JP2001270893A - Highlight fluorescent iridium complex and rapid and simple synthesis of the complex through microwave heating - Google Patents

Highlight fluorescent iridium complex and rapid and simple synthesis of the complex through microwave heating

Info

Publication number
JP2001270893A
JP2001270893A JP2000128639A JP2000128639A JP2001270893A JP 2001270893 A JP2001270893 A JP 2001270893A JP 2000128639 A JP2000128639 A JP 2000128639A JP 2000128639 A JP2000128639 A JP 2000128639A JP 2001270893 A JP2001270893 A JP 2001270893A
Authority
JP
Japan
Prior art keywords
complex
bipyridine
phenanthroline
diphenyl
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000128639A
Other languages
Japanese (ja)
Other versions
JP3825956B2 (en
Inventor
Takeko Matsumura
竹子 松村
Naokazu Yoshikawa
直和 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000128639A priority Critical patent/JP3825956B2/en
Publication of JP2001270893A publication Critical patent/JP2001270893A/en
Application granted granted Critical
Publication of JP3825956B2 publication Critical patent/JP3825956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a novel highlight fluorescent iridium complex and a microwave-heating rapid and simple synthesis of the novel complex, further elucidate the availability of this iridium complex and obtain highlight fluorescent substance showing blue, yellow and red. SOLUTION: This inventor has succeeded for the first time in the rapid and simple synthesis of the novel highlight fluorescent iridium complex in a high-boiling solvent by the microwave heating (24.5 MHz) by using an electronic oven. According to this invention, a novel iridium complex has been synthesized for the first time through the rapid and simple process. The complex is soluble in a variety of media, for example, acetonitrile, alcohols, water, and the like, and stable for a long period of time. Further, the complex shows the highlight fluorescence of various colors (blue, yellow and red) in solvents and the fluorescent intensity scarcely changes and a large range of application can be expected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な高輝度蛍光
イリジウム錯体およびそのマイクロ波加熱迅速簡易合成
に関するものである。
The present invention relates to a novel high-brightness fluorescent iridium complex and its rapid and simple synthesis by microwave heating.

【0002】[0002]

【従来の技術】ピリジン環を含むイリジウム錯体は25
0〜300℃で還流法による対流過熱や封管法による加
熱法で合成されていたため、長時間の加熱時間を要し
た。これらの合成法では,副産物が多く、精製過程が複
雑で、純粋な物質を取り出すことがきわめて困難であっ
た。これまでトリスビピリジルイリジウム錯体について
の(Flynn,C.M.and Demas,J.
N.,J.Am.Chem.Soc.1974,96,
1959)の報告があるが、精製にいくつもの過程が必
要で、収量が極めて少ない(収率30%程度)などの欠
点がある。また、高輝度蛍光が得られなかった。
2. Description of the Related Art An iridium complex containing a pyridine ring is 25%.
Since synthesis was performed at 0 to 300 ° C. by convection heating by a reflux method or by a heating method by a sealed tube method, a long heating time was required. In these synthetic methods, there were many by-products, the purification process was complicated, and it was extremely difficult to extract a pure substance. So far, trisbipyridyl iridium complexes have been described (Flynn, CM and Demas, J. Am.
N. , J. et al. Am. Chem. Soc. 1974, 96,
1959), but has the drawback of requiring a number of steps for purification and resulting in a very low yield (about 30%). In addition, high-brightness fluorescence was not obtained.

【0003】[0003]

【発明が解決しようとする課題及び課題を解決するため
の手段】本発明の課題は、新規な高輝度蛍光イリジウム
錯体をマイクロ波加熱迅速簡易合成により提供すること
にある。また、本発明の別な課題は、上記のイリジウム
錯体の有用性を明らかにし、新規な高輝度の青色、黄
色、赤色の蛍光体を提供することにある。本発明者らは
今回、市販の電子レンジ(500W)を用いて、エチレ
ングリコール(沸点197.6℃)、グリセリン(沸点
290.5℃)、1,2−プロパンジオール(沸点18
7.9℃)、1,3−プロパンジオール(沸点213.
5℃)、ジメチルスルホキシド(沸点189℃)、プロ
ピレン(沸点240℃)等の高沸点溶媒(表1に記載の
溶媒)中でマイクロ波照射(24.5MHz、500
W、10〜15分)による分子加熱を適用して還流す
る。この方法により、新規な単一配位型錯体(トリス錯
体[Ir(L]X(Lは4,7−ジフェニル
−1,10−フェナントロリン、2,2’−ビキノリン
等表1に記載の二座配位子。陰イオンXはPF 等表
1に記載)。ビス錯体、[Ir(terpy)]X
(これらの錯体中XはPF 等表1に記載の陰イオ
ン)。 二種混合配位錯体 一般式:[Ir(L(L)]X(L、L
は4,7−ジフェニル−1,10−フェナントロリン、
2,2’−ビキノリン等表1記載の二座配位子)。一般
式:[Ir(L]X、ここで配位子L
4,7−ジフェニル−1,10−フェナントロリン配位
子、2,2’−ビキノリン等表1記載の二座配位子、単
座配位子Xは表1に記載のCl,Br,I。陰イ
オンXは表1に記載の陰イオン。三種混合配位錯体[I
r(L)(terpy)X]X、(この場合でL
は4,7−ジフェニル−1,10−フェナントロリン配
位子、2,2’−ビキノリン配位子等表1に記載の二座
配位子、配位子XとしてはCl,Br,Iのハロ
ゲン配位子、陰イオンXはPF 等表1に記載の陰イ
オン)を迅速簡易かつ高収率に製造することに初めて成
功した。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel high-brightness fluorescent iridium complex by rapid and simple synthesis by microwave heating. Another object of the present invention is to clarify the usefulness of the iridium complex and to provide a novel high-luminance blue, yellow, and red phosphor. The present inventors have now used a commercially available microwave oven (500 W) to prepare ethylene glycol (boiling point: 197.6 ° C.), glycerin (boiling point: 290.5 ° C.), 1,2-propanediol (boiling point: 18
7.9 ° C.), 1,3-propanediol (boiling point 213.
5 ° C.), microwave irradiation (24.5 MHz, 500) in a high boiling point solvent (solvent described in Table 1) such as dimethyl sulfoxide (boiling point: 189 ° C.), propylene (boiling point: 240 ° C.).
(W, 10-15 minutes) and reflux. According to this method, a novel single-coordination complex (tris complex [Ir (L 1 ) 3 ] X 3 (L 1 is 4,7-diphenyl-1,10-phenanthroline, 2,2′-biquinoline, etc.) bidentate ligand according to the anion X is PF 6 -.. Hitoshihyo according to 1) bis complex, [Ir (terpy) 2] X 3
(In these complexes X is PF 6 - anion according to Hitoshihyo 1). Binary mixed coordination complex General formula: [Ir (L 1 ) 2 (L 2 )] X 3 (L 1 , L 2
Is 4,7-diphenyl-1,10-phenanthroline,
Bidentate ligands described in Table 1 such as 2,2′-biquinoline). General formula: [Ir (L 1 ) 2 X 2 ] X, wherein the ligand L 1 is 4,7-diphenyl-1,10-phenanthroline ligand, 2,2′-biquinoline or the like described in Table 1. The coordinating ligand and monodentate ligand X are Cl , Br , and I − shown in Table 1. The anion X is an anion described in Table 1. Triple mixed coordination complex [I
r (L 1 ) (terpy) X] X 2 (in this case, L 1
Is a bidentate ligand described in Table 1 such as a 4,7-diphenyl-1,10-phenanthroline ligand, a 2,2′-biquinoline ligand, and the ligand X is Cl , Br , I For the first time, it was possible to produce PF 6 -an anion shown in Table 1 such as a halogen ligand and an anion ( - ) in a simple manner with high yield.

【0004】表1に錯体中の配位子L,L,の名称
と略記号を第1,2列に記す。これらの配位子のうちテ
ルピリジン(terpy)は三座配位子で、その他は全
て二座配位子。第3列には、単座配位子(ハロゲン配位
子)Xをしめす。第4列に陰イオンXを第5列にマイク
ロは加熱迅速簡易合成に用いる溶媒Sを示す
In Table 1, the names and abbreviations of the ligands L 1 and L 2 in the complex are shown in the first and second columns. Of these ligands, terpyridine is a tridentate ligand, and all others are bidentate ligands. The third column shows monodentate ligands (halogen ligands) X. The fourth column shows the anion X and the fifth column shows the solvent S used for rapid and simple synthesis by heating.

【実施例】[Ir(L]X錯体の製造 例として[Ir(dpphen)](PFの製
造方法を示す。丸底フラスコに3価の6ハロゲン化イリ
ジウム塩一般式:M[IrX](HO)、(M=
K,Na,LiおよびNH、X=Cl,Br,I)と
(二座配位子:4,7−ジフェニル−1,10−フ
ェナントロリン)を1:3のモル比(1ミリモルと3ミ
リモル)の混合物を入れ、溶媒のエチレングリコール
(15ml)加える。懸濁液の入った丸底フラスコを電
子レンジ(図1)に入れ,還流管を取りつける。電子レ
ンジのスイッチを入れて窒素ガスを流しながらマイクロ
波(振動数24.5MHz、500W)を照射する。マ
イクロ波加熱後約1分で懸濁溶液は溶解し、溶液は赤褐
色を呈する。窒素気流中、マイクロ波照射下で15分還
流を行う。マイクロ波照射を停止した後、溶液を放冷す
る。放冷した赤褐色溶液に6フッ化リン酸カリウム(K
PF)飽和水溶液を加えると黄色の沈殿が生成する。
析出した沈殿を吸引ろ過により捕捉する。得られた沈殿
をアセトニトリル(10〜20ml)にとかす(黄色溶
液になる)。アセトニトリル溶液にエーテル(50m
l)を沈殿が生じるまで加えると黄色沈殿が析出する。
吸引濾過により、黄色沈殿を捕集する。真空乾燥して純
物質を得る。収率91%、元素分析値は理論値と良く一
致した。
EXAMPLES Production of [Ir (L 1 ) 3 ] X 3 Complex A method for producing [Ir (dpphen) 3 ] (PF 6 ) 3 will be described as an example. In a round bottom flask, trivalent hexahalide iridium salt General formula: M 3 [IrX 6 ] (H 2 O), (M =
K, Na, Li and NH 4 , X = Cl, Br, I) and L 1 (bidentate ligand: 4,7-diphenyl-1,10-phenanthroline) in a molar ratio of 1: 3 (1 mmol and 3 mmol) and the solvent ethylene glycol (15 ml) is added. Place the round bottom flask containing the suspension in a microwave oven (Figure 1) and attach a reflux tube. A microwave (frequency: 24.5 MHz, 500 W) is irradiated while turning on a microwave oven and flowing nitrogen gas. About 1 minute after the microwave heating, the suspension solution dissolves, and the solution turns reddish brown. Reflux in a nitrogen stream under microwave irradiation for 15 minutes. After stopping the microwave irradiation, the solution is allowed to cool. To the cooled reddish brown solution, add potassium hexafluorophosphate (K
Addition of a saturated aqueous solution of PF 6 ) produces a yellow precipitate.
The deposited precipitate is captured by suction filtration. The resulting precipitate is dissolved in acetonitrile (10-20 ml) (becomes a yellow solution). Add acetonitrile solution to ether (50m
When l) is added until precipitation occurs, a yellow precipitate precipitates.
The yellow precipitate is collected by suction filtration. Vacuum drying to obtain pure substance. The yield was 91% and the elemental analysis values were in good agreement with the theoretical values.

【0005】例2:[Ir(L]X錯体の製
造 例として[Ir(dpphen)Cl](PF
の製造方法を示す。丸底フラスコに3価の6ハロゲン化
イリジウム塩、(一般式:M[IrX](H
O)、M=K,Na,LiおよびNH、X=Cl,
Br,I)とL(二座配位子:4,7−ジフェニル−
1,10−フェナントロリン)を1:2のモル比(1ミ
リモル対2ミリモル)の混合物を入れ、溶媒のエチレン
グリコール(15ml)加える。懸濁液の入った丸底フ
ラスコをつき500W電子レンジに入れ,還流管を取り
つける(図1)。電子レンジのスイッチを入れて窒素ガ
スを流しながらマイクロ波(振動数24.5MHz,5
00W)を照射する。マイクロ波加熱後約1分で懸濁液
は溶解し、溶液は赤褐色を呈する。窒素気流中、マイク
ロ波照射下で15分還流を行う。.マイクロ波の照射を
停止した後溶液を放冷する。放冷した赤褐色溶液に6フ
ッ化リン酸カリウム(KPF)飽和水溶液を加えると
黄色の沈殿が生成する。析出した沈殿を吸引ろ過により
捕捉する。得られた沈殿をアセトニトリル(10〜20
ml)に溶かす(黄色溶液になる)。アセトニトリル溶
液にエーテル(50ml)を沈殿が生じるまで加えると
黄色沈殿が析出する。吸引濾過により、黄色沈殿を捕集
する。真空乾燥して純物質を得る。収率60%、元素分
析値は理論値と良く一致した。
Example 2: Preparation of [Ir (L 1 ) 2 X 2 ] X complex [Ir (dpphen) 2 Cl 2 ] (PF 6 )
The manufacturing method of is shown. In a round bottom flask, trivalent hexahalide iridium salt, (general formula: M 3 [IrX 6 ] (H
2 O), M = K, Na, Li and NH 4 , X = Cl,
Br, I) and L 1 (bidentate ligand: 4,7-diphenyl-)
1,10-phenanthroline) in a 1: 2 molar ratio (1 mmol to 2 mmol) is added and the solvent ethylene glycol (15 ml) is added. Put the round bottom flask containing the suspension in a 500 W microwave oven and attach a reflux tube (Fig. 1). Switch on the microwave oven and supply nitrogen gas while flowing microwave (frequency 24.5 MHz, 5
00W). About 1 minute after microwave heating, the suspension dissolves and the solution turns reddish brown. Reflux in a nitrogen stream under microwave irradiation for 15 minutes. . After stopping the microwave irradiation, the solution is allowed to cool. When a saturated aqueous solution of potassium hexafluorophosphate (KPF 6 ) is added to the cooled reddish brown solution, a yellow precipitate is formed. The deposited precipitate is captured by suction filtration. The obtained precipitate is washed with acetonitrile (10 to 20).
(yellow solution). Ether (50 ml) is added to the acetonitrile solution until a precipitate forms, and a yellow precipitate precipitates. The yellow precipitate is collected by suction filtration. Vacuum drying to obtain pure substance. The yield was 60%, and the elemental analysis values were in good agreement with the theoretical values.

【0006】例3[Ir(L)(terpy)X]X
錯体の製造 例として[Ir(dmbpy)(terpy)Cl]
(PFの製造方法を示す。丸底フラスコに3価の
6ハロゲン化イリジウム塩、(一般式:M[Ir
](HO)、M=K,Na,LiおよびNH4、
X=Cl,Br,I)と三座配位子:テルピリジンを
1:1のモル比(1ミリモルと1ミリモル)の混合物を
入れ、溶媒のエチレングリコール(15ml)加える。
懸濁液の入った丸底フラスコを500W電子レンジに入
れ,還流管を取り付ける(図1)。電子レンジのスイッ
チを入れて窒素ガスを流しながらマイクロ波(振動数2
4.5MHz、500W)を照射する。マイクロ波加熱
後約1分で懸濁溶液は溶解し、溶液は赤褐色を呈する。
窒素気流中、マイクロ波照射下で5分還流を行った後溶
液にL(二座配位子:4,4’−ジメチル−2,2’
−ビピリジン)をイリジウム(III)イオンに対して
モル比で1:1(1ミリモル:1ミリモル)加え、還流
を10分間続ける。マイクロ波の照射を停止した後用絵
金を放冷する。放冷した赤褐色溶液に6フッ化リン酸カ
リウム(KPF)飽和水溶液を加えると黄色の沈殿が
生成する。析出した沈殿を吸引ろ過により捕捉する。得
られた沈殿をアセトニトリル(10〜20ml)に溶か
す(黄色溶液になる)。アセトニトリル溶液にエーテル
(50ml)を沈殿が生じるまで加えると黄色沈殿が析
出する。吸引ろ過により、黄色沈殿を捕集する。真空乾
燥して純物質を得る。収率60%、元素分析値は理論値
と良く一致した。
Example 3 [Ir (L 1 ) (terpy) X] X
Production of 2- complex [Ir (dmpy) (terpy) Cl]
A method for producing (PF 6 ) 2 will be described. In a round bottom flask, trivalent iridium halide hexavalent (general formula: M 3 [Ir
X 6 ] (H 2 O), M = K, Na, Li and NH 4,
X = Cl, Br, I) and a mixture of tridentate ligand: terpyridine in a molar ratio of 1: 1 (1 mmol and 1 mmol) are added, and the solvent ethylene glycol (15 ml) is added.
The round bottom flask containing the suspension is placed in a 500 W microwave oven, and a reflux tube is attached (FIG. 1). Switch on the microwave oven and let the nitrogen gas flow through the microwave (frequency 2
(4.5 MHz, 500 W). About 1 minute after the microwave heating, the suspension solution dissolves, and the solution turns reddish brown.
After refluxing for 5 minutes under microwave irradiation in a nitrogen stream, L 1 (bidentate ligand: 4,4′-dimethyl-2,2 ′) was added to the solution.
-Bipyridine) is added in a molar ratio of 1: 1 (1 mmol: 1 mmol) to the iridium (III) ion and the reflux is continued for 10 minutes. After the microwave irradiation is stopped, the picture metal is allowed to cool. When a saturated aqueous solution of potassium hexafluorophosphate (KPF 6 ) is added to the cooled reddish brown solution, a yellow precipitate is formed. The deposited precipitate is captured by suction filtration. The precipitate obtained is dissolved in acetonitrile (10-20 ml) (it becomes a yellow solution). Ether (50 ml) is added to the acetonitrile solution until a precipitate forms, and a yellow precipitate precipitates. The yellow precipitate is collected by suction filtration. Vacuum drying to obtain pure substance. The yield was 60%, and the elemental analysis values were in good agreement with the theoretical values.

【0007】[0007]

【実施例】図1に高輝度蛍光イリジウム錯体のマイクロ
波加熱迅速簡易合成装置を示す。市販の電子レンジを改
造して還流管を挿入するチョークパイプをつけた。丸底
フラスコに3価の6塩化イリジウム塩(一般式:M
[IrX](H O)、(M=K,Na,Liおよ
びNH4、X=Cl,Br,I)とL(二座配位子:
4,7−ジフェニル−1,10−フェナントロリン)が
1:3のモル比(1ミリモル:3ミリモル)の混合物
に、溶媒のエチレングリコール(15ml)加える。懸
濁液の入った丸底フラスコを500W電子レンジに入
れ、上部に還流管を取りつける。窒素ガスを流通させ静
かにバブリングする。電子レンジのスイッチを入れて窒
素ガスを流しながらマイクロ波(振動数24.5MH
z)を照射する。マイクロ波の照射をとめ、生じた赤褐
色溶液を放冷後、析出した沈殿を吸引ろ過により捕捉す
る。得られた沈殿をアセトニトリル(10〜20ml)
に溶かす(黄色溶液になる)。アセトニトリル溶液にエ
ーテル(50ml)を沈殿が生じるまで加えると黄色沈
殿が析出する。吸引ろ過により、黄色沈殿を補集する。
真空乾燥して純物質を得る。還流管露出部を必要に応じ
て金属板などでガードして、マイクロ波のもれを防ぐ。
マイクロ波加熱は従来の還流法による対流過熱とは異な
り,分子回転による摩擦熱に夜加熱であるため,分子レ
ベルでの高温が得られ(分子加熱)、反応効率がきわめ
て高いのが特徴である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a microstructure of a high-brightness fluorescent iridium complex.
The wave heating rapid simple synthesis device is shown. Commercially available microwave oven
And a choke pipe into which a reflux tube was inserted. Round bottom
A trivalent iridium hexachloride (general formula: M
3[IrX6] (H2 O), (M = K, Na, Li and
And NH4,X = Cl, Br, I) and L1(Bidentate ligand:
4,7-diphenyl-1,10-phenanthroline)
Mixture in a molar ratio of 1: 3 (1 mmol: 3 mmol)
Of ethylene glycol (15 ml) as a solvent. Hanging
Put the round bottom flask containing the suspension into a 500W microwave oven
And attach a reflux tube to the top. Allow nitrogen gas to flow
Bubble crab. Switch on the microwave oven and
While flowing elementary gas, microwave (frequency 24.5 MH
z). Reddish brown produced by stopping microwave irradiation
After allowing the color solution to cool, the precipitated precipitate is captured by suction filtration.
You. The obtained precipitate is acetonitrile (10 to 20 ml)
(Dissolve in yellow). Add acetonitrile solution to
-Tel (50 ml) was added until precipitation occurred,
The tongue precipitates. The yellow precipitate is collected by suction filtration.
Vacuum drying to obtain pure substance. If necessary, expose the reflux tube
Guard with a metal plate to prevent microwave leakage.
Microwave heating is different from convection heating by the conventional reflux method
Because of night heating due to frictional heat caused by molecular rotation,
High temperature at the bell (molecular heating), extremely high reaction efficiency
It is characteristically high.

【0008】製造された高輝度蛍光イリジウム錯体は2
80nm〜350nmの波長範囲で、主として錯体中の
配位子に起因する高強度の吸収を示す。一方錯体の蛍光
波長は、380nm〜630nmの範囲で配位子によっ
て種々に変化する。特に[Ir(dmdpphe
n)](PF錯体は青色蛍光を(λ=380n
m),[Ir(dmbpy)](PFは黄色蛍
光を(λ=525nm)、[Ir(bqn)](PF
は赤色蛍光を呈した。高輝度蛍光イリジウム錯体
の特徴的な吸収スペクトル及び蛍光スペクトルを[Ir
(dpphen)](PFについて図2に示し
た。
[0008] The produced high-intensity fluorescent iridium complex is 2
In the wavelength range from 80 nm to 350 nm, it shows high-intensity absorption mainly due to the ligand in the complex. On the other hand, the fluorescence wavelength of the complex varies in a range of 380 nm to 630 nm depending on the ligand. In particular, [Ir (dmdpphe
n) 3 ] (PF 6 ) 3 complex emits blue fluorescence (λ = 380 n
m), [Ir (dmpy) 3 ] (PF 6 ) 3 emits yellow fluorescence (λ = 525 nm) and [Ir (bqn) 3 ] (PF
6 ) 3 exhibited red fluorescence. The characteristic absorption spectrum and fluorescence spectrum of the high-brightness fluorescent iridium complex are shown as [Ir
(Dpphen) 3 ] (PF 6 ) 3 is shown in FIG.

【0009】図2はイリジウムトリスジフェニルフェナ
ントロリン錯体([Ir(dpphen)](P
)の吸収スペクトルA(横軸、波長λ/nm、
縦軸、吸光度)と蛍光スペクトルB(横軸、波長λ/n
m、縦軸、蛍光強度)を示した。錯体の吸収スペクトル
は分光光度計U−3010(日立),蛍光スペクトルは
分光蛍光光度計F−2500(日立)を用いて測定し
た。[Ir(dpphen)](PFの最大吸
収波長λmax及び吸収強度ε282はそれぞれ282
nm、1.1x10−1cm−1であった。蛍光の
最大波長は539nmで,波長318nmの励起光で照
射したとき蛍光強度ε1,318は、1.8x10
−1cm−1であった。
FIG. 2 shows an iridium trisdiphenylphenanthroline complex ([Ir (dpphen) 3 ] (P
F 6 ) 3 ) Absorption spectrum A (horizontal axis, wavelength λ / nm,
Vertical axis, absorbance) and fluorescence spectrum B (horizontal axis, wavelength λ / n)
m, vertical axis, fluorescence intensity). The absorption spectrum of the complex was measured using a spectrophotometer U-3010 (Hitachi), and the fluorescence spectrum was measured using a spectrofluorometer F-2500 (Hitachi). The maximum absorption wavelength λ max and the absorption intensity ε 282 of [Ir (dpphen) 3 ] (PF 6 ) 3 are 282, respectively.
nm, 1.1 × 10 5 M −1 cm −1 . Maximum wavelength of fluorescence at 539 nm, the fluorescence intensity epsilon 1,318 when irradiated with excitation light having a wavelength of 318nm is, 1.8x10 8 M
-1 cm -1 .

【0010】表2はマイクロ波加熱迅速簡易合成法によ
り製造された高輝度蛍光イリジウム錯体の収率を示す。
単一配位型錯体、混合配位錯体ともに収率は60%以上
で高収率である。
[0010] Table 2 shows the yield of the high-brightness fluorescent iridium complex produced by the microwave heating rapid simple synthesis method.
Both the single coordination complex and the mixed coordination complex have a high yield of 60% or more.

【0011】製造された高輝度蛍光イリジウム錯体の蛍
光強度を320−350nmの波長域の光で励起して最
大蛍光強度を測定した。励起光の波長は最大蛍光波長で
の錯体の蛍光強度(ε)と励起波長での吸収強度(ε
)の比(ε/ε)が最大になる波長に設定した。
高輝度蛍光イリジウム錯体のε/ε値は一般に知ら
れている蛍光錯体Ru(bpy)(PFのε
/ε値に比して大きい値を示し、高輝度である。特
に、選択された例を表3に示す。
The fluorescent intensity of the manufactured high-intensity fluorescent iridium complex was excited by light in a wavelength range of 320 to 350 nm, and the maximum fluorescent intensity was measured. The wavelength of the excitation light is the fluorescence intensity of the complex at the maximum fluorescence wavelength (ε 1 ) and the absorption intensity at the excitation wavelength (ε
2 ) was set to a wavelength at which the ratio (ε 1 / ε 2 ) became maximum.
High intensity fluorescence of iridium complex ε 1 / ε 2 value fluorescent complexes are generally known Ru (bpy) 3 (PF 6 ) 3 of epsilon 1
/ Epsilon shows a larger value than the binary, high brightness. In particular, Table 3 shows selected examples.

【0012】表3は、単一配位型錯体の励起波長および
励起波長における吸収強度(ε)、最大蛍光波長と蛍光
強度(ε)を示している。ここで、励起波長は最大蛍
光波長での錯体の蛍光強度と吸収強度の比(ε
ε)が最大になる波長に設定した。表に示すトリス錯
体およびビステルピリジン錯体の蛍光波長は525〜6
30nmの範囲で、ε/εの最高値は一般に知られ
ている蛍光錯体Ru(bpy)(PFの値の4
倍近い輝度を示している。
Table 3 shows the excitation wavelength of the single coordination complex, the absorption intensity (ε) at the excitation wavelength, the maximum fluorescence wavelength and the fluorescence intensity (ε 1 ). Here, the excitation wavelength is the ratio of the fluorescence intensity and the absorption intensity of the complex at the maximum fluorescence wavelength (ε 1 /
The wavelength at which ε 2 ) was maximized was set. The fluorescence wavelength of the tris complex and bisterpyridine complex shown in the table is 525-6.
In the range of 30 nm, the highest value of ε 1 / ε 2 is 4 times the value of the commonly known fluorescent complex Ru (bpy) 3 (PF 6 ) 3.
The luminance is almost doubled.

【0013】表4は各混合配位錯体の励起波長および励
起波長における吸収強度(ε)、最大蛍光波長と蛍光強
度(ε)をの例を示す。蛍光波長は380nm〜62
2nmの広い範囲をカバーしている。ε/εの最高
値は2.78x10でRu(bpy)(PF
の値の28倍に達しており、高輝度蛍光を示している。
また、高輝度蛍光イリジウム錯体はその蛍光が長時間
(ほぼ1年以上)失われない等、安定性が高い。
Table 4 shows examples of the excitation wavelength of each mixed coordination complex, the absorption intensity (ε) at the excitation wavelength, the maximum fluorescence wavelength and the fluorescence intensity (ε 1 ). Fluorescence wavelength is 380 nm to 62
It covers a wide range of 2 nm. The highest value of ε 1 / ε 2 is 2.78 × 10 4 , and Ru (bpy) 3 (PF 6 ) 3
, Which is 28 times the value of the above, indicating high-brightness fluorescence.
Further, the high-brightness fluorescent iridium complex has high stability such that its fluorescence is not lost for a long time (about one year or more).

【0014】高輝度蛍光イリジウム錯体は錯体中の陰イ
オンを変化させることによって、アセトニトリル、エタ
ノール、高沸点溶媒(表1)、水等、種々の溶媒に溶か
すことが出来る。
The high-brightness fluorescent iridium complex can be dissolved in various solvents such as acetonitrile, ethanol, high-boiling solvents (Table 1), water and the like by changing the anion in the complex.

【発明の効果】本発明は、電子レンジを用いるマイクロ
波照射による分子加熱を適用して,迅速簡易な錯体合成
を可能にした。反応時間の短縮と分子加熱による合成は
副反応や未反応による副生成物の生成を抑制し、高収率
で目的の高輝度蛍光イリジウム錯体の合成を可能にす
る。また、これらの錯体は、錯体中の配位子が励起光を
効率よく吸収し、中心のイリジウム金属イオンに効果的
に伝達することから高輝度蛍光材料の製造を可能にす
る。、また、配位子の選択により、特定の励起光に選択
的に感応する高輝度発光材料の製造ができる。加えて、
これらの錯体は非常に安定で極めて高い蛍光強度を有し
(表3、表4)、青色、黄色など、種々の蛍光波長(3
80nm〜630nm)を有する高輝度蛍光錯体を提供
する。
According to the present invention, rapid and simple complex synthesis has been made possible by applying molecular heating by microwave irradiation using a microwave oven. The shortening of the reaction time and the synthesis by molecular heating suppress the formation of by-products due to side reactions and unreacted reactions, and enable the synthesis of the desired high-brightness fluorescent iridium complex in high yield. In addition, these complexes make it possible to produce a high-luminance fluorescent material because the ligand in the complex efficiently absorbs the excitation light and effectively transmits the light to the central iridium metal ion. In addition, by selecting a ligand, it is possible to produce a high-luminance light-emitting material that selectively responds to specific excitation light. in addition,
These complexes are very stable and have extremely high fluorescence intensity (Tables 3 and 4), and have various fluorescence wavelengths (3
(80 nm to 630 nm).

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月25日(2000.6.2
5)
[Submission date] June 25, 2000 (2006.2.
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1はイリジウム錯体合成用のマイクロ波加熱
装置(還流冷却器付電子レンジ)を示す。丸底フラスコ
に6ハロゲン化イリジウム(III)塩とポリピリジン
配位子のエチレングリコール溶液を入れ、窒素ガスを通
じながら(窒素バブル→)500Wの電子レンジ中でマ
イクロ波を照射する。還流管(還流管→)の外筒を冷却
水(冷却水→)を流して冷却する。
FIG. 1 shows a microwave heating apparatus (microwave oven with a reflux condenser) for synthesizing an iridium complex. A round bottom flask is charged with a solution of an iridium (III) hexahalide salt and an ethylene glycol solution of a polypyridine ligand, and is irradiated with microwaves in a 500 W microwave oven while passing nitrogen gas (nitrogen bubble →). The outer cylinder of the reflux pipe (reflux pipe →) is cooled by flowing cooling water (cooling water →).

【図2】図2はIr(dpphen)錯体(Ir(I
II)トリスジフェニルフェナントロリン錯体)の吸収
スペクトルおよび蛍光スペクトルを示す。図2のAは1
x10−5MIr(dpphen)(PFの吸
収スペクトルを示す。横軸は波長、縦軸は吸光度(O.
D)である。図2のBは1x10−5MIr(dpph
en)(PFの蛍光スペクトルを示す。横軸は
波長、縦軸は蛍光強度で測光値を表す。539nmは蛍
光強度が最大の波長を示す。 λex=318nmは、
励起波長318nmを示す。
FIG. 2 shows an Ir (dpphen) 3 complex (Ir (I
II) trisdiphenylphenanthroline complex). A in FIG.
1 shows an absorption spectrum of x10 -5 MIr (dpphen) 3 (PF 6 ) 3 . The horizontal axis represents wavelength, and the vertical axis represents absorbance (O.D.
D). FIG. 2B shows 1 × 10 −5 MIr (dpph
2 shows the fluorescence spectrum of (en) 3 (PF 6 ) 3 . The horizontal axis represents the wavelength, and the vertical axis represents the photometric value in terms of the fluorescence intensity. 539 nm indicates the wavelength at which the fluorescence intensity is maximum. λ ex = 318 nm
Shows an excitation wavelength of 318 nm.

【符号の説明】 Ir(dpphen)(PF:イリジウム(I
II)トリスジフェニルフェナントロリン錯体の六フッ
化リン酸塩 O.D.:Optical Densityの略、吸光
度を示す。 λ :波長 nm :ナノメーター、10−9m Intensity:蛍光強度 λex:励起波長 M:モル濃度(モル/l)
[Description of Signs] Ir (dpphen) 3 (PF 6 ) 3 : iridium (I
II) hexafluorophosphate of trisdiphenylphenanthroline complex D. : Abbreviation of Optical Density, indicating absorbance. λ: wavelength nm: nanometer, 10 −9 m Intensity: fluorescence intensity λ ex : excitation wavelength M: molar concentration (mol / l)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】単一配位型錯体(トリス錯体、ビス錯体) トリス錯体、一般式:[Ir(L]Xで表され
るイリジウム錯体、L は二座配位子を表わし、4,7
−ジフェニル−1,10−フェナントロリン、2,9−
ジメチル−4,7−ジフェニル−1,10−フェナント
ロリン、5−フェニル−1,10−フェナントロリン、
5−ニトロ−1,10−フェナントロリン、5−クロロ
−1,10−フェナントロリン、4,4’−ジメチル−
2,2’−ビピリジン,4,4’−ジフェニル−2,
2’−ビピリジン、2,2’−ビピリジン−3,3’−
ジオール、2,2’−ビピリジン−4,4’−ジカルボ
ン酸、2,2’−ビキノリン、2,2’−ビキノリン−
4,4’−ジカルボン酸。Xは陰イオンを表し、PF
、BF 、Cl、Br、I、ClO 、S
2−、NO 。ビス錯体、一般式[Ir(ter
py)]Xで表されるイリジウム錯体、terpy
は三座配位子2,2’:6’,2”−テルピリジン、X
は陰イオンを表し、PF 、BF 、Cl、Br
、I、ClO 、SO 2−、NO 。 混合配位錯体(二種混合配位錯体、三種混合配位錯体) 二種混合配位錯体、一般式:[Ir(L
(L)]Xで表されるイリジウム錯体、二座配位
子(L、L)として,4,7−ジフェニル−1,1
0−フェナントロリン、2,9−ジメチル−4,7−ジ
フェニル−1,10−フェナントロリン、5−フェニル
−1,10−フェナントロリン、5−ニトロ−1,10
−フェナントロリン、5−クロロ−1,10−フェナン
トロリン、4,4’−ジメチル−2,2’−ビピリジ
ン、4,4’−ジフェニル−2,2’−ビピリジン、
2,2’−ビピリジン−3,3’−ジオール、2,2’
−ビピリジン−4,4’−ジカルボン酸、2,2’−ビ
キノリン、2,2’−ビキノリン−4,4’−ジカルボ
ン酸。Xは陰イオンを表し、PF 、BF 、Cl
、Br、I、ClO 、SO 2−、N
。一般式:[Ir(L]Xで表される
イリジウム錯体、錯体はニ座配位子L、単座配位子
X,陰イオンX及びイリジウムイオンから構成される。
ニ座配位子Lは4,7−ジフェニル−1,10−フェ
ナントロリン、2,9−ジメチル−4,7−ジフェニル
−1,10−フェナントロリン、5−フェニル−1,1
0−フェナントロリン、5−ニトロ−1,10−フェナ
ントロリン、5−クロロ−1,10−フェナントロリ
ン、4,4’−ジメチル−2,2’−ビピリジン、4,
4’−ジフェニル−2,2’−ビピリジン、2,2’−
ビピリジン−3,3’−ジオール、2,2’−ビピリジ
ン−4,4’−ジカルボン酸、2,2’−ビキノリン、
2,2’−ビキノリン−4,4’−ジカルボン酸。単座
配位子Xとして、塩化物イオン、臭化物イオン、沃化物
イオンのハロゲン配位子。陰イオンXとしてPF
BF 、Cl、Br、I、ClO 、SO
2−、NO 。三種混合配位錯体、一般式:[Ir
(L)(terpy)X]Xで表されるイリジウム
錯体。terpyは三座配位子テルピリジン、Lとし
て、4,7−ジフェニル−1,10−フェナントロリ
ン、2,9−ジメチル−4,7−ジフェニル−1,10
−フェナントロリン、5−フェニル−1,10−フェナ
ントロリン、5−ニトロ−1,10−フェナントロリ
ン、5−クロロ−1,10−フェナントロリン、4,
4’−ジメチル−2,2’−ビピリジン,4,4’−ジ
フェニル−2,2’−ビピリジン,2,2’−ビピリジ
ン−3,3’−ジオール、2,2’−ビピリジン−4,
4’−ジカルボン酸、2,2’−ビキノリン、2,2’
−ビキノリン−4,4’−ジカルボン酸からなる二座配
位子。単座配位子XとしてはCl、Br、Iのハ
ロゲン配位子。陰イオンXは、PF 、BF 、C
、Br、I、ClO 、SO 2−、NO
。上記に記載の錯体から選択された高輝度蛍光イリジ
ウム錯体およびそのマイクロ波加熱迅速簡易合成法
1. A single coordination complex (tris complex, bis complex) tris complex, represented by the general formula: [Ir (L1)3] X3Represented by
Iridium complex, L1 Represents a bidentate ligand, and 4,7
-Diphenyl-1,10-phenanthroline, 2,9-
Dimethyl-4,7-diphenyl-1,10-phenanth
Loline, 5-phenyl-1,10-phenanthroline,
5-nitro-1,10-phenanthroline, 5-chloro
-1,10-phenanthroline, 4,4'-dimethyl-
2,2'-bipyridine, 4,4'-diphenyl-2,
2'-bipyridine, 2,2'-bipyridine-3,3'-
Diol, 2,2'-bipyridine-4,4'-dicarbo
Acid, 2,2'-biquinoline, 2,2'-biquinoline-
4,4'-dicarboxylic acid. X represents an anion, and PF6
, BF4 , Cl, Br, I, ClO4 , S
O4 2-, NO3 . Bis complex, a general formula [Ir (ter
py)2] X3An iridium complex represented by the formula: terpy
Is a tridentate ligand 2,2 ': 6', 2 "-terpyridine, X
Represents an anion and PF6 , BF4 , Cl, Br
, I, ClO4 , SO4 2-, NO3 . Mixed coordination complex (binary coordination complex, ternary coordination complex) Binary coordination complex, general formula: [Ir (L1)
2(L2)] X3Iridium complex represented by
Child (L1, L2) Is 4,7-diphenyl-1,1
0-phenanthroline, 2,9-dimethyl-4,7-di
Phenyl-1,10-phenanthroline, 5-phenyl
-1,10-phenanthroline, 5-nitro-1,10
-Phenanthroline, 5-chloro-1,10-phenan
Toroline, 4,4'-dimethyl-2,2'-bipyridi
4,4'-diphenyl-2,2'-bipyridine,
2,2'-bipyridine-3,3'-diol, 2,2 '
-Bipyridine-4,4'-dicarboxylic acid, 2,2'-bicarboxylic acid
Quinoline, 2,2'-biquinoline-4,4'-dicarbo
Acid. X represents an anion, and PF6 , BF4 , Cl
, Br, I, ClO4 , SO4 2-, N
O3 . General formula: [Ir (L1)2X2] Represented by X
Iridium complex, complex is bidentate ligand L1, Monodentate ligand
X, an anion X and iridium ion.
Bidentate ligand L1Is 4,7-diphenyl-1,10-phenyl
Nanthroline, 2,9-dimethyl-4,7-diphenyl
-1,10-phenanthroline, 5-phenyl-1,1
0-phenanthroline, 5-nitro-1,10-phena
Enthroline, 5-chloro-1,10-phenanthroli
4,4'-dimethyl-2,2'-bipyridine, 4,
4'-diphenyl-2,2'-bipyridine, 2,2'-
Bipyridine-3,3'-diol, 2,2'-bipyridi
-4,4'-dicarboxylic acid, 2,2'-biquinoline,
2,2'-biquinoline-4,4'-dicarboxylic acid. Single seat
As the ligand X, chloride ion, bromide ion, iodide
Halogen ligand of the ion. PF as anion X6 ,
BF4 , Cl, Br, I, ClO4 , SO4
2-, NO3 . Three-type coordination complex, general formula: [Ir
(L1) (Terpy) X] X2Iridium represented by
Complex. terpy is a tridentate terpyridine, L1age
4,7-diphenyl-1,10-phenanthroli
2,9-dimethyl-4,7-diphenyl-1,10
-Phenanthroline, 5-phenyl-1,10-phena
Entroline, 5-nitro-1,10-phenanthroli
5-chloro-1,10-phenanthroline, 4,
4'-dimethyl-2,2'-bipyridine, 4,4'-di
Phenyl-2,2'-bipyridine, 2,2'-bipyridi
-3,3'-diol, 2,2'-bipyridine-4,
4'-dicarboxylic acid, 2,2'-biquinoline, 2,2 '
Bidentate consisting of -biquinoline-4,4'-dicarboxylic acid
Rank child. The monodentate ligand X is Cl, Br, INo ha
Rogen ligand. Anion X is PF6 , BF4 , C
l, Br, I, ClO4 , SO4 2-, NO3
. High-brightness fluorescent iridium selected from the complexes described above
Complexes and Their Rapid and Simple Synthesis by Microwave Heating
JP2000128639A 2000-03-23 2000-03-23 Iridium complex and high-intensity fluorescent iridium complex Expired - Fee Related JP3825956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128639A JP3825956B2 (en) 2000-03-23 2000-03-23 Iridium complex and high-intensity fluorescent iridium complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128639A JP3825956B2 (en) 2000-03-23 2000-03-23 Iridium complex and high-intensity fluorescent iridium complex

Publications (2)

Publication Number Publication Date
JP2001270893A true JP2001270893A (en) 2001-10-02
JP3825956B2 JP3825956B2 (en) 2006-09-27

Family

ID=18638048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128639A Expired - Fee Related JP3825956B2 (en) 2000-03-23 2000-03-23 Iridium complex and high-intensity fluorescent iridium complex

Country Status (1)

Country Link
JP (1) JP3825956B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051806A1 (en) 2004-11-10 2006-05-18 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescent device using same
JP2006253641A (en) * 2004-11-25 2006-09-21 Showa Denko Kk Light emitting diode illumination source
JP2008127363A (en) * 2006-11-24 2008-06-05 Nippon Steel Chem Co Ltd Process for producing copper 8-quinolate
KR101547832B1 (en) 2013-09-27 2015-08-27 주식회사 네패스 Iridium Luminescent Compound and Organoelectroluminesent Device Employing The Same
CN113603727A (en) * 2021-08-06 2021-11-05 东北师范大学 Metal iridium complex-paclitaxel conjugate and preparation method and application thereof
CN114805447A (en) * 2022-04-13 2022-07-29 兰州大学 Iridium complex photosensitizer and preparation method and application thereof
CN115505008A (en) * 2022-09-19 2022-12-23 兰州大学 Iridium complex probe and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051806A1 (en) 2004-11-10 2006-05-18 Idemitsu Kosan Co., Ltd. Metal complex compound and organic electroluminescent device using same
JP2006160724A (en) * 2004-11-10 2006-06-22 Idemitsu Kosan Co Ltd Metal complex compound and organic electroluminescent element using the same
JP2006253641A (en) * 2004-11-25 2006-09-21 Showa Denko Kk Light emitting diode illumination source
JP2008127363A (en) * 2006-11-24 2008-06-05 Nippon Steel Chem Co Ltd Process for producing copper 8-quinolate
KR101547832B1 (en) 2013-09-27 2015-08-27 주식회사 네패스 Iridium Luminescent Compound and Organoelectroluminesent Device Employing The Same
CN113603727A (en) * 2021-08-06 2021-11-05 东北师范大学 Metal iridium complex-paclitaxel conjugate and preparation method and application thereof
CN113603727B (en) * 2021-08-06 2023-09-19 东北师范大学 Iridium complex-taxol conjugate and preparation method and application thereof
CN114805447A (en) * 2022-04-13 2022-07-29 兰州大学 Iridium complex photosensitizer and preparation method and application thereof
CN114805447B (en) * 2022-04-13 2023-11-24 兰州大学 Iridium complex photosensitizer and preparation method and application thereof
CN115505008A (en) * 2022-09-19 2022-12-23 兰州大学 Iridium complex probe and preparation method and application thereof
CN115505008B (en) * 2022-09-19 2023-12-22 兰州大学 Iridium complex probe and preparation method and application thereof

Also Published As

Publication number Publication date
JP3825956B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
Chassot et al. Photochemical preparation of luminescent platinum (IV) complexes via oxidative addition on luminescent platinum (II) complexes
US10800968B2 (en) Metal organic framework (MOF) yellow phosphors and their applications in white light emitting devices
Colombo et al. Facial tris cyclometalated rhodium (3+) and iridium (3+) complexes: Their synthesis, structure, and optical spectroscopic properties
Łyszczek et al. Polynuclear complexes constructed by lanthanides and pyridine-3, 5-dicarboxylate ligand: Structures, thermal and luminescent properties
CN101321774A (en) Process for preparing ortho-metallated metal compounds
JPH09227576A (en) Metallic multinuclear complex, its production and optical element
Klassen Synthesis and spectroscopic characterization of ruthenium and osmium complexes with sterically hindering ligands. 2. Tris complexes with 2-(2'-pyridyl) quinoline and 2, 2'-biquinoline
Mironov et al. New mixed-ligand cyanohydroxo octahedral cluster complex trans-[Re 6 S 8 (CN) 2 (OH) 4] 4−, its luminescence properties and chemical reactivity
DePriest et al. Structure, physical and photophysical properties of platinum (II) complexes containing 7, 8-benzoquinoline and various bis (diphenylphosphine) ligands
JP2001270893A (en) Highlight fluorescent iridium complex and rapid and simple synthesis of the complex through microwave heating
CN106349259B (en) Pyridine pyrazolate copper [I] complex organic vapor light-emitting color-changing materials and preparation method
CN111944163B (en) 5-carbazolyl isophthalic acid cadmium complex and preparation method and application thereof
Vučković et al. Synthesis and characterization of novel binuclear copper (II) and nickel (II) complexes with N, N′, N ″, N‴-tetrakis (2-pyridylmethyl)-1, 4, 8, 11-tetraazacyclotetradecane (tpmc) containing various anions. X-ray analyses of [Cu2F (tpmc)](ClO4) 3· 2CH3CN and [Cu2Cl (tpmc)](ClO4) 3· H2O
Jiang et al. A green-emitting iridium complex used for sensitizing europium ion with high quantum yield
Zhao et al. Tuning luminescence via transition metal-directed strategy in coordination polymers
Song et al. Tuning the self-assembly and luminescence properties of lanthanide coordination polymers by ligand design
JP2007070290A (en) Method for producing ortho-metalated iridium complex, iodine-crosslinked iridium dimer complex and method for producing the same
CN108676171B (en) Olefin copper coordination polymer with orange fluorescence effect and preparation method thereof
Yang et al. Crystal structure, topology, tiling and photoluminescence properties of 4d–4f hetero-metal organic frameworks based on 3, 5-pyrazoledicaboxylate
Sun et al. Designing luminescent diimine-Cu (i)–phosphine complexes by tuning N-ligand and counteranions: correlation of weak interactions, luminescence and THz absorption spectra
Tan et al. Organic solvents-soluble zinc (II) and cadmium (II) complexes based on 2-aryl substituted-8-hydroxyquinoline: Synthesis, crystal structures, photoluminescence, thermal and theoretical studies
CN115093572A (en) Polypyridine ring metal iridium supramolecular material, preparation method and application
Wong et al. Bichromophoric rhodamine-rhenium (I) and-iridium (III) sensory system: Synthesis, characterizations, photophysical and selective metal ions binding studies
Darzinezhad et al. Fabrication of blue organic light-emitting diodes from novel uranium complexes: synthesis, characterization, and electroluminescence studies of uranium anthracene-9-carboxylate complexes
Liu et al. Dual emissions and thermochromic luminescences of isomorphic chiral twofold interpenetrated 3-D nets built from I 1 O 2 type hybrid inorganic–organic frameworks of [NH 2 (CH 3) 2] 3 [Pb 2 X 3 (BDC) 2](X= Br, I)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Ref document number: 3825956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees