JP2008128608A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008128608A
JP2008128608A JP2006316711A JP2006316711A JP2008128608A JP 2008128608 A JP2008128608 A JP 2008128608A JP 2006316711 A JP2006316711 A JP 2006316711A JP 2006316711 A JP2006316711 A JP 2006316711A JP 2008128608 A JP2008128608 A JP 2008128608A
Authority
JP
Japan
Prior art keywords
compressor
humidity
indoor
control unit
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006316711A
Other languages
Japanese (ja)
Other versions
JP4698558B2 (en
JP2008128608A5 (en
Inventor
Daisuke Sugiyama
大輔 杉山
Masakazu Kondo
雅一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006316711A priority Critical patent/JP4698558B2/en
Publication of JP2008128608A publication Critical patent/JP2008128608A/en
Publication of JP2008128608A5 publication Critical patent/JP2008128608A5/ja
Application granted granted Critical
Publication of JP4698558B2 publication Critical patent/JP4698558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent frost formation on an indoor unit without degrading cooling comfort in starting an operation. <P>SOLUTION: An outdoor control portion 13 sets a frequency of a compressor 1 to be higher for a specific time after starting a cooling operation, then sets a maximum frequency of the compressor high when a humidity is low, and sets the maximum frequency of the compressor low when the humidity is high. Here, an indoor control portion 12 transmits the temperature difference between an indoor temperature from an indoor temperature sensor 8 and a set temperature from a remote controller 18 to the outdoor control portion 13, and the outdoor control portion 13 decides a compressor operation rotational frequency on the basis of the temperature difference, and controls the rotational frequency of the compressor 1 through an invertor circuit 17. Further the indoor control portion 12 determines a humidity zone from a high humidity zone, an intermediate humidity zone and a low humidity zone on the basis of the indoor humidity from the indoor humidity sensor 9 and the lapse time, and transmits the same to the outdoor control portion 13, and the outdoor control portion 13 decides the compressor maximum rotational frequency on the basis of the humidity zone, and controls the rotational frequency of the compressor 1 through the invertor circuit 17. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、空気調和機に関し、特に冷房運転を行う空気調和機に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner that performs a cooling operation.

従来の空気調和機における露付き防止制御は、室内湿度、又は室内エンタルピに対して圧縮機の最高回転数を常に結露を生じないようなステップ状の限界曲線より低く設定するものが開示されている(例えば、特許文献1参照)。   In conventional air conditioners, dew prevention control is disclosed in which the maximum number of rotations of the compressor is set lower than the step-shaped limit curve that does not always cause condensation with respect to room humidity or room enthalpy. (For example, refer to Patent Document 1).

特開昭64―33457号公報(請求項2、310頁右下欄第8〜14行、311頁左下欄第1行〜同頁右下欄第11行、第2図)JP-A-64-33457 (Claim 2, page 310, lower right column, lines 8 to 14, page 311, lower left column, line 1 to page, lower right column, line 11, line 2)

従来の空気調和機における露付き制御は、運転開始時から湿度に応じて圧縮機の最高回転数を低く設定する場合があり、運転開始時の冷房快適性に関しては考えられてはいなかった。   In the conventional dew control in an air conditioner, the maximum number of revolutions of the compressor may be set low depending on the humidity from the start of operation, and cooling comfort at the start of operation has not been considered.

この発明は、上記のような課題を解決するためになされたもので、第1の目的は運転開始時の冷房快適性を損なうことがない空気調和機を得るものである。   The present invention has been made to solve the above-described problems, and a first object thereof is to obtain an air conditioner that does not impair the cooling comfort at the start of operation.

また、第2の目的は空気調和機の室内機に露が付くことを防止することができる空気調和機を得るものである。   Moreover, the 2nd objective is to obtain the air conditioner which can prevent that dew adheres to the indoor unit of an air conditioner.

冷房運転時、吹出し温度が低いときに、室内機に露が付きそのまま時間が経過すると滴下する恐れがある。室内機に付着した露は時間経過とともに成長し、その量も多くなってくるが、露が付き始めてから成長するのにはかなりの時間を要することが多い。そのため、冷房開始後一定時間までは冷房快適性を優先し、圧縮機の周波数を高めに設定しても露付の影響は少なくてすむ。しかしながら、長時間、露が付いた状態にしておくと、成長しやがて滴下する。そのため圧縮機の最高回転数を規制する必要が出てくる。図7に室内湿度と露点温度の関係を示す。例えば室内の温度が27℃とすると、室内の相対湿度が80%のときは、その空気は23.5℃以下に低下すると結露する。また、室内温度が27℃で室内の相対湿度が40%のときには、12.7℃以下になると低下すると結露する。このように、湿度が低い方が結露しにくい。   During cooling operation, when the blow-out temperature is low, there is a risk that the indoor unit will be dewed and dripping if time passes. The dew adhering to the indoor unit grows with the passage of time, and the amount of the dew increases. However, it often takes a considerable amount of time to grow after the dew begins to attach. Therefore, priority is given to cooling comfort until a certain time after the start of cooling, and even if the frequency of the compressor is set higher, the influence of the exposure is small. However, if the dew is left for a long time, it will grow and drop. Therefore, it is necessary to regulate the maximum rotation speed of the compressor. FIG. 7 shows the relationship between room humidity and dew point temperature. For example, if the indoor temperature is 27 ° C., and the indoor relative humidity is 80%, the air will condense when it falls below 23.5 ° C. Further, when the indoor temperature is 27 ° C. and the indoor relative humidity is 40%, dew condensation occurs when the temperature drops below 12.7 ° C. In this way, condensation is less likely at lower humidity.

そこで、冷房開始後所定時間までは冷房快適性を優先して圧縮機の周波数を高めに設定し、所定時間が経過したら、湿度が低いときには圧縮機の最大周波数を高めに設定し、湿度が高いときには圧縮機の最大周波数を低めに設定することで、冷房開始後一定時間までの冷房快適性を損なわず、露付きを防止することが可能となる。   Therefore, the compressor frequency is set higher for a predetermined time after the start of cooling, and the compressor frequency is set higher, and when the humidity is low, the maximum frequency of the compressor is set higher when the humidity is low. Sometimes, by setting the maximum frequency of the compressor lower, it is possible to prevent dew condensation without impairing the cooling comfort until a certain time after the start of cooling.

この発明に係る空気調和機は、少なくとも、回転数可変な圧縮機、四方切替弁、室外熱交換器、冷媒減圧装置、室内熱交換器を冷媒配管で順次接続した冷媒回路と、インバータを介して圧縮機の回転数を制御する室外制御部を有する室外機と、を備え、室外制御部は、冷房運転開始後所定時間内は、圧縮機最高回転数を一定周波数以上に設定して露付き防止制御を行わないことを特徴とする。   An air conditioner according to the present invention includes at least a compressor, a four-way switching valve, an outdoor heat exchanger, a refrigerant decompression device, a refrigerant circuit in which indoor heat exchangers are sequentially connected by refrigerant piping, and an inverter. An outdoor unit having an outdoor control unit that controls the rotation speed of the compressor, and the outdoor control unit sets the maximum rotation speed of the compressor to a predetermined frequency or more to prevent dew condensation within a predetermined time after the start of the cooling operation. It is characterized by not performing control.

本発明によれば、冷房開始後所定時間までは冷房快適性を優先して圧縮機の周波数を所定値より高めに設定し、所定時間が経過したら、公知の技術で除湿後、湿度が低いときには圧縮機の最大周波数を高めに設定し、湿度が高いときには圧縮機の最大周波数を低めに設定することで、冷房開始後一定時間までの冷房快適性を損なわず、露付きを防止することが可能となる。   According to the present invention, the compressor comfort is prioritized for a predetermined time after the start of cooling, and the compressor frequency is set higher than a predetermined value. After the predetermined time has elapsed, when the humidity is low after dehumidification by a known technique. By setting the maximum frequency of the compressor higher and setting the maximum frequency of the compressor lower when the humidity is high, it is possible to prevent dew condensation without impairing the cooling comfort until a certain time after the start of cooling. It becomes.

実施の形態1.
図1はこの発明の実施の形態1におけるヒートポンプ式空気調和機の構成図を示すものである。空気調和機20は、圧縮機1、四方切替弁2、室外熱交換器3、冷媒減圧装置4、室内熱交換器5を冷媒配管で順次接続し、室外熱交換器の送風機6、室内熱交換器の送風機7を備え、冷凍サイクルを構成している。又室内の温度を検出する室内温度センサ8、室内の相対湿度を検出する室内湿度センサ9を備える。また室内熱交換器5へ空気中の埃を進入させないためのフィルタ10、フィルタを定期的に自動で掃除することが出来る自動フィルタお掃除機構11を備える。四方切替弁2は冷房運転、暖房運転に切替えることができ、実線矢印方向に切替えることによって暖房サイクルを形成し、破線矢印方向に切替えることによって冷房サイクルを形成している。
Embodiment 1 FIG.
FIG. 1 shows a configuration diagram of a heat pump type air conditioner according to Embodiment 1 of the present invention. The air conditioner 20 sequentially connects the compressor 1, the four-way switching valve 2, the outdoor heat exchanger 3, the refrigerant decompression device 4, and the indoor heat exchanger 5 with refrigerant piping, and the blower 6 of the outdoor heat exchanger and the indoor heat exchange. A refrigeration cycle is configured with a blower 7. Further, an indoor temperature sensor 8 for detecting the indoor temperature and an indoor humidity sensor 9 for detecting the relative humidity in the room are provided. Further, a filter 10 for preventing dust in the air from entering the indoor heat exchanger 5 and an automatic filter cleaning mechanism 11 capable of automatically cleaning the filter periodically are provided. The four-way switching valve 2 can be switched between a cooling operation and a heating operation, and forms a heating cycle by switching in the direction of the solid arrow, and forms a cooling cycle by switching in the direction of the broken arrow.

また、図2は、図1に示した空気調和機の制御系を表すブロック図である。
図2に示すように、空気調和機20は、室内機に搭載されたマイコンによって構成される室内制御部12と、室外機に搭載されたマイコンによって構成される室外制御部13とを備えている。室内制御部12と室外制御部13は接続線14にて接続されており、互いにデータおよび制御信号のやり取りをする。室内送風機7は回転数制御回路15を介して室内制御部12によってコントロールされる。室外送付機8は回転数制御回路16を介して室外制御部13によってコントロールされている。四方切替弁2、冷媒減圧装置4は室外制御部13によってコントロールされる。
室内制御部12は室内温度センサ8から入力された信号から室内温度を算出するとともに、利用者がリモコンを用いて所望の設定を行うことでリモコン18より送られてきた設定温度データと上記室内温度との温度差を算出し、室外制御部13へデータを送る。室外制御部13は室内12から送られてきた上記温度差のデータから圧縮機運転回転数を決定し、インバータ回路17を介して圧縮機1の回転数をコントロールする。
また、室内制御部12は室内湿度センサ9から入力された信号から室内湿度を算出する。また、室内制御部12は、リモコン18によって運転を開始された時から内蔵タイマーを起動して経過時間をカウントさせる。しかして、室内制御部12は、上記室内湿度の値及び、上記タイマーでカウントされた経過時間に基づいて高湿度帯、中湿度帯、低湿度帯のいずれかを判定し、湿度帯情報として室外制御部13へデータを送る。
室外制御部13は室内制御部12から送られてきた上記湿度帯を基に圧縮機最高回転数を判定する。室外制御部13は、さらに上記圧縮機運転回転数が上記圧縮機最高回転数を超えている場合には、圧縮機運転回転数を圧縮機最高回転数を超えない値に修正し、インバータ回路17を介して圧縮機1の回転数をコントロールする。これにより常に正確な圧縮機最高回転数を確保することが可能になる。
FIG. 2 is a block diagram showing a control system of the air conditioner shown in FIG.
As shown in FIG. 2, the air conditioner 20 includes an indoor control unit 12 configured by a microcomputer mounted on an indoor unit, and an outdoor control unit 13 configured by a microcomputer mounted on the outdoor unit. . The indoor control unit 12 and the outdoor control unit 13 are connected by a connection line 14 and exchange data and control signals with each other. The indoor blower 7 is controlled by the indoor control unit 12 via the rotation speed control circuit 15. The outdoor sending machine 8 is controlled by the outdoor control unit 13 via the rotation speed control circuit 16. The four-way switching valve 2 and the refrigerant pressure reducing device 4 are controlled by the outdoor control unit 13.
The room controller 12 calculates the room temperature from the signal input from the room temperature sensor 8, and the set temperature data sent from the remote controller 18 and the room temperature when the user performs a desired setting using the remote controller. The temperature difference is calculated and data is sent to the outdoor control unit 13. The outdoor control unit 13 determines the rotational speed of the compressor from the temperature difference data sent from the indoor 12, and controls the rotational speed of the compressor 1 through the inverter circuit 17.
The indoor control unit 12 calculates the indoor humidity from the signal input from the indoor humidity sensor 9. In addition, the indoor control unit 12 starts the built-in timer from the time when the operation is started by the remote controller 18 and causes the elapsed time to be counted. Therefore, the indoor control unit 12 determines one of the high humidity zone, the middle humidity zone, and the low humidity zone based on the value of the indoor humidity and the elapsed time counted by the timer, and uses the outdoor humidity as humidity zone information. Data is sent to the control unit 13.
The outdoor control unit 13 determines the maximum compressor rotational speed based on the humidity band sent from the indoor control unit 12. When the compressor operating rotational speed exceeds the maximum compressor rotational speed, the outdoor control unit 13 corrects the compressor operating rotational speed to a value that does not exceed the compressor maximum rotational speed, and the inverter circuit 17 The number of rotations of the compressor 1 is controlled via This makes it possible to always ensure an accurate maximum compressor speed.

図3は圧縮機の最大回転数の設定値を示す図である。図4は制御手段13による圧縮機の最大回転数設定のフローチャートを示す。この例では、圧縮機の最大回転数を最大値(comp_Hi)Hz、中間値(comp_Me)Hz、最小値(comp_Lo)Hzの3つに設定する場合について説明する。
制御手段13は、冷房運転開始後、(tuyu1)時間までは、相対湿度の値に関係なく、圧縮機の最大回転数を最大値(comp_Hi)Hzに設定する(ステップS41、S42)。これにより、圧縮機1は最大能力で運転するので、冷房開始後一定時間までの冷房快適性を損なわず、露付きを防止することが可能となる。上記(tuyu1)時間は、平均的な住宅で設定温度に室温が到達する時間を設定する。平均的な住宅においては、約1時間程度で設定温度に室温を到達させることが可能なため1時間程度に設定するのがよい。しかし、露が滴下する恐れのある場合は短めに設定してもよい。
また、制御手段13は、冷房運転開始後(tuyu1)時間以上で(tuyu2)時間未満の間は、相対湿度が、(Lositu)%未満の場合には低湿度帯の圧縮機最大回転数を最大値(comp_Hi)Hzに設定し(ステップS43、S45、S46)、相対湿度が(Lositu)%以上の場合には中湿度帯の圧縮機最大回転数を中間値(comp_Me)Hzに設定する(ステップS43、S44、S46)。
また、制御手段13は、冷房運転開始後(tuyu2)時間以上経過したら、相対湿度が(Lositu)%未満の場合には低湿度帯の圧縮機最大回転数を最大値(comp_Hi)Hzに設定し(ステップS47、S50)、相対湿度が(Lositu)%以上で(Hisitu)%未満の場合には、中湿度帯の圧縮機最大回転数を中間値(comp_Me)Hzに設定し(ステップS47、S49)、相対湿度が(Hisitu)以上の場合には、高湿度の圧縮機最大回転数を最小値(comp_Lo)Hzに設定する(ステップS47、S48)。
以上のように、湿度が高い場合でも、時間経過とともに圧縮機の最大周波数を規制していくことで、露付き防止を図りつつ、冷房快適性の悪化を防止することが可能になる。
なお、図3、図4では湿度帯を3湿度帯、時間帯を3区切りとしているが、これに限らず共に3つ以上でもよい。この場合にも同様の効果を奏する。
FIG. 3 is a diagram showing a set value of the maximum rotation speed of the compressor. FIG. 4 shows a flowchart for setting the maximum rotational speed of the compressor by the control means 13. In this example, a case where the maximum number of rotations of the compressor is set to three values of a maximum value (comp_Hi) Hz, an intermediate value (comp_Me) Hz, and a minimum value (comp_Lo) Hz will be described.
The control means 13 sets the maximum rotation speed of the compressor to the maximum value (comp_Hi) Hz regardless of the relative humidity value until (tuyu1) time after the start of the cooling operation (steps S41 and S42). Thereby, since the compressor 1 is operated at the maximum capacity, it is possible to prevent dew condensation without impairing the cooling comfort until a certain time after the start of cooling. The above (tuyu1) time sets the time for the room temperature to reach the set temperature in an average house. In an average house, since it is possible to reach the set temperature in about 1 hour, it is preferable to set it to about 1 hour. However, it may be set shorter if there is a risk of dew dropping.
In addition, the control means 13 maximizes the maximum rotational speed of the compressor in the low humidity zone when the relative humidity is less than (Lositu)% during (tuyu1) time and less than (tuyu2) time after the start of the cooling operation. The value (comp_Hi) Hz is set (steps S43, S45, S46). If the relative humidity is (Lositu)% or more, the compressor maximum rotation speed in the medium humidity range is set to the intermediate value (comp_Me) Hz (steps). S43, S44, S46).
In addition, when the relative humidity is less than (Lositu)%, the control means 13 sets the maximum rotation speed of the compressor in the low humidity zone to the maximum value (comp_Hi) Hz after the time of starting the cooling operation (tuyu2) or more. (Steps S47, S50) If the relative humidity is (Lositu)% or more and less than (Hisitu)%, the maximum rotational speed of the compressor in the intermediate humidity zone is set to an intermediate value (comp_Me) Hz (Steps S47, S49). ) When the relative humidity is (Hisitu) or higher, the maximum rotational speed of the high humidity compressor is set to the minimum value (comp_Lo) Hz (steps S47 and S48).
As described above, even when the humidity is high, by regulating the maximum frequency of the compressor over time, it becomes possible to prevent deterioration of cooling comfort while preventing dew condensation.
3 and 4, the humidity zone is divided into three humidity zones and the time zone is divided into three. However, the present invention is not limited to this, and three or more may be used. In this case, the same effect is obtained.

なお、最大値(comp_Hi)Hzは、空気調和機に使用されている圧縮機で使用可能な最大回転数(本体制御における保護装置が作動しないで通常連続運転が可能な範囲の最大値 圧縮機の種類にもよるが、4.0kwの空気調和機において100Hz程度)を設定するのが望ましい。このようにすることで、空気調和機の持つ最大の能力を発揮することが可能であり、冷房快適性に最大限寄与することができる。
また、中間値(comp_ Me)Hzは空気調和機の適用乗数の冷房能力以上になるような回転数を設定することが望ましい。このようにすることで、冷房定格能力を発揮することができ、空気調和機の必要な冷房快適性を確保することができる。(圧縮機の種類にもよるが、4.0kwの空気調和機において70Hz程度を設定する。)
また、最小値(comp_ Lo)Hzは空気調和機の適用乗数の冷房能力の2/3以上になるような回転数を設定することが望ましい。このようにすることで、通常、空気調和機を使用する環境では、ほぼ冷房快適性を満足することが可能になる。(圧縮機の種類にもよるが、4.0kwの空気調和機において50Hz程度を設定する。)
通常、室内機への着露量は4時間程度経過すると多くなり、周辺の着露水と結合し室内機から滴下する。そのため、(tuyu2)時間は1時間程度の余裕をもって3時間程度に設定するのが望ましい。しかし、事前評価によって早めに滴下する場合には、より短めに設定するのが良い。
(Hisitu)%は、事前評価において(comp_ Lo)Hzで長時間運転しても着露が発生しないと判明した値を設定するが、通常の空気調和機で使用される環境で相対湿度が60%以下の場合にはほぼ着露は発生しないため、60%程度にする。
(Lositu)%は、事前評価において(comp_ Hi)Hzで長時間運転しても着露が発生しないと判明した値を設定する。
The maximum value (comp_Hi) Hz is the maximum number of revolutions that can be used in the compressor used in the air conditioner (the maximum value in the range where normal continuous operation is possible without the protective device in the main unit control being activated). Although it depends on the type, it is desirable to set (about 100 Hz in a 4.0 kw air conditioner). By doing in this way, it is possible to exhibit the maximum capability of the air conditioner, and to contribute to the cooling comfort to the maximum extent.
The intermediate value (comp_Me) Hz is desirably set to a rotational speed that is equal to or higher than the cooling capacity of the applicable multiplier of the air conditioner. By doing in this way, the cooling rated capacity can be exhibited, and the necessary cooling comfort of the air conditioner can be ensured. (Depending on the type of compressor, about 70 Hz is set in a 4.0 kW air conditioner.)
The minimum value (comp_Lo) Hz is desirably set to a rotational speed that is 2/3 or more of the cooling capacity of the applied multiplier of the air conditioner. By doing in this way, it becomes possible to satisfy cooling comfort substantially in the environment where an air conditioner is normally used. (Depending on the type of compressor, about 50 Hz is set in a 4.0 kw air conditioner.)
Usually, the amount of dew on the indoor unit increases after about 4 hours, and is combined with surrounding dewed water and dropped from the indoor unit. Therefore, it is desirable to set the (tuyu2) time to about 3 hours with a margin of about 1 hour. However, it is better to set a shorter value in the case of dripping earlier by prior evaluation.
(Hisitu)% is set to a value that was found in the pre-evaluation that no dew condensation occurs even if it is operated for a long time at (comp_Lo) Hz, but the relative humidity is 60 in the environment used in a normal air conditioner. If it is less than or equal to%, almost no condensation occurs, so it is set to about 60%.
(Lositu)% is set to a value determined in the pre-evaluation that no dew condensation occurs even if it is operated for a long time at (comp_Hi) Hz.

図5は冷房運転時の圧縮機最大回転数変化の1例を示すものである。運転開始後(tuyu1)時間までは、圧縮機の最大回転数を(comp_Hi)Hzで運転する。(tuyu1)時間が経過したところで、室内湿度がどの湿度帯にいるのか判定する。室内湿度は(Lositu)%以上で中湿度帯なため、圧縮機の最大回転数は(comp_Me)Hzに設定する。(tuyu2)時間が経過したところで、室内湿度がどの湿度帯にいるのか判定する。室内湿度が(Lositu)%以上で(Hisitu)%未満のため、圧縮機の最大回転数はそのまま(comp_Me)Hzに設定する。その後、室内湿度が(Lositu)%未満になったところで、圧縮機の最大回転数はcomp_Hi)Hzに設定する。
なお、図5では、湿度帯を3湿度帯、時間帯を3区切りとしているが、共に3つ以上でもよい。
FIG. 5 shows an example of changes in the maximum rotational speed of the compressor during the cooling operation. The compressor is operated at (comp_Hi) Hz until the time (tuyu1) after the start of operation. (Tuyu1) When the time has passed, determine which humidity range the room humidity is in. Since the room humidity is (Lositu)% or more and is in the middle humidity range, the maximum rotation speed of the compressor is set to (comp_Me) Hz. (Tuyu2) When the time has passed, determine which humidity range the room humidity is in. Since the indoor humidity is (Lositu)% or more and less than (Hisitu)%, the maximum rotation speed of the compressor is set to (comp_Me) Hz as it is. Thereafter, when the indoor humidity becomes less than (Lositu)%, the maximum rotational speed of the compressor is set to comp_Hi) Hz.
In FIG. 5, the humidity zone is divided into three humidity zones and the time zone is divided into three, but three or more may be used.

図6は、自動フィルタお掃除機構11の動作を示す説明図である。
図6に示すように、自動フィルタお掃除機構11は、フィルタ10を移動させながらブラシでフィルタ10に付着した塵埃を掻き取り、ダストボックスへ回収する。この自動フィルタお掃除機構11が故障したときに、フィルタ10には埃が徐々に蓄積していく。フィルタ10に埃が蓄積すると、室内熱交換器5を通過する風量が低下するため、冷房運転時は室内熱交換器5の温度は低下する。室内熱交換器5の温度が低下すると、吹出し温度は低下し、露が生じるおそれがある。従って、室内制御部12は、自動フィルタお掃除機構10が故障したときには、圧縮機の最大周波数を通過する風量が低下しても着露の恐れのない回転数まで低下させる。
なお、室内制御部12は上記自動フィルタお掃除機構11の故障を以下のようにして検出する。
フィルタ10はモータ駆動によって所定範囲内で回転移動可能(以下、可動という)に構成されており、このフィルタ可動端には非動作時または動作完了時に閉成してON信号を発し、動作中は開放してOFF信号を発するリミットスイッチが設置されている。室内制御部12は、フィルタ10が動作しているか否かをリミットスイッチと図示しないタイマーによる時間によって判断する。即ち、室内制御部12はフィルタ10に移動命令を発してフィルタ10の移動を開始させ、直後にリミットスイッチからONからOFFへの変化信号が受信されるか否かを監視し、フィルタ10移動命令を発した後、ONからOFFへの変化信号が所定時間(数秒程度)を経過しても受信されない場合には掃除が正常に動作しなかったと判断し、フィルタお掃除機構のモータを停止させるとともに故障を示す警報を表示または鳴動の形で出力する。さらに、室内制御部12は、自動フィルタお掃除機構10が故障したときには、圧縮機の最大周波数を通過する風量が低下しても着露の恐れのない回転数まで低下させる。
また、リミットスイッチから正常にONからOFFへの変化信号を受信した後、掃除が完了し、フィルタがリミットスイッチの位置まで戻ったか否かを監視する。この場合、事前にフィルタ10が元の位置に復帰してリミットスイッチが閉成してOFFからONへの変化信号を発するまでの正常時の所要時間を学習しておき、この学習した時間に十分余裕を持たせた時間をタイムアウト時間として内蔵する記憶部に設定しておく。しかして、実際に自動フィルタお掃除機構11を動作させるときに、上記室内制御部12は、フィルタ10を移動開始させ、タイムアウト時間内にフィルタ10が元の位置へ復帰してリミットスイッチからOFFからONへの変化信号を受信したら掃除が正常に完了したと判断する。一方、タイムアウト時間が経過してもリミットスイッチから上記OFFからONへの変化信号を受信しない場合には故障などにより掃除が正常に動作しなかったと判断し、フィルタお掃除機構のモータを停止させるとともに故障を示す警報を表示または鳴動の形で出力する。さらに、室内制御部12は、自動フィルタお掃除機構10が故障したときには、圧縮機の最大周波数を通過する風量が低下しても着露の恐れのない回転数まで低下させる。
これにより、露付きを防止できる。
FIG. 6 is an explanatory view showing the operation of the automatic filter cleaning mechanism 11.
As shown in FIG. 6, the automatic filter cleaning mechanism 11 scrapes off dust adhering to the filter 10 with a brush while moving the filter 10 and collects it in a dust box. When the automatic filter cleaning mechanism 11 fails, dust gradually accumulates in the filter 10. When dust accumulates in the filter 10, the amount of air passing through the indoor heat exchanger 5 is reduced, so that the temperature of the indoor heat exchanger 5 is reduced during the cooling operation. When the temperature of the indoor heat exchanger 5 is lowered, the blowing temperature is lowered, and there is a possibility that dew is generated. Therefore, when the automatic filter cleaning mechanism 10 breaks down, the indoor control unit 12 reduces the rotational speed so that there is no risk of dew condensation even if the air volume that passes through the maximum frequency of the compressor decreases.
The indoor control unit 12 detects a failure of the automatic filter cleaning mechanism 11 as follows.
The filter 10 is configured to be rotationally movable within a predetermined range by driving a motor (hereinafter referred to as “movable”). The filter movable end is closed at the time of non-operation or when the operation is completed to generate an ON signal. A limit switch that opens and emits an OFF signal is installed. The indoor control unit 12 determines whether or not the filter 10 is operating based on time by a limit switch and a timer (not shown). That is, the indoor control unit 12 issues a movement command to the filter 10 to start the movement of the filter 10, and immediately monitors whether or not a change signal from ON to OFF is received from the limit switch. When the change signal from ON to OFF is not received even after a predetermined time (several seconds) has passed, it is determined that the cleaning did not operate normally, and the motor of the filter cleaning mechanism is stopped. An alarm indicating a failure is output in the form of a display or ringing. Furthermore, when the automatic filter cleaning mechanism 10 breaks down, the indoor control unit 12 reduces the rotational speed so that there is no risk of dew condensation even if the air volume that passes through the maximum frequency of the compressor decreases.
Further, after receiving a normal change signal from ON to OFF from the limit switch, it is monitored whether the cleaning is completed and the filter returns to the position of the limit switch. In this case, the normal time required until the filter 10 returns to the original position, the limit switch is closed, and the change signal from OFF to ON is generated is learned in advance. A time with a margin is set as a timeout time in a built-in storage unit. Thus, when the automatic filter cleaning mechanism 11 is actually operated, the indoor control unit 12 starts to move the filter 10, and the filter 10 returns to the original position within the time-out period and the limit switch is turned off. If a change signal to ON is received, it is determined that the cleaning has been completed normally. On the other hand, if the change signal from the above-mentioned OFF to ON is not received from the limit switch even after the time-out period has elapsed, it is determined that the cleaning did not operate normally due to a failure or the like, and the motor of the filter cleaning mechanism is stopped. An alarm indicating a failure is output in the form of a display or ringing. Furthermore, when the automatic filter cleaning mechanism 10 breaks down, the indoor control unit 12 reduces the rotational speed so that there is no risk of dew condensation even if the air volume that passes through the maximum frequency of the compressor decreases.
Thereby, dew can be prevented.

なお、従来の空気調和機では、リモコンなどで設定されるファン速度が強・中・弱のように異なると、この速度に応じて圧縮機の最大回転数も変えていたが、この場合にはファン速度によっては、上記圧縮機の(comp_ Hi )Hzでの運転や(comp_ Me)Hzでの運転が抑制される場合があり、冷房快適性を損なったり、露付き運転になってしまったりする恐れがあった。
このような問題を解決するために、室内制御部12と室外制御部13はファン速度が強・中・弱のいずれにおいても上記実施の形態1の動作をそのまま維持するようにする。
これにより、上記のように冷房快適性をそのまま維持でき、露付き運転を防止することができる。
In the conventional air conditioner, if the fan speed set by the remote controller etc. is different, such as strong, medium, or weak, the maximum rotation speed of the compressor is changed according to this speed, but in this case, Depending on the fan speed, operation of the above compressor at (comp_Hi) Hz or (comp_Me) Hz may be suppressed, resulting in reduced cooling comfort or dew operation. There was a fear.
In order to solve such a problem, the indoor control unit 12 and the outdoor control unit 13 maintain the operation of the first embodiment as it is regardless of whether the fan speed is strong, medium, or weak.
Thereby, as described above, the cooling comfort can be maintained as it is, and the operation with dew can be prevented.

この発明の実施の形態における、ヒートポンプ式空気調和機の構成図を示すものである。The block diagram of the heat pump type air conditioner in embodiment of this invention is shown. 図1に示した空気調和機の制御系を表すブロック図である。It is a block diagram showing the control system of the air conditioner shown in FIG. この発明の実施の形態における、圧縮機最大回転数の設定値を示す図である。It is a figure which shows the setting value of the compressor maximum rotation speed in embodiment of this invention. この発明の実施の形態における、圧縮機最大回転数設定のフローチャートを示す図である。It is a figure which shows the flowchart of compressor maximum rotation speed setting in embodiment of this invention. この発明の実施の形態における、冷房運転時の圧縮機最大回転数変化の1例を示す図である。It is a figure which shows one example of the compressor maximum rotation speed change at the time of air_conditionaing | cooling operation in embodiment of this invention. 自動フィルタお掃除機構11の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the automatic filter cleaning mechanism. 室内相対湿度と露点温度の関係を示す図である。It is a figure which shows the relationship between indoor relative humidity and dew point temperature.

符号の説明Explanation of symbols

1 圧縮機、2 四方切替弁、3 室外熱交換器、4 冷媒減圧装置、5 室内熱交換器、6 室外送風機、7 室内送風機、8 室内温度センサ、9 室内湿度センサ 10 フィルタ、11 自動フィルタお掃除機構、12 室内制御部、13 室外制御部、14 接続線、15 回転数制御回路、16 回転数制御回路、17 インバータ回路、18 リモコン、20 空気調和機。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 way switching valve, 3 Outdoor heat exchanger, 4 Refrigerant decompression device, 5 Indoor heat exchanger, 6 Outdoor blower, 7 Indoor blower, 8 Indoor temperature sensor, 9 Indoor humidity sensor, 10 Filter, 11 Automatic filter Cleaning mechanism, 12 indoor control unit, 13 outdoor control unit, 14 connection line, 15 rotation speed control circuit, 16 rotation speed control circuit, 17 inverter circuit, 18 remote control, 20 air conditioner.

Claims (6)

少なくとも、回転数可変な圧縮機、四方切替弁、室外熱交換器、冷媒減圧装置、室内熱交換器を冷媒配管で順次接続した冷媒回路と、インバータを介して前記圧縮機の回転数を制御する室外制御部を有する室外機と、を備えた空気調和機において、
前記室外制御部は、冷房運転開始後所定時間内は、圧縮機最高回転数を一定周波数以上に設定して露付き防止制御を行わないことを特徴とする空気調和機。
At least a compressor having a variable speed, a four-way switching valve, an outdoor heat exchanger, a refrigerant pressure reducing device, a refrigerant circuit in which indoor heat exchangers are sequentially connected by a refrigerant pipe, and the speed of the compressor are controlled via an inverter. In an air conditioner including an outdoor unit having an outdoor control unit,
The outdoor control unit does not perform dew prevention control by setting the maximum rotational speed of the compressor to a certain frequency or more within a predetermined time after the start of the cooling operation.
室内湿度を検出する室内湿度センサと、
この室内湿度センサからの室内湿度と経過時間に基づいて高湿度帯、中湿度帯、低湿度帯のいずれの湿度帯かを判定して湿度帯情報として出力する室内制御部と、を備え、
前記室外制御部は、前記所定時間経過後は、前記室内制御部からの湿度帯情報を基に圧縮機最高回転数を決定することを特徴とする請求項1記載の空気調和機。
An indoor humidity sensor for detecting indoor humidity;
An indoor control unit that determines whether the humidity zone is a high humidity zone, a middle humidity zone, or a low humidity zone based on the indoor humidity and the elapsed time from the indoor humidity sensor, and outputs the humidity zone information; and
The air conditioner according to claim 1, wherein the outdoor control unit determines a maximum compressor rotation speed based on humidity band information from the indoor control unit after the predetermined time has elapsed.
前記室外制御部は、前記室内制御部からの湿度帯情報が高湿帯のときには、前記圧縮機最高回転数を第1の値以下に決定し、中湿帯のときには、前記圧縮機最高回転数を第1の値以上、第2の値以下に決定し、低湿帯のときには、前記圧縮機最高回転数を第2の値以上に決定することを特徴とする請求項2記載の空気調和機。   The outdoor control unit determines the maximum compressor rotation speed to be equal to or less than a first value when the humidity band information from the indoor control unit is a high humidity band, and the maximum compressor rotation speed when the humidity control is in the middle humidity band. The air conditioner according to claim 2, wherein the air conditioner is determined to be not less than the first value and not more than the second value, and when the humidity is low, the maximum rotational speed of the compressor is determined to be not less than the second value. 前記室外制御部は、室外制御部13は、前記圧縮機運転回転数が圧縮機最高回転数を超えている場合には、圧縮機運転回転数を圧縮機最高回転数を超えない値に修正することを特徴とする請求項1〜3のいずれかに記載の空気調和機。   The outdoor control unit 13 corrects the compressor operation rotational speed to a value that does not exceed the maximum compressor rotational speed when the compressor operational rotational speed exceeds the maximum compressor rotational speed. The air conditioner according to any one of claims 1 to 3. 前記室外制御部は、室内送風機の回転速度毎に前記圧縮機最高回転数を決定することを特徴とする請求項1〜4のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 4, wherein the outdoor control unit determines the maximum number of rotations of the compressor for each rotation speed of the indoor blower. 室内機に設けられ、室内の空気の塵埃を濾過するフィルタと、このフィルタの安定位置に設けられたリミットスイッチと、前記フィルタを所定範囲内で移動させるフィルタ駆動機構と、を有し、前記フィルタ駆動機構によって前記フィルタが移動する際に所定の位置に固定されたブラシが前記フィルタに当接することで前記フィルタに付着した塵埃を掻き取る自動フィルタ清掃機構を備え、
前記室内制御部は、前記自動フィルタ清掃機構のフィルタ駆動機構を起動後、所定の時間を超えても前記リミットスイッチからの信号が変化しないときに、圧縮機の最高回転数を規制することを特徴とした請求項1〜5のいずれかに記載の空気調和機。
A filter that is provided in the indoor unit and that filters indoor air dust, a limit switch that is provided at a stable position of the filter, and a filter drive mechanism that moves the filter within a predetermined range; An automatic filter cleaning mechanism that scrapes dust adhering to the filter by a brush fixed at a predetermined position when the filter is moved by the drive mechanism coming into contact with the filter;
The indoor control unit regulates the maximum rotation speed of the compressor when a signal from the limit switch does not change even after a predetermined time has elapsed after starting the filter drive mechanism of the automatic filter cleaning mechanism. The air conditioner according to any one of claims 1 to 5.
JP2006316711A 2006-11-24 2006-11-24 Air conditioner Active JP4698558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316711A JP4698558B2 (en) 2006-11-24 2006-11-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316711A JP4698558B2 (en) 2006-11-24 2006-11-24 Air conditioner

Publications (3)

Publication Number Publication Date
JP2008128608A true JP2008128608A (en) 2008-06-05
JP2008128608A5 JP2008128608A5 (en) 2008-09-11
JP4698558B2 JP4698558B2 (en) 2011-06-08

Family

ID=39554611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316711A Active JP4698558B2 (en) 2006-11-24 2006-11-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP4698558B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075170A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Air conditioner
CN104964400A (en) * 2015-07-21 2015-10-07 芜湖美智空调设备有限公司 Air conditioner and control method thereof
WO2018188522A1 (en) * 2017-04-13 2018-10-18 青岛海尔空调器有限总公司 Air conditioner heating operation control method
CN109579235A (en) * 2018-11-30 2019-04-05 广东美的制冷设备有限公司 The control method of air conditioner, the control device of comfort mode and air conditioner
WO2019176099A1 (en) * 2018-03-16 2019-09-19 三菱電機株式会社 Air conditioner
CN110940058A (en) * 2019-11-22 2020-03-31 珠海格力电器股份有限公司 Air conditioner condensation prevention control method and device, storage medium and air conditioner
WO2024016841A1 (en) * 2022-07-22 2024-01-25 青岛海尔特种电冰柜有限公司 Humidity control method for aging fridge

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288230B (en) * 2016-09-22 2019-03-12 Tcl空调器(中山)有限公司 The defrosting control method and device of window air conditioner
CN112902407B (en) * 2021-01-28 2022-04-22 四川长虹空调有限公司 Method for controlling operation frequency of variable frequency air conditioner through outdoor humidity

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659169A (en) * 1979-10-17 1981-05-22 Matsushita Electric Ind Co Ltd Air conditioner
JPS6433457A (en) * 1987-07-29 1989-02-03 Toshiba Corp Controller for air conditioner
JPH07120085A (en) * 1993-10-20 1995-05-12 Fujitsu General Ltd Air conditioner
JP2002089933A (en) * 2000-09-18 2002-03-27 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2003106606A (en) * 2001-09-28 2003-04-09 Matsushita Electric Ind Co Ltd Dew condensation prevention control method for air conditioner
WO2003029728A1 (en) * 2001-09-28 2003-04-10 Daikin Industries, Ltd. Air conditioner
JP2004225948A (en) * 2003-01-21 2004-08-12 Sanyo Electric Co Ltd Air conditioner and control method of air conditioner
JP2006170614A (en) * 2006-03-17 2006-06-29 Fujitsu General Ltd Air conditioner
JP2006234326A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659169A (en) * 1979-10-17 1981-05-22 Matsushita Electric Ind Co Ltd Air conditioner
JPS6433457A (en) * 1987-07-29 1989-02-03 Toshiba Corp Controller for air conditioner
JPH07120085A (en) * 1993-10-20 1995-05-12 Fujitsu General Ltd Air conditioner
JP2002089933A (en) * 2000-09-18 2002-03-27 Matsushita Electric Ind Co Ltd Controller for air conditioner
JP2003106606A (en) * 2001-09-28 2003-04-09 Matsushita Electric Ind Co Ltd Dew condensation prevention control method for air conditioner
WO2003029728A1 (en) * 2001-09-28 2003-04-10 Daikin Industries, Ltd. Air conditioner
JP2004225948A (en) * 2003-01-21 2004-08-12 Sanyo Electric Co Ltd Air conditioner and control method of air conditioner
JP2006234326A (en) * 2005-02-25 2006-09-07 Mitsubishi Heavy Ind Ltd Air conditioning system
JP2006170614A (en) * 2006-03-17 2006-06-29 Fujitsu General Ltd Air conditioner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075170A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Air conditioner
CN104964400A (en) * 2015-07-21 2015-10-07 芜湖美智空调设备有限公司 Air conditioner and control method thereof
WO2018188522A1 (en) * 2017-04-13 2018-10-18 青岛海尔空调器有限总公司 Air conditioner heating operation control method
WO2019176099A1 (en) * 2018-03-16 2019-09-19 三菱電機株式会社 Air conditioner
JPWO2019176099A1 (en) * 2018-03-16 2021-01-07 三菱電機株式会社 Air conditioner
JP7034254B2 (en) 2018-03-16 2022-03-11 三菱電機株式会社 Air conditioner
CN109579235A (en) * 2018-11-30 2019-04-05 广东美的制冷设备有限公司 The control method of air conditioner, the control device of comfort mode and air conditioner
CN110940058A (en) * 2019-11-22 2020-03-31 珠海格力电器股份有限公司 Air conditioner condensation prevention control method and device, storage medium and air conditioner
WO2024016841A1 (en) * 2022-07-22 2024-01-25 青岛海尔特种电冰柜有限公司 Humidity control method for aging fridge

Also Published As

Publication number Publication date
JP4698558B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4698558B2 (en) Air conditioner
US10415842B2 (en) Outdoor unit for air conditioner, air conditioner, and method for controlling air conditioner
JP6768546B2 (en) Air conditioner
WO2020024695A1 (en) Control method and control device of air conditioner and air conditioner
JP4726664B2 (en) Air conditioner
JPWO2019073514A1 (en) Refrigeration cycle device
JP2008014606A (en) Air conditioner
JP6850367B2 (en) Control method of air conditioner and air conditioner
JP3867490B2 (en) Air conditioner control device
JP2006170528A (en) Air conditioner
JP3555600B2 (en) Air conditioner
JP5686754B2 (en) Air conditioner
KR100545957B1 (en) Air conditioning apparatus and control method thereof
JP4844147B2 (en) Air conditioner
CN112074692B (en) Air conditioner
JP3191719B2 (en) Oil return operation control device for refrigeration equipment
JP2006189183A (en) Air conditioner
JP6615371B2 (en) Refrigeration cycle equipment
JP2010091118A (en) Air conditioner
WO1998009116A1 (en) Controller of air conditioner
JP2005016884A (en) Air conditioner
JP5233556B2 (en) Air conditioner
JP2006343095A (en) Air conditioner
JP2006194552A (en) Air conditioner
JP2006118731A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250