JP2008126050A - Bottom structure of uniformly heatable induction heating type large circular cooking pot - Google Patents

Bottom structure of uniformly heatable induction heating type large circular cooking pot Download PDF

Info

Publication number
JP2008126050A
JP2008126050A JP2006345027A JP2006345027A JP2008126050A JP 2008126050 A JP2008126050 A JP 2008126050A JP 2006345027 A JP2006345027 A JP 2006345027A JP 2006345027 A JP2006345027 A JP 2006345027A JP 2008126050 A JP2008126050 A JP 2008126050A
Authority
JP
Japan
Prior art keywords
coil
pot
ribs
heat
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006345027A
Other languages
Japanese (ja)
Inventor
Tetsuo Matsunaga
哲夫 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006345027A priority Critical patent/JP2008126050A/en
Publication of JP2008126050A publication Critical patent/JP2008126050A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • Cookers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a pot bottom structure capable of fixing a coil with high reliability, while optimally controlling a magnetic flux generated from a work coil for induction heating, for the purpose of uniformly induction-heating a large circular cooking pan and a flat-bottomed cooking pot for preparing a large volume of cooked food at once to the Self-Defense Forces, schools, various organizations, convenience stores, family restaurants, supermarkets, etc. <P>SOLUTION: On the bottom of a pot, there is formed magnetic metallic ribs that can guide an electromagnetic induction magnetic flux which is generated by a high frequency electric current of a coil. Using the ribs, a structure is formed, which can firmly fix the coil. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は自衛隊・学校・各種団体・コンビニ・ファミレス・スーパーなどに調理物を提供するために一度に大量の調理をする必要のある調理工場に設置する大円形の調理釜の底を誘導加熱する方法に関し、本来均等加熱が困難な電磁誘導加熱により、釜底を斑なく均等に加熱し調理物の温度を一斉に規定値にすることのできる釜底の構造とその釜底へのコイル取り付け構造に関する。This invention induction heats the bottom of a large circular cooking pot installed in a cooking factory that needs to cook a large amount at once to provide food to the Self-Defense Forces, schools, various organizations, convenience stores, family restaurants, supermarkets, etc. Concerning the method, the structure of the bottom of the pot that can uniformly heat the bottom of the pot by electromagnetic induction heating, which is inherently difficult to heat evenly, and the temperature of the cooked food can be brought to the specified value all at once. About.

高周波誘導加熱は、コイルに高周波電流を流すことによって、コイルの近傍に配置した磁性金属に高周波磁界を発生させると共に、その磁性金属に誘導電流としての渦電流を発生させ、この渦電流によって磁性金属内にジュール熱を発生させる。
このような渦電流による発熱作用を用いる誘導加熱調理器は、被加熱金属である釜底の真下に設置して誘導加熱調理器内のコイルに高周波電流を流すことにより釜底に渦電流を生じさせ、これにより、釜底に自己発熱を生じさせ、釜内部の調理物を加熱するように構成される。
In high-frequency induction heating, a high-frequency magnetic field is generated in a magnetic metal disposed in the vicinity of a coil by causing a high-frequency current to flow through the coil, and an eddy current is generated as an induced current in the magnetic metal. Generate Joule heat inside.
An induction heating cooker using such an eddy current heat generating action is installed just below the bottom of the pot, which is the metal to be heated, and a high frequency current is passed through the coil in the induction heating cooker to generate an eddy current at the bottom of the pot. Thus, self-heating is generated at the bottom of the pot, and the cooked food inside the pot is heated.

この種の誘導加熱調理器を応用した誘導加熱式大円形調理釜は、釜の底面から数十mmの隙間を介してコイルを配設してコイルに流す高周波電流によって釜底に誘導渦電流を発生させて釜底を加熱する。An induction heating type large circular cooking pot using this type of induction heating cooker has a coil placed through a gap of several tens of millimeters from the bottom of the pot, and an induction eddy current is generated at the bottom of the pot by a high-frequency current flowing through the coil. Generate and heat the bottom of the kettle.

このコイルを固定する方法として従来、釜の底表面に対向して単純には絶縁材を介して固定されるが釜底の表面に直付けされた座にネジなどで固定される場合と釜底表面の近くに釜本体とは別の構造体によりコイルを固定する場合の両方がある。As a method of fixing this coil, it is conventionally fixed simply via an insulating material so as to face the bottom surface of the hook, but it is fixed to a seat directly attached to the surface of the hook bottom with a screw or the like. There are both cases where the coil is fixed by a structure different from the hook body near the surface.

しかしながらいずれの方法も釜底面に対し均等に高周波磁界を発生させることができず必ず円形の釜底に対しドーナツ状に磁界が集中しドーナツ状に渦電流が発生してドーナツ状に加熱力が集中する欠点があった。このために釜底の熱歪みも極端に大きくなり釜の底が凸凹になってその周囲の発生磁界強度にも影響を与え誘導渦電流密度が変化してジュール熱による発生熱が不均一になっていた。However, none of these methods can generate a high-frequency magnetic field evenly on the bottom of the hook, and the magnetic field is always concentrated in a donut shape on the circular bottom, and an eddy current is generated in a donut shape, and the heating power is concentrated in a donut shape. There was a drawback. For this reason, the heat distortion at the bottom of the hook becomes extremely large, and the bottom of the hook becomes uneven, affecting the intensity of the magnetic field generated around it, and the induced eddy current density changes, resulting in non-uniform heat generation due to Joule heat. It was.

更に釜の中の調理物に与えられる熱も不均一になって製品の仕上がり品質も悪いという問題があり調理物を攪拌しようとしても上述した如く釜底が熱歪みを起こしており十分な攪拌ができないという問題に発展していた。Furthermore, there is a problem that the heat given to the food in the kettle becomes uneven and the quality of the finished product is poor, and even when trying to stir the food, the bottom of the kettle is thermally distorted as described above, so that sufficient stirring is achieved. It developed into the problem of being unable.

本発明は、上述の課題を解決するものであり、大円形調理釜の底を均等に誘導加熱できるように釜底の被加熱面に当たる部分の構造とコイル固定構造を工夫して釜底面の強度を向上させながら高周波磁界の均一性をも高められる構造を提供することを目的とする。The present invention solves the above-mentioned problems, and devise the structure of the portion that contacts the heated surface of the pot bottom and the coil fixing structure so that the bottom of the large circular cooking pot can be uniformly induction-heated, and the strength of the pot bottom An object of the present invention is to provide a structure capable of improving the uniformity of a high-frequency magnetic field while improving the above.

問題を解決するための手段Means to solve the problem

上記目的を達成するために、本発明の請求項1の大円形調理釜底表面には中心から外径方向に向かって放射状に磁性金属リブを配置しその下に載置したコイルによって発生した電磁誘導磁束を釜の中心から外径方向に向かって放射状に通過させる磁路として機能させこれと直角に発生する渦電流を釜底面の半径方向に均等配分して流れるようにしたことを特徴とする。即ち磁路としての磁性金属は釜底面に溶接固定する。In order to achieve the above-mentioned object, electromagnetic waves generated by coils placed radially under magnetic metal ribs radially from the center toward the outer diameter direction on the bottom surface of the large circular cooking pot according to claim 1 of the present invention. It functions as a magnetic path that passes the induced magnetic flux radially from the center of the hook toward the outer diameter direction, and eddy currents that are generated at right angles to the magnetic path are distributed evenly in the radial direction of the bottom of the hook. . That is, the magnetic metal as the magnetic path is fixed to the bottom of the hook by welding.

請求項2の固定リブは釜底の熱歪み防止補強にも機能できるように釜底に対し強固に溶接固定するものとする。その際単なる機械的な強度向上ではなく磁束の通過磁路とするために磁性金属は薄板で幅広のものを釜底に対しエッジ状に立てて溶接し単に数多く配分するのではなく円周上を均等角度配分し中心から外径方向に向かって放射状に固定することが要求される。又半径方向に発生した磁束が不規則に回帰しないよう固定リブに直角に鎖交するリング状リブを適正に配置し半径方向の中間付近での磁束集中を避けている。The fixing rib of claim 2 is firmly welded and fixed to the bottom of the hook so that it can also function to prevent thermal distortion at the bottom of the hook. At that time, in order not to simply improve the mechanical strength but to make the magnetic path through which the magnetic flux passes, the magnetic metal is a thin plate with a wide width and is welded in an edge shape to the bottom of the hook. It is required to uniformly distribute the angles and fix them radially from the center toward the outer diameter direction. In addition, ring-shaped ribs that are linked at right angles to the fixed ribs are appropriately arranged so that the magnetic flux generated in the radial direction does not return irregularly, thereby avoiding magnetic flux concentration near the middle in the radial direction.

請求項3に述べるように磁束通過用リブを2本組で配置することで磁束の性質としてある近くに存在する磁性体に近接しようとする現象に幅を持たせて磁束が円周上で均等角度的に分散回帰する際ばらつきが最小になるようにした。As described in claim 3, by arranging two magnetic flux passing ribs in a set, the magnetic flux is evenly distributed on the circumference by giving a width to the phenomenon of approaching a magnetic material existing nearby as a property of the magnetic flux. The variation was minimized when performing angular dispersion regression.

ここで請求項4及び請求項5のように2本の固定リブの間にコイル固定用耐熱材料を挟み込みこれにコイルを固定するための加工を施してコイルを固定する際コイルが固定リブに接しないように固定リブの高さよりコイル固定用耐熱材料の取り付け高さを数mm高くしたことを特徴としその際コイル固定用耐熱材料と釜底との隙間を取り固定リブを含む釜底の温度がコイルに伝導し難い構造にしたことを特徴とする。Here, when a coil-fixing heat-resistant material is sandwiched between two fixing ribs as in claims 4 and 5 and a process for fixing the coil is applied thereto to fix the coil, the coil contacts the fixing rib. The mounting height of the heat-resistant material for fixing the coil is several mm higher than the height of the fixing rib. It is characterized by a structure that is difficult to conduct to the coil.

請求項6に述べるように高耐熱絶縁材料をコイル固定座に使用する場合は熱伝導の防止とコイルとの絶縁確保の両方を処置することができるがコイル固定座を挟む2本の固定リブにボルトを貫通させると渦電流が流れてボルトが加熱するため高耐熱絶縁材料にはインサートネジを埋め込み両固定リブ側からボルトを挿入してコイル固定ボルトは絶縁状態で固定する。As described in claim 6, when a high heat-resistant insulating material is used for the coil fixing seat, both the prevention of heat conduction and ensuring insulation with the coil can be treated, but the two fixing ribs sandwiching the coil fixing seat are used. When the bolt is penetrated, an eddy current flows and the bolt heats up. Therefore, an insert screw is embedded in the high heat-resistant insulating material, the bolt is inserted from both fixing ribs, and the coil fixing bolt is fixed in an insulated state.

請求項7に述べるようにコイル固定用耐熱材料に非磁性金属を使用し誘導による自己発熱を回避してコイルに伝導する熱を最小限にした場合はコイルとのアース接地の起こらないようコイルと非磁性金属の間に高耐熱絶縁材料のライナーを挿入し十分な沿面距離を確保した確実な絶縁を施工する。If a non-magnetic metal is used as the heat-resistant material for fixing the coil as described in claim 7 and the heat conducted to the coil is minimized by avoiding induction self-heating, the coil is prevented from being grounded with the coil. Insert a liner of high heat-resistant insulating material between non-magnetic metals to construct a reliable insulation with sufficient creepage distance.

請求項8に述べるようにコイル固定材料に加工する長穴によってコイルの巻きピッチがどの位置にきても固定用ボルトを移動でき且つ適性位置でボルト締め付けが可能なように回り止め用の段付きザグリ溝加工を施し、確実に固定できるようにしたことを特徴とする。As described in claim 8, there is a step for preventing rotation so that the fixing bolt can be moved and the bolt can be tightened at an appropriate position regardless of the winding pitch of the coil by the long hole processed into the coil fixing material. It features a counterbored groove that can be fixed securely.

請求項9においてはコイル固定用耐熱材料に絶縁材料を使用した場合で一般に高耐熱絶縁材料は非常に高価であり使用量を少なくすればするほど安価になる。そこで釜の底や固定リブの高温になる部分のみに高耐熱絶縁材料を使用しそれ以外の場所には低温用低価格材料を組み合わせて使用できるよう加工したことを特徴とする。In the ninth aspect, when an insulating material is used as the heat-resistant material for fixing the coil, the high-heat-resistant insulating material is generally very expensive and becomes cheaper as the amount of use is reduced. Therefore, it is characterized in that it is processed so that a high-temperature insulating material is used only for the high temperature portion of the bottom of the hook and the fixing rib, and a low-cost material for low temperature can be used in combination in other places.

発明の効果The invention's effect

現在使用されている大円形調理釜は大部分がガスまたは蒸気加熱式でガスの燃焼効率上または蒸気耐圧の関係から釜の直径は小さく釜底は半球面体形状をしている。この形状は釜の中心付近に在る調理物に対して熱を与え難いため調理物を釜内部で攪拌するのであるが攪拌することで調理物の煮崩れが起こる。また炒め調理をする場合は余分な水分を取り去る必要があり釜底にある調理物から水分を取り去るために調理物を反転することが必要であるが球面形状の釜底では調理物は釜底の中心に寄ってしまい反転し難い。Most of the large circular cooking pots currently in use are gas or steam heating type, and the diameter of the pot is small due to gas combustion efficiency or steam pressure resistance, and the bottom of the kettle has a hemispherical shape. Since this shape makes it difficult to apply heat to the food near the center of the pot, the food is stirred inside the pot. In addition, when fried, it is necessary to remove excess water, and it is necessary to invert the food in order to remove water from the food at the bottom of the pot. It ’s hard to flip because it ’s close to the center.

今回発明の直径を大きく釜底を平らにした大円形調理釜の加熱方式によれば、釜底の磁束配分を均等にできて渦電流を均等に流し釜底全体を均等加熱できるようになっており調理物を釜面全体に薄く広げて調理でき、煮炊き調理では攪拌の必要が無くなり煮崩れが無くなる。また炒め調理をする場合も調理物を釜面全体に薄く広げて調理できるため余分な水分の除去が容易で食材の反転も非常に簡単になる。現行品の中にはこの釜と同種で大円形調理釜の底を誘導加熱する方法としたものがあるが本案のようにコイル及び発生磁束通過を工夫するのではなく釜そのものを回転させて均等加熱する方法であり釜が回転することで折角加熱した釜の熱が空中に放熱し約10%の熱ロスが発生する。本方式では釜が固定式で熱ロスは最小に抑えられるだけでなくコイルと釜底の空隙が変化せず加熱力が常に一定になる。またコイル位置が変わることもなく加熱のモードも変化しない。更に釜の縁に付着した食材に雑菌が繁殖するのを防ぐ目的で別熱源である抵抗ヒーターなどで釜の縁を100℃程度に余熱することも容易である。一方回転式では非接触の誘導加熱方法以外では効率のよい加熱できないため釜底から立ち上がった釜の縁の加熱対策は非常に困難である。According to the heating method of the large circular cooking pot with a large diameter and a flat bottom according to the present invention, the distribution of the magnetic flux at the bottom of the pot can be made uniform, eddy currents can be flowed evenly, and the entire bottom of the pot can be heated evenly. The cooked food can be cooked thinly over the entire surface of the kettle, and the boiled cooking eliminates the need for stirring and eliminates boiling. In addition, when fried cooking, the food can be spread thinly over the entire surface of the kettle, so that excess water can be easily removed and the inversion of the ingredients becomes very easy. Some of the current products have the same type as this kettle, and a method of induction heating the bottom of the large circular cooking kettle, but instead of devising the coil and generated magnetic flux passage as in this proposal, the kettle itself is rotated to equalize it. This is a heating method. When the hook rotates, the heat of the pot heated at a corner is dissipated into the air, and a heat loss of about 10% occurs. In this method, the hook is fixed and the heat loss is minimized, and the gap between the coil and the bottom of the hook does not change, and the heating power is always constant. Further, the coil position does not change and the heating mode does not change. Furthermore, it is easy to preheat the edge of the kettle to about 100 ° C. with a resistance heater or the like, which is another heat source, in order to prevent germs from growing on the food material attached to the edge of the kettle. On the other hand, since the rotary type cannot be heated efficiently except by a non-contact induction heating method, it is very difficult to take measures for heating the edge of the kettle rising from the bottom of the kettle.

以下、本発明の実施形態を図面に基づいて説明する。図1は従来のままの形状をした釜底5を誘導加熱した場合を示し、単に渦巻き状コイル1を釜底下に近接して置き誘導加熱した場合、誘導磁界12の発生分布がどのようになるかをシュミレーションした場合を示す。これによれば釜の底にコイルを一様に分布して巻いても磁界強度変化曲線4は釜の中心と外周の磁界強度が極端に低下し、釜底面中間径付近の磁界強度が高くなることが判る。即ち釜底面中間径付近に誘導渦電流が集中して流れドーナツ状の加熱モードになる。Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a case where the bottom 5 having a conventional shape is induction-heated. When the spiral coil 1 is placed close to the bottom of the bottom and induction-heated, the distribution of the induction magnetic field 12 is changed. The case where is simulated. According to this, even if the coil is uniformly distributed around the bottom of the hook, the magnetic field strength change curve 4 shows that the magnetic field strength at the center and the outer periphery of the hook is extremely lowered and the magnetic field strength near the intermediate diameter of the bottom of the hook is increased. I understand that. That is, the induced eddy current concentrates in the vicinity of the intermediate diameter of the bottom surface of the pot, and a donut-shaped heating mode is set.

又、釜底の平坦度が悪くてコイルと釜底の空間距離に数mmの変化が発生したりコイル自身の巻きピッチの変化で釜底面を真下から見た場合の磁界強度が斑島状11に変化しそこに発生する磁束2の密度が変わることで渦電流が蛇行し、それに連れて釜底の発熱分布が変わってしまう。ここで磁界の等強度曲線を7と8に示し7は理想状態を示し8はコイルと被加熱体の関係で変化する様子を示す。In addition, the flatness of the bottom of the hook is poor, and the space distance between the coil and the bottom of the coil is changed by several millimeters. As the density of the magnetic flux 2 that changes and changes there, eddy currents meander, and the heat distribution at the bottom of the kettle changes accordingly. Here, the isointensity curves of the magnetic field are shown as 7 and 8, 7 shows the ideal state, and 8 shows the state of change due to the relationship between the coil and the heated object.

第2図は請求項1に示す如く釜5の底に磁性金属リブ12〜16を溶接付けすることによって磁束2を適正に通過させる磁路を形成させた例を示す。これによれば第3図に示すようにコイルによって発生する誘導磁束2は釜底面の中心から外径方向に放射状に配した磁性金属リブ12・13によって形成された磁路により強制的に均等配分された磁束が釜底面の円周を等角度分割して分布する。この結果、磁界の等強度曲線19は理想状態の7に近似してくる。また請求項2で述べるようにリング状のリブ14〜16によって案内された磁束はその場所でコイルの反釜底側に回り込むように回帰し、磁界強度変化曲線4は17になりその場所の誘導渦電流量を軽減して集中加熱状態を避けるように働く。FIG. 2 shows an example in which a magnetic path for properly passing the magnetic flux 2 is formed by welding magnetic metal ribs 12 to 16 to the bottom of the hook 5 as shown in claim 1. According to this, as shown in FIG. 3, the induced magnetic flux 2 generated by the coil is forcibly and evenly distributed by the magnetic path formed by the magnetic metal ribs 12 and 13 radially arranged from the center of the bottom of the hook to the outer diameter direction. The magnetic flux is distributed by dividing the circumference of the bottom of the hook into equal angles. As a result, the magnetic field isointensity curve 19 approximates 7 in the ideal state. Further, as described in claim 2, the magnetic flux guided by the ring-shaped ribs 14 to 16 returns so as to wrap around to the bottom side of the coil at the location, and the magnetic field strength change curve 4 becomes 17, so that the location is induced. It works to reduce the amount of eddy current and avoid concentrated heating.

第4図はコイルを固定する方法を示し請求項3で述べている如く固定リブ12〜16を2列構成にして誘導磁束2を効率よく収束できるようにしながらコイル固定座21・22を適正に釜底に取り付けられるようにしてコイル間の隙間を正確に保持できるようにしてある。このコイル固定座21・22は請求項4に述べる如くコイル座固定用ボルトナット29によって釜底に固定され固定リブ12〜16より数mm高くコイルが固定できる位置を保持し熱的に影響しないように且つ絶縁確保上も問題無いようにしてある。FIG. 4 shows a method of fixing the coils, and as described in claim 3, the fixing ribs 12 to 16 are arranged in two rows so that the induction magnetic flux 2 can be efficiently converged and the coil fixing seats 21 and 22 are properly arranged. It is attached to the bottom of the hook so that the gap between the coils can be accurately maintained. The coil fixing seats 21 and 22 are fixed to the bottom of the hook by coil seat fixing bolts and nuts 29 as described in claim 4, and maintain a position where the coil can be fixed several millimeters higher than the fixing ribs 12 to 16 so as not to affect the heat. In addition, there is no problem in securing insulation.

第5図は第4図でいうコイル固定座21・22を裏側から見た図で釜側への取り付け面を示す。材料に非磁性材のアルミニュームを使用すれば請求項5に述べるように誘導加熱作用から回避されコイルに熱的ダメージを与えない効果がある。請求項6の効果を出すように絶縁材を使用した場合は第6b図に示すようにコイル固定座21・22の幅方向の中間を貫通させない止まり穴にし両側面からインサートネジを埋め込みコイル座固定用ボルトナット29を一箇所に2本使用して両側面から固定できる構造にする。FIG. 5 is a view of the coil fixing seats 21 and 22 shown in FIG. 4 as viewed from the back side, and shows a mounting surface to the hook side. If a non-magnetic aluminum material is used as the material, as described in claim 5, it is avoided from induction heating action and has the effect of not causing thermal damage to the coil. When an insulating material is used so as to produce the effect of claim 6, as shown in FIG. 6b, a blind hole that does not penetrate through the middle of the coil fixing seats 21 and 22 is made into a blind hole, and insert screws are embedded from both sides to fix the coil seat. The structure is such that two bolt nuts 29 are used in one place and can be fixed from both sides.

第6a図はコイル固定座21・22を裏側から見たる図の詳細であるが材料にアルミニュームを使用し側面方向から貫通穴を加工し請求項7でいうシンチュウ製等の良導体金属ボルトを使用して固定する場合の構造例である。又この構造の内、請求項8でいうコイル固定ボルトナット28のボルト貫通長穴にザグリ加工した面にコイル固定用ボルト28の頭部端面が嵌まり込む状態にすることで回り止め機能構造30となる。図6bはコイル固定座21・22に耐熱絶縁材を使用した例でありコイル座固定用ボルトナット29への渦電流を遮断しコイル固定座絶縁に熱的な影響を与えないようにした構造を示す。FIG. 6a is a detailed view of the coil fixing seats 21 and 22 as seen from the back side, but aluminum is used as the material and a through hole is machined from the side direction, and a good conductor metal bolt such as Shinchu made in claim 7 is used. It is an example of a structure in the case of fixing. Further, of this structure, the anti-rotation function structure 30 is obtained by fitting the end face of the head of the coil fixing bolt 28 into the face of the bolt fixing elongated hole of the coil fixing bolt nut 28 according to claim 8. It becomes. FIG. 6B shows an example in which a heat-resistant insulating material is used for the coil fixing seats 21 and 22, and a structure in which eddy currents to the coil seat fixing bolts and nuts 29 are interrupted to prevent thermal influence on the coil fixing seat insulation. Show.

第7図は請求項9で述べるコイル固定座21・22を低価格化するための方法を示し釜底5及び金属リブ12・13の高温部に接触する部分のみに高耐熱絶縁材24・26を使用しその他の部分は低価格の低温向き絶縁座を使用した一構造例である。ここで重要な点である高温接触部に必要最少量で高耐熱絶縁材24・26を使用し釜底5に低価格の低温向き絶縁座が接触しないように隙間27を確保したその他の構造であっても本案に含まれる。FIG. 7 shows a method for reducing the price of the coil fixing seats 21 and 22 described in claim 9. The heat-resistant insulating materials 24 and 26 are provided only at the portions contacting the high temperature portion of the bottom 5 and the metal ribs 12 and 13. The other part is an example of a structure using a low-cost insulating seat for low temperature. It is an important point here that the high-temperature contact portion is made of the minimum necessary amount of high heat-resistant insulating materials 24 and 26, and other structures in which a clearance 27 is secured so that the low-cost insulating seat for low-temperature use is not in contact with the bottom 5 of the hook. It is included in this plan even if it exists.

大円形状の釜底を従来からの電磁誘導加熱方式で加熱した場合の加熱状況Heating situation when a large circular pot bottom is heated by the conventional electromagnetic induction heating method 図1を改善する目的で釜底に磁性金属リブで磁路を均等配置した図For the purpose of improving Fig. 1, the magnetic path is evenly arranged with magnetic metal ribs on the bottom of the hook. 図2の釜底構造にコイルを配し電磁誘導加熱した場合の磁束発生状況Magnetic flux generation when a coil is placed on the bottom structure of Fig. 2 and electromagnetic induction heating is performed コイル固定座を釜底に固定し、その上にコイルを固定した状態を示すThe coil fixing seat is fixed to the bottom of the hook and the coil is fixed on it. コイル固定座を図4に示す状態の裏側から見た図を示すThe figure which looked at the coil fixing seat from the back side of the state shown in FIG. 4 is shown. 図5の詳細図を示しアルミニューム材等非磁性金属材を使用した場合When the non-magnetic metal material such as aluminum material is used as shown in detail in FIG. 同上で絶縁材を使用した場合When insulation is used as above コイル固定座の低価格製作例を示し、高低価格材料の組み合わせ例An example of low-cost production of coil fixing seats and an example of combination of high and low cost materials

符号の説明Explanation of symbols

1 渦巻き状ワークコイル
2 誘導磁束
3 誘導磁界強度方向
4 誘導磁界強度曲線または渦電流発生密度曲線
5 鍋または釜
6 磁界強度観測軸
7 磁界の等強度曲線(期待モード)
8 磁界の等強度曲線(蛇行した場合)
9 鍋または釜の中心
10磁界強度が不均一になる範囲
11誘導磁束密度が高くなる範囲
12磁路形成用磁性金属リブ(長い物)
13磁路形成用磁性金属リブ(短い物)
14磁路形成用磁性金属リブ(湾曲形状)
15磁路形成用磁性金属リブ(小リング状)
16磁路形成用磁性金属リブ(大リング状)
17改善後の誘導磁界強度曲線または渦電流発生密度曲線
18磁束回帰位置
19改善後の磁界の等強度曲線
20磁路に収束された磁束モード
21コイル固定座(長)
22コイル固定座(短)
23コイル押さえ座
24高価高耐熱コイル固定座
25低価格低温向きコイル固定座
26高価高耐熱コイル固定座
27低価格コイル固定座が釜底に接触しない隙間
28コイル固定用ボルトナット
29コイル座固定用ボルトナット
30コイル固定用ボルトの回り止め
31コイル座固定用ボルト穴
32コイル座固定用インサートネジ穴
DESCRIPTION OF SYMBOLS 1 Spiral work coil 2 Inducted magnetic flux 3 Induced magnetic field strength direction 4 Inducted magnetic field strength curve or eddy current generation density curve 5 Pan or pot 6 Magnetic field strength observation axis 7 Magnetic field isointensity curve (expected mode)
8 Magnetic field isointensity curve (when meandering)
9 Center of pan or pot 10 Range of non-uniform magnetic field strength 11 Range of induced magnetic flux density 12 Magnetic metal rib for magnetic path formation (long)
13 Magnetic metal ribs for magnetic path formation (short)
14 Magnetic metal ribs for magnetic path formation (curved shape)
15 Magnetic metal rib for magnetic path formation (small ring shape)
16 magnetic metal ribs for magnetic path formation (large ring shape)
17 Inductive magnetic field strength curve after improvement or eddy current generation density curve 18 Magnetic flux return position 19 Magnetic field isointensity curve after improvement 20 Magnetic flux mode 21 converged on magnetic path (long)
22 coil fixing seat (short)
23 Coil holding seat 24 Expensive high heat resistance coil fixing seat 25 Low price low temperature coil fixing seat 26 Expensive high heat resistance coil fixing seat 27 Low price coil fixing seat does not contact the bottom of the hook 28 Coil fixing bolt nut 29 Coil seat fixing Bolt nut 30 Coil fixing bolt detent 31 Coil seat fixing bolt hole 32 Coil seat fixing insert screw hole

Claims (9)

上面を開放し、下面を平坦な底面とした大円形状の鍋または釜(以下単に釜と称す)と釜の最下面に誘導加熱用渦巻き状ワークコイル(以下コイルと称す)を配し、コイルに流す高周波誘導電流により発生される電磁誘導磁界とその磁束により釜の底に誘導渦電流を流し釜の底を直接誘導加熱する大円形調理釜底であって、高周波誘導電流が誘起する磁束を磁性金属リブによって円形中心から外径側に向かって均等分割配分し放射状に分布させるような磁路を形成し、釜底内部に流れる電磁誘導渦電流を均等に分布させたことを特徴とする大円形調理釜底の構造。A large circular pan or kettle (hereinafter simply referred to as the kettle) with the upper surface open and a flat bottom surface and an induction heating spiral work coil (hereinafter referred to as a coil) on the bottom surface of the kettle. An electromagnetic induction magnetic field generated by a high-frequency induction current flowing in the oven and a large circular cooking pot bottom that directly induces and heats the bottom of the pot by causing an induced eddy current to flow to the bottom of the pot by the magnetic flux. The magnetic metal ribs form a magnetic path that is evenly divided and distributed radially from the center of the circle toward the outer diameter side, and electromagnetically induced eddy currents that flow inside the pot bottom are evenly distributed. Round cooking pot bottom structure. 大円形調理釜を使用して行われる調理は炒める、揚げる、煮る、蒸す、焼くの全てを対象としており釜の底は平坦でなければならずこの中で熱的歪みを最小限にするため釜の底に放射状に補強リブを配置することと電磁誘導磁界を均等に配することは対策的に一致しており両機能を兼用したことを特徴とした釜底の磁路形成兼補強リブ構造。更にこの放射状配置のリブに対しこれと直角に交わるリング状のリブを円周の半径方向に数箇所配置することでコイルの中間付近にドーナツ状に磁束集中することを回避したり、釜の中心に最小径で磁束が集中するようにして釜底全体に渦電流を分布させて流し均等に加熱しようとしたことを特徴とする。Cooking using a large circular cooking pot is intended for all frying, frying, boiling, steaming and baking, and the bottom of the kettle must be flat to minimize thermal distortion. Arranging the reinforcing ribs radially on the bottom of the pot and evenly distributing the electromagnetic induction magnetic field are the same in terms of countermeasures and have both functions. Furthermore, by arranging several ring-shaped ribs that intersect perpendicularly to the radially arranged ribs in the radial direction of the circumference, it is possible to avoid magnetic flux concentration in a donut shape near the middle of the coil, It is characterized in that the eddy current is distributed over the entire bottom of the kettle so that the magnetic flux is concentrated at the minimum diameter and is heated evenly. 請求項2に記載した釜底の磁路形成兼補強リブ(以下固定リブと称す)は2本組で並行配置することによりコイル固定座の取り付けを容易にしながら電磁誘導磁束の通過磁路の幅を広くして安定した均等磁束配分ができるようにしたことを特徴とする。The magnetic path forming / reinforcing rib (hereinafter referred to as a fixed rib) at the bottom of the hook according to claim 2 is arranged in parallel in two sets, thereby facilitating the mounting of the coil fixing seat and the width of the magnetic path through which the electromagnetic induction magnetic flux passes. It is characterized in that the uniform magnetic flux distribution can be made stable by widening. 請求項3に記載した2本の固定リブの間にコイルを直接固定するためのコイル固定座を配置しコイルと接する面を2本の固定リブ高さより数mm高くしてコイルに接触しないようにしたことを特徴とする。A coil fixing seat for directly fixing the coil is arranged between the two fixing ribs according to claim 3, and the surface in contact with the coil is made several mm higher than the height of the two fixing ribs so as not to contact the coil. It is characterized by that. 請求項4に記載したコイル固定座の材料に高耐熱絶縁材を使用するか、誘導加熱し難いアルミニュームなどの非磁性金属を使用し且つ釜の底に接触しないようにしてコイル絶縁材料に熱的ダメージを与えないようにしたことを特徴とする。5. Use a high heat-resistant insulating material as the material for the coil fixing seat according to claim 4, or use a non-magnetic metal such as aluminum that is difficult to induction heat, and heat the coil insulating material so as not to contact the bottom of the hook. It is characterized by not giving any damage. コイル固定座の固定は2本の固定リブにボルトで締め付け固定するがこのボルトが渦電流によって加熱しないようにコイル固定座が耐熱絶縁材の場合はインサートネジを埋め込み、固定リブの両側面から締め付けることでボルトに渦電流が流れないように両ボルト間を絶縁して固定したことを特徴とする。The coil fixing seat is fixed to the two fixing ribs with bolts. If the coil fixing seat is a heat-resistant insulating material, insert screws are inserted and tightened from both sides of the fixing ribs so that the bolts are not heated by eddy currents. Thus, both bolts are insulated and fixed so that eddy current does not flow through the bolts. 請求項6に対しコイル固定座に非磁性金属を使用した場合、固定ボルトには必ず渦電流が流れるためボルトの材料にはシンチュウ等の良導体金属を使用して発熱を少なくしたことを特徴とする。In contrast to the sixth aspect, when a non-magnetic metal is used for the coil fixing seat, an eddy current always flows through the fixing bolt, so that a good conductor metal such as Shinchu is used for the bolt material to reduce heat generation. . 請求項5に記載したコイル固定座に加工するコイル固定用ボルト・ナットの挿入穴を長穴にしながらボルトの回り止め溝加工も同時に施工して渦巻き状コイルの巻きピッチがどこに配置されても締め付けが容易で確実且つ高信頼に施工できるようにしたことを特徴とする。The coil fixing bolt and nut for machining into the coil fixing seat according to claim 5 are oblongly formed, and a bolt non-rotating groove is formed at the same time to tighten the spiral coil no matter where the winding pitch is arranged. It is easy, reliable and highly reliable. コイル固定座の材料には、高価格な高耐熱絶縁材料の使用量を少なくし、低価格な低温の耐熱材料を多く使用できるような組み合わせ式のコイル固定座構造にしてコイルの固定コストを低価格にしたことを特徴とする。The coil fixing seat material is made of a combination type coil fixing seat structure that reduces the amount of high-priced, high-heat-resistant insulating material used, and allows the use of many low-priced, low-temperature heat-resistant materials. Characterized by price.
JP2006345027A 2006-11-26 2006-11-26 Bottom structure of uniformly heatable induction heating type large circular cooking pot Pending JP2008126050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345027A JP2008126050A (en) 2006-11-26 2006-11-26 Bottom structure of uniformly heatable induction heating type large circular cooking pot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345027A JP2008126050A (en) 2006-11-26 2006-11-26 Bottom structure of uniformly heatable induction heating type large circular cooking pot

Publications (1)

Publication Number Publication Date
JP2008126050A true JP2008126050A (en) 2008-06-05

Family

ID=39552452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345027A Pending JP2008126050A (en) 2006-11-26 2006-11-26 Bottom structure of uniformly heatable induction heating type large circular cooking pot

Country Status (1)

Country Link
JP (1) JP2008126050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016387A (en) * 2016-07-28 2016-10-12 杭州信多达电器有限公司 Structure capable of reducing radiation of induction cooker
KR102245946B1 (en) * 2021-01-22 2021-04-29 화신주방산업(주) Cooking pot with electric heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016387A (en) * 2016-07-28 2016-10-12 杭州信多达电器有限公司 Structure capable of reducing radiation of induction cooker
KR102245946B1 (en) * 2021-01-22 2021-04-29 화신주방산업(주) Cooking pot with electric heating device

Similar Documents

Publication Publication Date Title
US3684853A (en) Induction surface heating unit system
KR101307594B1 (en) Electric range having induction heater
JP2008126050A (en) Bottom structure of uniformly heatable induction heating type large circular cooking pot
CN104349522B (en) For heating cooker coil panel and there is its electromagnetic oven
JP5326552B2 (en) Induction heating cooker
JP2012110636A (en) Cooking container for induction-heating cooker
CN204722868U (en) Cooking apparatus
US11627644B2 (en) Wireless induction heating cooker with improved heat conduction efficiency
TWI762690B (en) Cooking device
WO2017193531A1 (en) Cooking utensil
JP2011003490A (en) Induction heating device
CN211155145U (en) Electromagnetic oven cooker and electromagnetic oven cooker
US20190297923A1 (en) Induction heating and cooking
TWI762689B (en) Cooking device
US20230276981A1 (en) Cooking vessel
CN104039202B (en) Eddy-current heating cooker
CN204995180U (en) Electromagnetic heating cooks pot and rice cooker thereof
JP2014220181A (en) Induction heating cooker
JP4528824B2 (en) Induction heating cooker
CN202310157U (en) Radiation-resistant electromagnetic coupling heating appliance
JP2011070873A (en) Induction heating device and induction heating cooker using it
JP5424309B2 (en) Electromagnetic induction heating cooker and electromagnetic induction heating cooker set
JP2626034B2 (en) Induction heating device
JP2006120336A (en) Induction heating device
JPH08213160A (en) Induction heater cooker