷凍機の原理を非特許文献1、非特許文献2に、具体的な構成を特許文献1〜特許文献3に示す。   The principle of the dilution refrigerator is shown in Non-Patent Document 1 and Non-Patent Document 2, and the specific configuration is shown in Patent Document 1 to Patent Document 3.

図4は従来の希釈冷凍機の一例を示す構成図で、冷凍機本体1が真空断熱を施したクライオスタット内の4He液体でなる冷媒3中に浸漬され、冷凍機本体1に3Heガスを循環させる循環路5と真空ポンプ7とが設けられている。
循環路5は、真空ポンプ7の吐出口と冷凍機本体1のガス導入口とを連通する導入路5aと、冷凍機本体1のガス導出口と真空ポンプ7の吸入口とを連通する導出路5bから構成され、導入路5aと導出路5bとの間には、両路を連通させ得る弁Vaが設けられている。
FIG. 4 is a block diagram showing an example of a conventional dilution refrigerator, in which the refrigerator main body 1 is immersed in a refrigerant 3 made of 4He liquid in a cryostat subjected to vacuum insulation, and 3He gas is circulated through the refrigerator main body 1. A circulation path 5 and a vacuum pump 7 are provided.
The circulation path 5 is an introduction path 5 a that connects the discharge port of the vacuum pump 7 and the gas introduction port of the refrigerator main body 1, and a lead-out path that connects the gas outlet port of the refrigerator main body 1 and the suction port of the vacuum pump 7. A valve Va is provided between the introduction path 5a and the lead-out path 5b.

真空ポンプ7は、オイル(油)によって真空封じ切りを行なうオイル式真空ポンプ(「油回転真空ポンプ」とも呼ばれる。)で、オイルでの真空封じの機構上、吐出側に多量のオイルが含まれる。   The vacuum pump 7 is an oil type vacuum pump (also referred to as “oil rotary vacuum pump”) that performs vacuum sealing with oil (oil), and a large amount of oil is contained on the discharge side due to the mechanism of vacuum sealing with oil. .

冷凍機本体1は、真空チャンバー9内に1Kポット11、分留器13、主熱交換器15、混合室17を備え、真空チャンバー9自体は真空ポンプ9aにより真空状態に維持される。   The refrigerator main body 1 includes a 1K pot 11, a fractionator 13, a main heat exchanger 15, and a mixing chamber 17 in a vacuum chamber 9, and the vacuum chamber 9 itself is maintained in a vacuum state by a vacuum pump 9a.

1Kポット11は真空ポンプ11aにより減圧状態に維持され、これによって、弁19を介して冷媒3が供給されるとともに、冷媒3が蒸発することにより低温に維持される。   The 1K pot 11 is maintained in a reduced pressure state by the vacuum pump 11a, whereby the refrigerant 3 is supplied through the valve 19 and is maintained at a low temperature by the evaporation of the refrigerant 3.

導入路5aから矢印で示すように冷凍機本体1内に導入された常温の3Heガス(「循環ガス」とも呼ぶ。)は、1Kポット11、分留器13、主熱交換器15を通過する過程で順次冷却、液化されて混合室17内の上層側の濃厚相Pに導入される。   The room temperature 3He gas (also referred to as “circulation gas”) introduced into the refrigerator main body 1 from the introduction path 5a as indicated by an arrow passes through the 1K pot 11, the fractionator 13, and the main heat exchanger 15. In the process, it is cooled and liquefied sequentially and introduced into the dense phase P on the upper layer side in the mixing chamber 17.

一方、混合室17内の濃厚相Pの下層に形成された希薄相Q内の液は管21を介して分留器13内に導入され、分留器13では、3He−4He混合液中の3Heが飽和蒸気圧の差により選択的に蒸発し、蒸発した3Heガスは、冷凍機本体1のガス導出口から導出路5bを介して真空ポンプ7に吸入され、再度真空ポンプ7で加圧され冷凍機本体1のガス導入口に送り込まれ循環する。   On the other hand, the liquid in the dilute phase Q formed in the lower layer of the rich phase P in the mixing chamber 17 is introduced into the fractionator 13 via the pipe 21, and the fractionator 13 in the 3He-4He mixed liquid 3He selectively evaporates due to the difference in saturated vapor pressure, and the evaporated 3He gas is sucked into the vacuum pump 7 from the gas outlet of the refrigerator main body 1 through the outlet passage 5b and is pressurized again by the vacuum pump 7. It is sent to the gas inlet of the refrigerator main body 1 and circulates.

分留器13での3Heの蒸発に伴って希薄相Q中の3Heが減少するので、これを補うために濃厚相P中の3Heが希薄相Qに移行し、この過程で前記希釈が生じ、希釈による吸熱によって混合室17は10mK程度の超低温になり、冷却対象物の冷却に利用される。   3He in the dilute phase Q decreases with the evaporation of 3He in the fractionator 13, so that 3He in the rich phase P shifts to the dilute phase Q to make up for this, and the dilution occurs in this process, The mixing chamber 17 becomes an extremely low temperature of about 10 mK due to the endothermic effect due to dilution, and is used for cooling the object to be cooled.

次に、真空ポンプ7の吸入側に設けられた流量制御弁V1は、真空ポンプ7の吐出側に設けた圧力検出手段23、制御部25に基づいて開、閉および所定の開度に調整される。前記流量制御弁V1の上流側には弁V2が設けられている。   Next, the flow control valve V1 provided on the suction side of the vacuum pump 7 is opened, closed, and adjusted to a predetermined opening based on the pressure detection means 23 and the control unit 25 provided on the discharge side of the vacuum pump 7. The A valve V2 is provided upstream of the flow control valve V1.

ところで、前記したように従来装置の真空ポンプ7はオイル式真空ポンプであり、吐出側に多量のオイルが含まれる。このオイルが冷凍機本体1内に入り込むと流路の閉塞という重大な障害を招くので、真空ポンプ7の吐出側に常温でオイルを除去する一般的なオイルフィルタ27を、この後段にオイルトラップ29を各々設け、冷凍機本体1へのオイルの侵入を防いでいる。   By the way, as described above, the vacuum pump 7 of the conventional device is an oil type vacuum pump, and a large amount of oil is contained on the discharge side. When this oil enters the refrigerator main body 1, a serious failure such as blockage of the flow path is caused. Therefore, a general oil filter 27 that removes oil at room temperature is provided on the discharge side of the vacuum pump 7, and an oil trap 29 is provided at the subsequent stage. Are provided to prevent the oil from entering the refrigerator main body 1.

オイルトラップ29は、導入路5aの管路の一部をコイル状とし、該コイル状部に活性炭を充填した上で、このコイル状部を容器内の液体窒素(−190℃以下)中に浸漬したもので、活性炭を低温に冷却することによって、オイルフィルタ27で除去し切なかった少量のオイルを活性炭にトラップ(捕捉)させて最終的に除去するもので、オイルのほか、オイルよりトラップし易い水分もトラップされ除去される。   In the oil trap 29, a part of the conduit of the introduction path 5a is coiled, and the coiled part is filled with activated carbon, and the coiled part is immersed in liquid nitrogen (-190 ° C. or lower) in the container. By cooling the activated carbon to a low temperature, a small amount of oil that has not been completely removed by the oil filter 27 is trapped on the activated carbon and finally removed. In addition to oil, it is easier to trap than oil. Water is also trapped and removed.

オイルトラップ29は、活性炭を低温にしておき、入口側の弁V5と出口側の弁V6を開けて循環ガスを流せば作動する。なお、オイルトラップ29を長期間使わないときは、弁V5、V6を閉じて容器内の液体窒素を放出してコイル状部を加温し、次いで、弁8を開けて真空ポンプ29aを作動させコイル状の活性炭にトラップされたオイルと水分を吸引、脱着して活性炭を再生させる。   The oil trap 29 operates when the activated carbon is kept at a low temperature, and the inlet-side valve V5 and the outlet-side valve V6 are opened to allow circulation gas to flow. When the oil trap 29 is not used for a long period of time, the valves V5 and V6 are closed to discharge liquid nitrogen in the container to heat the coiled portion, and then the valve 8 is opened to operate the vacuum pump 29a. The activated carbon is regenerated by sucking and desorbing the oil and moisture trapped in the coiled activated carbon.

次に、従来装置では、循環ガスを回収するための回収タンク31が設けられ、弁V3を介してオイルフィルタ27と弁V5の間の導入路5aに連通し、弁V4を介して流量制御弁V1と弁V2との間の導出路5bに連通している。   Next, in the conventional apparatus, a recovery tank 31 for recovering the circulating gas is provided, communicates with the introduction path 5a between the oil filter 27 and the valve V5 via the valve V3, and flows through the valve V4. It communicates with a lead-out path 5b between V1 and the valve V2.

次に、従来装置の運転方法を説明する。この場合、弁V8はオイルトラップ29内の活性炭の再生、または、循環ガス排出等、特別のときだけ開閉するので、以下の説明では省略する。   Next, an operation method of the conventional apparatus will be described. In this case, the valve V8 is opened and closed only in a special case such as regeneration of activated carbon in the oil trap 29 or exhaust of the circulating gas, and thus will not be described in the following description.

<定常運転>
定常運転は、流量制御弁V1を作動状態(制御部25での制御状態)にし、弁V2、V5、V6を開け、他の弁を閉じて真空ポンプ7を作動させ、真空ポンプ7から吐出された循環ガスを、オイルフィルタ27、オイルトラップ29に通し、オイルを含まない状態で冷凍機本体1に導入する。冷凍機本体1に導入された循環ガスは前記吸熱を果たした後、導出路5bを経て真空ポンプ7の吸入口に戻る。
<Normal operation>
In the steady operation, the flow rate control valve V1 is set in the operating state (control state in the control unit 25), the valves V2, V5, V6 are opened, the other valves are closed, the vacuum pump 7 is operated, and the vacuum pump 7 is discharged. The circulated gas is passed through the oil filter 27 and the oil trap 29 and introduced into the refrigerator main body 1 without containing oil. The circulating gas introduced into the refrigerator main body 1 achieves the endotherm, and then returns to the suction port of the vacuum pump 7 through the lead-out path 5b.

<定常運転の停止>
定常運転を停止するには、流量制御弁V1を手動にて閉め、弁V5、V6を閉じた後、弁V4を開いてから(弁V2は開、弁V3は閉のまま)真空ポンプ7を停止する。これは、真空ポンプ7停止時の圧力変動により真空ポンプ7内のオイルが導出路5bを逆流したり、オイルフィルタ27やオイルトラップ29からオイルが放出されたりして冷凍機本体1に侵入するのを防ぐためである。
<Stopping steady operation>
To stop the steady operation, manually close the flow control valve V1, close the valves V5 and V6, and then open the valve V4 (the valve V2 is open and the valve V3 is closed). Stop. This is because the oil in the vacuum pump 7 flows backward through the lead-out path 5b due to the pressure fluctuation when the vacuum pump 7 is stopped, or the oil is discharged from the oil filter 27 or the oil trap 29 and enters the refrigerator main body 1. Is to prevent.

真空ポンプ7の停止後、冷凍機本体1の液相部が蒸発し導出路5bの圧力が上昇してくるので、導出路5b内の循環ガスを、弁V2、V4を介して回収タンク31に回収し、併せて弁Vaを開け、冷凍機本体1の液相部が蒸発して導入路5aに入った循環ガスを弁V4を介して回収タンク31に回収する。   After the vacuum pump 7 is stopped, the liquid phase portion of the refrigerator main body 1 evaporates and the pressure of the outlet passage 5b increases, so that the circulating gas in the outlet passage 5b is transferred to the recovery tank 31 via the valves V2 and V4. Then, the valve Va is opened, and the circulating gas that has entered the introduction path 5a as a result of evaporation of the liquid phase portion of the refrigerator main body 1 is recovered in the recovery tank 31 via the valve V4.

なお、循環ガスの回収タンク31への回収はなるべくオイルを同伴させないことが好ましく、このため回収時には弁V3は使わない。弁V3を開けて回収すると、循環ガスは真空ポンプ7を通る過程でオイルを含むからで、このため、前記のように、流量制御弁V1を閉じ、V4を介してに回収する。   In addition, it is preferable that oil is not accompanied with the circulating gas in the recovery tank 31 as much as possible. For this reason, the valve V3 is not used at the time of recovery. When the valve V3 is opened and recovered, the circulating gas contains oil in the process of passing through the vacuum pump 7. Therefore, as described above, the flow control valve V1 is closed and recovered via V4.

循環路内の圧力が回収タンク31と同圧になると回収タンク31への回収は止まるが、この状態で放置すると、真空ポンプ7の吸入口側から若干漏れるオイルが低温の冷凍機本体1に逆流するので、弁V4を閉めてから流量制御弁V1を手動にて開け(弁V2、Vaは開のまま、弁V5は閉のまま)、弁V3、V6を開けて真空ポンプ7を作動させ、循環路5内の循環ガスの全てをオイルフィルタ27を介して回収タンク31に回収し、次いで弁V2、V3、V6、Vaを閉じる。なお、弁V6を開けた状態で真空ポンプ7を用いて回収するとオイルトラップ29が減圧状態になるが、オイルトラップ29の作動中は、低温の活性炭にトラップされたオイルが導入路5aに流出することはない。   When the pressure in the circulation path becomes the same as that of the recovery tank 31, recovery to the recovery tank 31 stops, but if left in this state, oil that slightly leaks from the suction port side of the vacuum pump 7 flows back to the low-temperature refrigerator main body 1 Therefore, after the valve V4 is closed, the flow control valve V1 is manually opened (the valves V2 and Va remain open and the valve V5 remains closed), the valves V3 and V6 are opened, and the vacuum pump 7 is operated. All of the circulating gas in the circulation path 5 is recovered in the recovery tank 31 via the oil filter 27, and then the valves V2, V3, V6, Va are closed. If the oil trap 29 is recovered using the vacuum pump 7 with the valve V6 opened, the oil trap 29 is decompressed. However, during operation of the oil trap 29, the oil trapped in the low-temperature activated carbon flows out to the introduction path 5a. There is nothing.

以上のように、真空ポンプ7を用いた循環路5内の循環ガスの回収は、オイルフィルタ27を介して回収するので、オイルフィルタ27で除去し切れなかったオイルが循環ガスに含まれて回収タンク31に入るのは回避できない。かといって、弁V3を弁V6の後段に接続し、オイルトラップ通過後のオイルなしの循環ガスを回収しようとすると、今度は、回収タンク31内のガスを導入路5aに戻すときに全くオイル除去がなされないので危険である。   As described above, since the circulation gas in the circulation path 5 using the vacuum pump 7 is collected through the oil filter 27, oil that cannot be removed by the oil filter 27 is contained in the circulation gas and collected. Entering the tank 31 cannot be avoided. However, if the valve V3 is connected to the subsequent stage of the valve V6 to recover the circulating gas without oil after passing through the oil trap, this time, when the gas in the recovery tank 31 is returned to the introduction path 5a, there is no oil. It is dangerous because it is not removed.

<運転停止からの運転再開>
次に運転を再開するには、まず、回収タンク31内の循環ガスを循環路5内に戻して冷凍機本体1を冷却(予冷)する。この場合、回収タンク31内のガスは、少量のオイルを含む可能性があるので、安全のため、弁V5、V6を開けてオイルトラップ29を作動状態としてから弁V3を開けて回収タンク31内のガスを真空ポンプ7の吐出側に戻す。この際、弁V2を閉めたままとし、循環ガスが、真空ポンプ7、導出路5bを逆流して冷凍機本体1に流入するのを防ぐ。なお、弁V4は閉じたままとし、オイルを含むガスが導出路5bに入るのを防ぐ。
<Resumption of operation after shutdown>
Next, to restart the operation, first, the circulating gas in the collection tank 31 is returned to the circulation path 5 to cool (pre-cool) the refrigerator main body 1. In this case, since the gas in the recovery tank 31 may contain a small amount of oil, for safety, the valves V5 and V6 are opened and the oil trap 29 is activated, and then the valve V3 is opened and the recovery tank 31 is opened. Is returned to the discharge side of the vacuum pump 7. At this time, the valve V2 is kept closed to prevent the circulating gas from flowing back into the refrigerator main body 1 through the vacuum pump 7 and the outlet passage 5b. The valve V4 is kept closed to prevent gas containing oil from entering the outlet passage 5b.

導入路5aに循環ガスが入ったら弁Vaを開け、弁V2を少し開けて導出路5bにもガスを導入する。導出路5bが循環ガスで満たされ、回収タンク31の圧力が循環路と一致すると回収タンク31からのガス流出は止まるので弁V3を閉とし、弁Vaも閉める。   When the circulating gas enters the introduction path 5a, the valve Va is opened, the valve V2 is opened a little, and the gas is also introduced into the outlet path 5b. When the lead-out path 5b is filled with the circulating gas and the pressure of the recovery tank 31 coincides with the circulation path, gas outflow from the recovery tank 31 stops, so the valve V3 is closed and the valve Va is also closed.

この後、弁V2を閉め、弁V4を開け、さらに流量制御弁V1を手動にて開けてからポンプ7を作動させ、回収タンク31内の残ガスを循環路に戻してから弁V4を閉め、流量制御弁V1を作動状態とし、弁V2を徐々に全開にして定常運転とする。
特許第3338381号公報 特許第3580531号公報 特許第3644683号公報 “3He−4He希釈冷凍機の原理と設計上の問題点I”、「日本物理学会誌」、第37巻第5号(1982)、p409−418 “3He−4He希釈冷凍機の原理と設計上の問題点II”、「日本物理学会誌」、第37巻第7号(1982)、p595−600
Thereafter, the valve V2 is closed, the valve V4 is opened, and the flow rate control valve V1 is manually opened, the pump 7 is operated, the residual gas in the recovery tank 31 is returned to the circulation path, and then the valve V4 is closed. The flow rate control valve V1 is set in an operating state, the valve V2 is gradually fully opened, and a steady operation is performed.
Japanese Patent No. 3338381 Japanese Patent No. 3805531 Japanese Patent No. 3644683 “Principle and Design Problem I of 3He-4He Dilution Refrigerator I”, Journal of the Physical Society of Japan, Vol. 37, No. 5 (1982), p409-418 "Principle of 3He-4He dilution refrigerator and design problems II", Journal of the Physical Society of Japan, Vol. 37, No. 7 (1982), p595-600

前記のように、従来のオイル式真空ポンプを用いた希釈冷凍機では、オイルフィルタやオイルトラップ、回収タンクを必要とし、これに伴って多数の弁を必要とするから、自動運転を行なうには、前記複数の弁を遠隔操作可能な自動弁にする必要があり装置全体のコストが著しく高額となってしまう不都合があった。装置停止時に循環路内の循環ガスを回収タンクに全量回収しなければならない点も煩雑だった。   As described above, a dilution refrigerator using a conventional oil-type vacuum pump requires an oil filter, an oil trap, and a recovery tank, and requires a large number of valves. Therefore, there is a disadvantage that the plurality of valves need to be automatic valves that can be remotely operated, and the cost of the entire apparatus becomes extremely high. It was also complicated that the entire amount of the circulating gas in the circulation path had to be recovered in the recovery tank when the system was stopped.

この発明は以上の事情に基づき、オイルフィルタおよびオイルトラップを不要として運転に必要な弁の数を減らし、コスト削減を図った希釈冷凍機を提供するものである。   Based on the above circumstances, the present invention provides a dilution refrigerator that eliminates the need for an oil filter and an oil trap, reduces the number of valves required for operation, and reduces costs.

本発明では、真空ポンプとして、オイル式真空ポンプに代えて機械的に真空封じ切りを行なうオイルフリー真空ポンプ(「密閉型ドライポンプ」とも呼ばれる。)を用いて循環路を完全にオイルフリーとし、これによって、オイルフィルタやオイルトラップを不要とし、更に、循環ガスを回収する回収タンクに代えて循環ガスを回収しないバッファータンクを用いる構成とし、全体として弁の大幅減、運転手順の簡単化を図り、従来より安価でかつ容易に運転できる希釈冷凍機を提供するものである。   In the present invention, as the vacuum pump, an oil-free vacuum pump (also referred to as “sealed dry pump”) that mechanically seals the vacuum instead of the oil-type vacuum pump is used to make the circulation path completely oil-free, This eliminates the need for oil filters and oil traps, and uses a buffer tank that does not collect circulating gas instead of a collecting tank that collects circulating gas. As a whole, the number of valves is greatly reduced and the operating procedure is simplified. The present invention provides a dilution refrigerator that is cheaper and easier to operate than before.

発明の請求項1にかかる希釈冷凍機は、冷凍機本体と、該冷凍機本体への循環ガスの導入及び該冷凍機本体からの循環ガスの排出のための循環路と、循環路に設けて循環ガスを循環させる真空ポンプとを備えた希釈冷凍機において;
前記真空ポンプとしてオイルフリー真空ポンプを用い、かつ、真空ポンプの吸入口と冷凍機本体のガス導出口の間に、循環ガスを導入して循環路の圧力上昇を緩和するバッファータンクを設けたことを特徴とする。
The dilution refrigerator according to claim 1 of the present invention is provided in a circulation body, a circulation body for introducing a circulation gas to the refrigerator body, and discharging circulation gas from the refrigerator body. In a dilution refrigerator equipped with a vacuum pump for circulating the circulating gas;
An oil-free vacuum pump is used as the vacuum pump, and a buffer tank is provided between the suction port of the vacuum pump and the gas outlet port of the refrigerator main body to introduce a circulating gas to alleviate the pressure increase in the circulation path. It is characterized by.

本発明の希釈冷凍機によれば、真空ポンプとしてオイルフリー真空ポンプを用いたので循環路へのオイルの混入がなく、循環ガスはオイルを含まないので、オイルフィルタ及びオイルトラップが不要で、かつ、循環ガスを回収する回収タンクに代えて循環ガスを回収しないバッファータンクとして循環ガスの回収工程を省略できるので、これらによって経路に設けるべき弁の数を従来より格段に減らし、かつ運転工程を簡略化して、全体として装置コストを従来よりも大幅に低減する同時に、コンピュータによる自動運転制御も低コストかつ容易に行なえる。   According to the dilution refrigerator of the present invention, since an oil-free vacuum pump is used as a vacuum pump, there is no mixing of oil into the circulation path, and the circulation gas does not contain oil, so an oil filter and an oil trap are unnecessary, and Since the circulation gas recovery process can be omitted as a buffer tank that does not recover the circulation gas instead of the recovery tank that recovers the circulation gas, the number of valves to be provided in the path is greatly reduced compared to the conventional, and the operation process is simplified. As a whole, the cost of the apparatus can be greatly reduced as compared with the conventional apparatus, and at the same time, automatic operation control by a computer can be easily performed at low cost.

図1にこの発明の第1の実施例の希釈冷凍機の全体構成を示す。なお、図1において、図4に示す従来例と同様の構成部分については同一の符号を付し、その説明は省略する。   FIG. 1 shows the overall configuration of the dilution refrigerator according to the first embodiment of the present invention. In FIG. 1, the same components as those of the conventional example shown in FIG. 4 are denoted by the same reference numerals, and the description thereof is omitted.

図1において、冷凍機本体1自体は図4の従来と同様であるが、真空ポンプ7として、オイルフリー真空ポンプを用いている点が基本的に異なる。そしてオイルフリー真空ポンプを用いたので、導入路5aに、オイルフィルタやオイルトラップを設ける必要がない。   In FIG. 1, the refrigerator main body 1 itself is the same as the conventional one in FIG. 4 except that an oil-free vacuum pump is used as the vacuum pump 7. Since the oil-free vacuum pump is used, it is not necessary to provide an oil filter or an oil trap in the introduction path 5a.

さらに図1の第1実施例では、真空ポンプ7の吸入側の導出路5bに流量制御弁V1が設けられ、一方、真空ポンプ7の吐出口側の導入路5aに吸着装置41が設けられている。吸着装置41は、容器内に水分を吸着するための吸着剤を充填したもので、従来のオイルトラップでの水分除去を果たすものであるが、従来のオイルトラップと異なり、常温で水分を吸着するものである。オイルに比べ水分の除去は容易であり、従来のように液体窒素で冷却する必要はない。   Further, in the first embodiment of FIG. 1, a flow rate control valve V1 is provided in the lead-out passage 5b on the suction side of the vacuum pump 7, and an adsorption device 41 is provided in the introduction passage 5a on the discharge port side of the vacuum pump 7. Yes. The adsorption device 41 is filled with an adsorbent for adsorbing moisture in a container and serves to remove moisture with a conventional oil trap, but unlike a conventional oil trap, adsorbs moisture at room temperature. Is. It is easier to remove moisture than oil, and it is not necessary to cool with liquid nitrogen as in the prior art.

吸着装置41と真空ポンプ7の吐出口との間には、圧力検出手段23と、これで検出した圧力に応じて流量制御弁V1の開度を調整・制御する制御部25が設けられている。ここで、流量制御弁V1および圧力検出手段23は図4の従来例と同様である。   Between the suction device 41 and the discharge port of the vacuum pump 7, a pressure detecting means 23 and a control unit 25 for adjusting and controlling the opening degree of the flow control valve V1 according to the pressure detected thereby are provided. . Here, the flow rate control valve V1 and the pressure detecting means 23 are the same as in the conventional example of FIG.

さらに流量制御弁V1より上流側の導出路5bにはバッファータンク36が接続されている。バッファータンク36は、装置停止時における循環路の圧力上昇を緩和するためだけに設けるものなので、弁を設けずに導出路5bに接続されている。従来装置では、循環路のガスを回収するための回収タンクが必要で、かつ、真空ポンプの吸入側と吐出側の両方に連通管を接続し、かつ、両方の連通管に弁を設ける必要があったが、本発明の装置ではこのような必要がない。   Further, a buffer tank 36 is connected to the outlet path 5b upstream from the flow control valve V1. Since the buffer tank 36 is provided only to alleviate the pressure increase in the circulation path when the apparatus is stopped, the buffer tank 36 is connected to the lead-out path 5b without providing a valve. In the conventional apparatus, a recovery tank for recovering the gas in the circulation path is required, and a communication pipe must be connected to both the suction side and the discharge side of the vacuum pump, and valves must be provided for both of the communication pipes. However, this is not necessary in the apparatus of the present invention.

そして、流量制御弁V1より上流側の導出路5bと吸着装置41より下流側の導入路5aとの間には両路を第1の弁Vaが設けられ、真空ポンプ7の動作に応じて制御されるように構成されている。   A first valve Va is provided between the outlet passage 5b upstream of the flow control valve V1 and the inlet passage 5a downstream of the adsorption device 41, and is controlled according to the operation of the vacuum pump 7. It is configured to be.

以下、発明装置の運転方法を説明する。   The operation method of the inventive device will be described below.

<定常運転>
定常運転は、流量制御弁V1を作動状態にし、弁Vaを閉じた状態で、真空ポンプ7を作動させ、真空ポンプ7から吐出した循環ガスを、吸着装置41を経て冷凍機本体1に導入する。
<Normal operation>
In the steady operation, the flow rate control valve V1 is in the activated state, the valve Va is closed, the vacuum pump 7 is operated, and the circulating gas discharged from the vacuum pump 7 is introduced into the refrigerator main body 1 through the adsorption device 41. .

<定常運転の停止>
定常運転を停止するには、流量制御弁V1を手動にして閉めて真空ポンプ7を停止するるだけである。真空ポンプ7停止時の圧力変動はバッファータンク36で吸収される。
<Stopping steady operation>
To stop the steady operation, it is only necessary to manually close the flow control valve V1 and stop the vacuum pump 7. The pressure fluctuation when the vacuum pump 7 is stopped is absorbed by the buffer tank 36.

真空ポンプ7を停止すると、冷凍機本体1の液相部が蒸発し導出路5bの圧力が上昇してくるが、一部はバッファータンク36に導入され、循環路内の圧力がバッファータンク36と同圧になって終了する。弁Vaも開けて導入路側の循環ガスもバッファータンク36と連通させる。なお、バッファータンク36の容積は循環路の圧力上昇を考慮して適宜設計する。   When the vacuum pump 7 is stopped, the liquid phase portion of the refrigerator main body 1 evaporates and the pressure in the lead-out path 5b increases, but a part of the pressure is introduced into the buffer tank 36, and the pressure in the circulation path is reduced with the buffer tank 36. Ends at the same pressure. The valve Va is also opened to allow the circulating gas on the introduction path side to communicate with the buffer tank 36. The volume of the buffer tank 36 is appropriately designed in consideration of the pressure increase in the circulation path.

<運転停止からの運転再開>
次に運転を再開するには、弁Vaを閉じ、流量制御弁V1を作動状態としてから真空ポンプ7を作動させるだけで直ちに前記定常運転となる。
<Resumption of operation after shutdown>
Next, in order to resume the operation, the valve Va is closed and the flow rate control valve V1 is activated, and then the vacuum pump 7 is operated.

図2には、この発明の第2の実施例の希釈冷凍機を示す。   FIG. 2 shows a dilution refrigerator according to a second embodiment of the present invention.

図2に示す第2の実施例では、図1の流量制御弁V1の代りに単なる弁(第2の弁)V9を設け、かつその弁V9と並列に抵抗体43を設けたもので、抵抗体43としては図示のような適宜の流路抵抗を有する微細管や多孔質体、あるいは開度を適宜に調整した弁を用いることができる。   In the second embodiment shown in FIG. 2, a simple valve (second valve) V9 is provided in place of the flow control valve V1 in FIG. 1, and a resistor 43 is provided in parallel with the valve V9. As the body 43, a fine tube or a porous body having an appropriate flow path resistance as shown in the figure, or a valve whose opening degree is appropriately adjusted can be used.

圧力検出手段23は、図1の場合(真空ポンプ7の吐出側の圧力を検出)とは異なり、真空ポンプ7の吸入側の圧力を検出し、定常運転時は、V9を全開状態として、導出路5bの圧力が所定以上になった弁V9を閉止して抵抗体43を通るガスのみが真空ポンプ7に流入するようにし、これにより真空ポンプ7へのガス流入量を抑制して、真空ポンプ7の吐出圧力が過剰とならないように制御する。   Unlike the case shown in FIG. 1 (detecting the pressure on the discharge side of the vacuum pump 7), the pressure detecting means 23 detects the pressure on the suction side of the vacuum pump 7, and in a steady operation, V9 is fully opened. The valve V9 whose pressure in the passage 5b is equal to or higher than a predetermined value is closed so that only the gas passing through the resistor 43 flows into the vacuum pump 7, thereby suppressing the amount of gas flowing into the vacuum pump 7, thereby reducing the vacuum pump. 7 is controlled so as not to be excessive.

その他の操作は、図1の場合と同様に、真空ポンプ7の停止に合わせて弁Vaを開けば良い。   Other operations may be performed by opening the valve Va in accordance with the stop of the vacuum pump 7 as in the case of FIG.

図2の実施例は、図1の実施例に比べ、高価な流量制御弁に代えて安価な開閉のみの弁でよく、かつ、開度制御も不要で、単なる開・閉の操作だけで済むので、よりコストダウンを図ることができる。   The embodiment of FIG. 2 may be an inexpensive opening / closing valve instead of an expensive flow rate control valve, and does not require an opening degree control, and only a simple opening / closing operation is required as compared with the embodiment of FIG. Therefore, the cost can be further reduced.

図3には、この発明の第3の実施例の希釈冷凍機を示す。   FIG. 3 shows a dilution refrigerator according to a third embodiment of the present invention.

図3の実施例は、図1の実施例と比べ、真空ポンプ7の制御部25がインバータを備える構成とし、これによって、流量制御弁V1を省いた点が異なる。   The embodiment of FIG. 3 differs from the embodiment of FIG. 1 in that the control unit 25 of the vacuum pump 7 includes an inverter, and thus the flow control valve V1 is omitted.

これにより、定常運転時に、真空ポンプ7の吐出側の圧力を、圧力検出手段23からの圧力値に基いて真空ポンプ7の回転数をインバータ制御し、その回転数が所定の値を越えないように抑制して、真空ポンプ7の吐出量、したがって冷凍機本体1に送り込まれる循環ガス量が過剰とならないように制御し、これにより、消費電力、特に立ち上げ時における消費電力を図1、図2の例よりも少なくして、ランニングコストを低減することができる。   Thereby, during steady operation, the pressure on the discharge side of the vacuum pump 7 is inverter-controlled based on the pressure value from the pressure detection means 23 so that the rotation speed does not exceed a predetermined value. In order to prevent the discharge amount of the vacuum pump 7 and hence the amount of circulating gas sent to the refrigerator main body 1 from being excessive, the power consumption, particularly the power consumption at start-up, is controlled. The running cost can be reduced by less than the second example.

その他の操作は、図1の場合と同様である。   Other operations are the same as those in FIG.

この発明の第1の実施例の希釈冷凍機の全体構成を示す略解図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an overall configuration of a dilution refrigerator according to a first embodiment of the present invention. この発明の第2の実施例の希釈冷凍機の全体構成を示す略解図である。It is a schematic diagram which shows the whole structure of the dilution refrigerator of 2nd Example of this invention. この発明の第3の実施例の希釈冷凍機の全体構成を示す略解図である。It is a schematic diagram which shows the whole structure of the dilution refrigerator of 3rd Example of this invention. 従来の希釈冷凍機の一例の全体構成を示す略解図である。It is a schematic diagram which shows the whole structure of an example of the conventional dilution refrigerator.

符号の説明Explanation of symbols

1 冷凍機本体
5 循環路
5a 導入路
5b 導出路
7 真空ポンプ
36 バッファータンク
DESCRIPTION OF SYMBOLS 1 Refrigerator main body 5 Circulation path 5a Introduction path 5b Derivation path 7 Vacuum pump 36 Buffer tank

Claims (1)

冷凍機本体と、該冷凍機本体への循環ガスの導入及び該冷凍機本体からの循環ガスの排出のための循環路と、循環路に設けて循環ガスを循環させる真空ポンプとを備えた希釈冷凍機において;
前記真空ポンプとしてオイルフリー真空ポンプを用い、かつ、真空ポンプの吸入口と冷凍機本体のガス導出口の間に、循環ガスを導入して循環路の圧力上昇を緩和するバッファータンクを設けたことを特徴とする希釈冷凍機。
Dilution comprising a refrigerator main body, a circulation path for introduction of circulating gas to the refrigerator main body and discharge of the circulation gas from the refrigerator main body, and a vacuum pump provided in the circulation path for circulating the circulation gas In the refrigerator;
An oil-free vacuum pump is used as the vacuum pump, and a buffer tank is provided between the suction port of the vacuum pump and the gas outlet port of the refrigerator main body to introduce a circulating gas to alleviate the pressure increase in the circulation path. A dilution refrigerator characterized by.
JP2006316864A 2006-11-24 2006-11-24 Dilution refrigerator Expired - Fee Related JP4824530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316864A JP4824530B2 (en) 2006-11-24 2006-11-24 Dilution refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316864A JP4824530B2 (en) 2006-11-24 2006-11-24 Dilution refrigerator

Publications (2)

Publication Number Publication Date
JP2008128613A true JP2008128613A (en) 2008-06-05
JP4824530B2 JP4824530B2 (en) 2011-11-30

Family

ID=39554616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316864A Expired - Fee Related JP4824530B2 (en) 2006-11-24 2006-11-24 Dilution refrigerator

Country Status (1)

Country Link
JP (1) JP4824530B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554933A (en) * 1978-06-26 1980-01-14 Hitachi Ltd Helium gas recovering device
JPH02136654A (en) * 1988-11-18 1990-05-25 Rigaku Corp 3he-4he dilution refrigerating machine
JPH0642830A (en) * 1992-05-29 1994-02-18 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for providing superfluid helium
JPH09243190A (en) * 1996-03-01 1997-09-16 Daikin Ind Ltd Cryogenic freezer
JP3644683B2 (en) * 2003-02-28 2005-05-11 大陽日酸株式会社 Dilution refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554933A (en) * 1978-06-26 1980-01-14 Hitachi Ltd Helium gas recovering device
JPH02136654A (en) * 1988-11-18 1990-05-25 Rigaku Corp 3he-4he dilution refrigerating machine
JPH0642830A (en) * 1992-05-29 1994-02-18 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for providing superfluid helium
JPH09243190A (en) * 1996-03-01 1997-09-16 Daikin Ind Ltd Cryogenic freezer
JP3644683B2 (en) * 2003-02-28 2005-05-11 大陽日酸株式会社 Dilution refrigerator

Also Published As

Publication number Publication date
JP4824530B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
TWI493106B (en) Cryogenic pump system, compressor and cryogenic pump regeneration method
KR100750790B1 (en) Freezing apparatus installation method
KR101293382B1 (en) Gasoline vapor recovery device
KR101215211B1 (en) Gaseous hydrocarbon treating/recovering apparatus and method
KR101130665B1 (en) Vapor collecting device
JP4671940B2 (en) Gaseous hydrocarbon treatment and recovery apparatus and method
JP3606854B2 (en) High humidity fuel gas compression supply device
KR100616583B1 (en) Pfc type gas recovery method and device
JP4824530B2 (en) Dilution refrigerator
JP5606714B2 (en) Bleeding recovery device, operation method thereof, and turbo refrigerator equipped with the same
JP5653490B2 (en) Gasoline vapor recovery device
JP4270574B2 (en) Solvent recovery device
KR100869518B1 (en) Method and apparatus for Cryogenic Helium Purification
JP5600048B2 (en) Solvent recovery device
TWI403354B (en) Recovery device and method for gas - like hydrocarbon
JP2000135412A (en) Gas recovering device and gas recovery
JP2023122006A (en) Adsorbent regeneration device and removal system
JPH06198119A (en) Method for recovering volatile matter
JPH05340620A (en) Normal temperature type refining device for cryogenic freezer device
JP2005098596A (en) Absorption refrigerator
JP2000098085A (en) Exhaust gas processor and processing method for reactor power generation
JP2002181401A (en) Absorption refrigerator
JPS63107721A (en) Low-boiling gas refining and regenerating device for cryogenic liquefying refrigerator
JPH1026432A (en) Absorption freezer and its operation method
JPH04184053A (en) Absorption type freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Ref document number: 4824530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees