JP2008127496A - Resin composition for antibacterial/deodorant article and antibacterial/deodorant fiber and nonwoven fabric obtained therefrom - Google Patents

Resin composition for antibacterial/deodorant article and antibacterial/deodorant fiber and nonwoven fabric obtained therefrom Download PDF

Info

Publication number
JP2008127496A
JP2008127496A JP2006315713A JP2006315713A JP2008127496A JP 2008127496 A JP2008127496 A JP 2008127496A JP 2006315713 A JP2006315713 A JP 2006315713A JP 2006315713 A JP2006315713 A JP 2006315713A JP 2008127496 A JP2008127496 A JP 2008127496A
Authority
JP
Japan
Prior art keywords
antibacterial
resin composition
deodorant
aminopolysaccharide
biodegradable polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006315713A
Other languages
Japanese (ja)
Inventor
Yasuo Imashiro
靖雄 今城
Naoichi Sasaki
直一 佐々木
Yukiko Ogushi
由紀子 大串
Masamitsu Iizuka
真実 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP2006315713A priority Critical patent/JP2008127496A/en
Priority to PCT/JP2007/072431 priority patent/WO2008062775A1/en
Publication of JP2008127496A publication Critical patent/JP2008127496A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for antibacterial/deodorant articles which comprises a biodegradable polyester and an aminopolysaccharide, an antibacterial/deodorant nanofiber and a nonwoven fabric prepared therefrom. <P>SOLUTION: The resin composition for biodegradable antibacterial/deodorant articles is prepared by mixing a biodegradable polyester with an aminopolysaccharide in respective solid states and thereafter heating and kneading the resulting mixture, by mixing a biodegradable polyester solution prepared by dissolving the biodegradable polyester in an acid amide solvent with an aminopolysaccharide solution prepared by dissolving the aminopolysaccharide in an organic acid solvent or by dissolving both the biodegradable polyester and the aminopolysaccharide in formic acid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生分解性ポリエステルとアミノ多糖類とを含む抗菌・消臭性物品用樹脂組成物、並びにこれから得られる抗菌・消臭性ファイバーおよび不織布に関する。   The present invention relates to an antibacterial / deodorant resin composition containing a biodegradable polyester and an aminopolysaccharide, and an antibacterial / deodorant fiber and a nonwoven fabric obtained therefrom.

近年、抗菌加工を施した繊維製品や樹脂成形品などが注目され、例えば、抗菌性を付与した衣類、医療用品、日用品などが市販されている。
この抗菌加工に用いられる抗菌物質としては、従来、銅、銀、亜鉛等の金属イオンを有する無機系抗菌剤;塩化ベンザルコニウム、有機シリコン系、第4級アンモニウム塩等の有機系抗菌剤;キトサン等の天然多糖類系抗菌剤が知られている。
無機系抗菌剤は、合成樹脂に添加すると成形時の熱や照射される光の影響で変形し、製品価値が著しく低下するという問題がある。また、有機系抗菌剤は、耐候性・耐薬品性が悪く、急性径口毒性が高いという問題がある。
このため、安全性に優れたキトサン等の天然多糖類系抗菌剤を用いる試みがなされている。
In recent years, fiber products and resin molded products subjected to antibacterial processing have attracted attention. For example, clothing, medical supplies, daily necessities, and the like that have been given antibacterial properties are commercially available.
As an antibacterial substance used for this antibacterial processing, conventionally, an inorganic antibacterial agent having a metal ion such as copper, silver or zinc; an organic antibacterial agent such as benzalkonium chloride, an organic silicon type, or a quaternary ammonium salt; Natural polysaccharide antibacterial agents such as chitosan are known.
When an inorganic antibacterial agent is added to a synthetic resin, there is a problem that the product value is remarkably lowered due to deformation due to the influence of heat or light applied during molding. In addition, organic antibacterial agents have a problem that weather resistance and chemical resistance are poor and acute oral toxicity is high.
For this reason, attempts have been made to use natural polysaccharide antibacterial agents such as chitosan having excellent safety.

例えば、特許文献1(特開平2−41473号公報)には、キトサン酢酸塩で表面処理した綿糸を、さらにイソシアネート架橋剤で処理し、綿糸とキトサンとをポリウレタン結合で架橋した抗菌繊維が開示されている。この手法で得られた抗菌繊維では、繊維と抗菌剤であるキトサンとが強固に結合しているため、繊維からのキトサンの脱落を防止でき、良好な抗菌性が長期に亘って発揮される。
しかし、この特許文献1の技術では、キトサン処理後の乾燥工程が必須であるうえに、キトサン処理後の綿糸を、再度ポリイソシアネート化合物を用いて架橋処理する必要があるため、工程が煩雑になるという問題がある。
しかも、生分解性ポリエステルなどの生分解性繊維を処理する場合、生分解性繊維に対し、上記架橋処理を行ってしまうと、繊維本来の生分解性が十分に発揮されない虞が生じる。
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2-41473) discloses an antibacterial fiber in which a cotton yarn surface-treated with chitosan acetate is further treated with an isocyanate crosslinking agent, and the cotton yarn and chitosan are crosslinked with a polyurethane bond. ing. In the antibacterial fiber obtained by this method, since the fiber and chitosan which is an antibacterial agent are firmly bonded, it is possible to prevent the chitosan from falling off the fiber, and good antibacterial properties are exhibited over a long period of time.
However, in the technique of Patent Document 1, a drying step after chitosan treatment is essential, and the cotton yarn after chitosan treatment needs to be cross-linked again using a polyisocyanate compound, which makes the process complicated. There is a problem.
And when processing biodegradable fiber, such as biodegradable polyester, if the said crosslinking process is performed with respect to biodegradable fiber, there exists a possibility that the original biodegradability of fiber may not fully be exhibited.

また、特許文献2(特開平7−42076号公報)には、合成樹脂エマルジョンをキトサン酸水溶液で塩析して調製したキトサン含有合成樹脂を、有機溶剤に溶解してなるコーティング加工剤、およびこの加工剤によりコーティング処理された繊維布帛が開示されている。この手法によれば、キトサンが均一に分散した溶液状のコーティング剤が得られ、これを用いることで、繊維表面にキトサンが均一に分散したコーティング層を形成することが可能となる。
しかし、この特許文献2の技術でも、キトサン酸水溶液を用いた塩析工程が必要であるため、工程が煩雑になる。しかも、キトサンをコーティング処理する方法であるため、乾燥工程が必要となるうえに、キトサンが、繊維表面に露出し易くなる結果、脱落し易くなり、抗菌性が経時的に低下してしまうという問題がある。
また、生分解性繊維を処理する場合、繊維表面をアクリル樹脂で被覆してしまうために、繊維本来の生分解性が十分に発揮されない虞が生じる。
Patent Document 2 (Japanese Patent Laid-Open No. 7-42076) discloses a coating processing agent prepared by dissolving a chitosan-containing synthetic resin prepared by salting out a synthetic resin emulsion with a chitosan acid aqueous solution in an organic solvent, and this A fiber fabric coated with a processing agent is disclosed. According to this method, a solution-like coating agent in which chitosan is uniformly dispersed is obtained, and by using this, a coating layer in which chitosan is uniformly dispersed can be formed on the fiber surface.
However, the technique of Patent Document 2 also requires a salting-out process using a chitosan acid aqueous solution, which makes the process complicated. In addition, since it is a method of coating chitosan, a drying process is required, and the chitosan is easily exposed to the fiber surface. As a result, it tends to fall off and the antibacterial property decreases over time. There is.
Moreover, when processing a biodegradable fiber, since the fiber surface is coat | covered with an acrylic resin, there exists a possibility that the original biodegradability of a fiber may not fully be exhibited.

以上のように、生分解性ポリマー繊維にキトサン等の天然抗菌剤をコーティングする手法は、処理工程の煩雑さや、生分解性の低下という点から、抗菌加工として適したものであるとは言えない。   As described above, the method of coating the biodegradable polymer fiber with a natural antibacterial agent such as chitosan cannot be said to be suitable as an antibacterial process in terms of the complexity of the treatment process and the decrease in biodegradability. .

ところで最近、静電紡糸法により、ポリ乳酸や、キトサンのナノファイバーを製造する技術が開示されている(特許文献3:国際公開2004/089433号パンフレット、特許文献4:特開2005−290610号公報参照)。
例えば、特許文献3には、平均繊維径が0.05〜50μmの生体内分解吸収性ポリマーからなる繊維構造体を静電紡糸法により作製する手法が開示され、この生体内分解吸収性ポリマーとして、ポリ乳酸、キトサンが例示され、実施例ではポリ乳酸ナノファイバーが具体的に製造されている。
また、特許文献4には、静電紡糸法により作製された、直径500nm以下のキトサンを主原料とするナノファイバーおよびこれから得られる不織布が開示され、この場合に添加剤としてポリ乳酸を用い得ることが開示されている。
Recently, a technique for producing polylactic acid or chitosan nanofibers by an electrospinning method has been disclosed (Patent Document 3: International Publication No. 2004/088943, Patent Document 4: JP-A-2005-290610). reference).
For example, Patent Document 3 discloses a technique for producing a fiber structure made of a biodegradable absorbable polymer having an average fiber diameter of 0.05 to 50 μm by an electrostatic spinning method. Polylactic acid and chitosan are exemplified, and in the examples, polylactic acid nanofibers are specifically produced.
Patent Document 4 discloses a nanofiber mainly made of chitosan having a diameter of 500 nm or less and a non-woven fabric obtained therefrom produced by an electrospinning method. In this case, polylactic acid can be used as an additive. Is disclosed.

このように、特許文献3,4のいずれにも、ポリ乳酸とキトサンとを併用してナノファイバーを製造し得ることが示唆されている。しかしながら、実施例において、それら両者を含むナノファイバーは製造されておらず、ポリ乳酸とキトサンとをどのようにして混合し、紡糸するかについては明らかにされていない。
すなわち、特許文献3の技術では、紡糸用のポリ乳酸溶液に、キトサンは溶解しない。また、キトサンの溶液は、特許文献1,2および4のように酢酸水溶液とすることが通常であるため、これをポリ乳酸の塩化メチレン溶液と混合して両者が溶解した溶液を調製することはできない。したがって、特許文献3の技術において、ポリ乳酸とキトサンとのポリマーブレンドを作製することは困難である。
一方、特許文献4の技術でも、紡糸用のキトサン酸水溶液に、ポリ乳酸の有機溶媒溶液を混合して、両者が溶解した溶液を調製することはできないため、両者のブレンドを調製する場合は、ポリ乳酸を粉末でポリ乳酸の有機溶媒溶液に混合する以外には方法がないが、ナノレベルのポリ乳酸粒子を調製することは非常に困難で、実用的とは言えない。
Thus, it is suggested in any of Patent Documents 3 and 4 that nanofibers can be produced using polylactic acid and chitosan in combination. However, in the Examples, nanofibers containing both of them are not manufactured, and it is not clear how to mix and spin polylactic acid and chitosan.
That is, in the technique of Patent Document 3, chitosan is not dissolved in the polylactic acid solution for spinning. Moreover, since the chitosan solution is usually an acetic acid aqueous solution as in Patent Documents 1, 2, and 4, it is not possible to prepare a solution in which both are dissolved by mixing this with a polylactic acid methylene chloride solution. Can not. Therefore, it is difficult to produce a polymer blend of polylactic acid and chitosan in the technique of Patent Document 3.
On the other hand, even in the technique of Patent Document 4, since an organic solvent solution of polylactic acid is mixed with a chitosan acid aqueous solution for spinning and a solution in which both are dissolved cannot be prepared, when preparing a blend of both, There is no method other than mixing polylactic acid in powder with an organic solvent solution of polylactic acid, but it is very difficult to prepare nano-level polylactic acid particles, which is not practical.

特開平2−41473号公報JP-A-2-41473 特開平7−42076号公報Japanese Patent Laid-Open No. 7-42076 国際公開2004/089433号パンフレットInternational Publication No. 2004/088943 Pamphlet 特開2005−290610号公報JP-A-2005-290610

本発明は、このような事情に鑑みてなされたものであり、生分解性ポリエステルとアミノ多糖類とを含む抗菌・消臭性物品用樹脂組成物、並びにこれから得られる抗菌・消臭性ファイバーおよび不織布を提供することを目的とする。   The present invention has been made in view of such circumstances, and a resin composition for an antibacterial / deodorant article containing a biodegradable polyester and an aminopolysaccharide, and an antibacterial / deodorant fiber obtained therefrom and It aims at providing a nonwoven fabric.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、固体状の生分解性ポリエステルと固体状のアミノ多糖類とを加熱混練する、生分解性ポリエステルの有機溶媒溶液とアミノ多糖類の有機酸溶液とを混合する、または生分解性ポリエステルとアミノ多糖類とを、これら両者の溶解能を持つギ酸などの有機溶媒に溶解させることで、生分解性ポリエステルとアミノ多糖類とが均一に混合された組成物、または溶液中に生分解性ポリエステルとアミノ多糖類とが均一に分散した組成物が得られることを見出すとともに、後者の組成物を静電紡糸することで、抗菌性および生分解性に優れる(ナノ)ファイバーおよび不織布が得られることを見出し、本発明を完成した。   As a result of intensive investigations to achieve the above object, the present inventors have conducted an organic solvent solution of a biodegradable polyester and an amino acid which are kneaded by heating a solid biodegradable polyester and a solid aminopolysaccharide. The biodegradable polyester and amino polysaccharide can be mixed with an organic acid solution of the polysaccharide, or by dissolving the biodegradable polyester and amino polysaccharide in an organic solvent such as formic acid having the solubility of both. Is found to be obtained by mixing a homogeneously mixed composition, or a composition in which a biodegradable polyester and aminopolysaccharide are uniformly dispersed in a solution, and by electrospinning the latter composition. The present invention was completed by finding that (nano) fibers and non-woven fabrics having excellent properties and biodegradability can be obtained.

すなわち、本発明は、
1. 生分解性ポリエステル100質量部と、アミノ多糖類0.01〜50質量部とを含むことを特徴とする抗菌・消臭性物品用樹脂組成物、
2. 前記生分解性ポリエステルと前記アミノ多糖類とをそれぞれ固体状態で混合した後、加熱、混練して調製された1の抗菌・消臭性物品用樹脂組成物、
3. 前記生分解性ポリエステル中に、前記アミノ多糖類が均一に分散している1または2の抗菌・消臭性物品用樹脂組成物、
4. 前記生分解性ポリエステルと前記アミノ多糖類のみからなる1〜3のいずれかの抗菌・消臭性物品用樹脂組成物、
5. さらに、酸アミド系溶媒と、有機酸溶媒とを含む1の抗菌・消臭性物品用樹脂組成物、
6. 前記生分解性ポリエステルを酸アミド系溶媒に溶解してなる生分解性ポリエステル含有溶液と、前記アミノ多糖類を前記有機酸溶媒に溶解してなるアミノ多糖類含有溶液とを混合して調製された5の抗菌・消臭性物品用樹脂組成物、
7. さらにギ酸を含み、前記生分解性ポリエステルと前記アミノ多糖類とがギ酸に溶解してなる1の抗菌・消臭物品用樹脂組成物、
8. 均一透明である5〜7のいずれかの抗菌・消臭性物品用樹脂組成物、
9. 前記アミノ多糖類が、D−グルコサミン単位またはN−アセチル−D−グルコサミン単位を有する1〜8のいずれかの抗菌・消臭性物品用樹脂組成物、
10. 前記生分解性ポリエステルが、ポリ乳酸である1〜9のいずれかの抗菌・消臭物品用樹脂組成物、
11. 1〜10のいずれかの抗菌・消臭物品用樹脂組成物を紡糸してなる平均繊維径1nm〜10μmの抗菌・消臭性ファイバー、
12. 11の抗菌・消臭性ファイバーからなる抗菌・消臭性不織布、
13. 1〜10のいずれかの抗菌・消臭物品用樹脂組成物を成形してなる抗菌・消臭性フィルム、
14. 生分解性ポリエステルとアミノ多糖類とを含む樹脂組成物を静電紡糸法により紡糸することを特徴とする抗菌・消臭性不織布の製造方法、
15. 前記樹脂組成物が、生分解性ポリエステルを酸アミド系溶媒に溶かした生分解性ポリエステル含有溶液と、前記アミノ多糖類を有機酸に溶かしたアミノ多糖類含有溶液とを混合して調製された14の抗菌・消臭性不織布の製造方法、
16. 前記樹脂組成物が、前記生分解性ポリエステルと前記アミノ多糖類とをギ酸に溶かして調製された14の抗菌・消臭性不織布の製造方法
を提供する。
That is, the present invention
1. A resin composition for an antibacterial / deodorant article, comprising 100 parts by weight of a biodegradable polyester and 0.01 to 50 parts by weight of an aminopolysaccharide;
2. 1. The resin composition for antibacterial / deodorant articles prepared by mixing the biodegradable polyester and the aminopolysaccharide in a solid state and then heating and kneading,
3. 1 or 2 resin composition for antibacterial and deodorant articles, wherein the aminopolysaccharide is uniformly dispersed in the biodegradable polyester,
4). The resin composition for an antibacterial / deodorant article according to any one of 1 to 3, comprising only the biodegradable polyester and the aminopolysaccharide,
5. Furthermore, 1 resin composition for antibacterial / deodorant articles comprising an acid amide solvent and an organic acid solvent,
6). Prepared by mixing a biodegradable polyester-containing solution obtained by dissolving the biodegradable polyester in an acid amide solvent and an aminopolysaccharide-containing solution obtained by dissolving the aminopolysaccharide in the organic acid solvent. 5. Antibacterial and deodorant resin composition for articles,
7). 1. A resin composition for antibacterial and deodorant articles, which further comprises formic acid, wherein the biodegradable polyester and the aminopolysaccharide are dissolved in formic acid,
8). The resin composition for antibacterial / deodorant articles according to any one of 5 to 7, which is uniformly transparent,
9. The resin composition for antibacterial and deodorant articles according to any one of 1 to 8, wherein the amino polysaccharide has a D-glucosamine unit or an N-acetyl-D-glucosamine unit,
10. The resin composition for antibacterial and deodorant articles according to any one of 1 to 9, wherein the biodegradable polyester is polylactic acid,
11. 1 to 10 antibacterial / deodorant fibers having an average fiber diameter of 1 nm to 10 μm formed by spinning the resin composition for antibacterial / deodorant articles,
12 Antibacterial / deodorant nonwoven fabric comprising 11 antibacterial / deodorant fibers,
13. An antibacterial / deodorant film formed by molding a resin composition for an antibacterial / deodorant article according to any one of 1 to 10;
14 A method for producing an antibacterial / deodorant nonwoven fabric characterized by spinning a resin composition comprising a biodegradable polyester and an aminopolysaccharide by an electrostatic spinning method;
15. The resin composition was prepared by mixing a biodegradable polyester-containing solution in which a biodegradable polyester was dissolved in an acid amide solvent and an aminopolysaccharide-containing solution in which the aminopolysaccharide was dissolved in an organic acid. Manufacturing method of antibacterial and deodorant nonwoven fabric,
16. The method for producing an antibacterial / deodorant nonwoven fabric according to 14, wherein the resin composition is prepared by dissolving the biodegradable polyester and the amino polysaccharide in formic acid.

本発明によれば、生分解性ポリエステルとアミノ多糖類とが分子レベルで混合された組成物を容易に得ることができる。
また、この組成物から得られる本発明の抗菌・消臭性ファイバーおよび不織布は、アミノ多糖類をコーティング加工したものではないため、アミノ多糖類が表面に露出しにくく、これが脱落しにくいため、抗菌性および生分解性に優れる。
さらに、本発明では、生分解性ポリエステルを、酸アミド溶媒などの有機溶媒に溶かし、アミノ多糖類をギ酸などの有機酸に溶かし、これらを混合して溶液する、または両者を、これらの溶解能を有するギ酸などの有機溶媒に溶解して溶液としているため、生分解性ポリエステルとギ酸とを分子レベルで容易に混合することができる。また、この溶液を用いて静電紡糸することで、繊維径のより細い(ナノ)ファイバーを、簡便かつ効率的に製造することができる。
According to the present invention, a composition in which a biodegradable polyester and an aminopolysaccharide are mixed at a molecular level can be easily obtained.
In addition, the antibacterial / deodorant fiber and non-woven fabric of the present invention obtained from this composition are not coated with an aminopolysaccharide, so that the aminopolysaccharide is difficult to be exposed on the surface, and this is difficult to drop off. Excellent in biodegradability and biodegradability.
Furthermore, in the present invention, the biodegradable polyester is dissolved in an organic solvent such as an acid amide solvent, the aminopolysaccharide is dissolved in an organic acid such as formic acid, and these are mixed to form a solution, or both of these are dissolved. Since it is dissolved in an organic solvent such as formic acid having a solution, the biodegradable polyester and formic acid can be easily mixed at the molecular level. In addition, by performing electrospinning using this solution, a (nano) fiber having a thinner fiber diameter can be easily and efficiently produced.

以下、本発明についてさらに詳しく説明する。
本発明に係る抗菌・消臭物品用樹脂組成物は、生分解性ポリエステルとアミノ多糖類とを含むものである。
ここで、生分解性ポリエステルとしては、例えば、ポリ乳酸系脂肪族ポリエステル、ポリカプロラクトン系脂肪族ポリエステル、微生物産生脂肪族系ポリエステル、ポリヒドロキシアルカノエイト、ポリブチレンサクシネートなどの脂肪族系ポリエステルといったいわゆる生分解性プラスチックと一般に呼ばれるものが挙げられる。
Hereinafter, the present invention will be described in more detail.
The resin composition for antibacterial and deodorant articles according to the present invention contains a biodegradable polyester and an aminopolysaccharide.
Here, as the biodegradable polyester, for example, polylactic acid aliphatic polyester, polycaprolactone aliphatic polyester, microorganism-produced aliphatic polyester, polyhydroxyalkanoate, aliphatic polyester such as polybutylene succinate, so-called What is generally called a biodegradable plastic is mentioned.

ポリ乳酸系脂肪族ポリエステルとしては、乳酸、リンゴ酸、グリコール酸等のオキシ酸の重合体、およびこれらの共重合体などのポリラクチド類が挙げられ、具体例としては、ポリ乳酸、ポリ(α−リンゴ酸)、ポリグリコール酸、グリコール酸−乳酸共重合体などが挙げられ、特に、ポリ乳酸に代表されるヒドロキシカルボン酸系脂肪族ポリエステルが好適である。
ポリカプロラクトン系脂肪族ポリエステルは、ε−カプロラクトンの開環重合により得ることができ、水不溶性高分子でありながら、多くの菌により分解されるものであって、一般式:−(O(CH25CO)n−で表される脂肪族ポリエステルである。このようなポリカプロラクトン系脂肪族ポリエステルの市販品としては、例えば、日本ユニカー株式会社販売の「トーン」(商品名)がある。
Examples of polylactic acid-based aliphatic polyesters include polymers of oxyacids such as lactic acid, malic acid, and glycolic acid, and polylactides such as copolymers thereof. Specific examples include polylactic acid, poly (α- Malic acid), polyglycolic acid, glycolic acid-lactic acid copolymer, and the like, and hydroxycarboxylic acid aliphatic polyesters represented by polylactic acid are particularly suitable.
The polycaprolactone-based aliphatic polyester can be obtained by ring-opening polymerization of ε-caprolactone and is decomposed by many bacteria while being a water-insoluble polymer, and has a general formula: — (O (CH 2 ) 5 CO) An aliphatic polyester represented by n- . As a commercial item of such polycaprolactone aliphatic polyester, for example, “Tone” (trade name) sold by Nippon Unicar Co., Ltd. is available.

微生物産生脂肪族系ポリエステルは、生体由来の融点をもつ熱可塑性ポリマーである。具体的には、ポリヒドロキシブチレート(PHB)、ポリ(ヒドロキシ酪酸−ヒドロキシプロピオン酸)共重合体、ポリ(ヒドロキシ酪酸−ヒドロキシ吉草酸)共重合体などが挙げられる。
なお、本発明では、生分解性ポリエステル以外に、生分解性のポリウレタン、ポリアクリル、ポリプロピレンや、生分解性ではないポリエステル、ナイロン等を混合してもよい。生分解性ではないポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートなどの芳香族系ポリエステルが挙げられる。
The microorganism-produced aliphatic polyester is a thermoplastic polymer having a melting point derived from a living body. Specific examples include polyhydroxybutyrate (PHB), poly (hydroxybutyric acid-hydroxypropionic acid) copolymer, poly (hydroxybutyric acid-hydroxyvaleric acid) copolymer, and the like.
In the present invention, in addition to biodegradable polyester, biodegradable polyurethane, polyacryl, polypropylene, non-biodegradable polyester, nylon, or the like may be mixed. Examples of the non-biodegradable polyester include aromatic polyesters such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate.

アミノ多糖類は、特に限定されるものではないが、D−グルコサミン単位またはN−アセチル−D−グルコサミン単位を有するアミノ多糖類が好適である。具体例としては、キチン、キトサン等の天然アミノ多糖類が挙げられる。   The amino polysaccharide is not particularly limited, but an amino polysaccharide having a D-glucosamine unit or an N-acetyl-D-glucosamine unit is preferable. Specific examples include natural amino polysaccharides such as chitin and chitosan.

本発明の抗菌・消臭物品用樹脂組成物において、生分解性ポリエステルとアミノ多糖類との配合割合は、生分解性ポリエステルが過剰(50質量%超)であることが好適であり、特に、生分解性ポリエステル100質量部に対して、アミノ多糖類0.01〜50質量部が好ましく、0.01〜30質量部がより好ましく、0.01〜5質量部がより一層好ましい。
アミノ多糖類が50質量部を超えると、組成物の成形性が低下し、得られる成形品や、不織布の風合いが固く、脆くなる虞がある。アミノ多糖類が0.01〜30質量部、特に0.01〜5質量部の範囲であると、抗菌・消臭性が良好に発揮され、かつ生分解性ポリエステルの機械的強度に近くに樹脂組成物の機械的強度を保てるので、成形品や不織布に抗菌・消臭性と機械的強度をバランスよく付与することができる。
In the resin composition for antibacterial / deodorant articles of the present invention, the blending ratio of the biodegradable polyester and aminopolysaccharide is preferably such that the biodegradable polyester is excessive (greater than 50% by mass). 0.01-100 mass parts of amino polysaccharide is preferable with respect to 100 mass parts of biodegradable polyester, 0.01-30 mass parts is more preferable, and 0.01-5 mass parts is still more preferable.
If the aminopolysaccharide exceeds 50 parts by mass, the moldability of the composition is lowered, and the resulting molded article or the nonwoven fabric may have a hard texture and become brittle. When the aminopolysaccharide is in the range of 0.01 to 30 parts by mass, particularly 0.01 to 5 parts by mass, the antibacterial and deodorant properties are well exhibited and the resin is close to the mechanical strength of the biodegradable polyester Since the mechanical strength of the composition can be maintained, antibacterial / deodorant properties and mechanical strength can be imparted to a molded article or nonwoven fabric in a well-balanced manner.

本発明の抗菌・消臭物品用樹脂組成物は、生分解性ポリエステルとアミノ多糖類とを混合して得られる。これらを混合する手法としては、(1)生分解性ポリエステルにアミノ多糖類を練り込み混合する方法、(2)生分解性ポリエステルとアミノ多糖類とのそれぞれを有機溶媒で溶解させた溶液を調製し、これら溶液を混合する方法、(3)生分解性ポリエステルとアミノ多糖類との両方を溶解させる有機溶媒に溶解混合する方法がある。
これらの3通りの方法を用いることで、生分解性ポリエステル中にアミノ多糖類をより均一に分散させることができる。中でも両者を分子レベルで混合し得ることから、(2)生分解性ポリエステルとアミノ多糖類とのそれぞれを有機溶媒で溶解させた溶液を調製し、これらを混合する方法、(3)生分解性ポリエステルとアミノ多糖類との両方を溶解させる有機溶媒に溶解混合する方法が好ましい。
The resin composition for antibacterial and deodorant articles of the present invention is obtained by mixing a biodegradable polyester and an aminopolysaccharide. As a method of mixing these, (1) a method in which aminopolysaccharide is kneaded and mixed in biodegradable polyester, and (2) a solution in which each of biodegradable polyester and aminopolysaccharide is dissolved in an organic solvent is prepared. There are a method of mixing these solutions, and (3) a method of dissolving and mixing in an organic solvent that dissolves both the biodegradable polyester and aminopolysaccharide.
By using these three methods, the aminopolysaccharide can be more uniformly dispersed in the biodegradable polyester. Among them, since both can be mixed at the molecular level, (2) a method of preparing a solution in which each of biodegradable polyester and aminopolysaccharide is dissolved in an organic solvent and mixing them, (3) biodegradability A method of dissolving and mixing in an organic solvent in which both polyester and aminopolysaccharide are dissolved is preferred.

上記(1)の生分解性ポリエステルにアミノ多糖類を練り込み混合する方法の場合、例えば、生分解性ポリエステルとアミノ多糖類とをそれぞれ固体状態で混合した後、加熱、混練して抗菌・消臭物品用樹脂組成物とすればよい。
この場合、アミノ多糖類は、粉末状のものを用いることが好ましい。この粉末状のアミノ多糖類は、衝撃式、圧縮式、剪断式、エアジェット式、冷凍粉砕式等の各種粉砕機により機械的に粉砕したり、ギ酸、酢酸、乳酸、クエン酸等の有機酸もしくは塩酸、硝酸等の無機酸の水溶液にこれを一旦溶解させた後、アンモニア等のアルカリ溶液に分散して再生させたり、またはスプレードライにより噴霧乾燥して再生させたりして得ることができる。
アミノ多糖類の平均粒径は、0.2〜400μmが好ましく、0.20〜100μmがより好ましい。なお、平均粒径は、光散乱粒度分布測定装置による測定値である。
In the case of the method of kneading and mixing the aminopolysaccharide into the biodegradable polyester of (1) above, for example, the biodegradable polyester and aminopolysaccharide are mixed in a solid state, and then heated and kneaded to obtain antibacterial / antibacterial properties. What is necessary is just to set it as the resin composition for odor articles.
In this case, it is preferable to use a powdered aminopolysaccharide. This powdered aminopolysaccharide can be mechanically pulverized by various types of pulverizers such as impact type, compression type, shear type, air jet type, and freeze pulverization type, and organic acids such as formic acid, acetic acid, lactic acid and citric acid. Alternatively, it can be obtained by dissolving it once in an aqueous solution of an inorganic acid such as hydrochloric acid or nitric acid, and then dispersing it in an alkaline solution such as ammonia and regenerating it, or spraying and drying it by spray drying.
The average particle size of the aminopolysaccharide is preferably 0.2 to 400 μm, more preferably 0.20 to 100 μm. The average particle diameter is a value measured by a light scattering particle size distribution measuring device.

生分解性ポリエステルとアミノ多糖類との混練法は特に限定はなく、一軸混練押出機、二軸混練押出機、バッチ式混練機、連続押出混練機等を用いて混練すればよい。
加熱温度は、アミノ多糖類をより均一に分散させることを考慮すると、100〜250℃が好ましく、100〜200℃がより好ましい。
上記の混練により得られた抗菌・消臭物品用樹脂組成物(樹脂混合ペレット)は、一般的な熱可塑性プラスチックと同様に、押出成形、射出成形、延伸フィルム成形、ブロー成形などにより、種々の形状の成形品とすることができる。
The kneading method of the biodegradable polyester and the aminopolysaccharide is not particularly limited, and may be kneaded using a single screw kneading extruder, a twin screw kneading extruder, a batch kneader, a continuous extrusion kneader or the like.
The heating temperature is preferably from 100 to 250 ° C, more preferably from 100 to 200 ° C, considering that aminopolysaccharides are more uniformly dispersed.
The resin composition for antibacterial and deodorant articles (resin mixed pellets) obtained by kneading as described above can be used in various ways by extrusion molding, injection molding, stretched film molding, blow molding, etc., as with general thermoplastics. The molded product can be shaped.

上記(2)および(3)の生分解性ポリエステルとアミノ多糖類とを有機溶媒中に溶解する方法の場合、生分解性ポリエステルを溶解させる有機溶媒としては、酸アミド系溶媒、塩素系溶媒、炭化水素系溶媒、およびギ酸等の有機溶媒を挙げることができる。一方、アミノ多糖類を溶解させる有機溶媒としては、室温で液体の有機酸溶媒や、室温で固体の有機酸を溶解した酸アミド系溶媒等の有機溶媒を挙げることができる。
生分解性ポリエステルの有機溶媒溶液の調製に用いられる酸アミド系溶媒としては、N,N−ジメチルホルムアミド(以下、DMFという)やN,N−ジメチルアセトアミド(以下、DMAcという)などの室温で液体のN−置換アミドが挙げられ、さらにはN−メチル−2−ピロリドンのような一部が環をなし、ヘテロ原子にカルボニル炭素が隣接した化合物でもよい。
塩素系溶媒としては、塩化メチレン、クロロホルムなどが挙げられ、炭化水素系溶媒としては、トルエン、ベンゼン、アセトン、ヘキサン、シクロヘキサン、メタノール、エタノール、プロパノール、イソプロパノール、テトラヒドロフランなどが挙げられる。
これらの有機溶媒の中でも、生分解性ポリエステルの有機溶媒溶液(生分解性ポリエステル含有溶液)の調製に用いる溶媒としては酸アミド系溶媒が好ましく、DMF、DMAcなどのN−置換アミドが最適である。また、ギ酸も好適に用いることができる。
In the case of the method of dissolving the biodegradable polyester and aminopolysaccharide of (2) and (3) in an organic solvent, the organic solvent for dissolving the biodegradable polyester includes an acid amide solvent, a chlorine solvent, Examples thereof include hydrocarbon solvents and organic solvents such as formic acid. On the other hand, examples of the organic solvent for dissolving the aminopolysaccharide include organic solvents such as an organic acid solvent that is liquid at room temperature and an acid amide solvent that dissolves a solid organic acid at room temperature.
Examples of the acid amide solvent used for the preparation of the organic solvent solution of the biodegradable polyester include N, N-dimethylformamide (hereinafter referred to as DMF) and N, N-dimethylacetamide (hereinafter referred to as DMAc). N-substituted amides may also be mentioned, and further, a compound such as N-methyl-2-pyrrolidone partially forming a ring and having a carbonyl carbon adjacent to a hetero atom may be used.
Examples of the chlorine solvent include methylene chloride and chloroform, and examples of the hydrocarbon solvent include toluene, benzene, acetone, hexane, cyclohexane, methanol, ethanol, propanol, isopropanol, and tetrahydrofuran.
Among these organic solvents, an acid amide solvent is preferable as a solvent used for preparing an organic solvent solution (biodegradable polyester-containing solution) of biodegradable polyester, and N-substituted amides such as DMF and DMAc are most suitable. . In addition, formic acid can also be suitably used.

アミノ多糖類の有機溶媒溶液の調製に用いられる室温で液体の有機酸溶媒としては、上述の生分解性ポリエステルを溶解させるギ酸の他、酢酸、乳酸などが挙げられる。また、室温で固体の有機酸を溶解した酸アミド系溶媒としては、クエン酸、リンゴ酸、酒石酸などを溶解した酸アミド系溶媒が挙げられる。酸アミド系溶媒については上述のとおりである。
これらの中でも、ゲル化しにくく、均一な溶液を調製し易いという点から、アミノ多糖類の有機溶媒溶液(アミノ多糖類含有溶液)の調製に用いる溶媒としてはギ酸が好適である。特に生分解性ポリエステル含有溶液の調製溶媒にもギ酸を用いる場合は、上記(2)の方法に加え、生分解性ポリエステルとアミノ多糖類との両方を、有機溶媒(ギ酸)中に少量ずつ添加して溶解混合させるという、上記(3)の方法を採用することができる。
Examples of the organic acid solvent that is liquid at room temperature used for the preparation of the aminopolysaccharide organic solvent solution include acetic acid and lactic acid in addition to formic acid that dissolves the above-described biodegradable polyester. Examples of the acid amide solvent in which a solid organic acid is dissolved at room temperature include acid amide solvents in which citric acid, malic acid, tartaric acid and the like are dissolved. The acid amide solvent is as described above.
Among these, formic acid is suitable as a solvent used for preparing an organic solvent solution of aminopolysaccharide (aminopolysaccharide-containing solution) from the viewpoint that gelation is difficult and a uniform solution can be easily prepared. In particular, when formic acid is used as a solvent for preparing a biodegradable polyester-containing solution, in addition to the method (2) above, both biodegradable polyester and aminopolysaccharide are added in small amounts in an organic solvent (formic acid). Then, it is possible to employ the method of (3) above in which dissolution and mixing are performed.

上記(2)の生分解性ポリエステルとアミノ多糖類との両方をそれぞれ有機溶媒で溶解して混合する方法の場合、上述の有機溶媒を用いて生分解性ポリエステルとアミノ多糖類とをそれぞれ別の溶液として調製し、これら溶液を混合して液体状の抗菌・消臭物品用樹脂組成物とすればよい。
特に上記有機溶媒の中でも、生分解性ポリエステルの溶媒に酸アミド系溶媒を、アミノ多糖類の溶媒にギ酸を用いる場合は、アミノ多糖類のギ酸溶液と生分解性ポリエステルの酸アミド系溶媒溶液とは、相溶性がよく、混合溶液は室温で10日以上ゲル化もせず、静電紡糸の原料溶液として保存安定性が良いことから、これらの組み合わせが最適である。
In the case of the method of dissolving and mixing both the biodegradable polyester and aminopolysaccharide of (2) above with an organic solvent, the biodegradable polyester and aminopolysaccharide are separately prepared using the above organic solvent. What is necessary is just to prepare as a solution and mix these solutions to make a liquid resin composition for antibacterial and deodorant articles.
In particular, among the above organic solvents, when an acid amide solvent is used as the solvent for the biodegradable polyester and formic acid is used as the solvent for the amino polysaccharide, a formic acid solution of the amino polysaccharide and an acid amide solvent solution of the biodegradable polyester These are the most suitable because they have good compatibility, and the mixed solution does not gel for more than 10 days at room temperature and has good storage stability as a raw material solution for electrospinning.

生分解性ポリエステル含有溶液は、任意の手法で生分解性ポリエステルと、酸アミド系溶媒等の有機溶媒とを混合し、必要に応じて加熱して調製することができる。加熱する場合の温度は、使用する溶媒の沸点にもよるが、25〜150℃程度が好適である。25℃未満であると、使用する溶媒の種類にもよるが生分解性ポリエステルを均一溶液になるまで溶解させるのに時間がかかり好ましくなく、150℃を超えても溶媒中に含まれる水分による生分解性ポリエステルの加水分解が起こり易くなるので好ましくない。
この場合、溶液中の生分解性ポリエステルの濃度は、2〜50質量%程度が好ましく、5〜40質量%程度がより好ましい。
アミノ多糖類含有溶液は、任意の手法でアミノ多糖類と、有機酸溶媒または有機酸含有酸アミド系溶媒とを混合し、必要に応じて加熱して調製することができる。加熱する場合の温度は、使用する溶媒の沸点以下が好適である。
この場合、溶液中のアミノ多糖類の濃度は、0.1〜20質量%程度が好ましく0.5〜10質量%程度がより好ましい。
The biodegradable polyester-containing solution can be prepared by mixing the biodegradable polyester and an organic solvent such as an acid amide solvent by any method and heating as necessary. The temperature for heating depends on the boiling point of the solvent used, but is preferably about 25 to 150 ° C. If it is lower than 25 ° C., although it depends on the type of solvent used, it takes time to dissolve the biodegradable polyester until it becomes a homogeneous solution. This is not preferable because hydrolysis of the degradable polyester easily occurs.
In this case, the concentration of the biodegradable polyester in the solution is preferably about 2 to 50% by mass, and more preferably about 5 to 40% by mass.
The aminopolysaccharide-containing solution can be prepared by mixing the aminopolysaccharide with an organic acid solvent or an organic acid-containing acid amide solvent by any method and heating as necessary. The heating temperature is preferably not higher than the boiling point of the solvent used.
In this case, the concentration of the aminopolysaccharide in the solution is preferably about 0.1 to 20% by mass, and more preferably about 0.5 to 10% by mass.

以上のようにして調製した生分解性ポリエステル含有溶液と、アミノ多糖類含有溶液とを混合して液体状の樹脂組成物を得る。この際、生分解性ポリエステル含有溶液にアミノ多糖類含有溶液を添加しても、その逆でもよい。得られた樹脂組成物は、均一透明の液体として得られる。
この液体状の樹脂組成物を固形状の樹脂組成物に成形するに先立ち、成形方法に合わせて溶液の粘度や樹脂濃度を調整するなどのために、溶液にさらに溶媒を加えてもよい。溶液中の、生分解性ポリエステルおよびアミノ多糖類の濃度は、2.5〜40質量%程度が好ましく、3.5〜30質量%程度がより好ましい。2.5質量%未満では、粘度が低くなるため成形や紡糸が困難になる場合があり、また、40質量%超では、粘度が高くなり、この場合も成形や紡糸が困難になる場合がある。
なお、キトサンなどのアミノ多糖類は、従来、酸水溶液として用いられるため、樹脂の有機溶媒溶液とは混合できなかったが、本発明では、有機酸溶媒、または有機酸を含む有機溶媒を用いてアミノ多糖類の溶液を調製しているため、生分解性ポリエステルの有機溶媒溶液と容易に混合することができる。
The biodegradable polyester-containing solution prepared as described above and the aminopolysaccharide-containing solution are mixed to obtain a liquid resin composition. At this time, the aminopolysaccharide-containing solution may be added to the biodegradable polyester-containing solution, or vice versa. The obtained resin composition is obtained as a uniform transparent liquid.
Prior to molding this liquid resin composition into a solid resin composition, a solvent may be further added to the solution in order to adjust the viscosity or resin concentration of the solution in accordance with the molding method. The concentration of the biodegradable polyester and aminopolysaccharide in the solution is preferably about 2.5 to 40% by mass, more preferably about 3.5 to 30% by mass. If it is less than 2.5% by mass, the viscosity may be low, so that molding and spinning may be difficult. If it exceeds 40% by mass, the viscosity will be high, and in this case, molding and spinning may be difficult. .
In addition, since aminopolysaccharides such as chitosan are conventionally used as an acid aqueous solution, they cannot be mixed with an organic solvent solution of a resin. However, in the present invention, an organic acid solvent or an organic solvent containing an organic acid is used. Since the aminopolysaccharide solution is prepared, it can be easily mixed with the organic solvent solution of the biodegradable polyester.

得られた液体状の樹脂組成物は、流延法、押出成形法、スプレー法、ロールコーティング法、ディッピング法などの方法により、薄膜を形成し、次いで溶媒を真空乾燥するか、水中に浸漬して湿式凝固させて樹脂溶液をゲル化した後に乾燥することにより、フィルムとすることができる。
また、この樹脂組成物は、静電紡糸法、スパンボンド法、メルトブロー法およびフラッシュ紡糸法等により紡糸することで、(ナノ)ファイバーとすることができる。これらの紡糸法の中でも、熱の影響が少ない静電紡糸法が好ましい。
The obtained liquid resin composition is formed into a thin film by a casting method, an extrusion method, a spray method, a roll coating method, a dipping method, etc., and then the solvent is vacuum dried or immersed in water. The film can be formed by wet-coagulating and gelling the resin solution and then drying.
Moreover, this resin composition can be made into a (nano) fiber by spinning by an electrostatic spinning method, a spunbond method, a melt blow method, a flash spinning method, or the like. Among these spinning methods, an electrostatic spinning method with little influence of heat is preferable.

静電紡糸法は、電界中で、帯電した樹脂組成物を曳糸しつつ、その電荷の反発力により樹脂組成物を破裂させ、樹脂組成物からなる極微細な繊維状物を形成する方法である。
静電紡糸を行う装置の基本的な構成は、樹脂組成物を排出するノズルを兼用し、樹脂組成物に高電圧で印加する一方の電極と、その電極に対向する他方の電極とからなる。一方の電極から吐出あるいは振出された樹脂組成物は、2つの対向する電極間の電界中で樹脂組成物からなる極微細な繊維状物になり、他方の電極表面上に堆積する。
具体的には、生分解性ポリエステル含有溶液とアミノ多糖類含有溶液とを混合し、口金から押して、混合溶液(樹脂組成物)に数千から5万ボルト程度の高電圧を印加し、混合溶液の高速ジェットおよびそれに引き続くジェットの折れ曲がり、膨張によって(ナノ)ファイバー繊維および不織布が得られる。
The electrostatic spinning method is a method in which a charged resin composition is twisted in an electric field, and the resin composition is ruptured by the repulsive force of the charge to form an extremely fine fibrous material made of the resin composition. is there.
The basic structure of an apparatus for performing electrostatic spinning is composed of one electrode that serves as a nozzle for discharging the resin composition and is applied to the resin composition at a high voltage, and the other electrode that faces the electrode. The resin composition discharged or shaken from one electrode becomes an extremely fine fibrous material made of the resin composition in an electric field between two opposing electrodes, and is deposited on the surface of the other electrode.
Specifically, the biodegradable polyester-containing solution and the aminopolysaccharide-containing solution are mixed, pressed from the die, and a high voltage of about several thousand to 50,000 volts is applied to the mixed solution (resin composition), and the mixed solution (Nano) fiber fibers and nonwoven fabrics are obtained by bending and expansion of the high-speed jet and subsequent jet.

本発明では、樹脂組成物に酸成分が含まれているため、組成物(溶液)に電圧を印加する際に電荷がたまり易くなり、電界中に組成物をスプレーした際により細かく分裂させることができる。樹脂組成物中の酸の濃度を高めることで、得られる(ナノ)ファイバーの繊維径を細くすることができる。樹脂組成物中の酸成分は、0.1〜90質量%が好ましく、0.5〜85質量%がより好ましく、0.5〜75質量%がより一層好ましい。0.1質量%未満では、繊維径の細さに影響せず、90質量%超であると安定して紡糸できない虞があるため好ましくない。
本発明の樹脂組成物を静電紡糸により紡糸することで、平均繊維径を、ナノファイバーの領域を含む1nm〜10μm、好ましくはナノファイバーの領域である1〜1000nmの範囲において、比較的そろった径に調整できる。
In the present invention, since an acid component is included in the resin composition, charges are easily accumulated when a voltage is applied to the composition (solution), and the resin composition can be more finely divided when sprayed in the electric field. it can. By increasing the acid concentration in the resin composition, the fiber diameter of the obtained (nano) fiber can be reduced. The acid component in the resin composition is preferably 0.1 to 90% by mass, more preferably 0.5 to 85% by mass, and still more preferably 0.5 to 75% by mass. If it is less than 0.1% by mass, the fineness of the fiber diameter is not affected, and if it exceeds 90% by mass, there is a possibility that spinning cannot be stably performed.
By spinning the resin composition of the present invention by electrostatic spinning, the average fiber diameter was relatively uniform in the range of 1 nm to 10 μm including the nanofiber region, preferably in the range of 1 to 1000 nm which is the nanofiber region. Can be adjusted to the diameter.

以上に本発明の液状の樹脂組成物をフィルムや(ナノ)ファイバー、不織布に成形する方法を述べたが、成形物はこれらに限られるものではない。例えば、液状の樹脂組成物は、液滴化して溶媒を真空乾燥するか、水中に浸漬して湿式凝固させてゲル化した後に、乾燥することでペレットとし、これを一般的な熱可塑性プラスチックと同様に、押出成形、射出成形、延伸フィルム成形、ブロー成形などの成形方法を用いて種々の成形物とすることもできる。   As mentioned above, although the method of shape | molding the liquid resin composition of this invention in a film, (nano) fiber, and a nonwoven fabric was described, a molded article is not restricted to these. For example, a liquid resin composition is formed into droplets and vacuum-dried solvent, or is immersed in water to wet-solidify and gel, and then dried into pellets. Similarly, various molded products can be formed using molding methods such as extrusion molding, injection molding, stretched film molding, and blow molding.

なお、以上で説明した各種抗菌・消臭物品用樹脂組成物には、その他の添加剤として、本発明の効果が発揮される範囲で、帯電防止剤、発泡剤、耐熱安定剤、耐光安定剤、耐候安定剤、耐湿熱安定化剤、滑剤、離型剤、無機充填剤、顔料分散剤、顔料、染料などを適宜添加することができる。   In addition, in the various antibacterial / deodorant article resin compositions described above, as other additives, an antistatic agent, a foaming agent, a heat stabilizer, a light stabilizer, as long as the effects of the present invention are exhibited. In addition, a weather resistance stabilizer, a heat and humidity resistance stabilizer, a lubricant, a release agent, an inorganic filler, a pigment dispersant, a pigment, a dye, and the like can be appropriately added.

本発明の抗菌・消臭物品用樹脂組成物から得られた、(ナノ)ファイバー、不織布、フィルム等の各種成形品は、例えば、払拭シート、マスク、フィルタ、濾過材、有害物質除去製品、手袋、雑巾、ワイパ、マット、カーシート、天井材、壁紙、オムツ、病院用ガウン、医療従事者用衣服、シーツ、包装材、芯地、育苗ポット、育苗マット、土木建築材などに好適に使用できる。   Various molded articles such as (nano) fibers, non-woven fabrics, and films obtained from the resin composition for antibacterial and deodorant articles of the present invention include, for example, wiping sheets, masks, filters, filter media, hazardous substance removal products, gloves , Wiper, wiper, mat, car seat, ceiling material, wallpaper, diapers, hospital gowns, clothes for medical staff, sheets, packaging materials, interlining, seedling pots, seedling mats, civil engineering construction materials, etc. .

以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。なお、以下の各実施例、比較例における評価項目は下記手法にて実施した。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. The evaluation items in the following examples and comparative examples were carried out by the following methods.

[1]平均繊維径
試料表面を走査型電子顕微鏡((株)日立ハイテクノロジーズ製「S−4800I」)により撮影倍率5000倍で撮影して得た写真から、無作為に20箇所を選んで繊維径を測定した。全ての繊維径の平均値(n=20)を求めて平均繊維径とした。
[2]不織布の厚み
デジタルシックネスゲージ((株)テクロック製「SMD−565」)を用いて、測定力1.5Nにより無作為に5箇所を選んで厚みを測定した。全ての厚みの平均値(n=5)を求めて、不織布の厚みとした。
[3]不織布の目付
試料の質量を測定し、平方メートル当たりに換算した。
[4]抗菌性能測定試験(菌数測定法)
繊維製品衛生加工協議会が策定した抗菌防臭加工製品の加工効果評価試験マニュアルに記載された以下の菌数測定法を採用した。
黄色ぶどう球菌を試験菌体とし、これを予め普通ブイヨン培地で106〜107個/mlになるように培養調整し、試験菌懸濁液とした。この懸濁液0.2mlを減菌処理したネジ付きバイアル瓶中の試料0.4gに均一に接種し、36〜38℃で18時間静置培養後、容器内に減菌緩衝生理食塩液を20ml加え、振幅30cmで手により25〜30回強く振とうして試験中の生菌を液中に分散させた後、減菌緩衝生理食塩液で適当な希釈系列を作り、各段階の希釈液1mlをシャーレ2枚に入れ、さらに標準寒天培地約15ml入れた。これを36〜38℃で24〜48時間培養した後、生育コロニー数を計測し、その希釈倍率に応じて試料中の生菌数を算出した。そしてその効果の判定は、増殖値が1.5を超える場合、試験成立を判定した。また、下記式により静菌活性値Sおよび殺菌活性値Lを求めた。
静菌活性値S=B−C
殺菌活性値L=A−C
A:標準布の試験菌接触直後の3検体の生菌数の常用対数値の平均値
B:標準布の18時間培養後の3検体の生菌数の常用対数値の平均値
C:抗菌加工試料の18時間培養後の3検体の生菌数の常用対数値の平均値
[5]生分解性能測定試験
畑土壌中に埋設して3ヵ月後および5ヵ月経過後の試料(5cm×5cm)の分解状況を肉眼判定した。
[6]紡糸性
吐出先端内孔径0.4mm、印加電圧25KV、室温、大気圧下の条件で液状の樹脂組成物を静電紡糸した際の吐出状態を目視観察し、以下の基準で評価した。
○:安定的に吐出可能
△:中断しながら吐出可能
×:吐出不可能
[7]風合い
得られた不織布を手で握り、その時の触感を判断した。官能評価を以下の基準で行った。
◎:より柔軟
○:柔軟
△:普通
×:硬い
[1] Average fiber diameter 20 fibers were selected at random from the photograph obtained by photographing the sample surface with a scanning electron microscope (“S-4800I” manufactured by Hitachi High-Technologies Corporation) at a magnification of 5000 times. The diameter was measured. The average value (n = 20) of all fiber diameters was determined and used as the average fiber diameter.
[2] Thickness of Nonwoven Fabric Using a digital thickness gauge ("SMD-565" manufactured by Teclock Co., Ltd.), the thickness was measured by randomly selecting five locations with a measuring force of 1.5N. The average value (n = 5) of all thicknesses was determined and used as the thickness of the nonwoven fabric.
[3] Fabric weight of nonwoven fabric The mass of the sample was measured and converted per square meter.
[4] Antibacterial performance measurement test (bacteria count measurement method)
The following bacterial count measurement method described in the processing effect evaluation test manual for antibacterial and deodorant processed products formulated by the Textile Products Sanitation Processing Council was adopted.
Staphylococcus aureus was used as a test cell, and this was cultured and adjusted in advance in a normal bouillon medium to 106 to 107 cells / ml to obtain a test cell suspension. 0.2 ml of this suspension is uniformly inoculated into 0.4 g of a sterilized screw-capped vial, statically cultured at 36-38 ° C. for 18 hours, and then sterilized buffered saline is placed in the container. Add 20 ml, shake vigorously 25-30 times by hand with an amplitude of 30 cm, disperse the test bacteria in the solution, make an appropriate dilution series with sterilized buffered saline, and dilute each stage 1 ml was placed in two petri dishes, and about 15 ml of standard agar medium was further added. After culturing this at 36 to 38 ° C. for 24 to 48 hours, the number of growing colonies was counted, and the number of viable bacteria in the sample was calculated according to the dilution rate. And the determination of the effect determined the test establishment, when the proliferation value exceeded 1.5. Moreover, bacteriostatic activity value S and bactericidal activity value L were calculated | required by the following formula.
Bacteriostatic activity value S = BC
Bactericidal activity value L = A-C
A: Average value of common logarithm of the number of viable bacteria of three specimens immediately after contact of the test cloth on the standard cloth B: Average value of common logarithm of the number of viable bacteria of the three specimens after 18 hours culture of the standard cloth C: Antibacterial processing Average value of common logarithm of the number of viable bacteria of 3 specimens after 18 hours of culturing [5] Biodegradation performance measurement test Samples after 3 months and 5 months after being buried in field soil (5 cm x 5 cm) The disassembly status was determined with the naked eye.
[6] Spinnability The discharge state when the liquid resin composition was electrostatically spun under the conditions of a discharge tip inner hole diameter of 0.4 mm, an applied voltage of 25 KV, room temperature, and atmospheric pressure was visually observed and evaluated according to the following criteria. .
○: Stable discharge is possible Δ: Discharge is possible while being interrupted X: Discharge is impossible [7] Texture The obtained nonwoven fabric was grasped by hand, and the tactile sensation at that time was judged. Sensory evaluation was performed according to the following criteria.
◎: More flexible ○: Flexible △: Normal ×: Hard

[1]フィルムの作製
[実施例1]
ポリ乳酸樹脂(LACEA H400、三井化学(株)製)100質量部とキトサン粉末((株)キミカ製、平均粒子径約1〜5μm)2.5質量部とを、二軸エクストルダー中、220℃で練り込み混合して抗菌・消臭物品用樹脂組成物を製造し、引き続いてギヤポンプにて計量しながら温度210℃のTダイ口金からこの樹脂組成物をシート状に押し出した。その後、20℃まで冷却し、厚み100μmの抗菌フィルムを得た。
[1] Production of film [Example 1]
In a biaxial extruder, 100 parts by mass of polylactic acid resin (LACEA H400, manufactured by Mitsui Chemicals, Inc.) and 2.5 parts by mass of chitosan powder (produced by Kimika Co., Ltd., average particle diameter of about 1 to 5 μm) A resin composition for an antibacterial / deodorant article was produced by kneading and mixing at 0 ° C., and this resin composition was then extruded in a sheet form from a T die die at a temperature of 210 ° C. while being measured with a gear pump. Then, it cooled to 20 degreeC and obtained the 100-micrometer-thick antimicrobial film.

[実施例2]
ポリ乳酸樹脂(LACEA H280、三井化学(株)製)100質量部とジメチルアセトアミド300質量部とを混合し、60℃でポリ乳酸を溶解させてポリ乳酸含有溶液を調製した。一方、キトサン((株)キミカ製、脱アセチル化75〜85%)2.5質量部とギ酸164質量部とを室温にて混合し、キトサンを溶解させてキトサン含有溶液を調製した。これを、先に調製したポリ乳酸含有溶液に室温で添加して混合し、均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。
得られた樹脂組成物を、ガラス板上にナイフコータにてキャストし、60℃の真空乾燥機にて10時間乾燥を行い、厚み100μmの抗菌フィルムを得た。
[Example 2]
A polylactic acid-containing solution was prepared by mixing 100 parts by mass of a polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals) and 300 parts by mass of dimethylacetamide and dissolving polylactic acid at 60 ° C. On the other hand, 2.5 parts by mass of chitosan (manufactured by Kimika Co., Ltd., deacetylated 75 to 85%) and 164 parts by mass of formic acid were mixed at room temperature, and chitosan was dissolved to prepare a chitosan-containing solution. This was added to the previously prepared polylactic acid-containing solution and mixed at room temperature to prepare a uniform transparent liquid antibacterial / deodorant resin composition.
The obtained resin composition was cast on a glass plate with a knife coater and dried with a vacuum dryer at 60 ° C. for 10 hours to obtain an antibacterial film having a thickness of 100 μm.

[2]不織布の作製
[実施例3]
ポリ乳酸樹脂(LACEA H280、三井化学(株)製)100質量部とジメチルホルムアミド570質量部とを混合し、60℃でポリ乳酸を溶解させてポリ乳酸含有溶液を調製した。一方、キトサン((株)キミカ製、脱アセチル化75〜85%)0.1質量部とギ酸6.6質量部とを室温にて混合し、キトサンを溶解させてキトサン含有溶液を調製した。これを、先に調製したポリ乳酸含有溶液に室温で添加して混合し、均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。
この樹脂組成物(紡糸溶液)をシリンジに入れ、吐出先端内口径が0.4mm、印加電圧25KV(室温下、大気圧)、吐出先端内口径から繊維状物質捕集電極までの距離15cmで静電紡糸を行い、抗菌不織布を得た。得られた不織布の平均繊維径は1μmであり、繊維径10μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域を含むものであった。また、不織布の厚みは150μmであり、目付は30g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図1に示す。
[2] Fabrication of nonwoven fabric [Example 3]
100 parts by mass of polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals) and 570 parts by mass of dimethylformamide were mixed, and polylactic acid was dissolved at 60 ° C. to prepare a polylactic acid-containing solution. On the other hand, 0.1 parts by mass of chitosan (manufactured by Kimika Co., Ltd., deacetylated 75 to 85%) and 6.6 parts by mass of formic acid were mixed at room temperature to dissolve chitosan to prepare a chitosan-containing solution. This was added to the previously prepared polylactic acid-containing solution and mixed at room temperature to prepare a uniform transparent liquid antibacterial / deodorant resin composition.
This resin composition (spinning solution) is put into a syringe, the inner diameter of the discharge tip is 0.4 mm, the applied voltage is 25 KV (at room temperature, atmospheric pressure), and the distance from the inner diameter of the discharge tip to the fibrous material collecting electrode is 15 cm. Electrospinning was performed to obtain an antibacterial nonwoven fabric. The obtained nonwoven fabric had an average fiber diameter of 1 μm, fibers having a fiber diameter of 10 μm or more were not observed, and the fibers constituting the nonwoven fabric contained nanofiber regions. The nonwoven fabric had a thickness of 150 μm and a basis weight of 30 g / m 2 . The electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例4]
キトサンを0.5質量部とし、ギ酸を33質量部とした以外は、実施例3と同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は0.5μmであり、繊維径1μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは100μmであり、目付は10g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図2に示す。
[Example 4]
A uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 0.5 parts by mass of chitosan and 33 parts by mass of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 0.5 μm, fibers having a fiber diameter of 1 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofiber regions. The nonwoven fabric had a thickness of 100 μm and a basis weight of 10 g / m 2 . An electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例5]
キトサンを1質量部とし、ギ酸を66質量部とした以外は、実施例3と同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は0.3μmであり、繊維径0.5μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは50μmであり、目付は6g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図3に示す。
[Example 5]
A uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 1 part by weight of chitosan and 66 parts by weight of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 0.3 μm, fibers having a fiber diameter of 0.5 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofiber regions. The nonwoven fabric had a thickness of 50 μm and a basis weight of 6 g / m 2 . An electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例6]
キトサンを2.5質量部とし、ギ酸を164質量部とした以外は、実施例3と同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布を電子顕微鏡で観察したところ、図3とほぼ同様で、平均繊維径は0.3μmであり、繊維径0.5μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは50μmであり、目付は5.5g/m2であった。
[Example 6]
A uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 2.5 parts by mass of chitosan and 164 parts by mass of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
When the obtained nonwoven fabric was observed with an electron microscope, it was almost the same as in FIG. 3, the average fiber diameter was 0.3 μm, fibers having a fiber diameter of 0.5 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofibers. It was an area. The nonwoven fabric had a thickness of 50 μm and a basis weight of 5.5 g / m 2 .

[実施例7]
キトサンを5質量部とし、ギ酸を330質量部とした以外は、実施例3と同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は0.3μmであり、繊維径0.5μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは35μmであり、目付は2.5g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図4に示す。
[Example 7]
A uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 5 parts by mass of chitosan and 330 parts by mass of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 0.3 μm, fibers having a fiber diameter of 0.5 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofiber regions. The nonwoven fabric had a thickness of 35 μm and a basis weight of 2.5 g / m 2 . The electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例8]
キトサンを30質量部とし、ギ酸を1980質量部とした以外は、実施例3と同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は0.3μmであり、繊維径0.5μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは35μmであり、目付は2.5g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図5に示す。
[Example 8]
A uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 30 parts by mass of chitosan and 1980 parts by mass of formic acid were used. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 0.3 μm, fibers having a fiber diameter of 0.5 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofiber regions. The nonwoven fabric had a thickness of 35 μm and a basis weight of 2.5 g / m 2 . The electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例9]
キトサンを0.5質量部とし、ギ酸を33質量部とし、さらにジメチルホルムアミドをジメチルアセトアミドに置き換えた以外は、実施例3と同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は0.4μmであり、繊維径0.8μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは100μmであり、目付は10g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図6に示す。
[Example 9]
A uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that 0.5 parts by mass of chitosan, 33 parts by mass of formic acid, and dimethylformamide were replaced with dimethylacetamide. did. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 0.4 μm, fibers having a fiber diameter of 0.8 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofiber regions. The nonwoven fabric had a thickness of 100 μm and a basis weight of 10 g / m 2 . An electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例10]
キトサンを0.5質量部とし、ギ酸を33質量部とし、さらにジメチルホルムアミドをクロロホルム900質量部に置き換えた以外は、実施例3と同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は2μmであり、繊維径10μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域を含むものであった。また、不織布の厚みは200μmであり、目付は35g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図7に示す。
[Example 10]
A uniform transparent liquid antibacterial / deodorant resin composition as in Example 3 except that 0.5 parts by mass of chitosan, 33 parts by mass of formic acid, and 900 parts by mass of dimethylformamide were replaced with chloroform. Was prepared. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 2 μm, fibers having a fiber diameter of 10 μm or more were not observed, and the fibers constituting the nonwoven fabric contained nanofiber regions. The nonwoven fabric had a thickness of 200 μm and a basis weight of 35 g / m 2 . The electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例11]
キトサンを0.5質量部とし、ギ酸を33質量部とし、さらにジメチルホルムアミドを塩化メチレン900質量部に置き換えた以外は、実施例3同様にして均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は2μmであり、繊維径10μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域を含むものであった。また、不織布の厚みは200μmであり、目付は35g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図8に示す。
[Example 11]
A uniform transparent liquid antibacterial / deodorant resin composition as in Example 3, except that 0.5 parts by mass of chitosan, 33 parts by mass of formic acid, and 900 parts by mass of dimethylformamide were replaced with methylene chloride. Was prepared. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 2 μm, fibers having a fiber diameter of 10 μm or more were not observed, and the fibers constituting the nonwoven fabric contained nanofiber regions. The nonwoven fabric had a thickness of 200 μm and a basis weight of 35 g / m 2 . An electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[実施例12]
ポリ乳酸樹脂(LACEA H280、三井化学(株)製)100質量部とキトサン((株)キミカ製、脱アセチル化75〜85%)0.5質量部とを、60℃に加温下、600質量部のギ酸中に加え、ポリ乳酸とキトサンとを溶解させて均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は0.4μmであり、繊維径0.8μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは100μmであり、目付は10g/m2であった。得られた抗菌不織布の電子顕微鏡写真を図9に示す。
[Example 12]
100 parts by mass of polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals, Inc.) and 0.5 parts by mass of chitosan (manufactured by Kimika Co., Ltd., 75 to 85% deacetylated) are heated to 60 ° C. under 600 parts. In addition to part by mass of formic acid, polylactic acid and chitosan were dissolved to prepare a uniform transparent liquid antibacterial / deodorant resin composition. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 0.4 μm, fibers having a fiber diameter of 0.8 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofiber regions. The nonwoven fabric had a thickness of 100 μm and a basis weight of 10 g / m 2 . An electron micrograph of the obtained antibacterial nonwoven fabric is shown in FIG.

[比較例1]
ポリ乳酸樹脂(LACEA H280、三井化学(株)製)100質量部とジメチルアセトアミド300質量部とを混合し、60℃でポリ乳酸を溶解させてポリ乳酸溶液を作成した。
得られたポリ乳酸溶液を、ガラス板上にナイフコータにてキャストし、60℃の真空乾燥機にて10時間乾燥を行い、厚み100μmのフィルムを得た。
[Comparative Example 1]
100 parts by mass of polylactic acid resin (LACEA H280, manufactured by Mitsui Chemicals) and 300 parts by mass of dimethylacetamide were mixed, and polylactic acid was dissolved at 60 ° C. to prepare a polylactic acid solution.
The obtained polylactic acid solution was cast on a glass plate with a knife coater and dried with a vacuum dryer at 60 ° C. for 10 hours to obtain a film having a thickness of 100 μm.

[比較例2]
キトサン((株)キミカ製、脱アセチル化75〜85%)100部とギ酸200部と蒸留水19700部とを混合し、室温で10時間以上攪拌してキトサンを溶解させた。
得られた0.5質量%キトサン酸水溶液に、市販のポリ乳酸不織布(テラマック ユニチカ社製)を浸し、室温で乾燥させた。乾燥後、70℃で30分間の熱処理を施し、抗菌不織布を得た。コーティング処理を行う前後での重量差から求めたキトサンの乾燥付着量は、約1.5質量%であった。
[Comparative Example 2]
100 parts of chitosan (manufactured by Kimika Co., Ltd., deacetylated 75 to 85%), 200 parts of formic acid and 19700 parts of distilled water were mixed and stirred at room temperature for 10 hours or more to dissolve chitosan.
A commercially available polylactic acid nonwoven fabric (manufactured by Terramac Unitika) was immersed in the obtained 0.5 mass% chitosan acid aqueous solution and dried at room temperature. After drying, heat treatment was performed at 70 ° C. for 30 minutes to obtain an antibacterial nonwoven fabric. The dry adhesion amount of chitosan determined from the weight difference before and after the coating treatment was about 1.5% by mass.

[比較例3]
市販のポリプロピレン不織布(ストラテック、出光テック(株)製、平均繊維系4μm)を用いた以外は、比較例2と同様な方法でコーティング処理を行い、抗菌不織布を得た。コーティング処理を行う前後での重量差から求めたキトサンの乾燥付着量は、約1.5質量%であった。
[Comparative Example 3]
A coating treatment was performed in the same manner as in Comparative Example 2 except that a commercially available polypropylene nonwoven fabric (Stratec, manufactured by Idemitsu Tech Co., Ltd., average fiber type 4 μm) was used to obtain an antibacterial nonwoven fabric. The dry adhesion amount of chitosan determined from the weight difference before and after the coating treatment was about 1.5% by mass.

[比較例4]
キトサンを55質量部とし、ギ酸を3630質量部とした以外は、実施例3と同様にして、均一透明液状の抗菌・消臭物品用樹脂組成物を調製した。この樹脂組成物を実施例3と同様にして静電紡糸し、抗菌不織布を得た。
得られた不織布の平均繊維径は0.2μmであり、繊維径0.5μm以上の繊維は観察されず、不織布を構成する繊維はナノファイバーの領域であった。また、不織布の厚みは35μmであり、目付は1.5g/m2であった。
[Comparative Example 4]
A uniform transparent liquid antibacterial / deodorant resin composition was prepared in the same manner as in Example 3 except that chitosan was 55 parts by mass and formic acid was 3630 parts by mass. This resin composition was electrospun in the same manner as in Example 3 to obtain an antibacterial nonwoven fabric.
The obtained nonwoven fabric had an average fiber diameter of 0.2 μm, fibers having a fiber diameter of 0.5 μm or more were not observed, and the fibers constituting the nonwoven fabric were nanofiber regions. The nonwoven fabric had a thickness of 35 μm and a basis weight of 1.5 g / m 2 .

上記実施例1〜12および比較例1〜4で得られたフィルム、不織布について、上述の抗菌性能測定試験を行った結果を表1に示す。   Table 1 shows the results of the above-described antibacterial performance measurement test for the films and nonwoven fabrics obtained in Examples 1 to 12 and Comparative Examples 1 to 4.

次に、上記実施例1〜12および比較例1〜4で得られたフィルム、不織布について、上述の生分解性能測定試験を行った結果を表2に示す。   Next, Table 2 shows the results of the biodegradation performance measurement test described above for the films and nonwoven fabrics obtained in Examples 1-12 and Comparative Examples 1-4.

また、上記実施例3〜12および比較例2〜4で得られた不織布について上述の風合いを、上記実施例3〜12および比較例4で得られた不織布について上述の紡糸性をそれぞれ評価した結果を表3に示す。   Moreover, the above-mentioned feeling was evaluated about the nonwoven fabric obtained in the said Examples 3-12 and Comparative Examples 2-4, and the above-mentioned spinnability was evaluated about the nonwoven fabric obtained in the said Examples 3-12 and Comparative Example 4, respectively. Is shown in Table 3.

表1に示されるように、実施例1〜12で得られた本発明の抗菌フィルムおよび不織布は、比較例1〜3のポリ乳酸のみからなるフィルムおよび市販のポリ乳酸不織布にキトサンを被覆したものと比べ、抗菌性能に格段に優れていることがわかる。
表2に示されるように、実施例1〜12で得られた本発明の抗菌フィルムおよび不織布は、良好な生分解性を示すことがわかる。特に実施例3〜12の抗菌不織布は、比較例2の市販のポリ乳酸不織布にキトサンを被覆したものと比べても生分解性に格段に優れていることがわかる。
表3に示されるように、実施例3〜12で得られた本発明の不織布は、比較例の不織布に比べて風合いが同等以上であり、特にキトサンがポリ乳酸に対して0.5質量%以下で、かつポリ乳酸溶液の溶媒に酸アミド系溶媒を用いた場合に格段に優れたものになることがわかる。また、ポリ乳酸溶液の溶媒に酸アミド系溶媒を用いた場合には、静電紡糸法における紡糸性も良好であった。
As shown in Table 1, the antibacterial film and the nonwoven fabric of the present invention obtained in Examples 1 to 12 were obtained by coating chitosan on a film made of only polylactic acid of Comparative Examples 1 to 3 and a commercially available polylactic acid nonwoven fabric. It can be seen that the antibacterial performance is far superior.
As Table 2 shows, it turns out that the antibacterial film and nonwoven fabric of this invention obtained in Examples 1-12 show favorable biodegradability. It can be seen that the antibacterial nonwoven fabrics of Examples 3 to 12 are particularly superior in biodegradability compared to the commercially available polylactic acid nonwoven fabric of Comparative Example 2 coated with chitosan.
As shown in Table 3, the nonwoven fabrics of the present invention obtained in Examples 3 to 12 have a texture equivalent to or higher than that of the comparative nonwoven fabric, and chitosan is particularly 0.5% by mass with respect to polylactic acid. In the following, it can be seen that when an acid amide solvent is used as the solvent of the polylactic acid solution, the solution is remarkably excellent. In addition, when an acid amide solvent was used as the solvent for the polylactic acid solution, the spinnability in the electrospinning method was good.

実施例3で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antibacterial nonwoven fabric obtained in Example 3. 実施例4で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antibacterial nonwoven fabric obtained in Example 4. 実施例5で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antimicrobial nonwoven fabric obtained in Example 5. FIG. 実施例7で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antimicrobial nonwoven fabric obtained in Example 7. FIG. 実施例8で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antibacterial nonwoven fabric obtained in Example 8. 実施例9で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antibacterial nonwoven fabric obtained in Example 9. 実施例10で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antimicrobial nonwoven fabric obtained in Example 10. FIG. 実施例11で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antibacterial nonwoven fabric obtained in Example 11. 実施例12で得られた抗菌不織布の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the antibacterial nonwoven fabric obtained in Example 12.

Claims (16)

生分解性ポリエステル100質量部と、アミノ多糖類0.01〜50質量部とを含むことを特徴とする抗菌・消臭物品用樹脂組成物。   A resin composition for antibacterial and deodorant articles, comprising 100 parts by mass of biodegradable polyester and 0.01 to 50 parts by mass of amino polysaccharide. 前記生分解性ポリエステルと前記アミノ多糖類とをそれぞれ固体状態で混合した後、加熱、混練して調製された請求項1記載の抗菌・消臭物品用樹脂組成物。   The resin composition for an antibacterial / deodorant article according to claim 1, wherein the biodegradable polyester and the aminopolysaccharide are mixed in a solid state and then heated and kneaded. 前記生分解性ポリエステル中に、前記アミノ多糖類が均一に分散している請求項1または2記載の抗菌・消臭物品用樹脂組成物。   The resin composition for antibacterial and deodorant articles according to claim 1 or 2, wherein the aminopolysaccharide is uniformly dispersed in the biodegradable polyester. 前記生分解性ポリエステルと前記アミノ多糖類のみからなる請求項1〜3のいずれか1項記載の抗菌・消臭物品用樹脂組成物。   The resin composition for antibacterial / deodorant articles according to any one of claims 1 to 3, comprising only the biodegradable polyester and the aminopolysaccharide. さらに、酸アミド系溶媒と、有機酸溶媒とを含む請求項1記載の抗菌・消臭物品用樹脂組成物。   The resin composition for antibacterial and deodorant articles according to claim 1, further comprising an acid amide solvent and an organic acid solvent. 前記生分解性ポリエステルを酸アミド系溶媒に溶解してなる生分解性ポリエステル含有溶液と、前記アミノ多糖類を前記有機酸溶媒に溶解してなるアミノ多糖類含有溶液とを混合して調製された請求項5記載の抗菌・消臭物品用樹脂組成物。   Prepared by mixing a biodegradable polyester-containing solution obtained by dissolving the biodegradable polyester in an acid amide solvent and an aminopolysaccharide-containing solution obtained by dissolving the aminopolysaccharide in the organic acid solvent. The resin composition for antibacterial and deodorant articles according to claim 5. さらにギ酸を含み、前記生分解性ポリエステルと前記アミノ多糖類とがギ酸に溶解してなる請求項1記載の抗菌・消臭物品用樹脂組成物。   The resin composition for antibacterial and deodorant articles according to claim 1, further comprising formic acid, wherein the biodegradable polyester and the aminopolysaccharide are dissolved in formic acid. 均一透明である請求項5〜7のいずれか1項記載の抗菌・消臭物品用樹脂組成物。   The resin composition for antibacterial and deodorant articles according to any one of claims 5 to 7, which is uniformly transparent. 前記アミノ多糖類が、D−グルコサミン単位またはN−アセチル−D−グルコサミン単位を有する請求項1〜8のいずれか1項記載の抗菌・消臭物品用樹脂組成物。   The resin composition for antibacterial / deodorant articles according to any one of claims 1 to 8, wherein the aminopolysaccharide has a D-glucosamine unit or an N-acetyl-D-glucosamine unit. 前記生分解性ポリエステルが、ポリ乳酸である請求項1〜9のいずれか1項記載の抗菌・消臭物品用樹脂組成物。   The said biodegradable polyester is polylactic acid, The resin composition for antibacterial and deodorizing articles | goods of any one of Claims 1-9. 請求項1〜10のいずれか1項記載の抗菌・消臭物品用樹脂組成物を紡糸してなる平均繊維径1nm〜10μmの抗菌・消臭性ファイバー。   An antibacterial / deodorant fiber having an average fiber diameter of 1 nm to 10 μm formed by spinning the resin composition for antibacterial / deodorant articles according to claim 1. 請求項11記載の抗菌・消臭性ファイバーからなる抗菌・消臭性不織布。   An antibacterial / deodorant nonwoven fabric comprising the antibacterial / deodorant fiber according to claim 11. 請求項1〜10のいずれか1項記載の抗菌・消臭物品用樹脂組成物を成形してなる抗菌・消臭性フィルム。   The antibacterial and deodorant film formed by shape | molding the resin composition for antibacterial and deodorant articles of any one of Claims 1-10. 生分解性ポリエステルとアミノ多糖類とを含む樹脂組成物を静電紡糸法により紡糸することを特徴とする抗菌・消臭性不織布の製造方法。   A method for producing an antibacterial and deodorant nonwoven fabric, comprising spinning a resin composition containing a biodegradable polyester and an aminopolysaccharide by an electrostatic spinning method. 前記樹脂組成物が、生分解性ポリエステルを酸アミド系溶媒に溶かした生分解性ポリエステル含有溶液と、前記アミノ多糖類を有機酸に溶かしたアミノ多糖類含有溶液とを混合して調製された請求項14記載の抗菌・消臭性不織布の製造方法。   The resin composition is prepared by mixing a biodegradable polyester-containing solution in which a biodegradable polyester is dissolved in an acid amide solvent and an aminopolysaccharide-containing solution in which the aminopolysaccharide is dissolved in an organic acid. Item 15. A method for producing an antibacterial / deodorant nonwoven fabric according to Item 14. 前記樹脂組成物が、前記生分解性ポリエステルと前記アミノ多糖類とをギ酸に溶かして調製された請求項14記載の抗菌・消臭性不織布の製造方法。   The method for producing an antibacterial / deodorant nonwoven fabric according to claim 14, wherein the resin composition is prepared by dissolving the biodegradable polyester and the amino polysaccharide in formic acid.
JP2006315713A 2006-11-22 2006-11-22 Resin composition for antibacterial/deodorant article and antibacterial/deodorant fiber and nonwoven fabric obtained therefrom Pending JP2008127496A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006315713A JP2008127496A (en) 2006-11-22 2006-11-22 Resin composition for antibacterial/deodorant article and antibacterial/deodorant fiber and nonwoven fabric obtained therefrom
PCT/JP2007/072431 WO2008062775A1 (en) 2006-11-22 2007-11-20 Resin composition for antibacterial and deodorant article and antibacterial and deodorant fiber and nonwoven fabric obtained from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315713A JP2008127496A (en) 2006-11-22 2006-11-22 Resin composition for antibacterial/deodorant article and antibacterial/deodorant fiber and nonwoven fabric obtained therefrom

Publications (1)

Publication Number Publication Date
JP2008127496A true JP2008127496A (en) 2008-06-05

Family

ID=39429705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315713A Pending JP2008127496A (en) 2006-11-22 2006-11-22 Resin composition for antibacterial/deodorant article and antibacterial/deodorant fiber and nonwoven fabric obtained therefrom

Country Status (2)

Country Link
JP (1) JP2008127496A (en)
WO (1) WO2008062775A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123345A1 (en) * 2007-04-03 2008-10-16 Nisshinbo Industries, Inc. Antibacterial nanofiber
WO2010001872A1 (en) * 2008-07-03 2010-01-07 日清紡ホールディングス株式会社 Preservative material and storage method for liquid
JP2011105817A (en) * 2009-11-14 2011-06-02 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Lactic acid oligomer and molded product of the same
JP2011246524A (en) * 2010-05-24 2011-12-08 Teijin Ltd Fiber molded article
US8585957B2 (en) 2010-11-09 2013-11-19 Hyundai Motor Company Method of manufacturing nano-fiber non-woven fabrics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500792A (en) * 2016-12-09 2020-01-16 ナショナル ユニヴァーシティー オブ シンガポール Packaging material and its preparation method
CN108517582A (en) * 2018-04-10 2018-09-11 天津工业大学 A kind of degradable antibacterial nano fiber and preparation method thereof
CN111364124A (en) * 2018-12-25 2020-07-03 河北康鹤居安科技股份有限公司 Production process of medical nano-fiber with sterilization and waterproof functions
CN111978614B (en) * 2020-08-11 2022-11-29 青岛周氏塑料包装有限公司 Antibacterial and deodorant plastic for garbage can and preparation method thereof
CN113818093A (en) * 2021-09-14 2021-12-21 海南大学 Biodegradable antibacterial polylactic acid spun-bonded non-woven fabric slice and preparation method thereof
CN115262223B (en) * 2022-08-23 2023-12-26 青岛大学 Polyester/chitosan gel composite fiber film and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241009A (en) * 1998-02-26 1999-09-07 Mitsui Chem Inc Polylactate resin composition
JP2004010749A (en) * 2002-06-06 2004-01-15 Unitika Ltd Biodegradable composition
JP3778285B2 (en) * 2002-06-14 2006-05-24 カネボウ株式会社   Biodegradable resin composition and molded product thereof
TW200427889A (en) * 2003-03-31 2004-12-16 Teijin Ltd Non-woven fabric and process for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123345A1 (en) * 2007-04-03 2008-10-16 Nisshinbo Industries, Inc. Antibacterial nanofiber
US9090995B2 (en) 2007-04-03 2015-07-28 Nisshinbo Holdings, Inc. Process of making an antibacterial nanofiber
WO2010001872A1 (en) * 2008-07-03 2010-01-07 日清紡ホールディングス株式会社 Preservative material and storage method for liquid
JPWO2010001872A1 (en) * 2008-07-03 2011-12-22 日清紡ホールディングス株式会社 Liquid storage material and storage method
JP2011105817A (en) * 2009-11-14 2011-06-02 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Lactic acid oligomer and molded product of the same
JP2011246524A (en) * 2010-05-24 2011-12-08 Teijin Ltd Fiber molded article
US8585957B2 (en) 2010-11-09 2013-11-19 Hyundai Motor Company Method of manufacturing nano-fiber non-woven fabrics

Also Published As

Publication number Publication date
WO2008062775A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP2008127496A (en) Resin composition for antibacterial/deodorant article and antibacterial/deodorant fiber and nonwoven fabric obtained therefrom
EP2133451B1 (en) Antibacterial nanofiber
JP5470569B2 (en) Silk composite nanofiber and method for producing the same
Salami et al. Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications
JP5614474B2 (en) Antibacterial expression method of fiber
Au et al. Fabrication of an antibacterial non-woven mat of a poly (lactic acid)/chitosan blend by electrospinning
Hendrick et al. Increasing surface hydrophilicity in poly (lactic acid) electrospun fibers by addition of PLA-b-PEG co-polymers
Zhang et al. Mechanical property enhancement of polylactide nanofibers through optimization of molecular weight, electrospinning conditions, and stereocomplexation
JP4883312B2 (en) Resin-made ultrafine short fiber and method for producing the same
Ranjbar-Mohammadi et al. Design and characterization of keratin/PVA-PLA nanofibers containing hybrids of nanofibrillated chitosan/ZnO nanoparticles
Liu et al. Electrospun antibacterial and antiviral poly (ε-caprolactone)/zein/Ag bead-on-string membranes and its application in air filtration
JP2013204182A (en) Antibacterial nanofiber sheet, method for manufacturing the same, and filter
CN106757772B (en) The preparation method of the three-dimensional porous unordered holder of fiber heat bonding solidification is spun in a kind of polylactic acid melting
Fattahi et al. Sustainable, renewable, and biodegradable poly (lactic acid) fibers and their latest developments in the last decade
JP6161285B2 (en) Antibacterial nanofiber sheet, manufacturing method thereof and filter
Rodríguez-Tobías et al. Electrospinning and electrospraying techniques for designing antimicrobial polymeric biocomposite mats
JP2007277754A (en) Fiber and nonwoven fabric composed of cyclodextrin-containing polyester-based polymer and method for producing the same fiber and nonwoven fabric
JP5497483B2 (en) Fiber molded body and method for producing the same
JPH11286864A (en) Biodegradable non-woven fabric
JP6450237B2 (en) Cross-linked body, cross-linking agent composition, fibrous cross-linked body, manufacturing method of fibrous cross-linked body, cell culture bed, cell culturing method using cell culture bed, and manufacturing method of cell sheet for transplantation using cell culture bed
EP3952932B1 (en) Compositions and methods for 3d printed fibrous scaffolds with antimicrobial properties incorporating graphene oxide and poly(e-caprolactone)
Bagheri Pebdeni et al. Preparation of biopolymeric nanofiber containing silica and antibiotic
Mujica-Garcia et al. Electrospun fibers based on biopolymers
JP2010065325A (en) Polylactic acid nanofiber
JP2001123371A (en) Biodegradable spun-bond nonwoven fabric