JP2008128407A - Fixed type constant velocity universal joint - Google Patents

Fixed type constant velocity universal joint Download PDF

Info

Publication number
JP2008128407A
JP2008128407A JP2006315848A JP2006315848A JP2008128407A JP 2008128407 A JP2008128407 A JP 2008128407A JP 2006315848 A JP2006315848 A JP 2006315848A JP 2006315848 A JP2006315848 A JP 2006315848A JP 2008128407 A JP2008128407 A JP 2008128407A
Authority
JP
Japan
Prior art keywords
male spline
diameter
shaft
constant velocity
joint member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006315848A
Other languages
Japanese (ja)
Inventor
Yukio Matsubara
幸生 松原
Hiroo Morimoto
洋生 森本
Kazuhiko Yoshida
和彦 吉田
Shigeyoshi Ishiguro
重好 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006315848A priority Critical patent/JP2008128407A/en
Publication of JP2008128407A publication Critical patent/JP2008128407A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent cracking of a minor diameter part of a shaft while improving the fatigue strength of a male spline part in a fixed type constant velocity universal joint by moderating stress concentration of both tensile stress and shearing stress in the male spline part of the shaft. <P>SOLUTION: A male spline part Sm is formed on the outer circumference of a power transmission shaft. In a part on the anti-shaft end side of the valley part 21 of the male spline part Sm, a diameter extended part 21b the outer diameter dimension of which is gradually extended toward the anti-shaft end side is provided. Round parts 21b1 having a circular section are provided on both circumferential sides of the diameter extended part 21b, and the curvature radius of the round parts 21b1 is gradually increased toward the anti-shaft end side. Further, a track groove of an outer joint member is formed in an undercut free type to extend the outer diameter dimension of the minor diameter part of the shaft. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二軸間の軸方向変位が許容されず、二軸間の角度変位のみが許容される固定型等速自在継手に関するものである。   The present invention relates to a fixed type constant velocity universal joint in which axial displacement between two axes is not allowed and only angular displacement between the two axes is allowed.

近年、環境問題に対する関心の高まりから、例えば自動車では排ガス規制の強化や燃費向上等が強く求められており、それらの対策の一環として、ドライブシャフト、プロペラシャフト等に使用される等速自在継手にもさらなる軽量化・強度向上が強く求められている。この種の等速自在継手では、内側継手部材に連結されるシャフトの外周面に雄側のスプライン(セレーションも含む)が形成される。この雄スプライン部を、内側継手部材の内周面に形成された雌スプライン部に嵌合させることにより、内側継手部材とシャフトとがトルク伝達可能に結合される。   In recent years, with increasing interest in environmental issues, for example, automobiles are strongly required to tighten exhaust gas regulations and improve fuel efficiency. As part of these measures, constant velocity universal joints used for drive shafts, propeller shafts, etc. However, further weight reduction and strength improvement are strongly demanded. In this type of constant velocity universal joint, a male spline (including serrations) is formed on the outer peripheral surface of the shaft connected to the inner joint member. By fitting this male spline portion to a female spline portion formed on the inner peripheral surface of the inner joint member, the inner joint member and the shaft are coupled so as to transmit torque.

雄スプライン部を有する動力伝達シャフトには強度が要求されるため、通常は、素材として鋼を用い、雄スプライン部を転造加工やプレス加工などによって成形した後、少なくとも雄スプライン部を焼入れ硬化させて使用される。成形後の焼入れ硬化の方法としては、高周波焼入れによることが多いが、ずぶ焼入れや浸炭焼入れによる場合もある。   Since a power transmission shaft with a male spline part requires strength, usually steel is used as the material, and after forming the male spline part by rolling or pressing, at least the male spline part is hardened and hardened. Used. As a method of quenching and hardening after molding, induction hardening is often used, but there are also cases of submerged hardening and carburizing and hardening.

図8は、谷部100の反軸端側(図面左側)の端部を、外径寸法を徐々に拡径させた拡径部102を介して外周面(平滑部)101につなげた、いわゆる切上がりタイプの雄スプライン部を示す平面図である。この形態の雄スプライン部の疲労破壊は、通常、谷部100と拡径部102のつなぎ目付近もしくは拡径部102で生じる。その際のき裂発生モードは2つあり、1つはA部に集中する引張応力によるもの、もう一つはB部に集中するせん断応力によるものである。鋼の場合、目安としてビッカース硬さ700を境に、それ以下ではき裂発生が主としてせん断応力支配となり、それ以上でかつ片振り捩り疲労の場合は引張応力支配となる。   FIG. 8 shows a so-called end portion of the valley portion 100 on the opposite axis end side (left side in the drawing) connected to an outer peripheral surface (smooth portion) 101 via a diameter-expanded portion 102 whose outer diameter is gradually increased. It is a top view which shows a male spline part of a round-up type. The fatigue failure of the male spline portion of this form usually occurs near the joint between the valley portion 100 and the enlarged diameter portion 102 or at the enlarged diameter portion 102. There are two crack generation modes at that time, one is due to the tensile stress concentrated in the A portion, and the other is due to the shear stress concentrated in the B portion. In the case of steel, cracks are mainly governed by shear stress below Vickers hardness 700 as a guide, and if it is more than that, and if it is swung torsional fatigue, it is governed by tensile stress.

これまで、雄スプライン部の疲労強度を向上させるための手段として、いくつかの方法が提案されている。例えば特許文献1では、拡径部と歯面の境界を鈍化させて応力集中を緩和する技術が開示されている。また、特許文献2では、通常は一つの拡径部を軸方向に2つ以上並べて設けた高強度化技術が開示されている。
特開2005−147367号公報 特表平11−514079号公報
So far, several methods have been proposed as means for improving the fatigue strength of the male spline part. For example, Patent Literature 1 discloses a technique for reducing stress concentration by blunting the boundary between the enlarged diameter portion and the tooth surface. Further, Patent Document 2 discloses a high strength technology in which two or more diameter-expanded portions are usually arranged side by side in the axial direction.
JP 2005-147367 A Japanese National Patent Publication No. 11-514079

しかしながら、特許文献1に記載された技術では、引張応力集中の緩和には効果が認められるが、せん断応力集中の緩和効果は不充分である。また、特許文献2の技術では、せん断応力集中の緩和はできるが、引張応力集中の緩和効果は不充分である。このように、き裂発生を支配する2つの応力のどちらか一方を緩和できる技術は存在するが、双方を同時に緩和する技術は存在せず、さらなる疲労強度向上を実現するためには改良の余地があった。   However, in the technique described in Patent Document 1, an effect is recognized in reducing the tensile stress concentration, but the effect of reducing the shear stress concentration is insufficient. Further, in the technique of Patent Document 2, the shear stress concentration can be reduced, but the effect of reducing the tensile stress concentration is insufficient. As described above, there is a technology that can relieve one of the two stresses that govern crack initiation, but there is no technology that relieves both simultaneously, and there is room for improvement in order to achieve further improvement in fatigue strength. was there.

また、雄スプライン部の疲労強度が高められたとしても、シャフトの他の部分にき裂が生じる場合がある。例えば、内側継手部材に連結されるシャフトのうち、大きな作動角を取ったときに外側継手部材の開口端部と干渉する部分に、他の部分より小径な小径部を形成することにより、シャフトと外側継手部材との干渉を遅らせ、継手の作動角の高角化を図ることがある(図1参照)。このようにシャフトを部分的に小径化することで強度が低下し、この部分にき裂が生じる恐れがある。   Even if the fatigue strength of the male spline part is increased, cracks may occur in other parts of the shaft. For example, among the shafts connected to the inner joint member, by forming a small-diameter portion having a smaller diameter than the other portions in a portion that interferes with the opening end portion of the outer joint member when a large operating angle is taken, Interference with the outer joint member may be delayed to increase the operating angle of the joint (see FIG. 1). Thus, by partially reducing the diameter of the shaft, the strength is lowered, and there is a possibility that a crack may occur in this portion.

そこで、本発明では、固定型等速自在継手において、シャフトの雄スプライン部での引張応力とせん断応力の双方の応力集中を緩和させて、雄スプライン部の疲労強度の向上を図ると共に、シャフトのその他の部分における強度を高めることを目的とする。   Therefore, in the present invention, in the fixed type constant velocity universal joint, the stress concentration of both the tensile stress and the shear stress in the male spline portion of the shaft is relaxed to improve the fatigue strength of the male spline portion, and the shaft The purpose is to increase the strength in other parts.

本発明者らは、平行部に切欠きを有する試験片を製作し、これを回転曲げ疲労試験と捩り疲労試験にそれぞれ供して、応力集中係数と疲労強度との関係を求めた。   The inventors of the present invention manufactured a test piece having a notch in a parallel portion, and used it for a rotational bending fatigue test and a torsional fatigue test, respectively, to determine the relationship between the stress concentration factor and the fatigue strength.

試験片としては、図9に示す化学成分の同一ロットの中炭素鋼を用い、図10aおよび図11aに示す形状および寸法(単位mm)の試験片を製作した。図10aは回転曲げ疲労試験の試験片であり、図11aは捩り疲労試験の試験片である。回転曲げ疲労試験の試験片では、切欠き先端の曲率半径を0.10、0.15、0.25、0.50、1.40の5水準とし、それぞれの応力集中係数αを3.5、3.0、2.5、2.0、1.5に設定した(図10c参照)。捩り疲労試験の試験片では、切欠き先端の曲率半径を0.15、0.25、0.50、1.40の4水準とし、それぞれの応力集中係数αを3.0、2.5、2.0、1.5に設定した(図11c参照)。これら全ての試験片に対し、切欠きを含む平行部に高周波焼入れを施した後に低温焼戻しを施した。何れの試験片も熱処理後の表面硬度は約HV650であった。   As a test piece, a medium carbon steel having the same chemical composition shown in FIG. 9 was used, and a test piece having the shape and dimensions (unit: mm) shown in FIGS. 10a and 11a was produced. FIG. 10 a is a test piece for a rotating bending fatigue test, and FIG. 11 a is a test piece for a torsional fatigue test. In the specimen of the rotating bending fatigue test, the radius of curvature of the notch tip is set to five levels of 0.10, 0.15, 0.25, 0.50, and 1.40, and the stress concentration coefficient α is 3.5. , 3.0, 2.5, 2.0, 1.5 (see FIG. 10c). In the torsional fatigue test specimen, the radius of curvature of the notch tip is set to four levels of 0.15, 0.25, 0.50, 1.40, and the stress concentration coefficient α is 3.0, 2.5, 2.0 and 1.5 were set (see FIG. 11c). All of these test pieces were subjected to induction quenching in parallel portions including the notches and then subjected to low temperature tempering. All the test pieces had a surface hardness of about HV650 after the heat treatment.

先ず、回転曲げ疲労試験は、小野式回転曲げ疲労試験機により、常温大気中で負荷周波数50Hzにて行った。   First, the rotating bending fatigue test was performed with an Ono type rotating bending fatigue tester in a room temperature atmosphere at a load frequency of 50 Hz.

回転曲げ疲労試験の結果、切欠きの水準によらず、切欠き底に沿ってき裂が発生して破断に至った。この場合のき裂発生モードは引張応力支配となる。破断に至るまでの負荷回数が10を越える辺りまでは、応力振幅の減少に伴って疲労曲線が降下し、応力振幅が一定値を下回ると破断しなくなる明瞭な疲労限現象を示した。なお、ここでの応力振幅は、切欠きの水準によらない公称応力振幅のことで、切欠き底直径(φ6.5mm)を有する平滑丸棒に疲労試験と同じ大きさの曲げモーメントを与えた時に表面に作用する最大引張応力振幅を意味する。 As a result of the rotating bending fatigue test, cracks occurred along the bottom of the notch regardless of the level of the notch, leading to fracture. The crack initiation mode in this case is governed by tensile stress. Until around exceeding the load count is 10 5 up to the break, fatigue curve drops with decreasing stress amplitude, stress amplitude showed clear fatigue limit phenomena no longer fracture and below a certain value. The stress amplitude here is a nominal stress amplitude that does not depend on the level of the notch, and a smooth round bar having a notch bottom diameter (φ6.5 mm) was given a bending moment of the same size as the fatigue test. It means the maximum tensile stress amplitude that sometimes acts on the surface.

図12に、上記回転曲げ疲労試験で得られた応力集中係数ασと疲労限強度との関係を示す。図示のように、ασの減少に伴って疲労強度は向上したが、図中に破線で示すように、ασ≦2.7では疲労曲線の勾配が大きく、ασを減少させた時の疲労強度の向上がより顕著に現れることが判明した。 FIG. 12 shows the relationship between the stress concentration factor α σ obtained in the rotating bending fatigue test and the fatigue limit strength. As shown in the figure, the fatigue strength improved as α σ decreased. However, as shown by the broken line in the figure, when α σ ≦ 2.7, the fatigue curve has a large gradient, and when α σ is decreased. It has been found that the improvement in fatigue strength appears more prominently.

次に、捩り疲労試験は、電気式油圧サーボ疲労試験機により、トルク制御にて、常温大気中で負荷周波数2Hz、完全両振り(応力比R=−1)の条件で行った。   Next, the torsional fatigue test was carried out under the conditions of a load frequency of 2 Hz and a full swing (stress ratio R = -1) in a normal temperature atmosphere by torque control using an electric hydraulic servo fatigue tester.

捩り疲労試験の結果、切欠きの水準によらず、切欠き底に沿ってき裂が発生して破断に至った。この場合のき裂発生モードはせん断応力支配となる。両振り捩り疲労試験は負荷回数が最大で10回近くになるまで行ったが、その範囲では応力振幅の減少に伴って、疲労曲線が降下した。なお、ここでの応力振幅は、切欠きの水準によらない公称応力振幅のことで、切欠き底直径(φ17mm)を有する平滑丸棒に疲労試験と同じ大きさの捩りトルクを与えた時に表面に作用する最大せん断応力振幅を意味する。 As a result of the torsional fatigue test, cracks occurred along the bottom of the notch regardless of the level of the notch, leading to fracture. The crack initiation mode in this case is governed by shear stress. Both reversed torsional fatigue test is load count went until near 10 6 times at most in the range with decreasing stress amplitude fatigue curve drops. The stress amplitude here is a nominal stress amplitude that does not depend on the level of the notch, and is applied to a smooth round bar having a notch bottom diameter (φ17 mm) when a torsion torque of the same magnitude as that in the fatigue test is applied. Means the maximum shear stress amplitude acting on

図13に、上記両振り捩り疲労試験で得られた応力集中係数ατと10回における疲労強度との関係を示す。図示のように、ατの減少に伴って疲労強度は向上したが、図中に破線で示すように、ατ≦2.1では疲労曲線の勾配が大きく、ατを減少させた時の疲労強度の向上がより顕著に現れることが判明した。 13 shows a relationship between fatigue strength of the both reversed torsional fatigue test with the resulting stress concentration factor alpha tau and 10 5 times. As shown in the figure, the fatigue strength improved as α τ decreased. However, as shown by the broken line in the figure, when α τ ≦ 2.1, the fatigue curve gradient was large, and when α τ was decreased, It has been found that the improvement in fatigue strength appears more prominently.

以上から、き裂発生が引張応力、せん断応力のどちらに支配される場合であっても応力集中緩和によって疲労強度が向上し、特に引張応力に対してはασ≦2.7で、また、せん断応力に対してはατ≦2.1でより応力集中の緩和効果が高まることが判明した。従って、双方の破損モードで疲労破壊する雄スプライン部の拡径部においては、そこに集中する第1主応力の最大値σ1maxを基準応力τの2.7倍以下(σ1max≦2.7τ)、軸方向のせん断応力の最大値τθzmaxを基準応力τの2.1倍以下(τθzmax≦2.1τ)となるよう形状をチューニングすることが望ましい。ここで、基準応力τは、トルクTと、図6に示す雄スプライン部の谷部底の直径dと、雄スプライン部の内径d(雄スプライン部が中空の場合。中実の時はd=0となる)とに対し、以下で与えられる値である。 From the above, whether the crack initiation is governed by either tensile stress or shear stress, the fatigue strength is improved by stress concentration relaxation, particularly α σ ≦ 2.7 for tensile stress, It has been found that the stress concentration relaxation effect is further enhanced when α τ ≦ 2.1 against shear stress. Accordingly, in the expanded portion of the male spline portion that undergoes fatigue failure in both failure modes, the maximum value σ 1max of the first principal stress concentrated there is not more than 2.7 times the reference stress τ 01max ≦ 2. 7τ o ), and it is desirable to tune the shape so that the maximum value τ θzmax of the shear stress in the axial direction is 2.1 times or less (τ θzmax ≦ 2.1τ 0 ) of the reference stress τ 0 . The reference stress tau 0 is the torque T, the diameter d o of the valley bottom of the male spline section shown in FIG. 6, when the inner diameter d i (male spline portion of the male spline portion of the hollow case. In real Is given by d i = 0).

τ=16Td/[π(d −d )] τ 0 = 16 Td o / [π (d o 4 −d i 4 )]

本発明者らが拡径部の形状を種々チューニングした結果、雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を反軸端側に向けて徐々に大きくすれば、σ1max≦2.7τ、およびτθzmax≦2.1τを満足できることが判明した。 As a result of various tunings of the shape of the enlarged diameter portion by the present inventors, rounded portions are provided on both sides in the circumferential direction of the enlarged diameter portion of the male spline portion, and the curvature radius of the rounded portion is gradually increased toward the opposite shaft end side. Then, it was found that σ 1max ≦ 2.7τ o and τ θzmax ≦ 2.1τ 0 can be satisfied.

次に、図10(a)および図11(a)の切欠き疲労試験片と同じ成分(図9参照)の素材を用いて、両軸端に雄スプライン部を有するシャフト形状試験片を製作し(図17a参照)、この試験片を用いて両振り捩り疲労試験および片振り捩り疲労試験を行った。試験片は、図17bに示すインボリュートスプライン諸元に準じ、本発明品相当と従来品相当の2種類を製作した。これら試験片には、その全体に大気中の同一条件で高周波焼入れおよび焼戻しが施されている。両振り捩り疲労試験は850〜1300Nmの範囲の4水準で行い、片振り捩り疲労試験は1250〜2000Nmの範囲の4水準の最大捩りトルクを付与している。図18に両振り捩り疲労試験で得られたT/N線図、図19に片振り疲労試験で得られたT/N線図を示す。両図からも明らかなように、本発明品では、従来品に対して両振り捩り疲労および片振り捩り疲労の双方で大幅な疲労強度の向上を達成することができる。   Next, a shaft-shaped test piece having male spline portions at both shaft ends is manufactured using a material having the same component (see FIG. 9) as the notched fatigue test piece of FIGS. 10 (a) and 11 (a). (See FIG. 17a) Using this test piece, a double torsional fatigue test and a single torsional fatigue test were performed. According to the involute spline specifications shown in FIG. 17b, two types of test pieces were produced, equivalent to the product of the present invention and equivalent to the conventional product. These test pieces are subjected to induction hardening and tempering under the same conditions in the atmosphere as a whole. The double torsional fatigue test is conducted at four levels in the range of 850 to 1300 Nm, and the single torsional fatigue test gives a maximum torsional torque of four levels in the range of 1250 to 2000 Nm. FIG. 18 shows a T / N diagram obtained in the double swing torsional fatigue test, and FIG. 19 shows a T / N diagram obtained in the single swing fatigue test. As is clear from both figures, the product of the present invention can achieve a significant improvement in fatigue strength in both the double torsional fatigue and the single swing torsional fatigue compared to the conventional product.

以上から、本発明は、以下の事項によって特徴付けられるものである。   As described above, the present invention is characterized by the following matters.

(I)外周に雄スプライン部が設けられ、雄スプライン部の谷部の軸方向一端側にその外径寸法を徐々に拡径させた拡径部を有するシャフトと、内周に前記雄スプライン部と嵌合する雌スプライン部を有し、外周にトラック溝を有する内側継手部材と、内周にトラック溝を有する外側継手部材と、内側継手部材のトラック溝と外側継手部材のトラック溝とで形成されるボールトラックに配置されたトルク伝達ボールと、トルク伝達ボールを円周方向等間隔に保持するケージとを備える固定型等速自在継手において、前記雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を軸方向一端側に向けて徐々に大きくし、且つ、外側継手部材のトラック溝をアンダーカットフリー形状とする。   (I) A shaft having a male spline portion provided on the outer periphery, and having a diameter-expanded portion whose outer diameter is gradually increased on one end side in the axial direction of the valley portion of the male spline portion; The inner joint member having a female spline portion to be fitted and having a track groove on the outer periphery, the outer joint member having a track groove on the inner periphery, the track groove of the inner joint member, and the track groove of the outer joint member In a fixed type constant velocity universal joint provided with a torque transmission ball disposed on a ball track and a cage for holding the torque transmission balls at equal intervals in the circumferential direction, both sides in the circumferential direction of the enlarged diameter portion of the male spline portion Are provided with a rounded portion, the radius of curvature of the rounded portion is gradually increased toward one end in the axial direction, and the track groove of the outer joint member is formed into an undercut-free shape.

(II)トルクTが負荷されたときに、雄スプライン部の拡径部に作用する第1主応力、および軸方向のせん断応力の最大値をそれぞれσ1max、τθzmaxとし、トルクT、雄スプライン部の谷部の直径d、雄スプライン部の内径dに対し、1)式で与えられる基準応力τとするとき、下記2)式と3)式を同時に満たすようにする。 (II) When the torque T is loaded, the first principal stress acting on the diameter-expanded portion of the male spline portion and the maximum values of the shear stress in the axial direction are σ 1max and τ θzmax , respectively. valley diameter d o of the parts, with respect to the inner diameter d i of the male spline portion, 1) when the reference stress tau 0 given by equation to satisfy the following 2) and 3) at the same time.

τ=16Td/[π(d −d )] …1) τ 0 = 16 Td o / [π (d o 4 −d i 4 )]... 1)

σ1max≦2.7τ …2) σ 1max ≦ 2.7τ o ... 2)

τθzmax≦2.1τ …3) τ θzmax ≦ 2.1τ 0 ... 3)

本発明者が検証したところ、以上の構成においては、アール部の曲率半径の増加率をdR/dL、拡径部の軸方向断面の内径端と外径端を結ぶ直線の角度をθとするとき、それぞれの値を0.05≦dR/dL≦0.60、および5°≦θ≦20°の範囲に設定するのが望ましいことが判明した。   As a result of verification by the inventor, in the above configuration, the rate of increase in the radius of curvature of the rounded portion is dR / dL, and the angle of the straight line connecting the inner diameter end and the outer diameter end of the axial section of the enlarged diameter portion is θ. It was found that it is desirable to set the respective values in the ranges of 0.05 ≦ dR / dL ≦ 0.60 and 5 ° ≦ θ ≦ 20 °.

シャフトの少なくとも雄スプライン部は、例えば高周波焼入れで焼入れ硬化させるのが望ましい。さらにシャフトの雄スプライン部にショットピーニングを施すことにより、雄スプライン部の疲労強度をより一層高めることができる。   It is desirable that at least the male spline portion of the shaft be hardened by induction hardening, for example. Furthermore, by performing shot peening on the male spline portion of the shaft, the fatigue strength of the male spline portion can be further increased.

また、本発明の等速自在継手では、外側継手部材のトラック溝をアンダーカットフリー形状としているため、シャフトの小径部の外径寸法を拡大することができ、この部分の強度を高めることができる。これによる効果を対比説明するため、図28にいわゆるツェッパ型の等速自在継手101を示す。この等速自在継手101は、シャフト102と、シャフト102にスプライン嵌合した内側継手部材103と、内側継手部材103を内周に保持した外側継手部材104と、内側継手部材103と外側継手部材104との間に配された複数のボール105とを備える。この等速自在継手101が大きな作動角θを取ったとき、シャフト102と外側継手部材104の開口端部との間には隙間eが形成される。一方、図1(b)に示すいわゆるアンダーカットフリー型の等速自在継手1が大きな作動角θを取ったときには、シャフト2と外側継手部材4の開口部との間には隙間eが形成される。この隙間eは、ツェッパ型等速自在継手101における隙間eよりも大きくなる。言い換えると、同じ最大作動角θを維持したまま、隙間eと隙間eとの差の分(e−e)だけシャフトの外径寸法を拡大することができる。これにより、シャフトの強度を高めることができるため、シャフトの小径部におけるき裂の発生を抑制することができる。 Further, in the constant velocity universal joint of the present invention, since the track groove of the outer joint member has an undercut-free shape, the outer diameter of the small diameter portion of the shaft can be enlarged, and the strength of this portion can be increased. . FIG. 28 shows a so-called Zepper type constant velocity universal joint 101 in order to compare and explain the effect of this. The constant velocity universal joint 101 includes a shaft 102, an inner joint member 103 that is spline-fitted to the shaft 102, an outer joint member 104 that holds the inner joint member 103 on the inner periphery, an inner joint member 103, and an outer joint member 104. And a plurality of balls 105 disposed between the two. When the constant velocity universal joint 101 takes a large operating angle θ, a gap e 1 is formed between the shaft 102 and the open end of the outer joint member 104. On the other hand, when the so-called undercut-free type constant velocity universal joint 1 shown in FIG. 1B has a large operating angle θ, a gap e 2 is formed between the shaft 2 and the opening of the outer joint member 4. Is done. The gap e 2 is larger than the gap e 1 in the Rzeppa constant velocity universal joint 101. In other words, the outer diameter of the shaft can be enlarged by the difference (e 2 −e 1 ) between the gap e 2 and the gap e 1 while maintaining the same maximum operating angle θ. Thereby, since the intensity | strength of a shaft can be raised, generation | occurrence | production of the crack in the small diameter part of a shaft can be suppressed.

さらに、雄スプライン部及び雌スプライン部の何れか一方を軸方向に対して捩れ角を有するように設けると、スプライン嵌合部におけるガタ詰め効果を得ることができる。   Furthermore, when any one of the male spline part and the female spline part is provided so as to have a twist angle with respect to the axial direction, it is possible to obtain a loosening effect in the spline fitting part.

以上のように、本発明の固定型等速自在継手によれば、シャフトの雄スプライン部での引張応力とせん断応力の双方の応力集中を緩和させて、雄スプライン部の疲労強度の向上を図ると共に、シャフトの小径部における強度を向上させることが可能となる。   As described above, according to the fixed type constant velocity universal joint of the present invention, the stress concentration of both the tensile stress and the shear stress in the male spline portion of the shaft is relaxed, and the fatigue strength of the male spline portion is improved. At the same time, the strength at the small diameter portion of the shaft can be improved.

以下、本発明の実施の形態を、添付図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1(a)に、本発明に係る固定型等速自在継手1を組み込んだドライブシャフトの断面図を示す。図示例の固定型等速自在継手1は、動力伝達シャフト2(以下、単にシャフト2と称す)と、シャフト2のアウトボード側(車両搭載時に車幅方向の外となる側)の端部に装着される内側継手部材3と、内側継手部材3の外径側に配置される外側継手部材4と、内側継手部材3と外側継手部材4との間でトルクを伝達するトルク伝達部材としてのボール5とを主要構成要素とする。内側継手部材3の外周に形成されたトラック溝3aと外側継手部材4の内周に形成されたトラック溝4aとで形成されるボールトラックにボール5を配置し、円周方向等配位置に配置した複数のボール5をケージ7で保持している。   FIG. 1A is a sectional view of a drive shaft incorporating a fixed type constant velocity universal joint 1 according to the present invention. The fixed type constant velocity universal joint 1 in the illustrated example is provided at a power transmission shaft 2 (hereinafter simply referred to as the shaft 2) and an end portion of the shaft 2 on the outboard side (the side that is outside in the vehicle width direction when mounted on the vehicle). A ball as a torque transmission member that transmits torque between the inner joint member 3 to be mounted, an outer joint member 4 disposed on the outer diameter side of the inner joint member 3, and the inner joint member 3 and the outer joint member 4. 5 is a main component. The balls 5 are arranged on a ball track formed by the track grooves 3a formed on the outer periphery of the inner joint member 3 and the track grooves 4a formed on the inner periphery of the outer joint member 4, and are arranged at equidistant positions in the circumferential direction. The plurality of balls 5 are held by the cage 7.

図1(b)に、固定型等速自在継手1が大きな作動角θを取った状態の拡大部分断面図を示す。外側継手部材のトラック溝4a1の継手開口側(図中右側)の一部領域は、アンダーカットフリー形状、例えば外側継手部材4の中心軸と平行な直線状に形成され、これにより継手の作動角の高角化を図っている。内側継手部材3のトラック溝3a1の継手奥側(図中左側)の一部領域は、外側継手部材4のトラック溝4a1に対応した形状、すなわち内側継手部材3の中心軸と平行な直線状に形成される。尚、外側継手部材4のトラック溝4a1は、アンダーカットフリー形状である限り他の形状としてもよく、例えば継手開口側へ向けて中心軸から離隔するように拡径するテーパ状に形成してもよい。この場合、内側継手部材3のトラック溝3a1は、外側継手部材4のトラック溝4a1に対応させて、継手奥側ヘむけて中心軸から離隔するように拡径するテーパ状に形成される。   FIG. 1B shows an enlarged partial sectional view of the fixed type constant velocity universal joint 1 with a large operating angle θ. A partial region on the joint opening side (right side in the drawing) of the track groove 4a1 of the outer joint member is formed into an undercut-free shape, for example, a straight line parallel to the central axis of the outer joint member 4, thereby operating the joint. We are trying to increase the angle. A partial region on the inner side of the track groove 3a1 of the inner joint member 3 (the left side in the drawing) corresponds to the shape of the track groove 4a1 of the outer joint member 4, that is, a straight line parallel to the central axis of the inner joint member 3. It is formed. The track groove 4a1 of the outer joint member 4 may have another shape as long as it is an undercut-free shape. For example, the track groove 4a1 may be formed in a tapered shape whose diameter is increased away from the central axis toward the joint opening side. Good. In this case, the track groove 3a1 of the inner joint member 3 is formed in a tapered shape corresponding to the track groove 4a1 of the outer joint member 4 so as to expand toward the joint back side so as to be separated from the central axis.

シャフト2のインボード側(車両搭載時に車幅方向中央よりとなる側)の端部には、トリポード型等速自在継手1’が装着される。このトリポード型等速自在継手はシャフト2に結合される内側継手部材3’と、内側継手部材3’の外径側に配置される外側継手部材4’と、内側継手部材3’と外側継手部材4’との間でトルクを伝達するトルク伝達部材としてのローラ5’とを主要構成要素とする。内側継手部材3’の円周方向三箇所には、脚軸3a’が突設されている。外側継手部材4’の内周の円周方向三等分位置には軸方向に延びるトラック溝4a’が形成され、このトラック溝4a’をローラ5’が転動する。   A tripod type constant velocity universal joint 1 ′ is attached to an end portion of the shaft 2 on the inboard side (side from the center in the vehicle width direction when the vehicle is mounted). The tripod type constant velocity universal joint includes an inner joint member 3 ′ coupled to the shaft 2, an outer joint member 4 ′ disposed on the outer diameter side of the inner joint member 3 ′, an inner joint member 3 ′, and an outer joint member. A roller 5 ′ as a torque transmission member that transmits torque to and from 4 ′ is a main component. Leg shafts 3a 'are projected from three locations in the circumferential direction of the inner joint member 3'. A track groove 4a 'extending in the axial direction is formed at a position of the inner circumference of the outer joint member 4' in the circumferential direction, and a roller 5 'rolls along the track groove 4a'.

シャフト2の一部軸方向領域には、外径寸法が最も小さく、且つ外周面が平滑な小径部2a、2a’が形成される(図1参照)。等速自在継手1、1’の最大作動角は、シャフト2と外側継手部材4、4’の開口部との干渉により制限されるが、シャフト2のうち、外側継手部材4、4’と干渉する部分に小径部2a、2a’を設けることにより、これらの干渉を遅らせて、継手の最大作動角の高角化が図られる。   Small-diameter portions 2a and 2a 'having the smallest outer diameter and a smooth outer peripheral surface are formed in a partial axial direction region of the shaft 2 (see FIG. 1). The maximum operating angle of the constant velocity universal joint 1, 1 ′ is limited by the interference between the shaft 2 and the opening of the outer joint member 4, 4 ′, but the shaft 2 interferes with the outer joint member 4, 4 ′. By providing the small-diameter portions 2a and 2a ′ in the portion to be performed, these interferences are delayed, and the maximum operating angle of the joint can be increased.

シャフト2は、例えば炭素量0.30〜0.60mass%程度の中炭素鋼(例えばJIS G 4051に規定の機械構造用炭素鋼S35C)で中空に形成される。C量が0.30mass%を下回ると、高周波焼入れしても安定した高硬度を得ることができず、0.60mass%をこえると、素材硬度が上昇して転造等の加工性が著しく低下する。このように、動力伝達シャフト2を中空に形成することで、軽量化及び低コスト化を図ることができる。尚、動力伝達シャフト2は中実に形成してもよく、この場合、強度の向上効果が得られる。   The shaft 2 is formed hollow with medium carbon steel (for example, carbon steel S35C for machine structure defined in JIS G 4051) having a carbon content of about 0.30 to 0.60 mass%, for example. If the C content is less than 0.30 mass%, stable high hardness cannot be obtained even by induction hardening, and if it exceeds 0.60 mass%, the material hardness increases and the workability such as rolling is significantly reduced. To do. Thus, by forming the power transmission shaft 2 hollow, it is possible to reduce the weight and the cost. The power transmission shaft 2 may be formed solid, and in this case, an effect of improving strength can be obtained.

シャフト2の両軸端の外周には、それぞれ雄スプライン部Smが形成される。この雄スプライン部Smを、図3に示すように内側継手部材3、3’の内周に形成された雌スプライン部Sfと嵌合させることによって、シャフト2と内側継手部材3、3’とがトルク伝達可能に結合されている。内側継手部材3、3’は、その反軸端側(図3の左側)の内径端部をシャフト2外周の肩部24に当接させ、かつ軸端側(図3の右側)の内径端部を、例えば図示しない止め輪で係止することによって、シャフト2に対して軸方向で位置決め固定される。   Male spline portions Sm are formed on the outer circumferences of both shaft ends of the shaft 2. By fitting this male spline portion Sm with a female spline portion Sf formed on the inner periphery of the inner joint member 3, 3 ′ as shown in FIG. 3, the shaft 2 and the inner joint member 3, 3 ′ are connected. It is connected so that torque can be transmitted. The inner joint members 3, 3 ′ have an inner diameter end on the opposite shaft end side (left side in FIG. 3) in contact with the shoulder 24 on the outer periphery of the shaft 2 and an inner diameter end on the shaft end side (right side in FIG. 3). For example, by locking the portion with a retaining ring (not shown), the portion is positioned and fixed with respect to the shaft 2 in the axial direction.

図2、図3、および図6に示すように、シャフト2の雄スプライン部Smは、軸方向に延びる谷部21と山部22とを円周方向に交互に有する。この実施形態の雄スプライン部Smは、転造加工で形成されたいわゆる切上りタイプで、各谷部21は、軸方向で同径寸法のストレート部21aと、その反軸端側に形成された拡径部21bとで構成される。各山部22も同様に、軸方向で同径寸法のストレート部22aと、その反軸端側に形成された縮径部22bとで構成される。図4に示すように、拡径部21bと縮径部22bの始端は軸方向で同じ位置にあり、かつその終端も軸方向で同じ位置にある。この雄スプライン部Smは冷間鍛造で成形することもでき、この場合は、通常、山部22の縮径部22bは形成されず、山部22の反軸端側は全体が同一外径寸法となる。成形後の雄スプライン部Smには、高周波焼入れ等による熱処理が施され、さらに必要に応じてショットピーニングが施される。   As shown in FIGS. 2, 3, and 6, the male spline portion Sm of the shaft 2 has trough portions 21 and peak portions 22 extending in the axial direction alternately in the circumferential direction. The male spline portion Sm of this embodiment is a so-called up-round type formed by rolling, and each valley portion 21 is formed on the straight portion 21a having the same diameter in the axial direction and on the opposite end side. It is comprised with the enlarged diameter part 21b. Similarly, each peak portion 22 includes a straight portion 22a having the same diameter in the axial direction and a reduced diameter portion 22b formed on the opposite end side. As shown in FIG. 4, the starting ends of the enlarged diameter portion 21 b and the reduced diameter portion 22 b are at the same position in the axial direction, and the terminal ends are also at the same position in the axial direction. This male spline part Sm can also be formed by cold forging. In this case, normally, the reduced diameter part 22b of the peak part 22 is not formed, and the entire opposite end side of the peak part 22 has the same outer diameter. It becomes. The male spline part Sm after molding is subjected to heat treatment by induction hardening or the like, and further shot peened as necessary.

図3に示すように、雌スプライン部Sfの谷部31は、同径寸法で反軸端側の端部まで形成されている。一方、山部32は、小径部32a、大径部32b、小径部32aと大径部32bの間の立ち上り部32cを有する。大径部32bの内径寸法は、雄スプライン部Smの山部22の最大外径寸法(ストレート部22aの外径寸法)よりも小さく、雄スプライン部Smの反軸端側に形成された動力伝達シャフト2の平滑部25の外径寸法よりも大きい。   As shown in FIG. 3, the valley 31 of the female spline portion Sf has the same diameter and is formed to the end on the opposite shaft end side. On the other hand, the peak portion 32 has a small diameter portion 32a, a large diameter portion 32b, and a rising portion 32c between the small diameter portion 32a and the large diameter portion 32b. The inner diameter dimension of the large diameter part 32b is smaller than the maximum outer diameter dimension (outer diameter dimension of the straight part 22a) of the peak part 22 of the male spline part Sm, and the power transmission formed on the opposite end side of the male spline part Sm. It is larger than the outer diameter of the smooth portion 25 of the shaft 2.

雄スプライン部Smと雌スプライン部Sfとを互いに嵌合させると、雄スプライン部Smの歯面23と、雌スプライン部Sfの歯面(図示省略)とが強く圧接する。この時の両歯面の嵌合部(散点模様で表す)は、図4に示すように、拡径部21bの外径側領域にも及んでいる。   When the male spline portion Sm and the female spline portion Sf are fitted to each other, the tooth surface 23 of the male spline portion Sm and the tooth surface (not shown) of the female spline portion Sf are in strong pressure contact. At this time, the fitting portions (represented by a dot pattern) of both tooth surfaces extend to the outer diameter side region of the enlarged diameter portion 21b as shown in FIG.

なお、図3では、拡径部21bおよび縮径部22bの軸方向断面を何れも直線的なテーパ状に形成した場合を例示しているが、両者の軸方向断面を曲線状に形成することもできる。また、直線状と曲線状の複合形状とすることもできる。   In addition, although FIG. 3 illustrates the case where both the axial sections of the enlarged diameter portion 21b and the reduced diameter portion 22b are formed in a linear taper shape, both axial sections are formed in a curved shape. You can also. Moreover, it can also be set as the composite shape of a linear form and a curvilinear form.

図2に示すように、本発明において雄スプライン部Smの拡径部21bは、その円周方向両側に形成されたアール部21b1(散点模様で示す)と、アール部21b1の間に形成された平面状の平坦部21b2とで構成される。アール部21b1は半径方向断面が円弧状をなし、その円周方向両側は歯面23および平坦部21b2に滑らかにつながっている。   As shown in FIG. 2, in the present invention, the enlarged diameter portion 21b of the male spline portion Sm is formed between the rounded portion 21b1 (shown by a dotted pattern) formed on both sides in the circumferential direction and the rounded portion 21b1. And a planar flat portion 21b2. The radius portion 21b1 has a circular cross section in the radial direction, and both circumferential sides thereof are smoothly connected to the tooth surface 23 and the flat portion 21b2.

図4は、雄スプライン部Smのうち、拡径部21b付近を示す平面図、図5a〜図5dは、図4におけるA−A線、B−B線、C−C線、D−D線の各断面図である。図5aに示すように、谷部21のストレート部21aと歯面23とをつなぐアール部の曲率半径Rは、拡径部21bとの境界部に至るまで一定である。図5b〜図5dに示すように、拡径部21bでは、アール部21b1の曲率半径が、境界部の曲率半径Rよりも大きく、かつ反軸端側ほど徐々に大きくなっている(R<R<R<R)。また、図4に示すように、アール部21b1の境界線が山部の稜線と交わって歯面23が無くなる位置までは、アール部21b1の円周方向の幅寸法は反軸端側(図面上方)に向けて徐々に拡大し、これを超えると幅寸法は徐々に縮小している。平坦部21b2の円周方向の幅寸法も反軸端側に向けて徐々に拡大している。 4 is a plan view showing the vicinity of the enlarged diameter portion 21b in the male spline portion Sm, and FIGS. 5a to 5d are the AA, BB, CC, and DD lines in FIG. FIG. As shown in FIG. 5a, the radius of curvature R A of the round portion connecting the straight portion 21a and the tooth surface 23 of the trough portion 21 is constant up to the boundary between the enlarged diameter portion 21b. As shown in FIG 5b~ Figure 5d, the enlarged diameter portion 21b, the curvature radius of the rounded portion 21b1 is larger than the radius of curvature R A of the boundary portion, and the more Hanjiku end gradually increases (R A <R B <R C <R D ). Further, as shown in FIG. 4, the width of the round portion 21b1 in the circumferential direction is on the side opposite the axis (upward in the drawing) until the position where the boundary line of the round portion 21b1 intersects the ridge line of the mountain portion and the tooth surface 23 disappears. ) Gradually expands toward (), and beyond this, the width dimension gradually decreases. The width dimension in the circumferential direction of the flat portion 21b2 is also gradually increased toward the opposite shaft end side.

図4中のLは、拡径部21bのアール部21b1において、その曲率半径の中心を通る線の方向にとった座標を示す。アール部21b1の曲率半径の増加率は、dR/dLで表され、本実施形態ではdR/dL=0.18に設定している。また、図4中のθは、拡径部21bの軸方向断面の内径端と外径端を結ぶ直線の傾斜角を表し、本実施形態ではθ=8.3°に設定している。   L in FIG. 4 indicates coordinates taken in the direction of a line passing through the center of the radius of curvature in the rounded portion 21b1 of the enlarged diameter portion 21b. The increasing rate of the radius of curvature of the rounded portion 21b1 is represented by dR / dL, and is set to dR / dL = 0.18 in this embodiment. Further, θ in FIG. 4 represents the inclination angle of a straight line connecting the inner diameter end and the outer diameter end of the axial section of the enlarged diameter portion 21b, and is set to θ = 8.3 ° in the present embodiment.

図14〜図16に、上記特許文献1(特開2005−147367号公報)に記載された雄スプライン部Sm’、すなわち、拡径部21b’と歯面23’の境界にアール部21b1’を形成し、かつアール部21b1’の曲率半径を軸方向全長にわたって一定とした雄スプライン部Sm’を示す(なお、図14〜図16では、図2〜図4に表された部位と対応する部位に(’)を加えた同一符号を付している)。   14 to 16, the male spline portion Sm ′ described in Patent Document 1 (Japanese Patent Laid-Open No. 2005-147367), that is, the rounded portion 21b1 ′ is formed at the boundary between the enlarged diameter portion 21b ′ and the tooth surface 23 ′. A male spline portion Sm ′ formed and having a radius of curvature of the rounded portion 21b1 ′ constant over the entire length in the axial direction is shown (in FIGS. 14 to 16, a portion corresponding to the portion shown in FIGS. 2 to 4) (The same sign with (') added to it).

図2に示す雄スプライン部Sm(本発明品)と図14に示す雄スプライン部Sm’(従来品)のそれぞれについてFEM解析を行い、それぞれについて第1主応力の最大値σ1maxとせん断応力の最大値τθzmaxを求め、これらを上記基準応力τで除した値を算出した。 FEM analysis is performed for each of the male spline portion Sm (product of the present invention) shown in FIG. 2 and the male spline portion Sm ′ (conventional product) shown in FIG. 14, and the maximum value σ 1max of the first principal stress and the shear stress of each are analyzed. A maximum value τ θzmax was obtained, and a value obtained by dividing the maximum value τ θzmax by the reference stress τ 0 was calculated.

このFEM解析は、3次元線形弾性解析であり、解析ソフトとして “I-deas Ver.10”を使用した。解析モデルは、図20に示すように、雄スプライン部Sm、Sm’の1つの谷部21、21’を含む線形弾性体で、モデル長は100mmである。図21に、この解析モデルに付したメッシュを示す。各要素は4面体二次要素で、総要素数は約20万個、総接点数は約30万個である。要素長は、主要部分P(雄スプライン部Sm、Sm’を含む部分で)で0.2mm以下とし(最小要素長は0.05mm)、主要部分P以外で0.5mmとした。図22は、主要部分Pのメッシュを拡大して示す図であり、同図(a)が図2に対応した本発明品を表し、同図(b)が図14に対応した従来品を表す。図23に示すように、解析モデルの反軸端側端面MにRigid要素を作成し、この端面Mの中心軸O上にトルクTを負荷した。但し、モデルとして、1/歯数モデルを使用しているので、負荷トルクは、実際のトルクの1/歯数である。図24に示すように、解析モデルは、谷部21の中心を通る半径方向軸を対称軸とした形状で、円周方向の両側面Wの全接点を周期対称としている。なお、図25に示すように、解析モデルの相手部材との接触面(散点模様で示す)では、その法線方向の変位が拘束されている。   This FEM analysis is a three-dimensional linear elastic analysis, and “I-deas Ver. 10” was used as analysis software. As shown in FIG. 20, the analysis model is a linear elastic body including one valley portion 21, 21 ′ of the male spline portions Sm, Sm ′, and the model length is 100 mm. FIG. 21 shows a mesh attached to this analysis model. Each element is a tetrahedral secondary element, the total number of elements is about 200,000, and the total number of contacts is about 300,000. The element length was 0.2 mm or less (the minimum element length was 0.05 mm) at the main portion P (including the male spline portions Sm and Sm ′), and 0.5 mm at the portions other than the main portion P. FIG. 22 is an enlarged view showing the mesh of the main part P. FIG. 22A shows the product of the present invention corresponding to FIG. 2, and FIG. 22B shows the conventional product corresponding to FIG. . As shown in FIG. 23, a Rigid element was created on the end face M on the opposite end side of the analysis model, and a torque T was loaded on the central axis O of the end face M. However, since a 1 / tooth number model is used as a model, the load torque is 1 / tooth number of actual torque. As shown in FIG. 24, the analysis model has a shape in which the radial axis passing through the center of the valley portion 21 is an axis of symmetry, and all the contacts on both side surfaces W in the circumferential direction are cyclically symmetric. In addition, as shown in FIG. 25, the displacement of the normal direction is restrained in the contact surface (it shows with a dotted pattern) with the other party member of an analysis model.

第1主応力σの解析結果を図26に示し、軸方向せん断応力τθzの解析結果を図27に示す。なお、図26および図27の何れでも、(a)図が本発明品モデルを表し、(b)図が従来品モデルを示す。なお、両図中の基準応力τは、トルクT、雄スプライン部Smの谷部の直径d、雄スプライン部の内径dに対し、τ=16Td/[π(d −d )]なる式で与えられる。 The analysis result of the first principal stress σ 1 is shown in FIG. 26, and the analysis result of the axial shear stress τ θz is shown in FIG. 26A and 27B, FIG. 26A shows the product model of the present invention, and FIG. 26B shows the conventional product model. The reference stress τ 0 in both figures is τ 0 = 16 Td o / [π (d o 4 − −) with respect to the torque T, the diameter d o of the valley of the male spline part Sm, and the inner diameter d i of the male spline part. d i 4 )].

以上の解析結果から、従来品では、σ1max/τ=3.03であるのに対し、本発明品では、σ1max/τ=2.48となり、従来品より引張応力に対する応力集中の緩和効果が高まることが判明した。これは、本発明品では、歯面23の終端近傍におけるアール部21b1の曲率半径が、従来品の対応部位での曲率半径よりも大きくなるためと考えられる。先に説明したように、引張応力に対する応力集中係数ασが2.7以下であれば、応力集中の緩和効果が顕著となるので、σ1max/τ≦2.7の本発明品であれば、従来品に比べ、引張り応力に対する疲労強度を大幅に増大させることが可能である。 From the above analysis results, σ 1max / τ 0 = 3.03 in the conventional product, whereas σ 1max / τ 0 = 2.48 in the product of the present invention. It has been found that the relaxation effect is enhanced. This is presumably because the radius of curvature of the rounded portion 21b1 in the vicinity of the end of the tooth surface 23 is larger than the radius of curvature at the corresponding portion of the conventional product in the product of the present invention. As described above, if the stress concentration coefficient α σ with respect to the tensile stress is 2.7 or less, the stress concentration mitigating effect becomes significant, so that the present invention product of σ 1max / τ 0 ≦ 2.7 can be used. For example, it is possible to greatly increase the fatigue strength against tensile stress compared to conventional products.

また、従来品では、τθzmax/τ=2.28であるのに対し、本発明品ではτθzmax/τ=1.74となり、従来品より軸方向のせん断応力に対する応力集中の緩和効果も高まることが判明した。上記のとおり、せん断応力に対する応力集中係数ατが2.1以下であれば、応力集中の緩和効果が顕著となるので、τθzmax/τ≦2.1である本発明品は、従来品に比べ、せん断応力に対する疲労強度を大幅に向上させることができる。このように本発明によれば、雄スプライン部Smで引張応力およびせん断応力の双方に対して高い応力集中緩和効果を得ることができる。従って、動力伝達シャフト2の疲労強度を高めることができる。 Further, in the conventional product, τ θzmax / τ 0 = 2.28, whereas in the product of the present invention, τ θzmax / τ 0 = 1.74, which is a stress relaxation effect on the shear stress in the axial direction as compared with the conventional product. It was also found to increase. As described above, if the stress concentration coefficient α τ with respect to the shear stress is 2.1 or less, the stress concentration relaxation effect becomes significant. Therefore, the product of the present invention in which τ θzmax / τ 0 ≦ 2.1 is a conventional product. Compared to the above, the fatigue strength against shear stress can be greatly improved. Thus, according to the present invention, it is possible to obtain a high stress concentration relaxation effect with respect to both tensile stress and shear stress in the male spline portion Sm. Therefore, the fatigue strength of the power transmission shaft 2 can be increased.

本発明者がさらに解析したところ、図4に示すアール部21b1の曲率半径の増加率dR/dLが0.05≦dR/dL≦0.60であり、かつ拡径部21bの傾斜角θが5°≦θ≦20°の範囲であれば、σ1max/τ≦2.7、τθzmax/τ≦2.1を満足できることが判明した。 As a result of further analysis by the present inventor, the rate of increase dR / dL of the radius of curvature of the rounded portion 21b1 shown in FIG. 4 is 0.05 ≦ dR / dL ≦ 0.60, and the inclination angle θ of the enlarged diameter portion 21b is In the range of 5 ° ≦ θ ≦ 20 °, it was found that σ 1max / τ 0 ≦ 2.7 and τ θzmax / τ 0 ≦ 2.1 can be satisfied.

図14に示すように、従来品では、最大せん断応力τθzmaxが拡径部21b’の起点の中心線上で生じる。このように、中心線上で最大せん断応力が発生すると、動力伝達シャフト2が正逆両方向のトルクを伝達する際、正逆何れの回転時にも同じ部位に最大せん断応力が生じるため、それだけ疲労破壊が進展し易くなる。これに対し、本発明品では、最大せん断応力τθzmaxは、図2に示すように、拡径部21bの起点よりも反軸端側の双方のアール部21b1で生じる。そのため、正回転時と逆回転時で最大せん断応力の発生部位が異なり、従って、疲労破壊の進展速度も抑制することが可能となる。以上から、本発明品は、トルクの伝達方向が頻繁に切り替わる用途、例えば車両の前進・後退に応じてトルク伝達方向が反転するような用途に特に好適なものとなる。 As shown in FIG. 14, in the conventional product, the maximum shear stress τ θzmax occurs on the center line of the starting point of the enlarged diameter portion 21b ′. In this way, when the maximum shear stress is generated on the center line, when the power transmission shaft 2 transmits torque in both forward and reverse directions, the maximum shear stress is generated in the same part during both forward and reverse rotations, so that fatigue failure is caused accordingly. Easy to progress. On the other hand, in the product of the present invention, as shown in FIG. 2, the maximum shear stress τ θzmax is generated in both rounded portions 21b1 on the side opposite to the axial end from the starting point of the enlarged diameter portion 21b. For this reason, the generation site of the maximum shear stress differs between the forward rotation and the reverse rotation, and therefore the progress rate of fatigue fracture can be suppressed. From the above, the product of the present invention is particularly suitable for an application in which the torque transmission direction is frequently switched, for example, an application in which the torque transmission direction is reversed in accordance with forward / backward movement of the vehicle.

以上に述べたアール部21b1を有する拡径部21bは、転造加工時に使用する転造ラックに、当該拡径部21bに対応した形状の成形部を形成することにより、雄スプライン部Smの歯と同時に形成することができる。雄スプライン部をプレス加工で冷間鍛造する場合も同様に、プレス加工用のダイスに拡径部21bの形状に対応した成形部を予め形成することにより、雄スプライン部Smの歯と同時にアール部21b1を成形することができる。   The enlarged diameter portion 21b having the rounded portion 21b1 described above is formed by forming a molded portion having a shape corresponding to the enlarged diameter portion 21b on a rolling rack used during rolling, thereby forming the teeth of the male spline portion Sm. It can be formed at the same time. Similarly, when the male spline part is cold forged by press working, the round part is formed simultaneously with the teeth of the male spline part Sm by previously forming a molding part corresponding to the shape of the enlarged diameter part 21b on the die for press working. 21b1 can be molded.

以上の対策により、雄スプライン部Smで引張応力およびせん断応力の双方に対して高い疲労強度が得られる。このように、従来最も疲労破断の生じやすかった雄スプライン部Smの強度が高められると、シャフト2のうち、継手の高作動角化のために小径化した小径部2a(2a’)にき裂等の疲労破断が生じる恐れがある。上記のように、外側継手部材4のトラック溝4a1をアンダーカットフリー形状とすることにより、継手の最大作動角θを維持しながら、シャフト2の小径部2aの外径寸法を拡大することができるため、この部分の強度を高め、き裂の発生を抑制することができる。一方、シャフト2の小径部2aの強度が十分である場合には、シャフト2の小径部2aを大径化する必要がないため、継手の最大作動角θを高角化することができる。   By the above measures, high fatigue strength can be obtained for both tensile stress and shear stress in the male spline portion Sm. As described above, when the strength of the male spline portion Sm, which has been most likely to cause fatigue fracture, is increased, the shaft 2 is cracked into the small diameter portion 2a (2a ′) that has been reduced in diameter to increase the operating angle of the joint. There is a risk of fatigue fracture such as. As described above, by forming the track groove 4a1 of the outer joint member 4 into an undercut-free shape, the outer diameter of the small diameter portion 2a of the shaft 2 can be increased while maintaining the maximum operating angle θ of the joint. Therefore, the strength of this portion can be increased and the occurrence of cracks can be suppressed. On the other hand, when the strength of the small diameter portion 2a of the shaft 2 is sufficient, it is not necessary to increase the diameter of the small diameter portion 2a of the shaft 2, so that the maximum operating angle θ of the joint can be increased.

図7に本発明の他の実施形態を示す。この実施形態は、雄スプライン部Smもしくは雌スプライン部Sf(図面では雄スプライン部Sm)のうち、何れか一方の歯に軸心方向に対して捩れ角βを持たせた実施形態であり、嵌合後の両スプライン部Sm、Sf間のガタ詰めに有効な手法である。捩れ角βを設けた場合、トルク伝達側の歯面同士の接触圧力が高まり、これに伴って拡径部に集中する引張応力、せん断応力も高くなるため、疲労強度の低下を招く。この観点から、従来品では、捩れ角βは実質15°が限度とされてきた。これに対し、本発明品では、上記のとおり動力伝達スプラインの疲労強度を大幅に高めることができるので、15°以上の捩れ角βをとることができ、高いガタ詰め効果を得ることが可能である。   FIG. 7 shows another embodiment of the present invention. This embodiment is an embodiment in which either one of the male spline part Sm or the female spline part Sf (male spline part Sm in the drawing) has a twist angle β with respect to the axial direction. This is an effective method for loosening between the spline portions Sm and Sf after the combination. When the torsion angle β is provided, the contact pressure between the tooth surfaces on the torque transmission side increases, and as a result, the tensile stress and the shear stress concentrated on the enlarged diameter portion also increase, resulting in a decrease in fatigue strength. From this point of view, the conventional product has been limited to a twist angle β of substantially 15 °. On the other hand, in the present invention product, the fatigue strength of the power transmission spline can be significantly increased as described above, so that a twist angle β of 15 ° or more can be obtained, and a high backlash effect can be obtained. is there.

上述の実施形態では、雄スプライン部Smとして、拡径部21bの円周方向幅を反軸端側で徐々に拡大させたいわゆる「槍形タイプ」を例示しているが、これに限らず、拡径部21bの円周方向幅を一定にしたいわゆる「舟形タイプ」の雄スプライン部Smに本発明を適用することもできる。この場合も、拡径部21bの円周方向両側にアール部を設け、かつアール部の曲率半径を反軸端側ほど徐々に大きくすることにより、本発明と同様の効果が得られる。   In the above-described embodiment, as the male spline portion Sm, a so-called “saddle type” in which the circumferential width of the enlarged diameter portion 21b is gradually enlarged on the opposite shaft end side is illustrated, but not limited thereto. The present invention can also be applied to a so-called “boat type” male spline portion Sm in which the circumferential width of the enlarged diameter portion 21b is constant. Also in this case, the same effects as those of the present invention can be obtained by providing rounded portions on both sides in the circumferential direction of the enlarged diameter portion 21b and gradually increasing the radius of curvature of the rounded portion toward the opposite end side.

以上に述べたドライブシャフトにおいて、雄スプライン部Smは、シャフト2の軸端部に加え、図示のように、外側継手部材4、4’に一体または別体に設けたステム部の外周に形成することもできる。   In the drive shaft described above, the male spline portion Sm is formed on the outer periphery of the stem portion provided integrally with or separately from the outer joint members 4, 4 ′, as shown, in addition to the shaft end portion of the shaft 2. You can also.

(a)図はドライブシャフトの断面図であり、(b)図は固定型等速自在継手1の断面図である。(A) is a sectional view of the drive shaft, and (b) is a sectional view of the fixed type constant velocity universal joint 1. 動力伝達シャフトに形成された雄スプライン部のうち、反軸端側部分(図1符号X部)を示す斜視図である。It is a perspective view which shows a non-shaft end side part (FIG. 1 code | symbol X part) among the male spline parts formed in the power transmission shaft. 図1の符号X部を拡大して示す断面図である。It is sectional drawing which expands and shows the code | symbol X part of FIG. (a)図は雄スプライン部の反軸端側部分を示す平面図であり、(b)図は(a)図中のY−Y線断面図である。(A) A figure is a top view which shows the opposite-axis end side part of a male spline part, (b) A figure is the YY sectional view taken on the line in (a) figure. (a)図は、図4(a)中のA−A線断面図、(b)図は同B−B線断面図、(c)図は同C−C線断面図、(d)図は同D−D線断面図である。4A is a cross-sectional view taken along line AA in FIG. 4A, FIG. 4B is a cross-sectional view taken along line BB, FIG. 4C is a cross-sectional view taken along line CC, and FIG. Is a sectional view taken along the line DD. 雄スプライン部の周方向断面図である。It is a circumferential direction sectional view of a male spline part. 捩れ角を有する雄スプライン部の概略構成を示す平面図である。It is a top view which shows schematic structure of the male spline part which has a twist angle. 雄スプライン部の平面図である。It is a top view of a male spline part. 疲労試験で使用する試験片の化学組成を示す表である。It is a table | surface which shows the chemical composition of the test piece used by a fatigue test. 回転曲げ疲労試験の試験片を示す側面図である。It is a side view which shows the test piece of a rotation bending fatigue test. 上記試験片の切欠き部Aを拡大した側面図である。It is the side view to which the notch part A of the said test piece was expanded. 切欠き部の寸法と応力集中係数の関係を示す表である。It is a table | surface which shows the relationship between the dimension of a notch part, and a stress concentration factor. 捩り疲労試験の試験片を示す側面図である。It is a side view which shows the test piece of a torsional fatigue test. 上記試験片の切欠き部Aを拡大した側面図である。It is the side view to which the notch part A of the said test piece was expanded. 切欠き部の寸法と応力集中係数の関係を示す表である。It is a table | surface which shows the relationship between the dimension of a notch part, and a stress concentration factor. 回転曲げ疲労試験で求めた疲労限強度の測定結果を示す図である。It is a figure which shows the measurement result of the fatigue limit strength calculated | required by the rotation bending fatigue test. 捩り疲労試験で求めた10回における捩り疲労強度の測定結果を示す図である。Is a graph showing measurement results of the torsional fatigue strength at 10 5 times determined in torsional fatigue test. 従来の雄スプライン部の反軸端側部分を示す斜視図であるIt is a perspective view which shows the anti-shaft end side part of the conventional male spline part. 従来の雄スプライン部の反軸端側部分を示す断面図である。It is sectional drawing which shows the anti-shaft end side part of the conventional male spline part. 従来の雄スプライン部の反軸端側部分を示す平面図である。It is a top view which shows the non-axis end side part of the conventional male spline part. 試験片を示す側面図である。It is a side view which shows a test piece. 試験片のインボリュートスプライン緒元を示す表である。It is a table | surface which shows the involute spline specification of a test piece. 両振り捩り疲労試験で得られたT/N線図である。It is a T / N diagram obtained by the double torsional fatigue test. 片振り捩り疲労試験で得られたT/N線図である。FIG. 3 is a T / N diagram obtained in a single swing torsional fatigue test. FEM解析モデルを示す斜視図である。It is a perspective view which shows a FEM analysis model. メッシュを付した解析モデルを示す斜視図である。It is a perspective view which shows the analysis model which attached | subjected the mesh. (a)図は、メッシュを付した本発明品の主要部分Pの斜視図であり、同図(b)が同じく従来品の主要部分Pの斜視図である。(A) The figure is a perspective view of the principal part P of this invention goods which attached | subjected the mesh, The figure (b) is a perspective view of the principal part P of a conventional product similarly. 解析モデルの反軸端側の端部の斜視図である。It is a perspective view of the edge part by the side of the non-axis end of an analysis model. 図20の矢印方向から見た解析モデルの正面図である。It is a front view of the analysis model seen from the arrow direction of FIG. 解析モデルの斜視図である。It is a perspective view of an analysis model. 第1主応力の解析結果を示す図である。It is a figure which shows the analysis result of a 1st principal stress. 軸方向せん断応力の解析結果を示す図である。It is a figure which shows the analysis result of an axial direction shear stress. ツェッパ型の固定型等速自在継手の断面図である。It is sectional drawing of a fixed type constant velocity universal joint of a Rzeppa type.

符号の説明Explanation of symbols

1 固定型等速自在継手
2 動力伝達シャフト
3 内側継手部材
4 外側継手部材
5 ボール
7 ケージ
21 谷部
21a ストレート部
21b 拡径部
21b1 アール部
21b2 平坦部
22 山部
23 歯面
24 肩部
25 平滑部
Sm 雄スプライン部
Sf 雌スプライン部
DESCRIPTION OF SYMBOLS 1 Fixed type constant velocity universal joint 2 Power transmission shaft 3 Inner joint member 4 Outer joint member 5 Ball 7 Cage 21 Valley part 21a Straight part 21b Wide diameter part 21b1 Earl part 21b2 Flat part 22 Mountain part 23 Tooth surface 24 Shoulder part 25 Smooth Part Sm Male spline part Sf Female spline part

Claims (5)

外周に雄スプライン部が設けられ、雄スプライン部の谷部の軸方向一端側にその外径寸法を徐々に拡径させた拡径部を有するシャフトと、内周に前記雄スプライン部と嵌合する雌スプライン部を有し、外周にトラック溝を有する内側継手部材と、内周にトラック溝を有する外側継手部材と、内側継手部材のトラック溝と外側継手部材のトラック溝とで形成されるボールトラックに配置されたトルク伝達ボールと、トルク伝達ボールを円周方向等間隔に保持するケージとを備える固定型等速自在継手において、
前記雄スプライン部の拡径部の円周方向両側にアール部を設け、アール部の曲率半径を軸方向一端側に向けて徐々に大きくし、且つ、外側継手部材のトラック溝をアンダーカットフリー形状としたことを特徴とする固定型等速自在継手。
A male spline portion is provided on the outer periphery, and a shaft having a diameter-expanded portion whose outer diameter is gradually increased on one end side in the axial direction of the valley portion of the male spline portion, and the male spline portion is fitted on the inner periphery. Formed by an inner joint member having a female spline portion and having a track groove on the outer periphery, an outer joint member having a track groove on the inner periphery, and a track groove of the inner joint member and a track groove of the outer joint member In a fixed type constant velocity universal joint including a torque transmission ball disposed on a track and a cage for holding the torque transmission balls at equal intervals in the circumferential direction,
R-shaped portions are provided on both sides in the circumferential direction of the enlarged diameter portion of the male spline portion, the radius of curvature of the rounded portion is gradually increased toward one end in the axial direction, and the track groove of the outer joint member is undercut-free. A fixed type constant velocity universal joint.
トルクTが負荷されたときに、雄スプライン部の拡径部に作用する第1主応力、および軸方向のせん断応力の最大値をそれぞれσ1max、τθzmaxとし、トルクT、雄スプライン部の谷部の直径d、雄スプライン部の内径dに対し、1)式で与えられる基準応力τとするとき、下記2)式と3)式を同時に満たす請求項1記載の固定型等速自在継手。
τ=16Td/[π(d −d )] …1)
σ1max≦2.7τ …2)
τθzmax≦2.1τ …3)
When the torque T is applied, the first principal stress acting on the diameter-expanded portion of the male spline portion and the maximum values of the shear stress in the axial direction are σ 1max and τ θzmax , respectively. part diameter d o, with respect to the inner diameter d i of the male spline portion, 1) when the reference stress tau 0 given by equation below 2) and 3) the fixed type constant velocity according to claim 1, wherein satisfying equation simultaneously Universal joint.
τ 0 = 16 Td o / [π (d o 4 −d i 4 )]... 1)
σ 1max ≦ 2.7τ o ... 2)
τ θzmax ≦ 2.1τ 0 ... 3)
アール部の曲率半径の増加率をdR/dL、拡径部の軸方向断面の内径端と外径端を結ぶ直線の角度をθとするとき、それぞれの値が
0.05≦dR/dL≦0.60、
5°≦θ≦20°
の範囲にある請求項2記載の固定型等速自在継手。
When the rate of increase in the radius of curvature of the radius portion is dR / dL and the angle of the straight line connecting the inner diameter end and the outer diameter end of the axial section of the enlarged diameter portion is θ, each value is 0.05 ≦ dR / dL ≦ 0.60,
5 ° ≦ θ ≦ 20 °
The fixed type constant velocity universal joint according to claim 2, which is in the range described above.
前記雄スプライン部及び雌スプライン部の少なくとも何れか一方が、軸方向に対して捩れ角を有する請求項1〜3何れか記載の固定型等速自在継手。   The fixed type constant velocity universal joint according to claim 1, wherein at least one of the male spline portion and the female spline portion has a twist angle with respect to the axial direction. 少なくとも雄スプライン部を焼入れ硬化させた請求項1〜4何れか記載の固定型等速自在継手。   The fixed type constant velocity universal joint according to any one of claims 1 to 4, wherein at least the male spline portion is quenched and hardened.
JP2006315848A 2006-11-22 2006-11-22 Fixed type constant velocity universal joint Withdrawn JP2008128407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315848A JP2008128407A (en) 2006-11-22 2006-11-22 Fixed type constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315848A JP2008128407A (en) 2006-11-22 2006-11-22 Fixed type constant velocity universal joint

Publications (1)

Publication Number Publication Date
JP2008128407A true JP2008128407A (en) 2008-06-05

Family

ID=39554431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315848A Withdrawn JP2008128407A (en) 2006-11-22 2006-11-22 Fixed type constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP2008128407A (en)

Similar Documents

Publication Publication Date Title
US8079912B2 (en) Power transmission spline
WO2012032926A1 (en) External joint member of constant velocity universal joint and friction pressure welding method therefor
WO2000005514A1 (en) Power transmission mechanism
JP2014077527A (en) Bearing device for wheel and method of manufacturing the same
JP2009121673A (en) Constant speed universal joint
JP4313014B2 (en) Shaft and manufacturing method thereof
JP4271301B2 (en) Power transmission mechanism
JP2008095845A (en) Power transmission spline
JP2009216173A (en) Power transmission spline
JP2008095805A (en) Power transmission shaft
EP2154389B1 (en) Fixed constant velocity universal joint and method of producing outer ring of the joint
JP2008128407A (en) Fixed type constant velocity universal joint
JP5917249B2 (en) Inner member of constant velocity universal joint and manufacturing method thereof
EP2749783B1 (en) Constant velocity universal joint and method for producing same
JP2008256203A (en) Power transmission shaft
JP2008064294A (en) Fixed type constant velocity universal joint
JP5259064B2 (en) Power transmission shaft
JP2008240968A (en) Power transmission shaft
JP2009121502A (en) Constant velocity universal joint
JP2008196013A (en) Power transfer shaft
JP2008286315A (en) Power transmission shaft
JP2008128408A (en) Power transmission shaft
JP2008196592A (en) Power transmission shaft
JP2008286314A (en) Constant velocity universal joint
JP2008240971A (en) Power transmission shaft

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202