JP2008124182A - Optical detector and field of view supporting device - Google Patents

Optical detector and field of view supporting device Download PDF

Info

Publication number
JP2008124182A
JP2008124182A JP2006304939A JP2006304939A JP2008124182A JP 2008124182 A JP2008124182 A JP 2008124182A JP 2006304939 A JP2006304939 A JP 2006304939A JP 2006304939 A JP2006304939 A JP 2006304939A JP 2008124182 A JP2008124182 A JP 2008124182A
Authority
JP
Japan
Prior art keywords
light
layer
multilayer film
film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006304939A
Other languages
Japanese (ja)
Inventor
Nobuyuki Mitsui
伸行 光井
Yasuhiro Inoguchi
康博 猪口
Hiroshi Inada
博史 稲田
Yoichi Nagai
陽一 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006304939A priority Critical patent/JP2008124182A/en
Publication of JP2008124182A publication Critical patent/JP2008124182A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical detector, capable of having sufficiently high photosensitivity from near-infrared region to visible region, and a view supporting device employing it. <P>SOLUTION: The photodetector 10 of this invention is equipped with the GaInNAs light receiving layer 3 of an epitaxial layer having an absorption end between a near-infrared region and an infrared region and an AR (anti-reflection) multi-layer film, that is, a semiconductor multi-layers film 12 positioned in the surface of incidence of light into the GaInNAs light receiving layer 3 while the AR multi-layer film has a reflection factor lower than that of the semiconductor layer which the AR multi-layer film contacts, in a wavelength region from visible wavelength to a near-infrared wavelength. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光検出装置および視界支援装置に関し、より具体的には、各種解析装置や自動車の夜間視界支援等に用いられる、光検出装置および視界支援装置に関するものである。   The present invention relates to a light detection device and a field-of-view support device, and more specifically to a light detection device and a field-of-view support device used for various analysis devices and night vision support of automobiles.

化合物半導体InGaAsを用いた受光素子は、波長範囲900nm〜1700nmの近赤外域光に高い受光感度を有するため、商業用および軍事用に使用が拡大している。また、上記波長域は、宇宙から地表に届く宇宙光の一部にも含まれるため、夜間、物体からの宇宙光の反射を撮像に用いる自動車用の夜間視界支援装置にも使用されている。   A light receiving element using a compound semiconductor InGaAs has a high light receiving sensitivity to near infrared light in a wavelength range of 900 nm to 1700 nm, and therefore is widely used for commercial and military purposes. The wavelength range is also included in a part of the cosmic light that reaches from the universe to the surface of the earth. Therefore, it is also used for night vision assistance devices for automobiles that use the reflection of cosmic light from objects at night.

このような状況下で、InGaAsを用いた受光素子について、近赤外域からより短い波長域、具体的には可視域まで受光感度を有するInGaAs受光素子の提案がなされている(非特許文献1)。このInGaAs受光素子の構造上の特徴や製造プロセスは開示されていない。ただ、反射防止のために入射面に設けられるAR(Anti-Reflection)膜は、近赤外域の光に対しては有効であるが、可視光に対しては障害になるので、AR膜を除いてInGaAs受光素子を製作したとの説明がなされている。波長900nmより短い波長域ではこれまでの受光素子はほとんど感度を示さなかったものが、上記のInGaAs受光素子によれば、波長900nmより短い波長域でも、感度は急減するものの、可視域に受光感度を有するデータが開示されている。   Under such circumstances, as a light receiving element using InGaAs, an InGaAs light receiving element having light receiving sensitivity from the near infrared region to a shorter wavelength region, specifically, the visible region has been proposed (Non-Patent Document 1). . The structural features and manufacturing process of this InGaAs light receiving element are not disclosed. However, an AR (Anti-Reflection) film provided on the entrance surface for preventing reflection is effective for near-infrared light, but becomes an obstacle to visible light. It is described that an InGaAs light receiving element was manufactured. In the wavelength range shorter than 900 nm, the conventional light receiving element has shown little sensitivity. However, according to the above InGaAs light receiving element, the sensitivity decreases sharply even in the wavelength range shorter than the wavelength of 900 nm, but the light receiving sensitivity in the visible range. Data having the following is disclosed.

また、上記とは別に、可視域と近赤外域とに感度を有する撮像装置の提示がなされている(非特許文献2)。この撮像装置についても、どのような機構によって可視域まで感度を高めているのか示されていないが、標準InGaAs受光素子が波長900nm以下で、まったく感度がないのに対して、この撮像装置では、波長800nmで50%程度、波長600nmで20%、そして波長500nm程度で5%強の量子効率を、それぞれ示すデータが開示されている。上記の非特許文献1及び2では、可視域の受光感度をどのようなメカニズムで向上させたのか、わずかに非特許文献1においてAR膜を用いないという説明がなされているだけで、その他の機構については示されていない。   In addition to the above, an imaging apparatus having sensitivity in the visible region and the near infrared region has been presented (Non-Patent Document 2). This mechanism also does not indicate what kind of mechanism increases the sensitivity to the visible range, but the standard InGaAs light receiving element has a wavelength of 900 nm or less and has no sensitivity at all. Data showing quantum efficiency of about 50% at a wavelength of 800 nm, 20% at a wavelength of 600 nm, and a little over 5% at a wavelength of about 500 nm are disclosed. In the non-patent documents 1 and 2 described above, the mechanism by which the light-receiving sensitivity in the visible region is improved is explained only in the non-patent document 1 that the AR film is not used. Is not shown.

撮像装置では、一般に応答時間の短縮と受光感度とは、トレードオフの関係にあり、たとえば可視域の受光感度を高めるためにInGaAs受光層の厚みを厚くすると、応答速度が劣化してしまう。InP基板の裏面入射のフリップチップ実装の受光素子において、ARコート膜として窒化シリコン膜でコートされたInP基板裏面にマイクロレンズを形成し、その上に局所的に反射部分を設けて、再反射した光を有効活用することにより、応答速度と受光感度とをともに向上させたInGaAs受光素子の提案がなされている(特許文献1)。
Theodore R. Hpelter & Jeffrey B. Barton (Indigo SystemCorporation, 50 Castilian Drive, Goleta, CA USA 93117) , "Extended shortwavelength spectral response from InGaAs focal plane arrays", Published inthe Infrared Technology and Applications XXIX SPIE Vol.5074(2003), Copyright2003 Society of Photo-Optical Instrumentation Engineers. グッドリッチ(Goodrich)社:近赤外カメラSU640SDVVis−1.7RT (High Resolution InGaAs Visible SWIR AreaCamera)http://www.sensorship.com/specs_SU640SDVVis.html 特開平6−77518号公報
In the imaging apparatus, generally, the response time is shortened and the light receiving sensitivity is in a trade-off relationship. For example, when the thickness of the InGaAs light receiving layer is increased in order to increase the light receiving sensitivity in the visible region, the response speed is deteriorated. In the back-incidence flip-chip mounted light receiving element of the InP substrate, a microlens is formed on the back surface of the InP substrate coated with a silicon nitride film as an AR coating film, and a reflective portion is locally provided on the microlens and re-reflected. There has been proposed an InGaAs light receiving element that improves both response speed and light receiving sensitivity by effectively utilizing light (Patent Document 1).
Theodore R. Hpelter & Jeffrey B. Barton (Indigo SystemCorporation, 50 Castilian Drive, Goleta, CA USA 93117), "Extended shortwavelength spectral response from InGaAs focal plane arrays", Published inthe Infrared Technology and Applications XXIX SPIE Vol.5074 (2003) , Copyright2003 Society of Photo-Optical Instrumentation Engineers. Goodrich: Near-infrared camera SU640SDVVis-1.7RT (High Resolution InGaAs Visible SWIR AreaCamera) http://www.sensorship.com/specs_SU640SDVVis.html JP-A-6-77518

上記の先行文献によれば、受光感度および応答速度をともに向上させることができる一般的な機構は開示されている(特許文献1)が、この機構を用いても、とくに近赤外域から可視域の受光感度を向上させることはできず、近赤外域から可視域にまで受光感度を拡大するために有効な方策はなんら開示がなされていない。   According to the above prior art, a general mechanism that can improve both the light receiving sensitivity and the response speed is disclosed (Patent Document 1). However, no effective measures for expanding the light receiving sensitivity from the near infrared region to the visible region are disclosed.

本発明は、近赤外域から可視域にまで受光感度を持つことができる光検出装置およびそれを用いた視界支援装置を提供することを目的とする。   It is an object of the present invention to provide a photodetection device capable of receiving light sensitivity from the near infrared region to the visible region and a visual field support device using the same.

本発明の光検出装置は、近赤外域〜赤外域に吸収端を有する、エピタキシャル層の受光層と、受光層への光の入射面に位置する、AR(Anti-Reflection)膜とを備える光検出装置である。AR膜は、該AR膜が接する半導体層よりも、可視から近赤外までの波長域における反射率が低い多層膜であることを特徴とする。   The light detection device of the present invention is a light comprising an epitaxial light-receiving layer having an absorption edge in the near-infrared region to the infrared region, and an AR (Anti-Reflection) film located on a light incident surface to the light-receiving layer. It is a detection device. The AR film is characterized by being a multilayer film having a lower reflectance in the wavelength region from visible to near infrared than the semiconductor layer in contact with the AR film.

上記のAR膜は、多層膜とすることにより、近赤外域の光に対して反射を抑制するだけでなく、可視光に対しても反射を抑制し、透過を促進する。このため、上記の構成によれば、AR多層膜の作用によって、近赤外域より短い波長域、すなわちより多くの可視光(波長下限390nm)を受光層に導入することができ、近赤外域〜可視域の受光感度を高めることができる。上記の構成においては、光検出装置は、エピタキシャル層トップ側に上記のAR多層膜を配置してエピアップ実装してもよいし、基板裏面側にAR多層膜を配置してエピダウン実装してもよい。   By making the AR film a multilayer film, it not only suppresses reflection with respect to light in the near infrared region, but also suppresses reflection with respect to visible light and promotes transmission. For this reason, according to said structure, the wavelength range shorter than a near infrared region, ie, more visible light (wavelength lower limit 390 nm) can be introduce | transduced into a light receiving layer by the effect | action of AR multilayer film, The light receiving sensitivity in the visible range can be increased. In the above configuration, the photodetector may be epi-up mounted with the AR multilayer film disposed on the top side of the epitaxial layer, or may be epi-down mounted with the AR multilayer film disposed on the back side of the substrate. .

また、上記の受光層とAR膜との間にエピタキシャル層のn型バッファ層を備え、受光層がn型バッファ層より実装面近くに位置するようにエピダウン実装されており、エピタキシャル層用の基板が無い構造をとることができる。近赤外域に吸収端を持つ化合物半導体の基板には、InP等の化合物半導体基板が用いられるが、上記化合物半導体基板は、可視域に吸収帯を持つ。しかし、上記の構成によれば、半導体基板は除去されて無いので、受光層に光が届く前にその半導体基板で吸収されるのを防ぐことができ、可視光に対する感度を向上させることができる。   An epitaxial layer n-type buffer layer is provided between the light-receiving layer and the AR film, and the light-receiving layer is epi-down mounted so as to be closer to the mounting surface than the n-type buffer layer. It can take a structure without. As a compound semiconductor substrate having an absorption edge in the near infrared region, a compound semiconductor substrate such as InP is used. The compound semiconductor substrate has an absorption band in the visible region. However, according to the above configuration, since the semiconductor substrate is not removed, it is possible to prevent light from being absorbed by the semiconductor substrate before reaching the light receiving layer, and to improve the sensitivity to visible light. .

上記の構成によれば、エピダウン実装またはフリップチップ実装され、受光層の実装側(n型バッファ層の反対側)にエピタキシャル層の窓層を備えている。この窓層を通って受光層に届くように、格子状配列で、p型不純物が導入された複数のp型領域を備え、p型領域ごとにp部電極が設けられる。このp型領域が画素領域を形成して、受光層で受光された位置に対応して画素領域ごとに異なる電流が流れ、各p部電極で受けるため、像が形成される。   According to the configuration described above, epi-down mounting or flip-chip mounting is performed, and the epitaxial layer window layer is provided on the light-receiving layer mounting side (opposite to the n-type buffer layer). A plurality of p-type regions into which p-type impurities are introduced are provided in a lattice arrangement so as to reach the light receiving layer through the window layer, and a p-part electrode is provided for each p-type region. This p-type region forms a pixel region, and a different current flows for each pixel region corresponding to the position received by the light receiving layer and is received by each p-part electrode, so that an image is formed.

また、上記の受光層が、GaInNAs、GaInNAsSbおよびGaInNAsPのいずれか、またはその組み合わせからなるようにできる。この構成により、波長0.4μm〜2.5μmという近赤外域の光を検出した上で、可視域にも受光感度を持つ光検出装置を得ることができる。   The light receiving layer may be made of any one of GaInNAs, GaInNAsSb, and GaInNAsP, or a combination thereof. With this configuration, it is possible to obtain a photodetection device having light receiving sensitivity in the visible region after detecting light in the near infrared region having a wavelength of 0.4 μm to 2.5 μm.

また、上記のAR膜が、エピタキシャル層の半導体多層膜である構成とすることができる。また、上記のAR膜を誘電体多層膜としてもよい。この構成により、可視域〜近赤外域にわたって受光感度を確保することができる。AR多層膜がエピタキシャル層の半導体多層膜の場合には、半導体基板上に、直接、半導体多層膜をエピタキシャル成長させ、さらにその半導体多層膜上にn型バッファ層をエピタキシャル成長させることができ、エピタキシャル積層構造を形成後に半導体基板を除去することができる。半導体多層膜にはGaP、AlN等の多層膜を用いることができる。一方、AR多層膜が誘電体多層膜の場合には、半導体基板上に、上記のエピタキシャル積層構造を形成した後、半導体基板を除去し、その後で誘電体多層膜をn型バッファ層の上に形成する。誘電体多層膜としてはAl、TiO等の多層膜を用いることができる。 The AR film may be a semiconductor multilayer film as an epitaxial layer. The AR film may be a dielectric multilayer film. With this configuration, the light receiving sensitivity can be ensured over the visible region to the near infrared region. When the AR multilayer film is an epitaxial semiconductor multilayer film, the semiconductor multilayer film can be epitaxially grown directly on the semiconductor substrate, and the n-type buffer layer can be epitaxially grown on the semiconductor multilayer film. After forming the semiconductor substrate, the semiconductor substrate can be removed. As the semiconductor multilayer film, a multilayer film such as GaP or AlN can be used. On the other hand, when the AR multilayer film is a dielectric multilayer film, the above-mentioned epitaxial multilayer structure is formed on the semiconductor substrate, the semiconductor substrate is removed, and then the dielectric multilayer film is placed on the n-type buffer layer. Form. As the dielectric multilayer film, a multilayer film of Al 2 O 3 , TiO 2 or the like can be used.

また、本発明の視界支援装置は、上記のいずれかの光検出装置を用いたことを特徴とする。上記の光検出装置は、可視域〜近赤外域に感度を有するため、たとえば自動車の視界支援装置に用いた場合、近赤外域に感度を持つため、夜間に宇宙光の反射により物体を撮像でき、また可視域に感度を持つため、交通信号の赤、青、緑を区別して撮像することができる。このため、交通安全確保に有益な視界支援装置をコンパクトに構成することができる。   In addition, a visual field support device according to the present invention uses any one of the above-described light detection devices. Since the above-mentioned light detection device has sensitivity in the visible region to the near infrared region, for example, when used in a vehicle vision support device, it has sensitivity in the near infrared region, so that an object can be imaged by reflection of space light at night. In addition, since it has sensitivity in the visible range, it is possible to distinguish red, blue, and green traffic signals for imaging. For this reason, the visual field assistance apparatus useful for traffic safety ensuring can be comprised compactly.

本発明によれば、AR多層膜を用いて、近赤外域から可視域までカバーできる光検出装置および視界支援装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical detection apparatus and visual field assistance apparatus which can cover from a near infrared region to a visible region can be provided using AR multilayer film.

(実施の形態1)
図1は、本発明の実施の形態1における光検出装置10を示す図である。図1において、光検出装置10はエピダウン実装されており、光入射面はAR多層膜である半導体多層膜12によって形成されている。半導体多層膜12の下にn型InPバッファ層2が位置し、その下に受光層のGaInNAs層3が位置し、さらにその下にInP窓層4が設けられている。
(Embodiment 1)
FIG. 1 is a diagram showing a photodetection device 10 according to Embodiment 1 of the present invention. In FIG. 1, the photodetection device 10 is mounted epi-down, and the light incident surface is formed by a semiconductor multilayer film 12 which is an AR multilayer film. An n-type InP buffer layer 2 is located under the semiconductor multilayer film 12, a light-receiving layer GaInNAs layer 3 is located thereunder, and an InP window layer 4 is further provided thereunder.

拡散マスク23の開口部からInP窓層4を通ってGaInNAs受光層3に届くように、p型不純物が導入され、p型領域5が形成されている。上記の拡散マスク23の開口部は、格子状に配列されており、p型領域5が画素の単位(ピクセル)になる。図示していないp部電極が、p型領域ごとに設けられており、GaInNAs受光層3で受光によって発生した電流を、その受光位置に対応するp型領域ごとに検出して、受光強度の場所分布、すなわち像を形成することができる。   A p-type impurity is introduced to reach the GaInNAs light-receiving layer 3 from the opening of the diffusion mask 23 through the InP window layer 4 and the p-type region 5 is formed. The openings of the diffusion mask 23 are arranged in a lattice pattern, and the p-type region 5 is a pixel unit (pixel). A p-part electrode (not shown) is provided for each p-type region, and the current generated by light reception in the GaInNAs light-receiving layer 3 is detected for each p-type region corresponding to the light-receiving position, and the location of the received light intensity. A distribution, i.e. an image, can be formed.

本実施の形態における光検出装置10のポイントは、2つある。1つは、AR膜に、従来のように窒化シリコン単層膜またはSiON単層膜を用いずに、AR多層膜、それも半導体多層膜12を用いた点にある。半導体多層膜12が必ずエピタキシャル膜となるかどうかは、光検出装置10の作製方法に依存し、このあと説明する。AR多層膜の1周期は、(a層/b層)、(a層/b層/c層)、(より複雑な長周期)など、周期性があればどのようなものであってもよい。他の1つのポイントは、エピタキシャル積層構造を形成するために用いたInP基板を除いた点にある。   There are two points of the light detection apparatus 10 in the present embodiment. One is that an AR multilayer film, that is, a semiconductor multilayer film 12 is used instead of a silicon nitride single layer film or a SiON single layer film as in the prior art. Whether or not the semiconductor multilayer film 12 is necessarily an epitaxial film depends on the manufacturing method of the photodetector 10 and will be described later. One period of the AR multilayer film may be any period as long as it has periodicity such as (a layer / b layer), (a layer / b layer / c layer), (more complicated long period), etc. . Another point is that the InP substrate used for forming the epitaxial laminated structure is excluded.

図2を用いて、図1に示す光検出装置10の作製方法を説明する。まず、InP基板1の上に半導体多層膜12をエピタキシャル成長させる。半導体多層膜12には、GaP/AlNの多層膜(4周期)を用いるのがよい。次いで、その半導体多層膜12の上にn型InP層2をエピタキシャル成長し、その上にGaInNAs受光層3およびInP窓層4を、順次、エピタキシャル成長する。この後、拡散マスク23の開口部からInP窓層4を通ってGaInNAs受光層3に届くように、p型不純物を拡散導入してp型領域5を形成する。この結果、(p型領域5/GaInNAs受光層3/n型InPバッファ層2)によって、pin型フォトダイオードが形成される。p型領域が画素を構成することは上述のとおりである。   A method for manufacturing the photodetector 10 illustrated in FIG. 1 will be described with reference to FIGS. First, the semiconductor multilayer film 12 is epitaxially grown on the InP substrate 1. The semiconductor multilayer film 12 is preferably a GaP / AlN multilayer film (4 cycles). Next, the n-type InP layer 2 is epitaxially grown on the semiconductor multilayer film 12, and the GaInNAs light-receiving layer 3 and the InP window layer 4 are sequentially epitaxially grown thereon. Thereafter, p-type impurities are diffused and introduced so as to reach the GaInNAs light-receiving layer 3 from the opening of the diffusion mask 23 through the InP window layer 4. As a result, a pin type photodiode is formed by (p type region 5 / GaInNAs light receiving layer 3 / n type InP buffer layer 2). As described above, the p-type region constitutes a pixel.

次いで、InP基板1を裏面研磨によって除去し、半導体多層膜12が露出されるようにする。このようにして作製された光検出装置10は、p型領域5の側を実装基板側に配置するエピダウン実装がなされ、光は半導体多層膜12の側から入射される。GaInNAs受光層3で受光されると、電荷が発生して電流が流れるが、受光位置に対応するp型領域ごとに電流が異なる結果、撮像が行われる。   Next, the InP substrate 1 is removed by backside polishing so that the semiconductor multilayer film 12 is exposed. The photodetector 10 thus manufactured is epi-down mounted with the p-type region 5 side disposed on the mounting substrate side, and light is incident from the semiconductor multilayer film 12 side. When light is received by the GaInNAs light receiving layer 3, electric charge is generated and a current flows, but imaging is performed as a result of the current being different for each p-type region corresponding to the light receiving position.

図1の光検出装置10では、AR多層膜が半導体多層膜12で形成されるため、従来のSiON膜のように可視域の光を強く反射しない。図3は、実施の形態1のAR多層膜である(GaP/AlN)半導体多層膜、およびこの後で説明する実施の形態2におけるAR多層膜である(Al/TiO)誘電体多層膜の反射率Rを、それぞれ波長λに対して示す図である。比較例にSiON単層のAR膜、また参考例にInPの反射率も合わせて示す。InPは、AR多層膜である半導体多層膜12が接する半導体層(バッファ層2)に対応する。 In the photodetector 10 of FIG. 1, since the AR multilayer film is formed of the semiconductor multilayer film 12, the visible light is not strongly reflected unlike the conventional SiON film. FIG. 3 shows a (GaP / AlN) semiconductor multilayer film which is an AR multilayer film according to the first embodiment, and an (Al 2 O 3 / TiO 2 ) dielectric which is an AR multilayer film according to a second embodiment which will be described later. It is a figure which shows the reflectance R of a multilayer film with respect to wavelength (lambda), respectively. The comparative example shows the SiON single-layer AR film, and the reference example also shows the reflectance of InP. InP corresponds to the semiconductor layer (buffer layer 2) in contact with the semiconductor multilayer film 12 which is an AR multilayer film.

図3によれば、可視域の波長に対して、InPは大きな反射率を持ち、またSiON膜も可視域に大きな反射率のピークを持つ。これらに対して、実施の形態1における(GaP/AlN)半導体多層膜は、可視域の反射率のピーク値が小さくなっている。また、波長300nm付近において反射率が大きくなるが、可視域を外れており、可視域の受光感度に実質的に影響しない。このため、SiON単層膜のAR膜を用いる場合に比較して、可視域の受光感度を向上させることができる。   According to FIG. 3, InP has a large reflectance with respect to the wavelength in the visible region, and the SiON film also has a large reflectance peak in the visible region. On the other hand, in the (GaP / AlN) semiconductor multilayer film in the first embodiment, the peak value of the reflectance in the visible region is small. In addition, the reflectance increases in the vicinity of a wavelength of 300 nm, but it is out of the visible range and does not substantially affect the light receiving sensitivity in the visible range. For this reason, the light receiving sensitivity in the visible region can be improved as compared with the case where the AR film of the SiON single layer film is used.

図1に示す光検出装置は、また、InP基板を除去した点でも特徴を有し、通常、200μm程度の厚みを有するInP基板を除去することにより、可視域の光のInP基板による吸収を無くすことができる。この結果、可視域の受光感度をさらに向上させることができる。   The photodetector shown in FIG. 1 is also characterized in that the InP substrate is removed, and the absorption of visible light by the InP substrate is usually eliminated by removing the InP substrate having a thickness of about 200 μm. be able to. As a result, the light receiving sensitivity in the visible range can be further improved.

上記実施の形態1に示した光検出装置の製造方法では、半導体多層膜はInP基板1にエピタキシャル成長するものに限られる。しかし、AR多層膜に用いる半導体多層膜は、(図2の構造→図1の構造)を経る工程によらなくても形成することはできる。半導体多層膜を備えた光検出装置は、次の実施の形態2に示す製造方法によって製造することも可能である。この場合、半導体多層膜はエピタキシャル膜になるとは限らない。   In the manufacturing method of the photodetector shown in the first embodiment, the semiconductor multilayer film is limited to the one that is epitaxially grown on the InP substrate 1. However, the semiconductor multilayer film used for the AR multilayer film can be formed without using the process through (the structure in FIG. 2 → the structure in FIG. 1). The light detection device provided with the semiconductor multilayer film can also be manufactured by the manufacturing method shown in the following second embodiment. In this case, the semiconductor multilayer film is not necessarily an epitaxial film.

(実施の形態2)
図4は、本発明の実施の形態2における光検出装置を示す図である。図4において、AR多層膜に誘電体多層膜13を用いている点が、図1に示す実施の形態1における光検出装置と相違するだけであり、他の部分は同じである。誘電体多層膜13は、(Al/TiO)の3周期の多層膜で構成される。
(Embodiment 2)
FIG. 4 is a diagram showing a light detection apparatus according to Embodiment 2 of the present invention. In FIG. 4, the point that the dielectric multilayer film 13 is used for the AR multilayer film is only different from the photodetector in the first embodiment shown in FIG. 1, and the other parts are the same. The dielectric multilayer film 13 is formed of a three-cycle multilayer film of (Al 2 O 3 / TiO 2 ).

図4に示す光検出装置10の製造方法は、次のとおりである。まず、(InP基板1/n型InPバッファ層2/GaInNAs受光層3/InP窓層4)のエピタキシャル積層構造を形成する(図5参照)。このあと、拡散マスク23の開口部からInP窓層4を通ってGaInNAs受光層3に届くように、p型不純物を拡散導入してp型領域5を形成する。この結果、(p型領域5/GaInNAs受光層3/n型InPバッファ層2)によって、pin型フォトダイオードが形成される。p型領域が画素を構成する。次いで、InP基板1を裏面研磨によって除去する(図6参照)。p型不純物を導入する前にInP基板の除去を行ってもよい。   The manufacturing method of the photodetection device 10 shown in FIG. 4 is as follows. First, an epitaxial laminated structure of (InP substrate 1 / n-type InP buffer layer 2 / GaInNAs light receiving layer 3 / InP window layer 4) is formed (see FIG. 5). Thereafter, the p-type region 5 is formed by diffusing and introducing p-type impurities so as to reach the GaInNAs light-receiving layer 3 from the opening of the diffusion mask 23 through the InP window layer 4. As a result, a pin type photodiode is formed by (p type region 5 / GaInNAs light receiving layer 3 / n type InP buffer layer 2). The p-type region constitutes a pixel. Next, the InP substrate 1 is removed by back surface polishing (see FIG. 6). The InP substrate may be removed before introducing the p-type impurity.

この後、n型InPバッファ層2の上に、上記の誘電体多層膜13、具体的には(Al/TiO)多層膜を形成する。図3に示すように、(Al/TiO)多層膜は、とくに可視域で、AR多層膜である当該(Al/TiO)多層膜が接する半導体層に対応するInP、およびSiON膜より、低い反射率を示す。また、可視域および近赤外域で、(GaP/AlN)半導体多層膜よりやや低い反射率を示す。このため(Al/TiO)多層膜をAR多層膜に用いることにより、近赤外域〜可視域の受光感度を大きく向上させることができる。 Thereafter, the dielectric multilayer film 13, specifically, (Al 2 O 3 / TiO 2 ) multilayer film is formed on the n-type InP buffer layer 2. As shown in FIG. 3, the (Al 2 O 3 / TiO 2 ) multilayer film is an InP corresponding to the semiconductor layer in contact with the (Al 2 O 3 / TiO 2 ) multilayer film, which is an AR multilayer film, particularly in the visible region. And lower reflectivity than SiON films. Further, in the visible region and the near infrared region, the reflectance is slightly lower than that of the (GaP / AlN) semiconductor multilayer film. Therefore, by using the (Al 2 O 3 / TiO 2 ) multilayer film as the AR multilayer film, the light receiving sensitivity in the near infrared region to the visible region can be greatly improved.

上述のように、半導体多層膜をAR多層膜に用いる場合、実施の形態1に示す製造方法に限られず、(図5の構造→図6の構造→図7の構造で誘電体多層膜13を半導体多層膜12で置換した構造)のプロセスを経て製造することができる。この場合、半導体多層膜は、エピタキシャルn型バッファ層上に、必ずしもエピタキシャル成長するとは限らず、より多くの場合は、下地(エピタキシャルn型バッファ層)の表面性状がエピタキシャル成長に不適であるために非エピタキシャル層となる。   As described above, when the semiconductor multilayer film is used for the AR multilayer film, the dielectric multilayer film 13 is not limited to the manufacturing method shown in the first embodiment (the structure in FIG. 5 → the structure in FIG. 6 → the structure in FIG. 7). The structure can be manufactured through the process of the structure substituted with the semiconductor multilayer film 12. In this case, the semiconductor multilayer film is not necessarily epitaxially grown on the epitaxial n-type buffer layer. In many cases, the surface property of the base (epitaxial n-type buffer layer) is not suitable for epitaxial growth, so that it is non-epitaxial. Become a layer.

(実施の形態3)
図7は、本発明の実施の形態3における視界支援装置を示す図である。本視界支援装置は、自動車の夜間運転における運転者の前方の視界を支援するために、車両に搭載される。車両には、実施の形態1、2において説明した光検出装置10と、図示しないレンズなど光学素子等とを含む撮像装置70と、撮像された画像を表示する表示モニター65と、これらを駆動制御する制御装置60とが搭載される。また、図8は、自動車の夜間運転における運転者の後方の視界を支援するために、車両に搭載される夜間視界支援装置を示す図である。自動車の後部に後ろ向きに取り付けられた、実施の形態1、2の光検出装置、レンズなど光学素子等を含む撮像装置70で撮像した画像は、運転者の上部前方の表示装置65に表示される。撮像装置70および表示装置65は、制御装置60によって駆動制御される。
(Embodiment 3)
FIG. 7 is a diagram showing a field-of-view assistance apparatus according to Embodiment 3 of the present invention. This visual field support device is mounted on a vehicle in order to support a driver's forward visual field when driving a car at night. The vehicle includes an imaging device 70 including the light detection device 10 described in the first and second embodiments, an optical element such as a lens (not shown), a display monitor 65 that displays a captured image, and drive control thereof. A control device 60 is mounted. FIG. 8 is a diagram showing a night vision support device mounted on a vehicle in order to support the driver's rear vision in driving the automobile at night. An image captured by the imaging device 70 including the optical detection device of the first and second embodiments, the lens, and the like, which is attached to the rear portion of the automobile in a rearward direction, is displayed on the display device 65 in the upper front of the driver. . The imaging device 70 and the display device 65 are driven and controlled by the control device 60.

従来の車両用視界支援装置では、物体からの赤外域の反射光または放出光を受光して画像とするため、次のような問題があった。反射光を利用する場合、光源が必要であり、搭載スペースを要し、またコスト増となる。また、物体の放射熱を利用する場合、人以外の非発熱体や防寒具を着た歩行者等は認識が難しいため、赤外カメラ以外の認識手段と併用する必要がある。また、光源を使う場合、使用する波長域によっては人体への影響、すなわちアイセーフ対策を講じる必要がある。また、交通信号の発光、非発光の区別はできても、交通信号の発光色の識別はできなかった。   In the conventional vehicular field-of-view assistance device, reflected light or emitted light in the infrared region from an object is received and used as an image, and thus has the following problems. When using reflected light, a light source is required, a mounting space is required, and the cost is increased. In addition, when using the radiant heat of an object, it is difficult to recognize a pedestrian or the like wearing a non-heating element other than a person or a cold protection device, so it is necessary to use it together with a recognition means other than an infrared camera. In addition, when using a light source, it is necessary to take measures against the human body, that is, eye-safe measures depending on the wavelength range to be used. Moreover, even if the traffic signal can be distinguished from light emission and non-light emission, the light emission color of the traffic signal cannot be identified.

本実施の形態における視界支援装置では、上記のような余分の光源やアイセーフ対策は不要である。また、撮像対象の発熱、非発熱を問わない。さらに霧中など水分を含む環境中でも、対象物の鮮明な画像を得ることができる。このため夜間における優れた車両用の視界支援装置を提供することができる。これは、物体からの短波長赤外域(Short
Wavelength Infrared SWIR:可視域〜近赤外域に含まれる)の宇宙光の反射光を利用して、かつ暗電流が十分少なく、優れたダイナミックレンジ(S/N)を持つ受光素子を用いているからである。また、特筆すべきこととして、1つの光検出装置の受光感度を近赤外域〜可視域にわたって高めたので、SWIR域の宇宙光による物体の撮像だけでなく、交通信号の発光色(可視域)を識別することが可能となる。このため、交差点等での安全性を大きく高めることができる視界支援装置をコンパクトに形成することができる。
In the visual field support device according to the present embodiment, the extra light source and the eye-safe measures as described above are unnecessary. Moreover, it does not matter whether the imaging target is heated or not. Furthermore, a clear image of the object can be obtained even in an environment containing moisture such as in fog. For this reason, the visual field assistance apparatus for vehicles excellent at night can be provided. This is the short wavelength infrared region from the object (Short
Wavelength Infrared SWIR (included in the visible to near-infrared range) is a light-receiving element that uses reflected light of cosmic light, has a sufficiently low dark current, and has an excellent dynamic range (S / N). It is. In addition, it should be noted that the light receiving sensitivity of one photodetection device has been increased from the near infrared region to the visible region, so that not only imaging of objects with space light in the SWIR region, but also the emission color of traffic signals (visible region). Can be identified. For this reason, the visual field assistance apparatus which can greatly improve the safety | security in an intersection etc. can be formed compactly.

(本光検出装置の別の態様)
(1)実装
上記の本発明の実施の形態では、エピダウン実装の形態のみについて説明したが、エピアップ実装してエピタキシャル層トップにAR多層膜を配置する構造としてもよい。この場合、たとえば受光の電流を各p型領域にオーミック接触するp部電極でそれぞれ得て像を形成する方式をとった場合、p部電極が入射光の妨げになる可能性はあるが、InP基板を除くために裏面研磨をする必要がないという利点を得ることができる。
(2)応用
本発明の光検出装置は、視界支援装置だけでなく各種の像解析装置、たとえば生体認識装置、生体医療装置、異物認識装置等に応用することができる。本光検出装置が適用される装置は非常に広範にわたるため、ここですべてを具体的に挙げることはできないが、将来的に実現される装置に適用されてもよい。
(Another aspect of the present photodetection device)
(1) Mounting In the above-described embodiment of the present invention, only the epi-down mounting mode has been described. However, it is possible to adopt a structure in which the AR multilayer film is arranged on the top of the epitaxial layer by epi-up mounting. In this case, for example, when a method of forming an image by obtaining a received light current with each p-type electrode in ohmic contact with each p-type region, the p-type electrode may interfere with incident light. It is possible to obtain an advantage that it is not necessary to perform back surface polishing in order to remove the substrate.
(2) Application The light detection device of the present invention can be applied not only to a visual field support device but also to various image analysis devices such as a biological recognition device, a biomedical device, and a foreign object recognition device. Since the apparatus to which the present photodetection device is applied is very wide, not all of them can be specifically mentioned here, but may be applied to a device realized in the future.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の光検出装置は、近赤外域〜可視域に、十分高い検出感度を持つため、自動車の視界支援装置、その他の像解析装置等に用いることができる。   Since the light detection device of the present invention has sufficiently high detection sensitivity in the near infrared region to the visible region, it can be used for a vehicle field of view support device, other image analysis devices, and the like.

本発明の実施の形態1における光検出装置を示す図である。It is a figure which shows the photon detection apparatus in Embodiment 1 of this invention. 図1の光検出装置の製造プロセスを説明するための図である。It is a figure for demonstrating the manufacturing process of the photon detection apparatus of FIG. 本発明の実施の形態1および2におけるAR多層膜の反射率の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the reflectance of AR multilayer film in Embodiment 1 and 2 of this invention. 本発明の実施の形態2における光検出装置を示す図である。It is a figure which shows the photon detection apparatus in Embodiment 2 of this invention. 図4の光検出装置の製造プロセスを説明するための図である(エピタキシャル層形成段階)。FIG. 5 is a diagram for explaining a manufacturing process of the photodetector in FIG. 4 (epitaxial layer formation stage). 図4の光検出装置の製造プロセスを説明するための図である(p型不純物導入し、裏面研磨終了段階)。FIG. 5 is a diagram for explaining a manufacturing process of the photodetecting device of FIG. 4 (p-type impurity introduction and back surface polishing end stage). 本発明の実施の形態3における視界支援装置を示す図である。It is a figure which shows the visual field assistance apparatus in Embodiment 3 of this invention. 図7の視界支援装置の変形例を示す図である。It is a figure which shows the modification of the visual field assistance apparatus of FIG.

符号の説明Explanation of symbols

1 InP基板、2 n型InPバッファ層、3 GaInNAs受光層、4 InP窓層、5 p型領域、10 光検出装置、12 半導体多層膜、13 誘電体多層膜、23 拡散用マスク、60 制御装置、65 表示装置、70 撮像装置。   DESCRIPTION OF SYMBOLS 1 InP board | substrate, 2 n-type InP buffer layer, 3 GaInNAs light receiving layer, 4 InP window layer, 5 p-type area | region, 10 photodetector, 12 Semiconductor multilayer film, 13 Dielectric multilayer film, 23 Diffusion mask, 60 Control apparatus 65 Display device, 70 Imaging device.

Claims (6)

近赤外域に吸収端を有するエピタキシャル層の受光層と、
前記受光層への光の入射面に位置するAR(Anti-Reflection)膜とを備える光検出装置であって、
前記AR膜は、該AR膜が接する半導体層よりも、可視から近赤外までの波長域における反射率が低い多層膜であることを特徴とする、光検出装置。
A light-receiving layer of an epitaxial layer having an absorption edge in the near-infrared region;
An optical detection device comprising an AR (Anti-Reflection) film positioned on a light incident surface to the light receiving layer,
The AR film is a multilayer film having a lower reflectivity in a wavelength region from visible to near infrared than a semiconductor layer in contact with the AR film.
前記受光層と前記AR膜との間にエピタキシャル層のn型バッファ層を備え、前記受光層が前記n型バッファ層より実装面近くに位置するようにエピダウン実装されており、前記エピタキシャル層用の基板が無いことを特徴とする、請求項1に記載の光検出装置。   An epitaxial n-type buffer layer is provided between the light-receiving layer and the AR film, and the light-receiving layer is epi-down mounted so as to be closer to the mounting surface than the n-type buffer layer. The photodetection device according to claim 1, wherein there is no substrate. 前記受光層が、GaInNAs、GaInNAsSbおよびGaInNAsPのいずれか、またはその組み合わせからなることを特徴とする、請求項1または2に記載の光検出装置。   The photodetection device according to claim 1, wherein the light receiving layer is made of any one of GaInNAs, GaInNAsSb, and GaInNAsP, or a combination thereof. 前記AR膜がエピタキシャル層の半導体多層膜であることを特徴とする、請求項1〜3のいずれかに記載の光検出装置。   The photodetecting device according to claim 1, wherein the AR film is an epitaxial semiconductor multilayer film. 前記AR膜が誘電体多層膜であることを特徴とする、請求項1〜3のいずれかに記載の光検出装置。   The photodetecting device according to claim 1, wherein the AR film is a dielectric multilayer film. 前記請求項1〜5のいずれかの光検出装置を用いたことを特徴とする、視界支援装置。
6. A visual field support device using the light detection device according to claim 1.
JP2006304939A 2006-11-10 2006-11-10 Optical detector and field of view supporting device Pending JP2008124182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304939A JP2008124182A (en) 2006-11-10 2006-11-10 Optical detector and field of view supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304939A JP2008124182A (en) 2006-11-10 2006-11-10 Optical detector and field of view supporting device

Publications (1)

Publication Number Publication Date
JP2008124182A true JP2008124182A (en) 2008-05-29

Family

ID=39508628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304939A Pending JP2008124182A (en) 2006-11-10 2006-11-10 Optical detector and field of view supporting device

Country Status (1)

Country Link
JP (1) JP2008124182A (en)

Similar Documents

Publication Publication Date Title
KR102444733B1 (en) Imaging devices and electronic devices
JP5233535B2 (en) Imaging device, visual field support device, night vision device, navigation support device, and monitoring device
US11438528B2 (en) System and method for short-wave-infra-red (SWIR) sensing and imaging
KR102507412B1 (en) Photoelectric conversion device and imaging device
EP3490001B1 (en) Light reception element, light reception element manufacturing method, imaging apparatus, and electronic device
US6888141B2 (en) Radiation sensor with photo-thermal gain
US11646341B2 (en) Light-receiving device, method of manufacturing light-receiving device, and electronic apparatus
JP2008153311A (en) Semiconductor light-emitting element, visual-range supporter and organism medical device
JP2010067861A5 (en)
US20210399039A1 (en) Sensor chip and electronic apparatus
JP2007201432A (en) Imaging apparatus, visibility aid device, night vision device, navigation aid device, and monitoring device
JP4876812B2 (en) In-vehicle color sensor and manufacturing method thereof
KR102498922B1 (en) Light-receiving element, method for manufacturing light-receiving element, imaging element, and electronic device
US11723225B2 (en) Imaging device and imaging system
JP2004134514A (en) Rear face incident imaging sensor
JP2008124182A (en) Optical detector and field of view supporting device
JP2773930B2 (en) Light detection device
JP2015194388A (en) Imaging device and imaging system
WO2023238513A1 (en) Photodetector and photodetection device
WO2022019111A1 (en) Light detection device
EP3214661B1 (en) Semiconductor light source for emitting and receiving light beams, and lighting system comprising such a source
JP4706805B2 (en) Imaging device, visual field support device, night vision device, navigation support device, and monitoring device
JP2021136352A (en) Solid-state imaging device and manufacturing method of same
CN117716517A (en) Protective cover for an optical receiver

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091214

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20100401