JP2008127363A - Process for producing copper 8-quinolate - Google Patents

Process for producing copper 8-quinolate Download PDF

Info

Publication number
JP2008127363A
JP2008127363A JP2006316406A JP2006316406A JP2008127363A JP 2008127363 A JP2008127363 A JP 2008127363A JP 2006316406 A JP2006316406 A JP 2006316406A JP 2006316406 A JP2006316406 A JP 2006316406A JP 2008127363 A JP2008127363 A JP 2008127363A
Authority
JP
Japan
Prior art keywords
copper
quinolate
oxyquinoline
hydroxyquinoline
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006316406A
Other languages
Japanese (ja)
Other versions
JP5088928B2 (en
Inventor
Kiyotaka Onishi
清高 大西
Masakazu Higuchi
雅一 樋口
Tsukasa Chikada
司 近田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAWA INDUSTRY SUPPORT FOUND
Nippon Steel Chemical and Materials Co Ltd
Kagawa Industry Support Foundation
Original Assignee
KAGAWA INDUSTRY SUPPORT FOUND
Nippon Steel Chemical Co Ltd
Kagawa Industry Support Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAWA INDUSTRY SUPPORT FOUND, Nippon Steel Chemical Co Ltd, Kagawa Industry Support Foundation filed Critical KAGAWA INDUSTRY SUPPORT FOUND
Priority to JP2006316406A priority Critical patent/JP5088928B2/en
Publication of JP2008127363A publication Critical patent/JP2008127363A/en
Application granted granted Critical
Publication of JP5088928B2 publication Critical patent/JP5088928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing copper 8-quinolate which can obtain fine particulate copper 8-quinolate having a particle diameter on the order of not greater than submicrometers. <P>SOLUTION: The copper 8-quinolate is obtained by mixing 8-hydroxyquinoline with a copper compound in a polar solvent (except water) in the absence of sodium hydroxide and thereafter irradiating the obtained mixture with microwaves. Preferably, the polar solvent is an aprotic solvent or an aliphatic alcohol, and the copper compound is anhydrous copper sulfate. The crystal of the copper 8-quinolate produced by the reaction is separated by filtration and washed until the filtrate becomes neutral, and thereafter dried. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、8−オキシキノリン銅の製造方法に関する。   The present invention relates to a method for producing 8-oxyquinoline copper.

8−オキシキノリン銅は、リンゴの黒星病をはじめとして病原菌への殺菌効果が高いため、農薬として広く用いられている。   8-Oxyquinoline copper is widely used as an agrochemical because it has a high bactericidal effect on pathogenic bacteria such as black scab of apples.

8−オキシキノリン銅の製造方法は、8−ヒドロキシキノリンと水酸化ナトリウムを水の中で加温して溶解させた後、硫酸銅水溶液を加え8−オキシキノリン銅の結晶を析出させる方法が一般的に広く採用されている。この方法は、原料である8−ヒドロキシキノリンが種々の金属と容易に錯体を形成する性質を利用したものである。
生成した8−オキシキノリン銅の結晶は、水洗して結晶中に残る硫酸ナトリウムが取り除かれた後、乾燥し、さらに粉砕処理され、粒径が0.8ミクロン〜数ミクロンの粉体として得られる。
The method for producing 8-oxyquinoline copper is generally a method in which 8-hydroxyquinoline and sodium hydroxide are heated and dissolved in water, and then an aqueous copper sulfate solution is added to precipitate 8-oxyquinoline copper crystals. Widely adopted. This method utilizes the property that 8-hydroxyquinoline as a raw material easily forms a complex with various metals.
The produced 8-oxyquinoline copper crystal is washed with water to remove sodium sulfate remaining in the crystal, and then dried and further pulverized to obtain a powder having a particle size of 0.8 to several microns. .

上記のように製造される8−オキシキノリン銅は、微粉末であるため飛散するので、古くは水和剤として近年はフロアブル剤として使用されている。   Since the 8-oxyquinoline copper produced as described above is a fine powder and thus scatters, it has been used as a wettable powder in recent years as a flowable agent.

ところが、保管が長期にわたると、8−オキシキノリン銅が水等と分離し、沈降することが起こりえる。この原因は、比重の大きな8−オキシキノリン銅の微粉砕化が完全でないためである。
また、上記のように調合した農薬を例えば林檎栽培に用いる場合、散布した農薬が林檎果実のヘタ部分に入ると、水等の媒体が蒸発した後、8−オキシキノリン銅がヘタの中に残り、所謂残留農薬化することが起こりえる。また、このとき、さらに、残留農薬化した8−オキシキノリン銅が有する紫外線吸収能力のために、林檎果実の表面に緑色の斑点を残すとともに果実が赤く色づくことが阻害され、林檎果実の商品価値が著しく低下する。
However, when stored for a long period of time, 8-oxyquinoline copper may be separated from water and settled. This is because the pulverization of 8-oxyquinoline copper having a large specific gravity is not complete.
In addition, when the agricultural chemicals prepared as described above are used for apple cultivation, for example, when the sprayed agricultural chemical enters the sticky portion of the apple fruit, after the medium such as water evaporates, 8-oxyquinoline copper remains in the spring. So-called residual pesticides can occur. In addition, at this time, due to the ultraviolet absorption ability of 8-oxyquinoline copper that has been converted into a pesticide residue, green spots are left on the surface of the apple fruit and the fruit is inhibited from being reddish. Is significantly reduced.

上記のように8−オキシキノリン銅が水等と分離してしまう問題や、残留農薬化等する問題は、いずれも、8−オキシキノリン銅の結晶粒径が大きすぎることに起因するものと考えられる。すなわち、前者の場合は、8−オキシキノリン銅の結晶粒径が大きすぎるために容易に水等と分離して沈降するものであり、後者の場合は、8−オキシキノリン銅の結晶粒径が大きすぎるために果実のヘタ部分に入った8−オキシキノリン銅が雨水等によって洗い流されることが阻害されることによる。
このような課題を解決する手段は、従来の特許公報等には見ることができない。
The problem that 8-oxyquinoline copper is separated from water and the like, and the problem of residual agricultural chemicals as described above are all attributed to the crystal grain size of 8-oxyquinoline copper being too large. It is done. That is, in the former case, since the crystal grain size of 8-oxyquinoline copper is too large, it easily separates from water and settles, and in the latter case, the crystal grain size of 8-oxyquinoline copper is small. This is because the 8-oxyquinoline copper that has entered the fruit part of the fruit because it is too large is prevented from being washed away by rainwater or the like.
Means for solving such a problem cannot be found in conventional patent publications and the like.

本発明は、上記の課題に鑑みてなされたものであり、粒径がサブミクロンオーダー以下の微粒の8−オキシキノリン銅を得ることができる8−オキシキノリン銅の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing 8-oxyquinoline copper capable of obtaining fine 8-oxyquinoline copper having a particle size of submicron order or less. And

本発明に係る8−オキシキノリン銅の製造方法は、極性溶媒(ただし、水を除く。)中、水酸化ナトリウム非存在下で、8−ヒドロキシキノリンおよび銅化合物を混合後、マイクロ波を照射することを特徴とする。   In the method for producing 8-oxyquinoline copper according to the present invention, microwaves are irradiated after mixing 8-hydroxyquinoline and a copper compound in a polar solvent (excluding water) in the absence of sodium hydroxide. It is characterized by that.

また、本発明に係る8−オキシキノリン銅の製造方法は、好ましくは、前記極性溶媒が非プロトン溶媒または脂肪族アルコールであることを特徴とする。   The method for producing 8-oxyquinoline copper according to the present invention is preferably characterized in that the polar solvent is an aprotic solvent or an aliphatic alcohol.

また、本発明に係る8−オキシキノリン銅の製造方法は、好ましくは、前記銅化合物が無水硫酸銅であることを特徴とする。   In the method for producing 8-oxyquinoline copper according to the present invention, preferably, the copper compound is anhydrous copper sulfate.

本発明に係る8−オキシキノリン銅の製造方法は、極性溶媒(ただし、水を除く。)中、水酸化ナトリウム非存在下で、8−ヒドロキシキノリンおよび銅化合物を混合後、マイクロ波を照射するため、結晶成長速度が遅くなるので、粒径がサブミクロンオーダー以下の微粒の8−オキシキノリン銅を得ることができる。また、マイクロ波を照射するため、短時間の処理で微粒の8−オキシキノリン銅を得ることができる。   In the method for producing 8-oxyquinoline copper according to the present invention, microwaves are irradiated after mixing 8-hydroxyquinoline and a copper compound in a polar solvent (excluding water) in the absence of sodium hydroxide. Therefore, since the crystal growth rate is slow, fine 8-oxyquinoline copper having a particle size of submicron order or less can be obtained. Moreover, since it irradiates with a microwave, it is possible to obtain fine 8-oxyquinoline copper in a short time.

本発明に係る8−オキシキノリン銅の製造方法の好適な実施の形態(以下、本実施の形態例という。)について、以下に説明する。   A preferred embodiment (hereinafter referred to as this embodiment) of the method for producing 8-oxyquinoline copper according to the present invention will be described below.

8−オキシキノリン銅の製造方法において、析出する8−オキシキノリン銅の結晶を、従来技術のように事後的に粉砕によって微細化することには限界がある。
したがって、結晶生成、成長過程で、結晶の肥大化を抑えることが考えられる。しかしながら、この場合、一般に行われる、外部加熱や機械撹拌等の手段は、8−オキシキノリン銅の反応生成速度が速いために、効果が小さいものと考えられる。
In the method for producing 8-oxyquinoline copper, there is a limit in refining the precipitated 8-oxyquinoline copper crystal by pulverization as in the prior art.
Therefore, it is conceivable to suppress the enlargement of the crystal during the crystal formation and growth process. However, in this case, generally performed means such as external heating and mechanical stirring are considered to be less effective because of the high reaction rate of 8-oxyquinoline copper.

そこで、本発明者等は、8−オキシキノリン銅の反応生成速度を抑制する方法について、反応初期の時点で、8−ヒドロキシキノリンと銅化合物が遭遇しても、簡単に錯体を作らない系に着目して検討した結果、従来使用されている水酸化ナトリウムを用いずに反応を進めることにより、8−オキシキノリン銅の反応生成速度が抑制され、これによって結晶成長が適度に進行することで、微細な8−オキシキノリン銅の結晶が得られることを見出した。
また、このとき、さらに、加熱処理に代えてマイクロ波を照射することにより、一般的な外部加熱方法では困難な急速でかつ均一な加熱を実現する等によりサブミクロンオーダー以下のより微細な8−オキシキノリン銅の結晶が得られることを見出した。なお、このとき、従来の方法のように水酸化ナトリウムを用いると、8−オキシキノリン銅の結晶の成長が短時間で進行することにより、マイクロ波によって急速加熱するにも関わらず十分に微細な8−オキシキノリン銅の結晶が得られない。
Accordingly, the present inventors have made a system that does not easily form a complex even when 8-hydroxyquinoline and a copper compound are encountered at the initial stage of the reaction with respect to a method for suppressing the reaction production rate of 8-oxyquinoline copper. As a result of paying attention, the reaction generation rate of 8-oxyquinoline copper is suppressed by advancing the reaction without using conventionally used sodium hydroxide, whereby the crystal growth proceeds appropriately. It has been found that fine 8-oxyquinoline copper crystals can be obtained.
Further, at this time, by irradiating with microwaves instead of heat treatment, rapid and uniform heating, which is difficult with a general external heating method, is realized. It has been found that oxyquinoline copper crystals can be obtained. At this time, when sodium hydroxide is used as in the conventional method, the growth of 8-oxyquinoline copper crystals proceeds in a short time, so that it is sufficiently fine despite rapid heating by microwaves. Crystals of 8-oxyquinoline copper cannot be obtained.

したがって、本実施の形態例に係る8−オキシキノリン銅の製造方法は、極性溶媒中、水酸化ナトリウム非存在下で、8−ヒドロキシキノリンおよび銅化合物を混合後、マイクロ波を照射するものである。このとき、照射時間1分〜10分程度の照射時間で反応を完結することができる。   Therefore, the method for producing 8-oxyquinoline copper according to the present embodiment irradiates microwaves after mixing 8-hydroxyquinoline and a copper compound in a polar solvent in the absence of sodium hydroxide. . At this time, the reaction can be completed in an irradiation time of about 1 minute to 10 minutes.

本実施の形態例で使用する極性溶媒は、特に限定するものではないが、非プロトン溶媒(非プロトン性極性溶媒)または脂肪族アルコールであると、8−ヒドロキシキノリンの溶解性が高いのでより好ましい。
非プロトン溶媒として、ディメチルスルホオキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等を挙げることができ、脂肪族アルコールとして、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール等を挙げることができる。
なお、本実施の形態例において、極性溶媒として水を除く理由は、8-ヒドロキシキノリンは、そのままでは水に溶解せず、また、他の極性溶剤を用いて8-ヒドロキシキノリンを溶解するときに水が存在すると、錯体形成速度が速く、粒子の凝集が進行して大きな粒子となってしまうためである。
The polar solvent used in this embodiment is not particularly limited, but an aprotic solvent (aprotic polar solvent) or an aliphatic alcohol is more preferable because 8-hydroxyquinoline has high solubility. .
Examples of the aprotic solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and dimethylacetamide (DMAc). Examples of the aliphatic alcohol include methanol, ethanol, propanol, isopropanol, and butanol. it can.
In the present embodiment, water is excluded as a polar solvent because 8-hydroxyquinoline does not dissolve in water as it is, and when 8-hydroxyquinoline is dissolved using another polar solvent. This is because when water is present, the complex formation rate is high and the aggregation of the particles proceeds to form large particles.

また、本実施の形態例で使用する銅化合物は、特に限定するものではなく、硫酸銅、塩化銅、水酸化銅等の中から選択して適宜用いることができるが、このうち、硫酸銅、とりわけ硫酸銅が水和していない無水硫酸銅を用いると、これらの分子中には水が含まれないのでより好ましい。   In addition, the copper compound used in the present embodiment is not particularly limited, and can be appropriately selected from copper sulfate, copper chloride, copper hydroxide, etc. Among these, copper sulfate, In particular, it is more preferable to use anhydrous copper sulfate in which copper sulfate is not hydrated because water is not contained in these molecules.

また、本実施の形態例において、反応温度は、これらの反応に使用する溶媒の沸点以下であることが好ましい。   In this embodiment, the reaction temperature is preferably not higher than the boiling point of the solvent used for these reactions.

本実施の形態例において、反応によって得られる8−オキシキノリン銅の結晶粒径が既にサブミクロンオーダー以下であるため、従来のような粉砕処理は必要としない。また、仮に粉砕処理を施しても、特殊な破砕技術を用いない限り、結晶の更なる微粒化は図れないものと思われる。   In the present embodiment, since the crystal grain size of 8-oxyquinoline copper obtained by the reaction is already less than the submicron order, the conventional pulverization treatment is not necessary. Even if a pulverization process is performed, it is considered that further atomization of crystals cannot be achieved unless a special crushing technique is used.

実施例および参考例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   The present invention will be further described with reference to examples and reference examples. In addition, this invention is not limited to the Example demonstrated below.

(実施例1)
空冷冷却管をつけた直径3cmの円筒形の反応容器に8−ヒドロキシキノリン0.29g(2mmol)を入れ、さらにDMF10mlを加えて、8−ヒドロキシキノリンを溶解させ後、硫酸銅無水物0.16g(1mmol)を加えた。つぎに、反応容器に攪拌子を入れて溶液を混合したが、わずかに薄い緑色を呈するだけだった。この反応容器をCCDビデオカメラのついたマイクロ波反応容器に装着し、攪拌しながらマイクロ波(周波数2.45GHz 定格出力300W)を照射した。反応液は、マイクロ波照射開始後1分で非常に濃い緑色を呈し、8−オキシキノリン銅の結晶の析出が進行した。その後、さらに4分マイクロ波の照射を続けた。最高反応温度は150℃だった。マイクロ波照射後の反応液を直ちに冷却し、水50mlの中に投入した。反応液の色は、緑色から薄い緑色に変化した。析出した結晶をろ過し、結晶を取り出し0.1Nの水酸化ナトリウム水溶液50mlの入ったビーカーに投入し、攪拌中和した。結晶の色は薄い緑から緑かがった黄色に変化した。この後、結晶をロ別し、ロ液が中性となるまで洗浄を行い乾燥した後、8−ヒドロキシキノリン結晶の粒度分布を測定した。8−ヒドロキシキノリン結晶の平均粒子径は50nmだった。さらに、乾燥後の8−オキシキノリン銅の0.1gを試験管に入れ水20mlを加えた後、結晶沈降速度を測定しようとしたが、60秒以上経過しても8−オキシキノリン銅の結晶粒子はほとんど沈まなかった。
(Example 1)
0.29 g (2 mmol) of 8-hydroxyquinoline is placed in a cylindrical reaction vessel having a diameter of 3 cm with an air-cooled condenser, and 10 ml of DMF is further added to dissolve 8-hydroxyquinoline, and then 0.16 g (1 mmol) of anhydrous copper sulfate. ) Was added. Next, a stir bar was placed in the reaction vessel and the solution was mixed, but only a slight pale green color was exhibited. This reaction vessel was attached to a microwave reaction vessel equipped with a CCD video camera, and was irradiated with microwaves (frequency 2.45 GHz, rated output 300 W) while stirring. The reaction solution exhibited a very dark green color 1 minute after the start of microwave irradiation, and precipitation of 8-oxyquinoline copper crystals proceeded. Thereafter, microwave irradiation was continued for another 4 minutes. The maximum reaction temperature was 150 ° C. The reaction solution after microwave irradiation was immediately cooled and poured into 50 ml of water. The color of the reaction solution changed from green to light green. The precipitated crystals were filtered, and the crystals were taken out and put into a beaker containing 50 ml of a 0.1N sodium hydroxide aqueous solution, and neutralized by stirring. The crystal color changed from light green to greenish yellow. Thereafter, the crystals were separated, washed until the filtrate became neutral and dried, and then the particle size distribution of 8-hydroxyquinoline crystals was measured. The average particle size of the 8-hydroxyquinoline crystal was 50 nm. Further, 0.1 g of dried 8-oxyquinoline copper was put in a test tube and 20 ml of water was added, and then the crystal sedimentation rate was measured. The particles hardly sunk.

(実施例2)
溶媒であるDMFをエタノールに代えたほかは、実施例1と同様の条件で実験した。このとき、反応完了に要したマイクロ波の照射時間は4分であり、8−ヒドロキシキノリン結晶の平均粒子径は50nmであった。結晶沈降速度を測定しようとしたが、60秒以上経過しても8−オキシキノリン銅の結晶粒子はほとんど沈まなかった。
(Example 2)
The experiment was performed under the same conditions as in Example 1 except that DMF as a solvent was replaced with ethanol. At this time, the microwave irradiation time required for completion of the reaction was 4 minutes, and the average particle size of the 8-hydroxyquinoline crystal was 50 nm. An attempt was made to measure the crystal sedimentation speed, but 8-oxyquinoline copper crystal particles were hardly precipitated even after 60 seconds or longer.

(参考例)
銅化合物として、硫酸銅無水物に代えて硫酸銅・5水和物1mmolを用い、マイクロ波照射に代えて加熱処理したほかは、実施例1と同様の条件で実験した。このとき、加熱による昇温後、温度を150℃で30分保持した後、冷却した。また、このとき、8−ヒドロキシキノリン結晶の平均粒子径は3.4μmであり、また、結晶沈降速度の測定において20秒程度で8−オキシキノリン銅の粒子はほとんどが液深15cmの試験管の底に沈んだ。
(Reference example)
The experiment was performed under the same conditions as in Example 1 except that 1 mmol of copper sulfate pentahydrate was used instead of copper sulfate anhydride as the copper compound and heat treatment was performed instead of microwave irradiation. At this time, after the temperature was raised by heating, the temperature was kept at 150 ° C. for 30 minutes and then cooled. At this time, the average particle diameter of the 8-hydroxyquinoline crystal is 3.4 μm, and in the measurement of the crystal sedimentation rate, most of the 8-oxyquinoline copper particles in the bottom of the test tube having a liquid depth of 15 cm in about 20 seconds. Sank in.

Claims (3)

極性溶媒(ただし、水を除く。)中、水酸化ナトリウム非存在下で、8−ヒドロキシキノリンおよび銅化合物を混合後、マイクロ波を照射することを特徴とする8−オキシキノリン銅の製造方法。   A method for producing 8-oxyquinoline copper, comprising mixing 8-hydroxyquinoline and a copper compound in a polar solvent (excluding water) in the absence of sodium hydroxide and then irradiating with microwaves. 前記極性溶媒が非プロトン溶媒または脂肪族アルコールであることを特徴とする請求項1記載の8−オキシキノリン銅の製造方法。   The method for producing 8-oxyquinoline copper according to claim 1, wherein the polar solvent is an aprotic solvent or an aliphatic alcohol. 前記銅化合物が無水硫酸銅であることを特徴とする請求項1記載の8−オキシキノリン銅の製造方法。   The method for producing 8-oxyquinoline copper according to claim 1, wherein the copper compound is anhydrous copper sulfate.
JP2006316406A 2006-11-24 2006-11-24 Method for producing 8-oxyquinoline copper Expired - Fee Related JP5088928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316406A JP5088928B2 (en) 2006-11-24 2006-11-24 Method for producing 8-oxyquinoline copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316406A JP5088928B2 (en) 2006-11-24 2006-11-24 Method for producing 8-oxyquinoline copper

Publications (2)

Publication Number Publication Date
JP2008127363A true JP2008127363A (en) 2008-06-05
JP5088928B2 JP5088928B2 (en) 2012-12-05

Family

ID=39553556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316406A Expired - Fee Related JP5088928B2 (en) 2006-11-24 2006-11-24 Method for producing 8-oxyquinoline copper

Country Status (1)

Country Link
JP (1) JP5088928B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847554A (en) * 2010-06-01 2010-09-29 四川长虹电器股份有限公司 Light filter electromagnetic shielding membrane extraction electrode manufacturing method
CN107033075A (en) * 2017-05-08 2017-08-11 宜兴市宏博精细化工有限公司 A kind of 8 copper quinolinate preparation facilities
CN112574105A (en) * 2020-12-25 2021-03-30 青岛中达农业科技有限公司 Green synthesis method of oxine-copper raw pesticide

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171915A (en) * 1997-02-17 1999-06-29 Sekisui Chem Co Ltd Production of polymer using copper compound
JP2001270893A (en) * 2000-03-23 2001-10-02 Takeko Matsumura Highlight fluorescent iridium complex and rapid and simple synthesis of the complex through microwave heating
JP2003004544A (en) * 2001-06-20 2003-01-08 Dainippon Ink & Chem Inc Method of measuring solution temperature, reaction apparatus using microwave, and method of manufacturing copper phthalocyanine
JP2004099548A (en) * 2002-09-11 2004-04-02 National Institute Of Advanced Industrial & Technology Method for producing rhenium complex having nitrogen-containing heterocyclic ligands
JP2004168758A (en) * 2002-11-06 2004-06-17 National Institute Of Advanced Industrial & Technology Method for producing ortho-metalated iridium complex
JP2004337802A (en) * 2003-05-19 2004-12-02 Sanyo Electric Co Ltd Method and apparatus of manufacturing organic compound
JP2005272430A (en) * 2004-03-23 2005-10-06 Minerva Light Laboratory Complex luminescent element material obtained by microwave-heating, method for producing the same and luminescent element
JP2005298483A (en) * 2004-03-17 2005-10-27 National Institute Of Advanced Industrial & Technology Iridium complex and luminous material using the same
JP2006522783A (en) * 2003-04-11 2006-10-05 ジーイー・ヘルスケア・リミテッド Microwave method for the synthesis of radiolabeled gallium complexes.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11171915A (en) * 1997-02-17 1999-06-29 Sekisui Chem Co Ltd Production of polymer using copper compound
JP2001270893A (en) * 2000-03-23 2001-10-02 Takeko Matsumura Highlight fluorescent iridium complex and rapid and simple synthesis of the complex through microwave heating
JP2003004544A (en) * 2001-06-20 2003-01-08 Dainippon Ink & Chem Inc Method of measuring solution temperature, reaction apparatus using microwave, and method of manufacturing copper phthalocyanine
JP2004099548A (en) * 2002-09-11 2004-04-02 National Institute Of Advanced Industrial & Technology Method for producing rhenium complex having nitrogen-containing heterocyclic ligands
JP2004168758A (en) * 2002-11-06 2004-06-17 National Institute Of Advanced Industrial & Technology Method for producing ortho-metalated iridium complex
JP2006522783A (en) * 2003-04-11 2006-10-05 ジーイー・ヘルスケア・リミテッド Microwave method for the synthesis of radiolabeled gallium complexes.
JP2004337802A (en) * 2003-05-19 2004-12-02 Sanyo Electric Co Ltd Method and apparatus of manufacturing organic compound
JP2005298483A (en) * 2004-03-17 2005-10-27 National Institute Of Advanced Industrial & Technology Iridium complex and luminous material using the same
JP2005272430A (en) * 2004-03-23 2005-10-06 Minerva Light Laboratory Complex luminescent element material obtained by microwave-heating, method for producing the same and luminescent element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847554A (en) * 2010-06-01 2010-09-29 四川长虹电器股份有限公司 Light filter electromagnetic shielding membrane extraction electrode manufacturing method
CN101847554B (en) * 2010-06-01 2011-12-07 四川长虹电器股份有限公司 Light filter electromagnetic shielding membrane extraction electrode manufacturing method
CN107033075A (en) * 2017-05-08 2017-08-11 宜兴市宏博精细化工有限公司 A kind of 8 copper quinolinate preparation facilities
CN112574105A (en) * 2020-12-25 2021-03-30 青岛中达农业科技有限公司 Green synthesis method of oxine-copper raw pesticide
CN112574105B (en) * 2020-12-25 2022-06-17 青岛中达农业科技有限公司 Green synthesis method of oxine-copper technical

Also Published As

Publication number Publication date
JP5088928B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
Kajbafvala et al. Nanostructure sword-like ZnO wires: rapid synthesis and characterization through a microwave-assisted route
JP5568255B2 (en) Silver powder and method for producing the same
EP1979310B1 (en) Process for the crystallisation of mesotrione
JP5088928B2 (en) Method for producing 8-oxyquinoline copper
KARGAR et al. Preparation of nano selenium particles by water solution phase method from industrial dust
Portillo et al. Optical and structural properties of Er2O3–ErOOH powder grown by chemical bath
Hu et al. Size-controlled synthesis of highly water-soluble silver nanocrystals
EP1783100B1 (en) Method for producing alkali metal hydrogencarbonate
JP4180632B2 (en) Cupric oxide powder and method for producing the same
CN107635969A (en) The manufacture method of the miscellaneous Shandong amine crystal form of grace
Asakuma et al. Method for suppressing superheating behavior during microwave assisted nanoparticle formation by ethylene glycol addition
JP5467831B2 (en) Silver powder manufacturing method
Durrani et al. Growth of Nd-doped YAG powder by sol spray process
JP5648803B2 (en) Copper ion supply method of cupric oxide fine powder and copper sulfate aqueous solution
JP2010037188A (en) Method for preparing decolored aqueous sodium aluminate solution
Jabeen et al. Deep eutectic solvent mediated synthesis of ZnO nanoparticles and their catalytic activity for the removal of hazardous organic dyes
JPH02145422A (en) Production of fine copper oxide powder
JPS62247802A (en) Crystallization method
JP2010105912A (en) METHOD FOR PREPARING HIGH PURITY COPPER OXIDE CONTAINING A TRACE AMOUNT OF CHLORINE FROM WASTE LIQUID CONTAINING Cu(NH3)4Cl2
Velazquez-Urbina et al. Synthesis and characterization of silver nanoparticles supported on Bivalve mollusk shell for catalytic degradation of commercial dyes
KR101205868B1 (en) Manufacturing methods of mineral solution and soil conditioner
JP2008208277A (en) Method for producing organic compound crystal
Calabro et al. Controlled synthesis and characterization of NaYF4: Yb/Er upconverting nanoparticles produced by laser ablation in liquid
CA1196928A (en) Lignocaine benzyl benzoate
JPH10338522A (en) Production of gallium oxide powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees