JP2008124386A - Two branch output solid-state imaging element, and imaging apparatus - Google Patents

Two branch output solid-state imaging element, and imaging apparatus Download PDF

Info

Publication number
JP2008124386A
JP2008124386A JP2006309221A JP2006309221A JP2008124386A JP 2008124386 A JP2008124386 A JP 2008124386A JP 2006309221 A JP2006309221 A JP 2006309221A JP 2006309221 A JP2006309221 A JP 2006309221A JP 2008124386 A JP2008124386 A JP 2008124386A
Authority
JP
Japan
Prior art keywords
charge
transfer path
branch
state imaging
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006309221A
Other languages
Japanese (ja)
Inventor
Koichi Shiraki
宏一 白木
Makoto Kobayashi
誠 小林
Katsumi Ikeda
勝己 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006309221A priority Critical patent/JP2008124386A/en
Publication of JP2008124386A publication Critical patent/JP2008124386A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two branch output solid-state imaging element for picking up an image whose quality is high by satisfactorily carrying out charge distribution. <P>SOLUTION: This two branch output solid-state imaging element is provided with: a horizontal charge transferring part 103; a charge branching part 120 for distributing signal charge transferred along the horizontal charge transfer path 103 alternately to two directions; and two branch transfer paths 104 and 105 installed corresponding to the two directions, wherein a distribution electrode film 120a installed in the charge branch part 120 is shaped like a triangle by making the base section adjacent to the end of the horizontal charge transfer path 103, and making one of the two oblique sides adjacent to one branch transfer path 104, and making the other oblique side adjacent to a branch transfer path 105, and a protruding electrode film 120c separating branch transfer paths 104 and 105 from a vertex faced to the base shaped like a triangle is extended. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電荷転送路(転送レジスタ)の出力端部を2つの分岐転送路に並列に分岐したCCD(Charge Coupled Devices:電荷結合素子)タイプの固体撮像素子及び撮像装置に係り、特に、転送電荷を各分岐転送路へ転送残り無く良好に振り分けることができる出力2分岐型固体撮像素子及び撮像装置に関する。   The present invention relates to a CCD (Charge Coupled Devices) type solid-state imaging device and imaging apparatus in which an output end of a charge transfer path (transfer register) is branched in parallel into two branch transfer paths, and in particular, transfer charges. The present invention relates to an output two-branch solid-state imaging device and an imaging device that can be well distributed to each branch transfer path without remaining transfer.

近年のCCDタイプの固体撮像素子は、半導体微細加工技術の進歩に伴って多画素化が進み、数百万画素以上を搭載する様になってきている。このため、撮像画像信号を読み出す水平電荷転送路の転送段数が増し、撮像画像信号を高速に読み出すために転送駆動周波数を高くする必要が生じている。しかし、転送駆動周波数を高くすると、出力アンプから出力される電圧値信号の波形が乱れてしまうという問題が生じる。   In recent years, CCD-type solid-state imaging devices have increased in number of pixels with the progress of semiconductor microfabrication technology, and have been equipped with millions of pixels or more. For this reason, the number of transfer stages of the horizontal charge transfer path for reading the picked-up image signal increases, and it is necessary to increase the transfer drive frequency in order to read the picked-up image signal at high speed. However, when the transfer drive frequency is increased, there is a problem that the waveform of the voltage value signal output from the output amplifier is disturbed.

そこで、水平電荷転送路の出力端部を並列に分岐し、水平電荷転送路の転送駆動は高周波信号で行い、水平電荷転送路上を順次転送されてきた信号電荷を電荷振分部(電荷分岐部)で各分岐転送路に順次振り分けることで、分岐転送路の駆動周波数を水平電荷転送路の駆動周波数より1/2にする技術が開発されている(例えば、特許文献1,2)。   Therefore, the output end of the horizontal charge transfer path is branched in parallel, and the transfer drive of the horizontal charge transfer path is performed by a high-frequency signal, and the signal charge sequentially transferred on the horizontal charge transfer path is transferred to the charge distribution section (charge branch section). ), A technique has been developed in which the drive frequency of the branch transfer path is halved from the drive frequency of the horizontal charge transfer path by sequentially allocating to each branch transfer path (for example, Patent Documents 1 and 2).

図7は、特許文献1記載の電荷振分部周りの表面模式図である。この従来技術では、水平電荷転送路1の出力端部を2つの分岐転送路2,3に分岐し、水平電荷転送路1上を転送されてきた信号電荷を電荷振分部4で交互に分岐転送路2,3に振り分ける様にしている。   FIG. 7 is a schematic view of the surface around the charge distribution unit described in Patent Document 1. In this prior art, the output end portion of the horizontal charge transfer path 1 is branched into two branch transfer paths 2 and 3, and the signal charge transferred on the horizontal charge transfer path 1 is alternately branched by the charge distribution section 4. They are distributed to the transfer paths 2 and 3.

水平電荷転送路1,分岐転送路2,3,電荷振分部4は、夫々、埋め込みチャネル及びその上に絶縁層を介して積層された転送電極膜で構成され、転送電極膜は、電荷転送方向に交互に配置された蓄積電極膜と障壁電極膜とでなる。   Each of the horizontal charge transfer path 1, the branch transfer path 2, 3 and the charge distribution unit 4 is composed of a buried channel and a transfer electrode film stacked thereon via an insulating layer. The storage electrode film and the barrier electrode film are alternately arranged in the direction.

図7に示す電荷振分部4の蓄積電極膜の形状は、T字形になっている。これは、電荷振分部4の水平電荷転送路1側且つ分岐転送路3側の端部位置A2に、分岐転送路2側の端部A3を近づけるためである。即ち、位置A2にある信号電荷を分岐転送路2に振り分ける場合、位置A2と位置A3とが近い方が、電荷振分部4の信号電荷を分岐転送路2に振り分けるのが容易になるためである。   The shape of the storage electrode film of the charge distribution unit 4 shown in FIG. 7 is T-shaped. This is because the end A3 on the branch transfer path 2 side is brought closer to the end position A2 on the horizontal charge transfer path 1 side and the branch transfer path 3 side of the charge distribution unit 4. That is, when the signal charge at the position A2 is distributed to the branch transfer path 2, it is easier to distribute the signal charge of the charge distribution unit 4 to the branch transfer path 2 when the position A2 is closer to the position A3. is there.

しかし、電荷振り分けを行う電位が電荷振分部の蓄積電極膜に印加されたとき、位置A2の電位と位置A3の電位は同電位となるため、電荷振り分けを行うときに信号電荷が電荷振分部4に残ってしまい、次に電荷振分部4が信号電荷を分岐転送路3に振り分けるとき前回の残留電荷が混入してしまう虞がある。   However, when the potential for charge distribution is applied to the storage electrode film of the charge distribution unit, the potential at position A2 and the potential at position A3 are the same, so that the signal charge is distributed when charge distribution is performed. When the charge distribution unit 4 distributes the signal charge to the branch transfer path 3 next time, the previous residual charge may be mixed.

そこで、特許文献2記載の従来技術では、図8に示す様に、電荷振分部5に設ける蓄積電極膜の形状を扁平三角形状とし、位置A2付近での蓄積電極膜幅を狭くすることでショートチャネル効果を強めている。これにより、位置A2付近でのポテンシャルが三角形重心位置に対して勾配を持ち、電荷振分部5内における電荷転送が良好に行われる。   Therefore, in the prior art described in Patent Document 2, as shown in FIG. 8, the shape of the storage electrode film provided in the charge distribution unit 5 is a flat triangle, and the width of the storage electrode film near the position A2 is narrowed. Strengthens the short channel effect. Thereby, the potential in the vicinity of the position A2 has a gradient with respect to the position of the center of gravity of the triangle, and the charge transfer in the charge distribution unit 5 is favorably performed.

特許第2585604号公報Japanese Patent No. 2585604 特許第2949861号公報Japanese Patent No. 2949861

しかしながら、電荷振分部5の形状を単純な三角形状にしても、電荷振分部5内に残留電荷が発生する虞がある。図9は、電荷振分部5の蓄積電極膜の形状を単純な三角形状としたときの電位部分を計算した図である。三角形状の電荷振分部5の中央部分に、平坦な同一ポテンシャル領域6が存在することが分かる。   However, even if the shape of the charge distribution unit 5 is a simple triangle, there is a possibility that residual charges are generated in the charge distribution unit 5. FIG. 9 is a diagram in which a potential portion is calculated when the shape of the storage electrode film of the charge distribution unit 5 is a simple triangle. It can be seen that a flat identical potential region 6 exists in the central portion of the triangular charge distribution portion 5.

この同一ポテンシャル領域6内では電位勾配は無く、領域6を横切る転送電荷がこの同一ポテンシャル領域6内に取り残され、次に振り分ける信号電荷に混入してしまう虞がある。   There is no potential gradient in the same potential region 6, and there is a possibility that transfer charges crossing the region 6 are left in the same potential region 6 and mixed into signal charges to be distributed next.

本発明の目的は、電荷振り分けを良好に行うことができる出力2分岐型固体撮像素子及び撮像装置を提供することにある。   An object of the present invention is to provide an output two-branch solid-state imaging device and an imaging apparatus that can perform charge distribution satisfactorily.

本発明の出力2分岐型固体撮像素子は、水平電荷転送路と、該水平電荷転送路に沿って転送されてきた信号電荷を交互に2方向に振り分ける電荷分岐部と、前記2方向に対応して設けられた2つの分岐転送路とを備える出力2分岐型固体撮像素子において、前記電荷分岐部に設けられる振分電極膜の形状を、底辺部分が前記水平電荷転送路の端部に隣接し2つの斜辺の一方が前記分岐転送路の一方に隣接し他方の斜辺が他方の前記分岐転送路に隣接する三角形状に形成され、該三角形状の前記底辺に対向する頂点から前記2つの分岐転送路を分離する突起状の電極膜が延設されることを特徴とする。   The output bifurcated solid-state imaging device of the present invention corresponds to a horizontal charge transfer path, a charge branch section that alternately distributes signal charges transferred along the horizontal charge transfer path in two directions, and the two directions. In the output two-branch type solid-state imaging device including two branch transfer paths provided in the same manner, the shape of the sorting electrode film provided in the charge branch portion is adjacent to the end of the horizontal charge transfer path. One of the two hypotenuses is formed in a triangular shape adjacent to one of the branch transfer paths and the other hypotenuse is adjacent to the other branch transfer path, and the two branch transfers from the apex facing the base of the triangle A protruding electrode film for separating the paths is extended.

本発明の出力2分岐型固体撮像素子の前記突起状の電極膜は2つの前記分岐転送路間を分離する素子分離帯まで延設されることを特徴とする。   The protruding electrode film of the output bifurcated solid-state imaging device of the present invention is characterized in that it extends to an element separation zone that separates the two branch transfer paths.

本発明の出力2分岐型固体撮像素子の前記突起状の電極膜の幅は、該電極膜が分離する2つの前記分岐転送路の障壁電極膜の幅(電荷が横切る方向の長さ)より狭くしたことを特徴とする。   The width of the protruding electrode film of the output bifurcated solid-state imaging device of the present invention is narrower than the width of the barrier electrode film of the two branch transfer paths separated by the electrode film (the length in the direction in which charges cross). It is characterized by that.

本発明の出力2分岐型固体撮像素子の前記三角形状は扁平二等辺三角形であることを特徴とする。   In the output bifurcated solid-state imaging device of the present invention, the triangular shape is a flat isosceles triangle.

本発明の出力2分岐型固体撮像素子は、前記電荷分岐部が電荷振分を行うとき前記振分電極に固定電圧が印加され前記水平電荷転送路から流れ込んだ信号電荷を蓄積することなく前記分岐転送路の一方に流し込むことを特徴とする。   In the output bifurcated solid-state imaging device according to the present invention, when the charge branching unit performs charge distribution, a fixed voltage is applied to the distribution electrode, and the branching is performed without accumulating the signal charge flowing from the horizontal charge transfer path. It is characterized by flowing into one of the transfer paths.

本発明の出力2分岐型固体撮像素子は、前記信号電荷は電子であり、前記水平電荷転送路と前記電荷分岐部と前記分岐転送路の夫々埋め込みチャネルがn型不純物層でなり、該n型不純物層の不純物濃度が、水平電荷転送路<電荷分岐部<分岐転送路の順に濃くなっていることを特徴とする。   In the output two-branch solid-state imaging device of the present invention, the signal charge is an electron, and the horizontal charge transfer path, the charge branching section, and the branch transfer path are embedded in an n-type impurity layer. The impurity concentration of the impurity layer is characterized by increasing in the order of horizontal charge transfer path <charge branch portion <branch transfer path.

本発明の出力2分岐型固体撮像素子は、前記水平電荷転送路の幅(電荷転送方向に対して直角方向の長さ)が前記電荷分岐部に近づくにつれて狭くなっていることを特徴とする。   The output bifurcated solid-state imaging device of the present invention is characterized in that the width of the horizontal charge transfer path (the length in the direction perpendicular to the charge transfer direction) becomes narrower as it approaches the charge branch portion.

本発明の撮像装置は、上記のいずれかに記載の出力2分岐型固体撮像素子と、該出力2分岐型固体撮像素子を駆動する駆動手段と、前記出力2分岐型固体撮像素子から読み出された撮像画像信号を処理する信号処理手段とを備えることを特徴とする。   The image pickup apparatus of the present invention is read from the output two-branch solid-state image pickup device according to any one of the above, drive means for driving the output two-branch solid-state image pickup device, and the output two-branch solid-state image pickup device. And a signal processing means for processing the captured image signal.

本発明によれば、電荷振り分けを良好に行うことができ高品質の画像を撮像することが可能となる。   According to the present invention, charge distribution can be performed satisfactorily and a high-quality image can be taken.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るデジタルカメラの構成図である。図示するデジタルカメラは、撮影レンズ10と、詳細は後述するCCDタイプの固体撮像素子100と、この両者の間に設けられた絞り12と、赤外線カットフィルタ13と、光学ローパスフィルタ14とを備える。デジタルカメラの全体を統括制御するCPU15は、フラッシュ発光部16及び受光部17を制御し、レンズ駆動部18を制御して撮影レンズ10の位置をフォーカス位置に調整し、絞り駆動部19を介し絞り12の開口量を制御して露光量調整を行う。   FIG. 1 is a configuration diagram of a digital camera according to an embodiment of the present invention. The digital camera shown in the figure includes a photographic lens 10, a CCD type solid-state imaging device 100, which will be described in detail later, a diaphragm 12 provided between the two, an infrared cut filter 13, and an optical low-pass filter 14. The CPU 15 that performs overall control of the entire digital camera controls the flash light emitting unit 16 and the light receiving unit 17, controls the lens driving unit 18 to adjust the position of the photographing lens 10 to the focus position, and controls the aperture via the aperture driving unit 19. The exposure amount is adjusted by controlling the opening amount of 12.

また、CPU15は、撮像素子駆動部20を介して固体撮像素子100に後述のφ1〜φ5等を出力して駆動し、撮影レンズ10を通して撮像した被写体画像を色信号として出力させる。CPU15には、操作部21を通してユーザからの指示信号が入力され、CPU15はこの指示に従って各種制御を行う。   Further, the CPU 15 outputs and drives φ1 to φ5, which will be described later, to the solid-state imaging device 100 via the imaging device driving unit 20, and outputs a subject image captured through the photographing lens 10 as a color signal. An instruction signal from the user is input to the CPU 15 through the operation unit 21, and the CPU 15 performs various controls according to the instruction.

デジタルカメラの電気制御系は、固体撮像素子100の出力に接続されたアナログ信号処理部22と、このアナログ信号処理部22から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路23とを備え、これらはCPU15によって制御される。   The electric control system of the digital camera includes an analog signal processing unit 22 connected to the output of the solid-state imaging device 100, and an A / D conversion circuit that converts RGB color signals output from the analog signal processing unit 22 into digital signals. These are controlled by the CPU 15.

更に、このデジタルカメラの電気制御系は、メインメモリ(フレームメモリ)24に接続されたメモリ制御部25と、補間演算やガンマ補正演算,RGB/YC変換処理等を行うデジタル信号処理部26と、撮像画像をJPEG画像に圧縮したり圧縮画像を伸張したりする圧縮伸張処理部27と、測光データを積算しデジタル信号処理部26が行うホワイトバランス補正のゲインを求める積算部28と、着脱自在の記録媒体29が接続される外部メモリ制御部30と、カメラ背面等に搭載された液晶表示部31が接続される表示制御部32とを備え、これらは、制御バス33及びデータバス34によって相互に接続され、CPU15からの指令によって制御される。   Furthermore, the electric control system of the digital camera includes a memory control unit 25 connected to a main memory (frame memory) 24, a digital signal processing unit 26 that performs interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like. A compression / expansion processing unit 27 that compresses the captured image into a JPEG image or expands the compressed image, an integration unit 28 that integrates photometric data and obtains the gain of white balance correction performed by the digital signal processing unit 26, and a detachable unit An external memory control unit 30 to which a recording medium 29 is connected and a display control unit 32 to which a liquid crystal display unit 31 mounted on the back of the camera or the like is connected are connected to each other by a control bus 33 and a data bus 34. Connected and controlled by a command from the CPU 15.

図2は、図1に示す固体撮像素子100の平面模式図である。図示する固体撮像素子100は出力2分岐型となっている。この固体撮像素子100は、半導体基板上に多数のフォトダイオード(光電変換素子)101が二次元アレイ状に配列形成され、奇数行のフォトダイオード101に対して偶数行のフォトダイオード101が1/2ピッチづつずらして配置(所謂、ハニカム画素配列)されている。   FIG. 2 is a schematic plan view of the solid-state imaging device 100 shown in FIG. The illustrated solid-state image sensor 100 is an output bifurcated type. In this solid-state imaging device 100, a large number of photodiodes (photoelectric conversion elements) 101 are arranged in a two-dimensional array on a semiconductor substrate, and even-numbered photodiodes 101 are ½ of odd-numbered photodiodes 101. The arrangement is shifted by a pitch (so-called honeycomb pixel arrangement).

各フォトダイオード101上に図示した「R」「G」「B」は各フォトダイオード上に積層されたカラーフィルタの色(赤=R,緑=G,青=B)を表しており、各フォトダイオード101は、3原色のうちの1色の受光量に応じた信号電荷を蓄積する。尚、原色系カラーフィルタを搭載した例を説明するが、補色系カラーフィルタを搭載することでも良い。   “R”, “G”, and “B” illustrated on each photodiode 101 represent the color of the color filter (red = R, green = G, blue = B) stacked on each photodiode. The diode 101 accumulates signal charges corresponding to the amount of received light of one of the three primary colors. Although an example in which a primary color filter is mounted will be described, a complementary color filter may be mounted.

半導体基板表面の水平方向には、各フォトダイオード101を避けるように蛇行して垂直転送電極が敷設されている。半導体基板には垂直方向に並ぶフォトダイオード列の側部に図示しない埋め込みチャネルが、フォトダイオード101を避けるように垂直方向に蛇行して形成されている。この埋め込みチャネルと、この上に設けられ垂直方向に蛇行して配置される垂直転送電極とで、垂直転送路(VCCD)102が形成される。   In the horizontal direction of the semiconductor substrate surface, vertical transfer electrodes are laid to meander to avoid each photodiode 101. In the semiconductor substrate, a buried channel (not shown) is formed to meander in the vertical direction so as to avoid the photodiode 101 at the side of the photodiode row arranged in the vertical direction. A vertical transfer path (VCCD) 102 is formed by the buried channel and a vertical transfer electrode provided on the buried channel and arranged in a meandering manner in the vertical direction.

半導体基板の下辺部には、水平転送路(HCCD)103が設けられている。この水平転送路103も、埋め込みチャネルとその上に設けられた水平転送電極とで構成され、この水平転送路103は、撮像素子駆動部20から出力される転送パルスφ1,φ2によって2相駆動される。   A horizontal transfer path (HCCD) 103 is provided on the lower side of the semiconductor substrate. This horizontal transfer path 103 is also composed of a buried channel and a horizontal transfer electrode provided thereon, and this horizontal transfer path 103 is two-phase driven by transfer pulses φ 1 and φ 2 output from the image sensor driving unit 20. The

水平転送路103の出力端部は、電荷振分部(電荷分岐部)120により、第1分岐転送路104と、第2分岐転送路105とに2分岐される。第1分岐転送路104,第2分岐転送路105の構成は水平転送路103と同様の構成(埋め込みチャネル及び転送電極)になっており、第1分岐転送路104の出力端部には、該出力端に転送されてきた信号電荷の電荷量に応じた電圧値信号を出力する第1出力アンプ106が設けられ、第2分岐転送路105の出力端部には、該出力端に転送されてきた信号電荷の電荷量に応じた電圧値信号を出力する第2出力アンプ107が設けられている。   The output end of the horizontal transfer path 103 is branched into a first branch transfer path 104 and a second branch transfer path 105 by a charge distribution unit (charge branching unit) 120. The first branch transfer path 104 and the second branch transfer path 105 have the same configuration (embedded channel and transfer electrode) as the horizontal transfer path 103, and the output end of the first branch transfer path 104 has A first output amplifier 106 is provided that outputs a voltage value signal corresponding to the amount of signal charge transferred to the output terminal. The output terminal of the second branch transfer path 105 is transferred to the output terminal. A second output amplifier 107 is provided for outputting a voltage value signal corresponding to the amount of signal charge.

第1分岐転送路104と第2分岐転送路105とは、撮像素子駆動部20が水平転送路103を駆動する転送パルスφ1,φ2を夫々1/2に分周することで生成した転送パルスφ4,φ5によって2相駆動される。   The first branch transfer path 104 and the second branch transfer path 105 are transfer pulses φ4 generated by dividing the transfer pulses φ1 and φ2 for driving the horizontal transfer path 103 by 1/2, respectively, by the image sensor driving unit 20. , Φ5 to drive two phases.

本実施形態の出力2分岐型固体撮像素子100は、各垂直転送路102の端部と水平転送路103との境界部分に、水平転送路103に沿うラインメモリ108を備える。   The output bifurcated solid-state imaging device 100 of this embodiment includes a line memory 108 along the horizontal transfer path 103 at the boundary between the end of each vertical transfer path 102 and the horizontal transfer path 103.

ラインメモリ108は、例えば特開2002―112119号公報に記載されている様に、各垂直転送路102から受け取った信号電荷を一時蓄積し、水平転送路103に出力するタイミングを制御することで、信号電荷の水平方向の画素加算を行うため等に使用される。画素加算は、デジタルカメラで動画撮影を行うとき即ち縮小画像を出力するとき行い、静止画像を撮像する場合には画素加算は行わない。   The line memory 108 temporarily stores the signal charge received from each vertical transfer path 102 and controls the timing to output to the horizontal transfer path 103 as described in, for example, JP-A-2002-112119, It is used for performing horizontal pixel addition of signal charges. Pixel addition is performed when shooting a moving image with a digital camera, that is, when outputting a reduced image, and pixel addition is not performed when a still image is captured.

本実施形態では、ラインメモリ108を設けた出力2分岐型固体撮像素子を図示したが、ラインメモリ108を用いずに、垂直転送路102を転送されてきた信号電荷を水平転送路103に直接受け渡す構成でも良い。また、ハニカム画素配置のカラー固体撮像素子100について説明したが、フォトダイオードを正方格子状に配置し、カラーフィルタをベイヤー配列した固体撮像素子でも良い。   In the present embodiment, the output bifurcated solid-state imaging device provided with the line memory 108 is illustrated. However, the signal charges transferred through the vertical transfer path 102 are directly received by the horizontal transfer path 103 without using the line memory 108. It may be configured to pass. Further, although the color solid-state imaging device 100 having the honeycomb pixel arrangement has been described, a solid-state imaging device in which photodiodes are arranged in a square lattice shape and color filters are arranged in a Bayer array may be used.

尚、「垂直」「水平」という用語を使用して説明したが、これは、半導体基板表面に沿う「1方向」「この1方向に対して略直角の方向」という意味である。   Although the terms “vertical” and “horizontal” have been used, this means “one direction” along the surface of the semiconductor substrate and “a direction substantially perpendicular to the one direction”.

本実施形態の水平転送路103は、電荷振分部120に近づくに従って、埋め込みチャネルの幅が徐々に狭くなるように形成され、転送電極の幅(垂直方向の長さ)もこれに合わせて短く形成されている。図示する例では、水平転送路103の底辺103cに対して上辺103dが徐々に近づくように、幅が約1/2程度に狭められている。   The horizontal transfer path 103 of this embodiment is formed so that the width of the buried channel gradually becomes narrower as it approaches the charge distribution unit 120, and the width of the transfer electrode (length in the vertical direction) is also shortened accordingly. Is formed. In the illustrated example, the width is narrowed to about ½ so that the upper side 103 d gradually approaches the bottom side 103 c of the horizontal transfer path 103.

図3は、水平転送路103から各分岐転送路104,105に転送される信号電荷の順序を例示する模式図である。「R」とは赤色フィルタを搭載したフォトダイオードから読み出された信号電荷であり、「G」とは緑色フィルタを搭載したフォトダイオードから読み出された信号電荷である。水平転送路103に沿って、R,G,R,G,…の順序で信号電荷が転送されている。   FIG. 3 is a schematic view illustrating the order of signal charges transferred from the horizontal transfer path 103 to the branch transfer paths 104 and 105. “R” is a signal charge read from a photodiode mounted with a red filter, and “G” is a signal charge read from a photodiode mounted with a green filter. Signal charges are transferred along the horizontal transfer path 103 in the order of R, G, R, G,.

この信号電荷の転送により、タイミングT=2でR信号電荷が先ず電荷振分部120に流れ込むと、このR信号電荷は、電荷振分部120を通り、第2分岐転送路105に流れ込むことになる。   When the R signal charge first flows into the charge distributing unit 120 at the timing T = 2 by the transfer of the signal charge, the R signal charge flows into the second branch transfer path 105 through the charge distributing unit 120. Become.

次のタイミングT=3で、今度は、G信号電荷が電荷振分部120の隣接位置まで転送され、T=4でG信号電荷が電荷振分部120に流れ込むと、このG信号電荷は、電荷振れ分け部120を素通りして第1分岐転送路104に流れ込むことになる。   At the next timing T = 3, this time, the G signal charge is transferred to the adjacent position of the charge distributing unit 120. When the G signal charge flows into the charge distributing unit 120 at T = 4, the G signal charge is The charge distribution unit 120 passes through and flows into the first branch transfer path 104.

以下、同様にして、図示する実施形態では、R信号電荷は全て第2分岐転送路105側に流れ込み、第2分岐転送路105の出力に設けられた出力アンプ107によって電圧値信号が読み出される。G信号電荷は全て第1分岐転送路104側に流れ込み、第1分岐転送路104の出力に設けられた出力アンプ106によって電圧値信号が読み出される。   Similarly, in the illustrated embodiment, all the R signal charges flow into the second branch transfer path 105 side, and the voltage value signal is read out by the output amplifier 107 provided at the output of the second branch transfer path 105. All the G signal charges flow into the first branch transfer path 104 side, and the voltage value signal is read out by the output amplifier 106 provided at the output of the first branch transfer path 104.

この様に、本実施形態の出力2分岐型固体撮像素子100では、電圧値信号は水平転送路103の1/2の駆動周波数で転送されてきた信号電荷の電荷量に応じた信号として出力されるため、水平転送路103を高速駆動しても、出力データの波形が乱れることは無い。   As described above, in the output bifurcated solid-state imaging device 100 of the present embodiment, the voltage value signal is output as a signal corresponding to the charge amount of the signal charge transferred at half the driving frequency of the horizontal transfer path 103. Therefore, even if the horizontal transfer path 103 is driven at a high speed, the waveform of the output data is not disturbed.

図3に示す様に、本実施形態では、第1分岐転送路104に設ける転送電極の段数に対し、第2分岐転送路105に設ける転送電極の段数を1段多くしている。これは、第1分岐転送路104と第2分岐転送路105とを同一の転送パルスHPφ3,φ4で駆動し、第1分岐転送路104によって出力端まで転送されてきたG信号電荷の電圧値信号をアンプ106によって読み出すとき、同時に、第2分岐転送路105によって出力端まで転送されてきたR信号電荷の電圧値信号をアンプ107によって読み出すことができる様にするためである。   As shown in FIG. 3, in this embodiment, the number of transfer electrodes provided in the second branch transfer path 105 is increased by one compared to the number of transfer electrodes provided in the first branch transfer path 104. This is because the first branch transfer path 104 and the second branch transfer path 105 are driven by the same transfer pulse HPφ3, φ4, and the voltage value signal of the G signal charge transferred to the output terminal by the first branch transfer path 104. This is because the amplifier 107 can read out the voltage value signal of the R signal charge transferred to the output terminal by the second branch transfer path 105 at the same time.

これにより、固体撮像素子から読み出されたアナログの画像データをアナログフロントエンドで相関二重サンプリングするときの位相調整が1系統で済むようになる。   As a result, only one system is required for phase adjustment when the analog image data read from the solid-state imaging device is correlated double-sampled by the analog front end.

また、電圧値信号を読み出した後の信号電荷を、第1分岐転送路104,第2分岐転送路で同時に同一リセット信号を用いてリセットドレインに廃棄することが可能となる。尚、信号電荷をリセットドレインに廃棄するとき、信号電荷の存在範囲が狭い方が良い。このため、第1分岐転送路104,第2分岐転送路105の出力端部の幅を狭める様に構成する。   In addition, the signal charge after reading the voltage value signal can be discarded to the reset drain simultaneously using the same reset signal in the first branch transfer path 104 and the second branch transfer path. It should be noted that when the signal charge is discarded to the reset drain, it is preferable that the signal charge exists in a narrow range. For this reason, the widths of the output end portions of the first branch transfer path 104 and the second branch transfer path 105 are reduced.

図2に示す画素配列では、水平転送路103でR,G,R,G,…の順に並ぶ信号電荷を分岐転送路104,105に振り分けて出力させた後、次に水平転送路103には、B,G,B,G,…の順序でラインメモリ108から信号電荷が転送される。この場合でも、上記と同様にして、B信号電荷は分岐転送路105に、G信号電荷は分岐転送路104に振り分け、いずれの状態でもG信号電荷を分岐転送路104を用いて転送し出力する構成にするのが良い。   In the pixel array shown in FIG. 2, after the signal charges arranged in the order of R, G, R, G,... Are distributed to the branch transfer paths 104 and 105 in the horizontal transfer path 103, the signal charges are output to the horizontal transfer path 103. , B, G, B, G,..., Signal charges are transferred from the line memory 108 in this order. Even in this case, the B signal charge is distributed to the branch transfer path 105 and the G signal charge is distributed to the branch transfer path 104 in the same manner as described above, and the G signal charge is transferred and output using the branch transfer path 104 in any state. It is good to make a configuration.

これにより、G信号電荷の電圧値信号は必ず出力アンプ106によって読み出され、R信号電荷及びB信号電荷の夫々の電圧値信号は必ず出力アンプ107によって読み出され、ホワイトバランス補正を行うことで、アンプ106,107間のゲイン差が吸収される。   Thereby, the voltage value signal of the G signal charge is always read by the output amplifier 106, and the voltage value signals of the R signal charge and the B signal charge are always read by the output amplifier 107, and white balance correction is performed. The gain difference between the amplifiers 106 and 107 is absorbed.

図4は、図2に示す水平転送路103と分岐転送路104,105との接続部における電荷振分部120の詳細を示す表面模式図である。水平転送路103は、埋め込みチャネルと、その上に繰り返し積層された第1層電極103a及び第2層電極103bの組とから成り、第1層電極103a及び第2層電極103bの組のうち1つ置きの組に転送パルスφ1が印加され、残りの1つ置きの組に、転送パルスφ1と逆位相の転送パルスφ2が印加される周知の構成になっている。   FIG. 4 is a schematic surface view showing details of the charge distribution unit 120 at the connection between the horizontal transfer path 103 and the branch transfer paths 104 and 105 shown in FIG. The horizontal transfer path 103 includes a buried channel and a set of a first layer electrode 103a and a second layer electrode 103b repeatedly stacked on the buried channel, and one of the set of the first layer electrode 103a and the second layer electrode 103b. A transfer pulse φ1 is applied to every other set, and a transfer pulse φ2 having a phase opposite to that of the transfer pulse φ1 is applied to the remaining every other set.

分岐転送路104と分岐転送路105との間はp型不純物の高濃度領域でなる素子分離帯110で分離され、水平転送路103と、分岐転送路104,105との間に、電荷振分部120が設けられる。この電荷振分部120は、幅狭に形成された埋め込みチャネル上に積層された第1層電極120a及び第2層電極120bでなる振分電極(分岐電極)を備える。   The branch transfer path 104 and the branch transfer path 105 are separated by an element isolation band 110 that is a high concentration region of p-type impurities, and charge distribution is performed between the horizontal transfer path 103 and the branch transfer paths 104 and 105. A portion 120 is provided. The charge distribution unit 120 includes a distribution electrode (branch electrode) including a first layer electrode 120a and a second layer electrode 120b stacked on a narrowly formed buried channel.

第1層電極120aは本体部分は上面視で扁平二等辺三角形の形状を為すが、分岐転送路104,105の初段の転送電極膜104a,104b,105a,105bが電荷振分部120内に入り込む形で設けられるため、第1層電極膜120aの頂点部分と素子分離帯110との間に突起状の細い電極膜120cだけを残し、全体として漏斗形状となっている。   The first layer electrode 120a has a shape of a flat isosceles triangle in a top view, but the first transfer electrode films 104a, 104b, 105a, 105b of the branch transfer paths 104, 105 enter the charge distribution unit 120. Therefore, only the thin protrusion-like electrode film 120c is left between the apex portion of the first layer electrode film 120a and the element isolation band 110, and the whole has a funnel shape.

即ち、第1層電極膜120aの本体頂点位置は突起状の電極膜120cの長さ分だけ、素子分離帯110から離間して設けられる。また、電極膜120cの幅Xは、転送電極膜104b,105bの幅(転送方向の長さ)Yよりも狭くなっている。   That is, the main body vertex position of the first layer electrode film 120a is provided apart from the element isolation band 110 by the length of the protruding electrode film 120c. The width X of the electrode film 120c is narrower than the width Y (the length in the transfer direction) Y of the transfer electrode films 104b and 105b.

第2層電極膜120bは、第1層電極膜120aの底辺部分に絶縁層を介して短冊状に設けられる。この第1層電極120a(120cを含む)及び第2層電極120bには、撮像素子駆動部20から固定電圧φ3が印加される。   The second layer electrode film 120b is provided in a strip shape via an insulating layer at the bottom of the first layer electrode film 120a. A fixed voltage φ3 is applied to the first layer electrode 120a (including 120c) and the second layer electrode 120b from the image sensor driving unit 20.

第1分岐転送路104は、振分電極120aの斜辺の1辺側に連設され、第2分岐転送路105は、振分電極120aの他辺側に連設される。本実施形態の水平転送路103は、その電荷振分部120側近傍において、この1辺側すなわち片側(分岐転送路104側)でのみチャネル幅が徐々に絞られる構成となっている。   The first branch transfer path 104 is connected to one side of the oblique side of the distribution electrode 120a, and the second branch transfer path 105 is connected to the other side of the distribution electrode 120a. In the horizontal transfer path 103 of this embodiment, the channel width is gradually reduced only on one side, that is, one side (branch transfer path 104 side) in the vicinity of the charge distribution unit 120 side.

第1分岐転送路104,第2分岐転送路105は共に、水平電荷転送路103と同様に、埋め込みチャネルと、その上に繰り返し積層された第1層電極及び第2層電極の組とで成り、第1層電極及び第2層電極の組のうち1つ置きの組に転送パルスφ4が印加され、残りの1つ置きの組に、転送パルスφ4と逆位相の転送パルスφ5が印加される構成になっている。   Each of the first branch transfer path 104 and the second branch transfer path 105 is composed of a buried channel and a set of first layer electrode and second layer electrode repeatedly stacked thereon, as in the horizontal charge transfer path 103. The transfer pulse φ4 is applied to every other set of the first layer electrode and the second layer electrode, and the transfer pulse φ5 having a phase opposite to that of the transfer pulse φ4 is applied to every other set. It is configured.

そして、第1分岐転送路104の振分電極120aに最隣接する第1層電極104a及び第2層電極104bに転送パルスφ5が印加されるとき、第2分岐転送路105の振分電極120aに最隣接する第1層電極105a及び第2層電極105bに転送パルスφ4が印加される。   When the transfer pulse φ5 is applied to the first layer electrode 104a and the second layer electrode 104b that are closest to the distribution electrode 120a of the first branch transfer path 104, the distribution electrode 120a of the second branch transfer path 105 is applied to the distribution electrode 120a. A transfer pulse φ4 is applied to the first layer electrode 105a and the second layer electrode 105b that are adjacent to each other.

図5は、図4のA1―A2―A3―A4に沿う断面模式図とそのポテンシャルプロファイルを示す図である。n型半導体基板の表面部に形成されたpウェル層130には、n型の埋め込みチャネル131が形成されている。そして、この半導体基板の表面には、第1層電極膜103a,120a,105a(第1分岐転送路の場合には104a)が積層されると共に、各第1層電極膜間に、絶縁層を介して第2層電極膜103b,120b,105b(104b)が積層される。   FIG. 5 is a schematic cross-sectional view along A1-A2-A3-A4 in FIG. 4 and a diagram showing a potential profile thereof. An n-type buried channel 131 is formed in the p-well layer 130 formed on the surface portion of the n-type semiconductor substrate. The first layer electrode films 103a, 120a, and 105a (104a in the case of the first branch transfer path) are stacked on the surface of the semiconductor substrate, and an insulating layer is provided between the first layer electrode films. The second layer electrode films 103b, 120b, and 105b (104b) are laminated.

n型の埋め込みチャネル131は、水平電荷転送路103を構成するNドープ領域Iと、電荷振分部120を構成するNドープ領域IIと、分岐転送路104,105を構成するNドープ領域IIIとに分けられ、不純物濃度は、
領域I < 領域II < 領域III
となっている。
The n-type buried channel 131 includes an N-doped region I constituting the horizontal charge transfer path 103, an N-doped region II constituting the charge distribution unit 120, and an N-doped region III constituting the branch transfer paths 104 and 105. The impurity concentration is divided into
Region I <Region II <Region III
It has become.

このため、そのポテンシャルプロファイルは、分岐前の水平電荷転送路103のポテンシャルより、分岐後の分岐転送路104,105のポテンシャルが深く形成され、分岐部120におけるポテンシャルがその中間位置となる。   For this reason, in the potential profile, the potentials of the branch transfer paths 104 and 105 after branching are formed deeper than the potential of the horizontal charge transfer path 103 before branching, and the potential at the branching portion 120 is an intermediate position.

従って、分岐部120の電極120a,120bに固定電圧(例えばアース電圧)を印加しそのポテンシャルを固定することで、水平電荷転送路103で転送されてきた信号電荷は、分岐部120に流れ込み、そのまま、分岐転送路104または105に流れ込む。   Therefore, by applying a fixed voltage (for example, ground voltage) to the electrodes 120a and 120b of the branching portion 120 and fixing the potential, the signal charge transferred through the horizontal charge transfer path 103 flows into the branching portion 120 and remains as it is. Then, it flows into the branch transfer path 104 or 105.

分岐転送路104,105の印加電圧φ4,φ5は位相が逆位相になっているため、そのポテンシャルは交互に上下する。これにより、分岐部120のポテンシャルより深くなった分岐転送路の方に信号電荷が流れ込むことになる。   Since the applied voltages φ4 and φ5 of the branch transfer paths 104 and 105 are opposite in phase, their potentials rise and fall alternately. As a result, the signal charge flows into the branch transfer path that is deeper than the potential of the branch section 120.

本実施形態では、図5に示す様に、電荷分岐部120におけるポテンシャルが全領域において勾配を持つため、水平電荷転送路103から電荷分岐部120に流れ込んだ信号電荷は、電荷分岐部120内に留まることなく、そのまま分岐転送路104または105内に流れ込むことになる。   In the present embodiment, as shown in FIG. 5, since the potential in the charge branching portion 120 has a gradient in the entire region, the signal charge flowing into the charge branching portion 120 from the horizontal charge transfer path 103 is in the charge branching portion 120. Without stopping, it flows into the branch transfer path 104 or 105 as it is.

図6は、本実施形態の様に、振分電極120aが漏斗形状をした電荷分岐部における電位分布を計算した結果を示す図である。図4の位置A2付近では、扁平三角形状の底辺の端部分であるため、ショートチャネル効果により、位置A3に較べてポテンシャルは浅くなっており、位置A2から位置A3に向かってポテンシャルは深くなるようにスロープが形成される。   FIG. 6 is a diagram illustrating a result of calculating the potential distribution in the charge branching portion in which the sorting electrode 120a has a funnel shape as in the present embodiment. In the vicinity of position A2 in FIG. 4, since it is the end portion of the base of the flat triangle shape, the potential is shallower than position A3 due to the short channel effect, and the potential becomes deeper from position A2 toward position A3. A slope is formed.

また、扁平三角形状の頂点位置は、素子分離帯(p型高濃度不純物領域)110から離れているため、素子分離帯110のポテンシャルに引っ張られて浅くなることが抑制され、深い状態が維持される。   In addition, since the apex position of the flat triangular shape is away from the element isolation band (p-type high concentration impurity region) 110, it is suppressed from being pulled shallow by the potential of the element isolation band 110, and a deep state is maintained. The

更に、突起状の電極膜120cの幅を狭くしているため、その突起状の部分のポテンシャルは、ショートチャネル効果により浅くなる。従って、振分電極膜120a内で扁平三角形状の頂点位置が最もポテンシャルの深い領域となり、電荷はこの領域を通過して流れるような経路で分岐転送路104,105へ転送される。   Further, since the width of the protruding electrode film 120c is narrowed, the potential of the protruding portion becomes shallow due to the short channel effect. Accordingly, the apex position of the flat triangle shape in the sorting electrode film 120a becomes the region having the deepest potential, and the charge is transferred to the branch transfer paths 104 and 105 through a path that flows through this area.

以上の結果、水平電荷転送路103から電荷振分部120に流れ込んだ信号電荷を分岐転送路105に流し込む場合、電荷振分部120の遠い場所A2に流れ込んだ信号電荷でも、A2―A3間のポテンシャル勾配によって、スムースに分岐転送路105に流れ込み、電荷分岐部120に取り残されることがなくなる。   As a result, when the signal charge that has flowed from the horizontal charge transfer path 103 into the charge distribution section 120 is flowed into the branch transfer path 105, even the signal charge that has flowed into the location A2 far from the charge distribution section 120 is between A2 and A3. Due to the potential gradient, the flow smoothly flows into the branch transfer path 105 and is not left behind in the charge branch portion 120.

以上述べた様に、本実施形態によれば、電荷分岐部120の振分電極を、扁平三角形状の本体部分と、該本体部分の頂点位置から突出し2つの分岐転送路の障壁電極間を分離する突起部分とで構成し、該突起部分の幅を前記障壁電極の幅(転送電荷が横切る長さ)より狭くし、突起部分の長さを、2つの分岐転送路を分離する素子分離領域から上記扁平三角形状の頂点位置を十分に離し素子分離領域のポテンシャルが上記頂点箇所のポテンシャルに及ばない長さにしたため、振分電極下に形成されるポテンシャルは、全体的に勾配を持つことが可能となる。   As described above, according to the present embodiment, the distribution electrode of the charge branching portion 120 is separated from the flat triangular main body portion and the barrier electrode of the two branch transfer paths protruding from the apex position of the main body portion. And a width of the protruding portion is made narrower than the width of the barrier electrode (the length that the transfer charge crosses), and the length of the protruding portion is separated from the element isolation region that separates the two branch transfer paths. The flat triangle shape is sufficiently separated from each other so that the potential of the element isolation region does not reach the potential of the vertex position, so the potential formed under the distribution electrode can have a gradient overall. It becomes.

これにより、本実施形態の出力2分岐型固体撮像素子では、水平電荷転送路の信号電荷を、良好に、取り残し無く、2つの分岐転送路に振り分けることが可能となり、混色等の無い高品質の画像を撮像することが可能となる。   As a result, in the output two-branch solid-state imaging device of the present embodiment, the signal charge of the horizontal charge transfer path can be distributed to the two branch transfer paths without leaving any good, and high quality without color mixing or the like. An image can be taken.

本発明に係る固体撮像素子は、高精細画像を撮像することが可能なデジタルカメラ等の撮像装置に搭載すると、有用である。   The solid-state imaging device according to the present invention is useful when mounted on an imaging device such as a digital camera capable of capturing a high-definition image.

本発明の一実施形態に係る固体撮像素子を搭載したデジタルカメラのブロック構成図である。It is a block block diagram of the digital camera carrying the solid-state image sensor which concerns on one Embodiment of this invention. 図1に示す固体撮像素子の表面模式図である。It is a surface schematic diagram of the solid-state image sensor shown in FIG. 図2に示す出力2分岐型の水平電荷転送路における電荷転送振り分けの様子を説明する図である。FIG. 3 is a diagram for explaining a state of charge transfer distribution in the output two-branch horizontal charge transfer path shown in FIG. 2. 図2に示す固体撮像素子の電荷振分部周りの詳細表面模式図である。It is a detailed surface schematic diagram around the charge distribution part of the solid-state imaging device shown in FIG. 図4のA1―A2―A3―A4に沿う断面模式図及びポテンシャル図である。FIG. 5 is a schematic cross-sectional view and a potential diagram along A1-A2-A3-A4 in FIG. 図4に示す電荷振分部の形状における電位分布を計算した結果を示す図である。It is a figure which shows the result of having calculated the potential distribution in the shape of the charge distribution part shown in FIG. 従来のT字型電荷振分部を備える出力2分岐型水平電荷転送路の要部平面模式図である。It is a principal part top schematic diagram of the output 2 branch type horizontal charge transfer path provided with the conventional T-shaped charge distribution part. 従来の三角形電荷振分部を備える出力2分岐型水平電荷転送路の要部平面模式図である。It is a principal part top schematic diagram of the output 2 branch type | mold horizontal charge transfer path provided with the conventional triangular charge distribution part. 図8に示す三角形電荷振分部における電位分布を計算した結果を示す図である。It is a figure which shows the result of having calculated the electric potential distribution in the triangular charge distribution part shown in FIG.

符号の説明Explanation of symbols

100 固体撮像素子
103 水平電荷転送路
104,105 分岐転送路
106,107 出力アンプ
103a 水平電荷転送路の蓄積電極膜(第1層電極膜)
103b 水平電荷転送路の障壁電極膜(第2層電極膜)
104a,105a 分岐転送路の蓄積電極膜(第1層電極膜)
104b,105b 分岐転送路の障壁電極膜(第2層電極膜)
120 電荷振分部(電荷分岐部)
120a 電荷振分部の振分電極(分岐電極)膜(第1層電極膜)
120b 電荷振分部の障壁電極膜(第2層電極膜)
120c 電荷振分部の振分電極膜の突起部
φ1,φ2 水平電荷転送路の転送パルス
φ3 電荷振分部に印加する固定電圧
φ4,φ5 分岐転送路の転送パルス
100 Solid-state image sensor 103 Horizontal charge transfer path 104, 105 Branch transfer path 106, 107 Output amplifier 103a Storage electrode film (first layer electrode film) of horizontal charge transfer path
103b Barrier electrode film (second layer electrode film) of horizontal charge transfer path
104a, 105a Storage electrode film (first layer electrode film) of branch transfer path
104b, 105b Barrier electrode film (second layer electrode film) of branch transfer path
120 Charge distribution part (charge branching part)
120a Distribution electrode (branch electrode) film (first layer electrode film) of charge distribution unit
120b Barrier electrode film (second layer electrode film) of charge distribution unit
120c Projection portions φ1 and φ2 of the distribution electrode film of the charge distribution section Transfer pulse φ3 of the horizontal charge transfer path Fixed voltage φ4 and φ5 applied to the charge distribution section Transfer pulse of the branch transfer path

Claims (8)

水平電荷転送路と、該水平電荷転送路に沿って転送されてきた信号電荷を交互に2方向に振り分ける電荷分岐部と、前記2方向に対応して設けられた2つの分岐転送路とを備える出力2分岐型固体撮像素子において、前記電荷分岐部に設けられる振分電極膜の形状を、底辺部分が前記水平電荷転送路の端部に隣接し2つの斜辺の一方が前記分岐転送路の一方に隣接し他方の斜辺が他方の前記分岐転送路に隣接する三角形状に形成され、該三角形状の前記底辺に対向する頂点から前記2つの分岐転送路を分離する突起状の電極膜が延設されることを特徴とする出力2分岐型固体撮像素子。   A horizontal charge transfer path; a charge branching unit that alternately distributes signal charges transferred along the horizontal charge transfer path in two directions; and two branch transfer paths provided corresponding to the two directions. In the output two-branch solid-state imaging device, the shape of the sorting electrode film provided in the charge branching portion is such that the bottom portion is adjacent to the end of the horizontal charge transfer path and one of the two oblique sides is one of the branch transfer paths. And the other hypotenuse is formed in a triangular shape adjacent to the other branch transfer path, and a projecting electrode film separating the two branch transfer paths from the apex facing the base of the triangle is extended. An output bifurcated solid-state imaging device. 前記突起状の電極膜は2つの前記分岐転送路間を分離する素子分離帯まで延設されることを特徴とする請求項1に記載の出力2分岐型固体撮像素子。   2. The output bifurcated solid-state imaging device according to claim 1, wherein the protruding electrode film extends to an element separation band that separates the two branch transfer paths. 前記突起状の電極膜の幅は、該電極膜が分離する2つの前記分岐転送路の障壁電極膜の幅(電荷が横切る方向の長さ)より狭くしたことを特徴とする請求項1または請求項2に記載の出力2分岐型固体撮像素子。   The width of the protruding electrode film is narrower than the width of the barrier electrode film (length in the direction in which charges cross) of the two branch transfer paths separated by the electrode film. Item 3. The output bifurcated solid-state imaging device according to Item 2. 前記三角形状は扁平二等辺三角形であることを特徴とする請求項1乃至請求項3のいずれかに記載の出力2分岐型固体撮像素子。   The output bifurcated solid-state imaging device according to any one of claims 1 to 3, wherein the triangular shape is a flat isosceles triangle. 前記電荷分岐部が電荷振分を行うとき前記振分電極に固定電圧が印加され前記水平電荷転送路から流れ込んだ信号電荷を蓄積することなく前記分岐転送路の一方に流し込むことを特徴とする請求項1乃至請求項4のいずれかに記載の出力2分岐型固体撮像素子。   When the charge branching portion performs charge distribution, a fixed voltage is applied to the distribution electrode, and the signal charge flowing from the horizontal charge transfer path flows into one of the branch transfer paths without accumulating. The output bifurcated solid-state imaging device according to any one of claims 1 to 4. 前記信号電荷は電子であり、前記水平電荷転送路と前記電荷分岐部と前記分岐転送路の夫々埋め込みチャネルがn型不純物層でなり、該n型不純物層の不純物濃度が、水平電荷転送路<電荷分岐部<分岐転送路の順に濃くなっていることを特徴とする請求項5に記載の出力2分岐型固体撮像素子。   The signal charge is an electron, and the horizontal charge transfer path, the charge branching portion, and the buried channel of the branch transfer path are each an n-type impurity layer, and the impurity concentration of the n-type impurity layer is equal to the horizontal charge transfer path < 6. The output two-branch solid-state imaging device according to claim 5, wherein the darkening is in the order of charge branching portion <branch transfer path. 前記水平電荷転送路の幅(電荷転送方向に対して直角方向の長さ)が前記電荷分岐部に近づくにつれて狭くなっていることを特徴とする請求項1乃至請求項6のいずれかに記載の出力2分岐型固体撮像素子。   7. The width of the horizontal charge transfer path (length in a direction perpendicular to the charge transfer direction) becomes narrower as it approaches the charge branching section. Output bifurcated solid-state image sensor. 請求項1乃至請求項7のいずれかに記載の出力2分岐型固体撮像素子と、該出力2分岐型固体撮像素子を駆動する駆動手段と、前記出力2分岐型固体撮像素子から読み出された撮像画像信号を処理する信号処理手段とを備えることを特徴とする撮像装置。   8. The output bifurcated solid-state imaging device according to claim 1; drive means for driving the output bifurcated solid-state imaging device; and read from the output bifurcated solid-state imaging device. An image pickup apparatus comprising: signal processing means for processing a picked-up image signal.
JP2006309221A 2006-11-15 2006-11-15 Two branch output solid-state imaging element, and imaging apparatus Withdrawn JP2008124386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309221A JP2008124386A (en) 2006-11-15 2006-11-15 Two branch output solid-state imaging element, and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309221A JP2008124386A (en) 2006-11-15 2006-11-15 Two branch output solid-state imaging element, and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2008124386A true JP2008124386A (en) 2008-05-29

Family

ID=39508791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309221A Withdrawn JP2008124386A (en) 2006-11-15 2006-11-15 Two branch output solid-state imaging element, and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2008124386A (en)

Similar Documents

Publication Publication Date Title
US7944496B2 (en) Imaging apparatus and driving method for CCD type solid-state imaging device
US9706145B2 (en) Solid-state imaging element and driving method therefor, and electronic apparatus
US7476835B2 (en) Driving method for solid-state imaging device and imaging apparatus
JP4774311B2 (en) Solid-state imaging device, driving method thereof, and imaging apparatus
US20110216228A1 (en) Solid-state image sensing element, method for driving solid-state image sensing element and image pickup device
US7952636B2 (en) Method for driving solid-state imaging device and imaging apparatus
JP2006303995A (en) Solid imaging device and imaging apparatus
JP4797007B2 (en) Output bifurcated solid-state image sensor
JP4796859B2 (en) Output bifurcated solid-state imaging device and imaging apparatus
JP4637033B2 (en) Output bifurcated solid-state imaging device and imaging apparatus
JP2009302946A (en) Solid-state image pickup element, driving method for solid-state image pickup element and image pickup device
JP2007235888A (en) Single-ccd color solid-state imaging element and imaging apparatus
JP2008124386A (en) Two branch output solid-state imaging element, and imaging apparatus
JP2007228265A (en) Two-branch outputting solid-state imaging device, driving method for the same and imaging apparatus
JP4649346B2 (en) Output bifurcated solid-state imaging device, driving method thereof, and imaging apparatus
JP4373431B2 (en) Solid-state imaging device
JP2010161629A (en) Solid-state image sensor and method of driving the same, and image capturing apparatus
JP5256084B2 (en) Imaging device and driving method of imaging device
JP2009135208A (en) Solid-state imaging element, and imaging apparatus
JP2009049523A (en) Solid-state image sensor, imaging apparatus, and method for driving solid-state image sensor
JP2010258082A (en) Solid-state imaging element and imaging device
JP2011211121A (en) Solid-state imaging element, imaging device, method of driving solid-state imaging element, and method of manufacturing solid-state imaging element
JP2009010715A (en) Solid-state image sensor, its driving method and imaging apparatus
JP2009033015A (en) Solid-state image pickup device and image pickup apparatus
JP2009130574A (en) Imaging apparatus and driving method of solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606