JP2008153311A - Semiconductor light-emitting element, visual-range supporter and organism medical device - Google Patents

Semiconductor light-emitting element, visual-range supporter and organism medical device Download PDF

Info

Publication number
JP2008153311A
JP2008153311A JP2006337665A JP2006337665A JP2008153311A JP 2008153311 A JP2008153311 A JP 2008153311A JP 2006337665 A JP2006337665 A JP 2006337665A JP 2006337665 A JP2006337665 A JP 2006337665A JP 2008153311 A JP2008153311 A JP 2008153311A
Authority
JP
Japan
Prior art keywords
light
layer
receiving element
semiconductor
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006337665A
Other languages
Japanese (ja)
Inventor
Kohei Miura
広平 三浦
Yoichi Nagai
陽一 永井
Yasuhiro Inoguchi
康博 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006337665A priority Critical patent/JP2008153311A/en
Publication of JP2008153311A publication Critical patent/JP2008153311A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element to be particularly useful in actual night visual-range supporter and organism medical device or the like though performance can not be improved by only enhancing a sensibility in a long wavelength range in the actual night visual-range supporter and organism medical device or the like for an automobile. <P>SOLUTION: The semiconductor light-emitting element 10 is formed on a semiconductor substrate 1. The semiconductor light-emitting element 10 has a first light-receiving layer 3 consisting of single-layer compound semiconductor InGaAsN and a second light-receiving layer 4 having an absorption end having a wavelength longer than that of the first light-receiving layer and formed in a quantum-well structure (InP/InAsP). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車の夜間視界支援装置、生体医療装置、異物混入検出装置等に用いられる半導体受光素子、さらにその視界支援装置および生体医療装置に関するものである。   The present invention relates to a semiconductor light-receiving element used in an automobile night vision support device, a biomedical device, a foreign matter contamination detection device, and the like, and also to the visibility support device and the biomedical device.

近赤外〜中赤外域の光は、宇宙光を用いた撮像、生体医療等に利用が始まっており、とくに自動車の夜間視界支援装置などにおいて発展が見込まれている。この分野で用いられる基本素子は、上記波長域に感度を持つ半導体受光素子であり、このような半導体受光素子の適用例として、InPに格子整合するInGaAs受光素子(In原子:Ga原子=0.53:0.47)を用いた暗視カメラの紹介(非特許文献1)などを挙げることができる。   Near-infrared to mid-infrared light has begun to be used for imaging using cosmic light, biomedical treatment, and the like, and is particularly expected to develop in night vision assistance devices for automobiles. The basic element used in this field is a semiconductor light-receiving element having sensitivity in the above wavelength range. As an application example of such a semiconductor light-receiving element, an InGaAs light-receiving element (In atom: Ga atom = 0. 53: 0.47) (Non-Patent Document 1) and the like.

また、受光感度を近赤外域よりも長波長域で有するように、受光層に、Nを含むInGaAsNを用いて波長1.7μm〜5μmの近赤外光および中赤外光を検出するフォトダイオードの提案がなされている(特許文献1)。また、受光層に(InP/InAsP)量子井戸構造を用い、サブバンド間遷移を利用して中赤外から遠赤外(波長4μm〜10μm)の光を検知するアバランシェフォトダイオード(以下、APD:Avalanche
Photo Diode)の提案もなされている(特許文献2)。中赤外光よりも長波長域の遠赤外光は、体温を有する生体から発せられる光に対応し、近年、夜間の路上等の人の検知のために、自動車の夜間視界支援装置に用いられている。
Further, a photodiode for detecting near-infrared light and mid-infrared light having a wavelength of 1.7 μm to 5 μm by using InGaAsN containing N in the light-receiving layer so that the light-receiving sensitivity is longer than the near-infrared region. Has been proposed (Patent Document 1). In addition, an (InP / InAsP) quantum well structure is used for the light receiving layer, and an avalanche photodiode (hereinafter referred to as APD) that detects light from the mid-infrared to the far-infrared (wavelength: 4 μm to 10 μm) using intersubband transition. Avalanche
Photo Diode) has also been proposed (Patent Document 2). Far-infrared light in a longer wavelength range than mid-infrared light corresponds to light emitted from a living body with body temperature, and has recently been used in night vision assistance devices for automobiles to detect people on the road at night. It has been.

上記の状況は、次のように要約することができる。近赤外域〜遠赤外域の光は、生体透過性、夜間における宇宙光の物体からの反射光による撮像、生体温度から出射される電磁波による撮像、という特性から注目を集めており、それに伴い、近赤外域からさらに遠赤外域に至る受光素子および発光素子の開発が進行している。
Marshall J.Cohen, "Near-IR imaging cameras operate at roomtemperature", LASER FOCUS WORLD June 1993 p.109(Sensors Unlimited) 特開平9−219563号公報 特開2002−217445号公報
The above situation can be summarized as follows. Near-infrared to far-infrared light has attracted attention from the characteristics of biopermeability, imaging with reflected light from objects of cosmic light at night, imaging with electromagnetic waves emitted from living body temperature, Development of light receiving elements and light emitting elements from the near infrared region to the far infrared region is in progress.
Marshall J. Cohen, "Near-IR imaging cameras operate at roomtemperature", LASER FOCUS WORLD June 1993 p.109 (Sensors Unlimited) JP-A-9-219563 Japanese Patent Laid-Open No. 2002-217445

上記の半導体受光素子は、近赤外〜遠赤外域において、より長波長域の光にまで感度を持つようにするためには有効である。しかし、実際の自動車の夜間視界支援装置、生体医療装置等では、上記のような目標に向かって開発された半導体受光素子だけでは対応できない場合が多い。特許文献1におけるGaInNAsを受光層とする受光素子は、GaInNAsそのものの結晶成長が技術的に難しいため、未だ実現されていない。とくにサイズ0.2μm以上のバルク結晶で良好な結晶性を実現することは難しく、その困難性は受光対象光の波長が2μmを超えるあたりから特に顕著である。仮に、結晶性を上げるために、GaInNAsにPやSbを含有させたとしてもせいぜい受光対象光は波長2μm〜3μmが限界と考えられる。本発明は、実際の夜間視界支援装置、生体医療装置等において特に有用性を発揮することができる半導体受光素子、さらにその視界支援装置および生体医療装置を提供することを目的とする。   The semiconductor light receiving element described above is effective in order to have sensitivity to light in a longer wavelength range in the near infrared to far infrared range. However, there are many cases where an actual night-vision support device, a biomedical device, or the like of an actual car cannot cope with only a semiconductor light receiving element developed toward the above-mentioned target. The light receiving element using GaInNAs as the light receiving layer in Patent Document 1 has not been realized yet because crystal growth of GaInNAs itself is technically difficult. In particular, it is difficult to realize good crystallinity with a bulk crystal having a size of 0.2 μm or more, and the difficulty is particularly remarkable when the wavelength of light to be received exceeds 2 μm. Even if P and Sb are contained in GaInNAs in order to improve crystallinity, it is considered that the light receiving target light has a wavelength of 2 μm to 3 μm at most. SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light receiving element that can be particularly useful in an actual night vision support device, a biomedical device, and the like, as well as a visibility support device and a biomedical device.

本発明の撮像装置は、半導体基板上に形成された半導体受光素子である。この半導体受光素子は、単層の化合物半導体からなる第1の受光層と、その第1の受光層の吸収端より長波長の吸収端を持ち、量子井戸構造からなる第2の受光層とを備えることを特徴とする。   The imaging device of the present invention is a semiconductor light receiving element formed on a semiconductor substrate. The semiconductor light-receiving element includes a first light-receiving layer made of a single layer compound semiconductor, and a second light-receiving layer having an absorption edge longer than the absorption edge of the first light-receiving layer and having a quantum well structure. It is characterized by providing.

この構成により1つの受光層ではカバーできなかった広い波長域の光を1つの半導体受光素子によって受光することができるようになる。また、上記の半導体受光素子において、化合物半導体単層の第1の受光層と、量子井戸構造の第2の受光層とは、どちらが半導体基板より遠い位置に位置してもよい。また、上記2つの受光層を含むエピタキシャル層を実装基板側に配置して半導体基板の裏面を光入射面とするエピダウン実装としてもよいし、またエピタキシャル層を光入射面として半導体基板を実装基板側にするエピトップ実装としてもよい。   With this configuration, light in a wide wavelength range that could not be covered by one light receiving layer can be received by one semiconductor light receiving element. In the semiconductor light receiving element described above, either the first light receiving layer of the compound semiconductor single layer or the second light receiving layer of the quantum well structure may be located at a position far from the semiconductor substrate. Further, the epitaxial layer including the two light receiving layers may be arranged on the mounting substrate side, and epi-down mounting with the back surface of the semiconductor substrate as the light incident surface, or the semiconductor substrate with the epitaxial layer as the light incident surface, on the mounting substrate side. Epitop mounting may be used.

上記のように広い波長範囲を1つの半導体受光素子でカバーする試みはされたことがなく、その大きな有用性について認識されたことがなかった。上記の構成の半導体受光素子によれば、経済性に優れ、小型化された、有益な自動車用の夜間視界支援装置を提供することが可能になる。 As described above, no attempt has been made to cover a wide wavelength range with a single semiconductor light receiving element, and no great utility has been recognized. According to the semiconductor light receiving element having the above-described configuration, it is possible to provide a night view assisting device for automobiles that is excellent in economy and reduced in size and is useful.

また、上記の第1の受光層は、第2の受光層より化合物半導体基板から遠い位置に位置し、その第1の受光層に届くように、エピタキシャル層の表面から不純物が導入され、プレーナ構造のpn接合が形成されてもよい。この構成により、たとえば不純物導入の際にマスクとして用いたシリコン酸化膜をパッシベーション膜として残して用いることにより、暗電流の増加などを効率よく抑制して、信頼性の高い半導体受光素子を得ることができる。この構成の場合、第1の受光層は第2の受光より半導体基板より遠くに位置するが、エピアップ実装してもよいし、エピダウン実装してもよい。   Further, the first light receiving layer is positioned farther from the compound semiconductor substrate than the second light receiving layer, and impurities are introduced from the surface of the epitaxial layer so as to reach the first light receiving layer. Pn junctions may be formed. With this configuration, for example, by using the silicon oxide film used as a mask when introducing impurities as a passivation film, it is possible to efficiently suppress an increase in dark current and obtain a highly reliable semiconductor light receiving element. it can. In the case of this configuration, the first light receiving layer is located farther from the semiconductor substrate than the second light receiving, but may be epi-up mounted or epi-down mounted.

上記の2の受光層よりも光入射面に近い位置に、散乱させて光を透過する層を備えるか、または光入射面から第2の受光層よりも遠い位置に、光を散乱させて反射する層を備えることができる。この構成により、量子井戸構造からなる第2の受光層における受光感度を向上させることができる。   A layer that scatters and transmits light is provided at a position closer to the light incident surface than the second light receiving layer, or the light is scattered and reflected at a position farther from the light incident surface than the second light receiving layer. A layer can be provided. With this configuration, the light receiving sensitivity in the second light receiving layer having the quantum well structure can be improved.

上記の化合物半導体基板をInP基板とすることができる。この構成により、InP基板に格子整合したInGaAsN系結晶(InGaAsN、InGaAsNSb、InGaAsNP等)を、第1の受光層に用いることができ、近赤外の巾広い範囲の光を受光することが可能になる。さらに、エピアップ実装では窓層の除去、またエピダウン実装ではInP基板の除去などにより、可視光の吸収を防ぎ、可視域の感度も併せ持つことができる。   The compound semiconductor substrate can be an InP substrate. With this configuration, InGaAsN-based crystals (InGaAsN, InGaAsNSb, InGaAsNP, etc.) lattice-matched to the InP substrate can be used for the first light receiving layer, and light in a wide range of near infrared light can be received. Become. Further, by removing the window layer in the epi-up mounting and by removing the InP substrate in the epi-down mounting, absorption of visible light can be prevented and the sensitivity in the visible range can be provided.

また、上記の第1の受光層の吸収端を、波長1.7μm〜3μmの範囲内にあるようにできる。この構成により、第1の受光層の受光感度域を、中赤外域とその中赤外域よりも短波長域にわたる範囲とことができる。そして、たとえばこの半導体受光素子を自動車の夜間視界支援装置に用いた場合、第1の受光層のカバーする範囲である(宇宙光の反射光による撮像)に加えて、第2の受光層のカバーする範囲(たとえば宇宙光の受光および遠赤外域の受光)と合わせて、非常に幅広い波長域に感度を持つ夜間視界支援装置を、1つの半導体受光素子を用いて製作することができる。また、エピダウン実装またはエピアップ実装に応じて、InP基板または窓層を除去することで、第1の受光層で可視光{信号灯(赤、黄、青)が発する光の検知}までもカバーすることが可能である。上記のように広い波長範囲を1つの半導体受光素子でカバーする試みはされたことがなく、その大きな有用性について認識されたことがなかった。   In addition, the absorption edge of the first light receiving layer can be set in a wavelength range of 1.7 μm to 3 μm. With this configuration, the light receiving sensitivity region of the first light receiving layer can be set to a mid-infrared region and a range that covers a shorter wavelength region than the mid-infrared region. For example, when this semiconductor light-receiving element is used in an automobile night vision assistance device, in addition to the range covered by the first light-receiving layer (imaging by reflected light of space light), the cover of the second light-receiving layer A night vision assistance device having sensitivity in a very wide wavelength range in combination with a range to be received (for example, reception of cosmic light and reception of far-infrared region) can be manufactured using one semiconductor light receiving element. Also, by removing the InP substrate or window layer according to epi-down mounting or epi-up mounting, the first light-receiving layer can cover even visible light {detection of light emitted by signal lamps (red, yellow, blue)}. Is possible. As described above, no attempt has been made to cover a wide wavelength range with a single semiconductor light receiving element, and no great utility has been recognized.

上記の第1の受光層の膜厚を0.1μm以上とすることができる。この構成により、i層である第1の受光層の厚みを厚くして、受光の機会を増やして受光感度を高めることができる。   The film thickness of the first light receiving layer can be set to 0.1 μm or more. With this configuration, it is possible to increase the thickness of the first light receiving layer that is the i layer, increase the chance of light reception, and increase the light receiving sensitivity.

上記の第1の受光層を、InGaAsN、InGaAsNSbおよびInGaAsNP、のいずれかとすることができる。この構成により、第1の受光層に、InP基板に格子整合するInGaAsN系結晶を用いることができ、容易に中赤外域の幅広い範囲に感度を有する受光層を得ることができる。上記の受光層はNの含有により、バンドギャップが狭くなり、受光可能波長をより長波長域にすることができる。   The first light receiving layer can be any one of InGaAsN, InGaAsNSb, and InGaAsNP. With this configuration, an InGaAsN-based crystal lattice-matched to the InP substrate can be used for the first light receiving layer, and a light receiving layer having sensitivity in a wide range in the mid-infrared region can be easily obtained. The light-receiving layer has a narrow band gap due to the inclusion of N, and can receive light in a longer wavelength range.

また、上記の第2の受光層をバンド内遷移により受光するものとすることができる。この構成により、第1の受光層では検知できない長波長域の光を第2の受光層において容易に検知できることが可能となる。量子井戸構造においてはサブバンド構造が形成されるため、サブバンド間(バンド内)遷移でエネルギーの低い長波長域の光が受光される。   In addition, the second light receiving layer may receive light by intraband transition. With this configuration, it is possible to easily detect light in a long wavelength region that cannot be detected by the first light receiving layer in the second light receiving layer. Since the subband structure is formed in the quantum well structure, light having a long wavelength region with low energy is received at the transition between subbands (inside the band).

上記の第2の受光層が1層以上の井戸層を持つことができる。この構成により、上記の第1の受光層では検知できない長波長域の光の受光機会を高め、上記長波長域の受光感度を高めることができる。   The second light receiving layer can have one or more well layers. With this configuration, it is possible to increase the chance of receiving light in the long wavelength region that cannot be detected by the first light receiving layer, and to increase the light receiving sensitivity in the long wavelength region.

上記の第2の受光層の吸収端を、波長3μm〜10μmの範囲内にあるようにできる。この構成により、中赤外〜遠赤外域の光を第2の受光層が分担し、第1の受光層と併せて、これまで考えられたことがないほど広い範囲の光を受光することが可能になる。たとえばこの半導体受光素子を自動車の夜間視界支援装置に用いた場合、(宇宙光の反射光による撮像)〜(人体温度の発する遠赤外光による撮像)という非常に幅広い波長域に感度を持つ夜間視界支援装置を、1つの半導体受光素子を用いて製作することができる。さらに、エピダウン実装またはエピアップ実装に応じて、InP基板または窓層を除去することで、第1の受光層で可視光{信号灯(赤、黄、青)が発する光の検知}までもカバーすることができる。上記のように広い波長範囲を1つの半導体受光素子でカバーする試みはされたことがなく、その大きな有用性について認識されたことがなかった。   The absorption edge of the second light receiving layer can be in the range of wavelengths of 3 μm to 10 μm. With this configuration, the second light-receiving layer shares light in the mid-infrared to far-infrared region, and together with the first light-receiving layer, can receive light in a wide range that has never been considered before. It becomes possible. For example, when this semiconductor light-receiving element is used in an automobile night vision support device, it has nighttime sensitivity in a very wide wavelength range from (imaging by reflected light of cosmic light) to (imaging by far-infrared light emitted by human body temperature). The visual field support device can be manufactured using one semiconductor light receiving element. Furthermore, by removing the InP substrate or window layer according to epi down mounting or epi up mounting, the first light receiving layer can cover even visible light {detection of light emitted by signal lights (red, yellow, blue)}. Can do. As described above, no attempt has been made to cover a wide wavelength range with a single semiconductor light receiving element, and no great utility has been recognized.

上記の半導体受光素子では、半導体基板、または第1および第2の受光層を半導体基板との間に挟むように位置する窓層が、除去されている構造とすることができる。この構造により、上述のように、半導体受光素子がエピダウン実装構造を備えるか、またはエピアップ実装構造を備えるかに応じて、可視光を吸収するInP基板または窓層を除去して、可視光の受光感度を高めることができる。   In the semiconductor light receiving element, the semiconductor substrate or the window layer positioned so as to sandwich the first and second light receiving layers between the semiconductor substrate and the semiconductor substrate can be removed. With this structure, as described above, depending on whether the semiconductor light receiving element has an epi-down mounting structure or an epi-up mounting structure, the InP substrate or window layer that absorbs visible light is removed, and visible light is received. Sensitivity can be increased.

上記の半導体受光素子の光入射面と反対側の裏面に、画素領域ごとに位置するアレイ配列の複数の電極を備えることができる。この構成により、アレイ配列された画素領域ごとの電極が受光によって生じた電流を集め、受光の二次元分布すなわち撮像が可能となる。上記の画素領域は、クロストーク防止のため縦横の溝で囲まれるような構造を有してもよい。   A plurality of electrodes arranged in an array arranged for each pixel region can be provided on the back surface opposite to the light incident surface of the semiconductor light receiving element. With this configuration, an electrode for each pixel region arranged in an array collects current generated by light reception, and two-dimensional distribution of light reception, that is, imaging can be performed. The pixel region may have a structure surrounded by vertical and horizontal grooves to prevent crosstalk.

上記の半導体受光素子はpinダイオード構造からなり、第1および第2の受光層をアンドープ層とすることができる。この構成により、アンドープ層またはイントリンシック(i層:intrinsic)の光吸収領域を厚く形成して、従来、認識されたことがない幅広い波長域の光吸収の感度を高めることができる。また、厚いi層全体にわたって厚い空乏層を形成して、非常に高い耐圧性能を得ることができる。この構成においても、本半導体受光素子は、エピダウン実装しても、またエピトップ実装してもよい。   The semiconductor light receiving element has a pin diode structure, and the first and second light receiving layers can be undoped layers. With this configuration, a light absorption region of an undoped layer or intrinsic (i layer: intrinsic) can be formed thick, and the sensitivity of light absorption in a wide wavelength range that has not been recognized conventionally can be increased. In addition, a very high breakdown voltage performance can be obtained by forming a thick depletion layer over the entire thick i layer. Also in this configuration, the semiconductor light-receiving element may be epi-down mounted or epi-top mounted.

上記の半導体受光素子をアバランシェフォトダイオード(APD:Avalanche
Photo Diode)とすることができる。この構成により、従来、認識されたことがないほど幅広い波長域の半導体受光素子の感度を、アバランシェ増幅に起因する電流利得により非常に高めることが可能になる。なお、プレーナ構造の場合でも、ガードリングを設ける等により同様の効果を得ることができる。
The semiconductor light receiving element described above is an avalanche photodiode (APD: Avalanche).
Photo Diode). With this configuration, it is possible to greatly increase the sensitivity of a semiconductor light receiving element in a wavelength range that has not been recognized in the past due to the current gain resulting from avalanche amplification. Even in the case of a planar structure, the same effect can be obtained by providing a guard ring.

本発明の視界支援装置(自動車の夜間視界支援装置を含む)、または生体医療装置は、上記のいずれかの半導体受光素子を用いることを特徴とする。この構成により、たとえばこの半導体受光素子を生体医療装置に用いた場合、InP基板または窓層の除去などの処理を行うことにより、(人体の各臓器における血液が発する可視域に対する感度)〜(各臓器の透過近赤外光による撮像)〜(臓器各部位温度に起因する遠赤外光による撮像)という非常に幅広い波長域に感度を持つ生体医療検査装置を、1つの半導体受光素子を用いて製作することができる。視界支援装置についても同様であり、(宇宙光の反射光による撮像)〜(人体温度の発する遠赤外光による撮像)という非常に幅広い波長域に感度を持つ夜間視界支援装置を、1つの半導体受光素子を用いて製作することができる。さらに、エピダウン実装またはエピアップ実装に応じて、InP基板または窓層を除去することで、第1の受光層で可視光{信号灯(赤、黄、青)が発する光の検知}までもカバーすることができる。上記の機能を有する視界支援装置は、自動車の夜間視界支援においてとくに有用性を発揮することができる。上記のように広い波長範囲を1つの半導体受光素子でカバーすることは試みられたことがなく、その有用性について認識されたことがなかった。上記の構成の半導体受光素子によれば、経済性に優れ、小型化された、使用者に有益な生体医療装置を提供することが可能になる。何よりも、生体医療装置にとって役立つ情報を簡単に得ることが可能になり、生体医療装置の価値を向上させることができる。   A visual field support device (including a night vision support device for automobiles) or a biomedical device according to the present invention is characterized by using any one of the semiconductor light receiving elements described above. With this configuration, for example, when this semiconductor light receiving element is used in a biomedical device, by performing processing such as removal of the InP substrate or window layer, (sensitivity to the visible range emitted by blood in each organ of the human body) to (each Using a single semiconductor light-receiving element, a biomedical examination apparatus having sensitivity in a very wide wavelength range from imaging of transmitted organs using near-infrared light) to (imaging of far-infrared light caused by the temperature of each part of the organ) Can be produced. The same applies to the visual field support device, and a night vision support device having sensitivity in a very wide wavelength range from (imaging by reflected light of cosmic light) to (imaging by far infrared light generated by human body temperature) is a single semiconductor. It can be manufactured using a light receiving element. Furthermore, by removing the InP substrate or window layer according to epi down mounting or epi up mounting, the first light receiving layer can cover even visible light {detection of light emitted by signal lights (red, yellow, blue)}. Can do. The visual field support device having the above-described function can be particularly useful in night vision support for automobiles. As described above, no attempt has been made to cover a wide wavelength range with one semiconductor light receiving element, and its usefulness has never been recognized. According to the semiconductor light-receiving element having the above-described configuration, it is possible to provide a biomedical device that is excellent in economy and reduced in size and beneficial to the user. Above all, information useful for the biomedical device can be easily obtained, and the value of the biomedical device can be improved.

本発明の半導体受光素子、視界支援装置および生体医療装置によれば、近赤外域を含む幅広い範囲に受光感度を有し、とくに大きな有用性を備えることができる。 According to the semiconductor light receiving element, the visual field support device, and the biomedical device of the present invention, it has light receiving sensitivity in a wide range including the near infrared region, and can be particularly useful.

(実施の形態1)
図1は、本発明の実施の形態1における半導体受光素子10を示す断面図である。図1において、n型InP基板1の上にn型不純物のSiを含むInPバッファ層2が配置されている。InPバッファ層2の上には、第1の受光層であるアンドープInGaAsN層3が配置され、そのInGaAs層3の上に第2の受光層である(アンドープInP層/アンドープInAsP層)を周期として繰り返す量子井戸層4が形成されている。量子井戸層4の上には、p型不純物のBeを含むp型InP窓層5が配置されている。このp型InP窓層5の表面は、細かい凹凸構造を持つように処理されており、光を散乱させて反射する層9が設けられている。そして、n型InP基板にはAuGeNiで形成されたn部電極11がオーミックコンタクトされ、p型InP窓層5にはAuZnで形成されたp部電極12がオーミックコンタクトされている。n部電極11は、n型InP基板1の裏面が光入射面Sとなるため、すなわちエピダウン実装となるため、n型InP基板1の裏面への被覆面積は限定的とされ、環状とされている。なお、上記の凹凸構造の光を散乱させて反射する層9は、量子井戸層4ではエピタキシャル層を垂直に通る光の受光感度が非常に低く、斜め入射の光に対して受光感度を向上することができるために、設けられる。量子井戸層4の後方に位置する凹凸構造の光を散乱させて反射する層9の代わりに、量子井戸層4より光入射面側に、透過光を散乱光とする、散乱させて光を透過する層を設けてもよい。
(Embodiment 1)
FIG. 1 is a cross-sectional view showing a semiconductor light receiving element 10 according to Embodiment 1 of the present invention. In FIG. 1, an InP buffer layer 2 containing n-type impurity Si is disposed on an n-type InP substrate 1. On the InP buffer layer 2, an undoped InGaAsN layer 3 as a first light receiving layer is disposed, and on the InGaAs layer 3, a second light receiving layer (undoped InP layer / undoped InAsP layer) is used as a period. A repeating quantum well layer 4 is formed. A p-type InP window layer 5 containing a p-type impurity Be is disposed on the quantum well layer 4. The surface of the p-type InP window layer 5 is processed to have a fine concavo-convex structure, and a layer 9 that scatters and reflects light is provided. An n-part electrode 11 made of AuGeNi is in ohmic contact with the n-type InP substrate, and a p-part electrode 12 made of AuZn is in ohmic contact with the p-type InP window layer 5. Since the back surface of the n-type InP substrate 1 serves as the light incident surface S, that is, epi-down mounting, the n-part electrode 11 has a limited coverage area on the back surface of the n-type InP substrate 1 and is annular. Yes. Note that the layer 9 that scatters and reflects the light having the above-described concavo-convex structure has a very low light receiving sensitivity for light passing through the epitaxial layer vertically in the quantum well layer 4 and improves the light receiving sensitivity for obliquely incident light. Is provided in order to be able to. Instead of the layer 9 that scatters and reflects the light of the concavo-convex structure located behind the quantum well layer 4, the transmitted light is scattered to the light incident surface side from the quantum well layer 4, and the light is scattered and transmitted. You may provide the layer to do.

第1の受光層3は、InGaAsN層で形成されているため、長波長側の近赤外域、およびさらに長波長域側の中波長域に受光感度を持ち、さらに所定の処理を施すことにより可視域の感度も持つことができる。すなわち窒素を含むInGaAs層を形成することにより、受光感度を長波長域に広げて、可視域(所定の処理を伴う)から、所定の赤外域(波長2μm〜5μm)にまで、受光感度を持つことが可能となる。InGaAsN層は、InGaAsNSb層であってもよいし、InGaAsNP層であってもよい。InGaAsN系化合物半導体層は、可視域から上記の赤外域にまで受光感度を持つからである。ただし、可視光を対象にする場合、受光層に可視光が十分到達するように、エピダウン実装またはエピアップ実装に応じて、InP基板または窓層を除く必要がある。   Since the first light receiving layer 3 is formed of an InGaAsN layer, it has light receiving sensitivity in the near-infrared region on the long wavelength side and the middle wavelength region on the long wavelength region side, and is visible by performing predetermined processing. Can also have sensitivity in the area. That is, by forming an InGaAs layer containing nitrogen, the light receiving sensitivity is extended to a long wavelength region, and has a light receiving sensitivity from the visible region (with predetermined processing) to a predetermined infrared region (wavelength 2 μm to 5 μm). It becomes possible. The InGaAsN layer may be an InGaAsNSb layer or an InGaAsNP layer. This is because the InGaAsN-based compound semiconductor layer has light receiving sensitivity from the visible region to the infrared region. However, when targeting visible light, it is necessary to remove the InP substrate or the window layer in accordance with epi-down mounting or epi-up mounting so that the visible light sufficiently reaches the light receiving layer.

また、第2の受光層である量子井戸層4は、波長3μm〜10μmに吸収端を有し、この波長域(中赤外域〜遠赤外域)から短波長側の光に対して受光感度を有する。第2の受光層4は、量子井戸構造のバンド内遷移により光を吸収するため、化合物半導体単層のバンド間遷移よりも長波長域の光を受光することができる。このため、第2の受光層4は、上述のように、波長3μm〜10μmに至るまでの長波長域の光に対する受光感度を持つことが可能になる。   The quantum well layer 4 as the second light receiving layer has an absorption edge at a wavelength of 3 μm to 10 μm, and has a light receiving sensitivity with respect to light on a short wavelength side from this wavelength range (middle infrared range to far infrared range). Have. Since the second light receiving layer 4 absorbs light by the in-band transition of the quantum well structure, it can receive light in a longer wavelength region than the interband transition of the compound semiconductor single layer. For this reason, as described above, the second light receiving layer 4 can have light receiving sensitivity to light in a long wavelength range up to a wavelength of 3 μm to 10 μm.

第1および第2の受光層を配置することにより、可視域(受光層への可視光の十分な到達を妨げる可視光吸収層の除去が必要)〜遠赤外域の光に対する受光感度を1つの半導体受光素子が持つことになる。上記のような2つの受光層を備える半導体受光素子は、これまで、一般的にも、また用途を限定した特定用途用にも、提案されたことはない。なお、図1の半導体受素子の場合、半導体基板1から見て、第1の受光層3よりも遠くに、第2の受光層4が位置する構造であり、InP窓層5に、光を散乱させて反射する層9が設けられ、エピダウン実装されている。   By arranging the first and second light receiving layers, the light receiving sensitivity for light in the visible region (requires removal of the visible light absorbing layer that hinders sufficient arrival of visible light to the light receiving layer) to light in the far infrared region is one. The semiconductor light receiving element has. The semiconductor light-receiving element including the two light-receiving layers as described above has not been proposed so far for general use or for a specific use with limited use. 1 has a structure in which the second light receiving layer 4 is located farther than the first light receiving layer 3 when viewed from the semiconductor substrate 1, and light is applied to the InP window layer 5. A layer 9 for scattering and reflecting is provided and mounted epi-down.

次に、上記の半導体受光素子10の製造方法について説明する。n型InP基板1の上にエピタキシャル膜を積層するのに、MBE(Molecular
Beam Epitaxy:分子線エピタキシャル成長)法を用いた。原料は、In、Ga、As、P、Si、Beを、それぞれ固体ソースから供給した。図2に示す各エピタキシャル層の層厚およびキャリア濃度等は、つぎのとおりである。
(n型InPバッファ層2):
層厚1.5μm、キャリア濃度5e15cm−3
(アンドープInGaAsN層3):
層厚2.5μm、キャリア濃度1e15cm−3
上記のアンドープInGaAsN層3は、アンドープではあるが、上記のようにゼロより高いキャリア濃度を有する。
(アンドープ量子井戸層4):
(アンドープInP層厚10nm/InAsP層厚6nm)×50周期
(InP窓層5):
層厚0.6μm、キャリア濃度5e15cm−3
Next, a method for manufacturing the semiconductor light receiving element 10 will be described. To deposit an epitaxial film on the n-type InP substrate 1, MBE (Molecular
Beam Epitaxy (molecular beam epitaxial growth) method was used. As raw materials, In, Ga, As, P, Si, and Be were supplied from solid sources, respectively. The layer thickness, carrier concentration, etc. of each epitaxial layer shown in FIG. 2 are as follows.
(N-type InP buffer layer 2):
Layer thickness 1.5 μm, carrier concentration 5e15 cm −3
(Undoped InGaAsN layer 3):
Layer thickness 2.5 μm, carrier concentration 1e15 cm −3
The undoped InGaAsN layer 3 is undoped, but has a carrier concentration higher than zero as described above.
(Undoped quantum well layer 4):
(Undoped InP layer thickness 10 nm / InAsP layer thickness 6 nm) × 50 periods (InP window layer 5):
Layer thickness 0.6 μm, carrier concentration 5e15 cm −3

上記エピタキシャル層を形成して図2のエピタキシャル基板を得た後、次の手順で図1に示す半導体受光素子を製作した。まず、p型InP窓層5の表面にウエットエッチングを施し、凹凸構造の光を散乱させて反射する層9を形成した。ウエットエッチングのエッチャントには、リン酸、過酸化水素水、水の混合液を用いた。次いで、凹凸構造の光を散乱させて反射する層9が付されたp型InP窓層5の表面に、AuZnからなるp部電極12を形成した。また、n型InP基板1の裏面に、その裏面が光入射面Sになることを考慮して円環状としたn部電極11を形成した。   After the epitaxial layer was formed and the epitaxial substrate of FIG. 2 was obtained, the semiconductor light receiving element shown in FIG. 1 was manufactured by the following procedure. First, wet etching was performed on the surface of the p-type InP window layer 5 to form a layer 9 that scatters and reflects light of the concavo-convex structure. As the etchant for wet etching, a mixed solution of phosphoric acid, hydrogen peroxide solution, and water was used. Subsequently, the p-part electrode 12 made of AuZn was formed on the surface of the p-type InP window layer 5 provided with the layer 9 that scatters and reflects the light having the concavo-convex structure. In addition, an n-shaped electrode 11 having an annular shape was formed on the back surface of the n-type InP substrate 1 in consideration of the fact that the back surface becomes the light incident surface S.

図1に示す半導体受光素子10では、n部電極11にプラス電位が、またp部電極12に、プラス電位より低いマイナス電位が印加され、すなわち逆バイアス電圧が印加され、p型InP窓層5とn型InPバッファ層2との間のアンドープ領域(InGaAs層3および量子井戸層4)に空乏層が形成された状態で、光の入射を待機する。この状態は、pinダイオードのi型領域に空乏層が形成された状態と言い換えることができる。この待機状態に光が光入射面から入射すると、光電効果により伝導帯にキャリアを励起して空乏層に電子正孔対を形成し、衝突イオン化に起因するアバランシェ増幅の電流利得を得ることができる。   In the semiconductor light receiving element 10 shown in FIG. 1, a positive potential is applied to the n-part electrode 11, and a negative potential lower than the positive potential is applied to the p-part electrode 12, that is, a reverse bias voltage is applied, and the p-type InP window layer 5 is applied. In the state where the depletion layer is formed in the undoped region (InGaAs layer 3 and quantum well layer 4) between the n-type InP buffer layer 2 and the n-type InP buffer layer 2, the light input is waited. This state can be paraphrased as a state in which a depletion layer is formed in the i-type region of the pin diode. When light enters the standby state from the light incident surface, carriers are excited in the conduction band by the photoelectric effect to form electron-hole pairs in the depletion layer, and a current gain of avalanche amplification resulting from impact ionization can be obtained. .

上記のアンドープ層(またはi層)は、第1の受光層であるアンドープInGaAsN層3が層厚2.5μmであり、0.1μmより十分厚く、また第2の受光層であるアンドープ量子井戸層4の層数(周期数)が50周期であり、3層(3周期)より十分大きい。上記のような、十分厚いアンドープ層3,4のために、半導体受光素子10に入射された光は、受光される可能性のある領域を長く通ることとなり(すなわち受光機会の増大により)、受光効率すなわち受光感度を高めることができる。   In the undoped layer (or i layer), the undoped InGaAsN layer 3 as the first light receiving layer has a thickness of 2.5 μm and is sufficiently thicker than 0.1 μm, and the undoped quantum well layer as the second light receiving layer The number of layers (number of periods) of 4 is 50 periods, which is sufficiently larger than 3 layers (3 periods). Because of the sufficiently thick undoped layers 3 and 4 as described above, the light incident on the semiconductor light receiving element 10 passes through a region that may be received for a long time (that is, due to an increase in the light receiving opportunity). Efficiency, that is, light receiving sensitivity can be increased.

図3は、図1に示す半導体受光素子を基本単位(画素)として、撮像が可能なようにp部電極12をアレイ配列した構成(このようなアレイ配列構成の電極を含むものも半導体受光素子と呼ぶ)を示す図である。このアレイ配列では、光出射側に縦横に溝33が設けられ、溝33で囲まれた領域を画素領域とし、各画素領域にp部電極12が配列され、各画素におけるアバランシェ電流を集め、画素の輝度を形成する。これら画素の輝度が、像を形成する。なお、図3においては、p部電極12が配列される面に対向する光入射面Sに、各画素に対応して環状にn部電極11を設けた構造を示したが、n部電極11は、各画素ごとに対応させて1つずつ設ける必要はなく、共通の1つのn部電極を設けた構造であってもよい。上記の画素は、たとえば25μmピッチで縦横の溝33を設けた場合、10mm×10mm内に16万画素を形成することになる。   FIG. 3 shows a configuration in which p-part electrodes 12 are arrayed so that imaging can be performed using the semiconductor light-receiving device shown in FIG. 1 as a basic unit (pixel) (a semiconductor light-receiving device including an electrode having such an array configuration). FIG. In this array arrangement, grooves 33 are provided in the vertical and horizontal directions on the light emitting side, the area surrounded by the grooves 33 is a pixel area, and the p-part electrodes 12 are arranged in each pixel area, collecting the avalanche current in each pixel, Form the brightness. The luminance of these pixels forms an image. 3 shows a structure in which the n-part electrode 11 is provided in a ring shape corresponding to each pixel on the light incident surface S facing the plane on which the p-part electrode 12 is arranged. In this case, it is not necessary to provide one pixel for each pixel, and a common n-part electrode may be provided. For example, when the vertical and horizontal grooves 33 are provided at a pitch of 25 μm, 160,000 pixels are formed within 10 mm × 10 mm.

上記のように、第1の受光層3をInGaAsN層で構成し、第2の受光層4を量子井戸構造としてバンド内遷移を用いることにより、可視域(所定の処理が必要)〜遠赤外域に受光感度を持つことができる。この結果、図4に示すように、たとえば自動車の夜間視界支援装置に用いた場合、1つの半導体受光素子により、信号の色(赤、青、黄)、宇宙光の反射による撮像、および生体から出射される遠赤外光による撮像、が可能になる。この結果、雨天の場合、ゴム引きレインコートを着込んだヒトの遠赤外光による撮像は不可能になるが宇宙光の反射による撮像は可能であり、事故が生じやすい雨天でもヒトの撮像が妨げられない。また、逆にトンネル内など宇宙光が到達しにくい場所では、生体が発する遠赤外光による撮像が可能になる。このような多くの状況に適合できる高い融通性は、安全を確保することが至上の自動車用の夜間視界支援装置のような場合、非常に有益であり、その装置の価値を大きく高めることができる。   As described above, the first light-receiving layer 3 is composed of an InGaAsN layer, the second light-receiving layer 4 is a quantum well structure, and an in-band transition is used, so that a visible region (requires predetermined processing) to a far-infrared region. Can have light receiving sensitivity. As a result, as shown in FIG. 4, for example, when used in an automobile night vision support device, the signal color (red, blue, yellow), imaging by reflection of space light, Imaging with the far-infrared light emitted becomes possible. As a result, in rainy weather, human infrared imaging with rubberized raincoats is impossible to image with far-infrared light, but it is possible to image with reflection of space light, preventing human imaging even in rainy weather where accidents are likely to occur. I can't. Conversely, in places where space light is difficult to reach, such as in tunnels, imaging with far-infrared light emitted by a living body becomes possible. Such high flexibility that can be adapted to many situations is very beneficial in the case of night vision assistance devices for automobiles where it is best to ensure safety and can greatly increase the value of the device. .

また、たとえば生体医療装置に用いた場合(内視鏡等)、臓器の色や出血状況を可視域(所定の処理が必要)の光の受光により判別し、近赤外域の生体透過光(反射光または外部光源透過光)により内視鏡挿入部位に隣接する臓器の形態を把握し、さらに遠赤外光により臓器の温度分布を把握することができる。本発明の半導体受光素子を生体医療の内視鏡等に用いた場合、一度の検診または一度の内視鏡手術において、患者の臓器について多くの情報を得ることができ、検診または手術を成功させるのに大きな武器を与えることができる。   For example, when used in a biomedical device (endoscope, etc.), the color and bleeding status of an organ are determined by receiving light in the visible range (requires predetermined processing), and the transmitted light (reflected in the near infrared range) The shape of the organ adjacent to the endoscope insertion site can be grasped by light or transmitted light from an external light source, and the organ temperature distribution can be grasped by far-infrared light. When the semiconductor light-receiving element of the present invention is used in a biomedical endoscope or the like, a large amount of information can be obtained about a patient's organ in one examination or one endoscopic operation, and the examination or surgery is successful. Can give a big weapon.

(実施の形態2)
図5は、本発明の実施の形態2における半導体受光素子10を示す断面図である。本実施の形態における半導体受光素子10では、(1)化合物半導体単層の第1の受光層3が、半導体基板1から、量子井戸構造の第2の受光層4より遠くに位置していること、および(2)エピタキシャル層側を光入射面Sとするエピアップ実装がなされていること、に特徴がある。量子井戸構造の第2の受光層4では、垂直に入射される光の受光感度は低いため、光を散乱させて透過する層19を設けている。
(Embodiment 2)
FIG. 5 is a cross-sectional view showing the semiconductor light receiving element 10 according to the second embodiment of the present invention. In the semiconductor light receiving element 10 according to the present embodiment, (1) the first light receiving layer 3 of the compound semiconductor single layer is located farther from the semiconductor substrate 1 than the second light receiving layer 4 having the quantum well structure. And (2) epi-up mounting using the light incident surface S on the epitaxial layer side is characterized. In the second light receiving layer 4 having the quantum well structure, since the light receiving sensitivity of vertically incident light is low, a layer 19 that scatters and transmits light is provided.

上記のエピタキシャル層の作製条件等は、実施の形態1と同じ条件で行うことができる。光を散乱させて透過する層19は、市販の材料等を利用して形成することができる。上記の構成により、実施の形態1と同様に、可視域(所定処理を要する)〜遠赤外域の光に対する受光感度を1つの半導体受光素子が持つことになる。この結果、多くの状況に適合できる高い融通性を用いられる装置に付与することができ、たとえば、安全を確保することが至上の自動車用の夜間視界支援装置のような場合、非常に有益であり、その装置の価値を大きく高めることができる。生体医療装置に用いられた場合についても同様である。   The above-described epitaxial layer can be manufactured under the same conditions as in the first embodiment. The layer 19 that scatters and transmits light can be formed using a commercially available material or the like. With the above configuration, as in the first embodiment, one semiconductor light receiving element has light receiving sensitivity with respect to light in the visible region (requires predetermined processing) to far infrared region. As a result, it can be applied to a device that can be used with high flexibility that can be adapted to many situations. For example, in the case of a night vision assistance device for automobiles in which it is important to ensure safety, it is very beneficial. The value of the device can be greatly increased. The same applies to the case where it is used in a biomedical device.

図6は、光を散乱させて透過する層を用いずに、半導体基板1の裏面に凹凸構造の光を散乱させて反射する層9を設けた半導体受光素子10を示す断面図であり、図5に示す半導体受光素子の変形例である。第1の受光層3で受光されずに透過する垂直入射または垂直入射に近い光は、量子井戸構造の受光層による受光感度が低いため、大部分が受光されずに量子井戸構造の第2の受光層4を透過する。透過した後、半導体基板1の裏面の光を散乱させて反射する層9により反射され散乱光となって、量子井戸構造の第2の受光層4に戻ってゆく。反射戻り光は散乱光なので、量子井戸構造の第2の受光層4で受光される。反射戻り光の場合、量子井戸構造の第2の受光層で受光されずに透過した光のうちに、第1の受光層3で受光可能な光が含まれていれば、もう一度、反射戻り光で受光することができる。このため受光効率を高めることが可能である。図6の構造の半導体受光素子10においても、図5に示した半導体受光素子と同様の作用効果を得ることが可能となる。   FIG. 6 is a cross-sectional view showing a semiconductor light receiving element 10 in which a layer 9 that scatters and reflects light of an uneven structure is provided on the back surface of the semiconductor substrate 1 without using a layer that scatters and transmits light. 5 is a modification of the semiconductor light receiving element shown in FIG. Light that is transmitted through the first light-receiving layer 3 without being received by the first light-receiving layer 3 has a low light-receiving sensitivity by the light-receiving layer having the quantum well structure, so that most of the light is not received. It passes through the light receiving layer 4. After being transmitted, the light on the back surface of the semiconductor substrate 1 is scattered and reflected by the reflecting layer 9 to be scattered light, and returns to the second light receiving layer 4 having the quantum well structure. Since the reflected return light is scattered light, it is received by the second light receiving layer 4 having the quantum well structure. In the case of reflected return light, if light that can be received by the first light receiving layer 3 is included in the light transmitted without being received by the second light receiving layer of the quantum well structure, the reflected return light is once again included. Can receive light. For this reason, it is possible to increase the light receiving efficiency. Also in the semiconductor light receiving element 10 having the structure of FIG. 6, it is possible to obtain the same function and effect as the semiconductor light receiving element shown in FIG.

(実施の形態3)
図7は、本発明の実施の形態3における半導体受光素子を示す図である。図7に示す半導体受光素子10では、(1)化合物半導体単層の第1の受光層3に窓層5側からp型不純物が拡散導入され、p型拡散領域15が形成されて、プレーナ構造のpn接合が形成されていることに特徴がある。また、実施の形態2と同様に、化合物半導体単層の第1の受光層3が、半導体基板1から、量子井戸構造の第2の受光層4より遠くに位置していること、およびエピタキシャル層側を光入射面Sとするエピアップ実装がなされていること、にも特徴がある。
(Embodiment 3)
FIG. 7 is a diagram showing a semiconductor light receiving element according to the third embodiment of the present invention. In the semiconductor light-receiving element 10 shown in FIG. 7, (1) p-type impurities are diffused and introduced into the first light-receiving layer 3 of the compound semiconductor single layer from the window layer 5 side, and a p-type diffusion region 15 is formed. This is characterized in that a pn junction is formed. Similarly to the second embodiment, the first light receiving layer 3 of the compound semiconductor single layer is located farther from the semiconductor substrate 1 than the second light receiving layer 4 having the quantum well structure, and the epitaxial layer. Another feature is that epi-up mounting with the light incident surface S on the side is made.

上記のプレーナ構造のpn接合が形成されている場合、通常、シリコン酸化膜をマスクとして用いて、マスク開口部からp型不純物を拡散導入する。シリコン酸化膜は安定性に優れるため、所定の部分を残しながら、また所定の部分以外の除いた箇所は新たにシリコン酸化膜を補いながら、半導体受光素子の全体のパッシベーション膜17をシリコン酸化膜で形成する。この結果、プレーナ構造のpn接合を有する半導体受光素子以外の、たとえばメサ構造の半導体受光素子に比較して、暗電流が低く、耐久性を含め信頼性に優れた半導体受光素子を得ることができる。   When the pn junction having the planar structure is formed, the p-type impurity is usually diffused and introduced from the mask opening using the silicon oxide film as a mask. Since the silicon oxide film is excellent in stability, the entire passivation film 17 of the semiconductor light receiving element is made of a silicon oxide film while leaving a predetermined portion and supplementing the silicon oxide film with a portion other than the predetermined portion. Form. As a result, a semiconductor light-receiving element having a low dark current and excellent reliability including durability can be obtained as compared with a semiconductor light-receiving element other than a semiconductor light-receiving element having a pn junction having a planar structure, for example. .

図7では、単一画素の半導体受光素子10を示すが、図3に示したように、縦横の溝を設けて多くの画素領域を形成した半導体受光素子に適用してもよく、むしろその方が適用機会は多い。この場合、半導体受光素子のエピタキシャル層の端面が露出せずにシリコン酸化膜に被覆されるため、信頼性の高い高密度画素領域を備える半導体受光素子を得ることが可能になる。   FIG. 7 shows a single-pixel semiconductor light-receiving element 10. However, as shown in FIG. 3, the present invention may be applied to a semiconductor light-receiving element in which a large number of pixel regions are formed by providing vertical and horizontal grooves. However, there are many application opportunities. In this case, since the end surface of the epitaxial layer of the semiconductor light receiving element is covered with the silicon oxide film without being exposed, it is possible to obtain a semiconductor light receiving element having a highly reliable high-density pixel region.

プレーナ構造のpn接合を持つ第1の受光層を備える半導体受光素子であっても、p型拡散領域15は第1の受光層15の薄い層を占めるに過ぎず、残りの大部分の第1の受光層3はアンドープの状態である。このため、逆バイアス電圧の印加により、空乏層はpn接合からアンドープ領域に張り出し、第2の受光層も含む状態となり、受光を待機する。したがって、図7に示す構造の半導体受光素子10であっても、アバランシェフォトダイオードを構成し、実施の形態1等に説明した高い電流利得を得ることができる。そして、第1および第2の受光層を備えることにより、実施の形態1に説明した作用効果と同様の作用効果を得ることが可能となる。   Even in a semiconductor light-receiving element including a first light-receiving layer having a planar structure pn junction, the p-type diffusion region 15 only occupies a thin layer of the first light-receiving layer 15, and most of the remaining first The light receiving layer 3 is undoped. For this reason, when a reverse bias voltage is applied, the depletion layer protrudes from the pn junction to the undoped region, enters a state including the second light receiving layer, and waits for light reception. Therefore, even the semiconductor light receiving element 10 having the structure shown in FIG. 7 can form an avalanche photodiode and obtain the high current gain described in the first embodiment and the like. By providing the first and second light receiving layers, it is possible to obtain the same effects as those described in the first embodiment.

上記本発明の実施の形態1〜3では、可視域(所定処理を要する)〜遠赤外域の検出に用いられる場合について説明したが、本発明の半導体受光素子は、必ずしも可視域から遠赤外域の光を検出するためにのみ用いられる必要はない。可視域または遠赤外域は含まず、赤外域の光を広い範囲(近赤外域〜中赤外域)で検出するために用いられてもよい。   In the first to third embodiments of the present invention, the case of being used for detection in the visible region (requires predetermined processing) to the far infrared region has been described. However, the semiconductor light receiving element of the present invention is not necessarily from the visible region to the far infrared region. It need not be used only for detecting light. It does not include the visible region or the far infrared region, and may be used to detect infrared light in a wide range (near infrared region to mid infrared region).

次に実施例により本発明の作用効果を検証した。本発明例としては、図1に示した半導体受光素子10を用いた。また、比較のために、単層の化合物半導体を受光層とする、図8の構成の半導体受光素子を比較例Aとし、量子井戸構造の受光層とする、図9の構成の半導体受光素子を比較例Bとした。以下に、本発明例および比較例の積層構造を示す。
本発明例(図1):p部電極12/光を散乱させて反射する層9/p型窓層5/アンドープInPとInGaAsPとの量子井戸構造4/アンドープInGaAsN受光層3/n型InPバッファ層2/n部電極11(エピダウン実装)
比較例A(図8):p部電極112/p型窓層105/アンドープInGaAsN受光層103/n型InPバッファ層102/n型InP基板101/n部電極111(エピダウン実装)
比較例B(図9):p部電極112/光を散乱させて反射する層109/p型窓層105/アンドープInPとInGaAsPとの量子井戸構造/n型InPバッファ層102/n型InP基板101/n部電極111(エピダウン実装)
Next, the effect of this invention was verified by the Example. As an example of the present invention, the semiconductor light receiving element 10 shown in FIG. 1 was used. For comparison, the semiconductor light-receiving element having the structure of FIG. 9 having the single-layer compound semiconductor as the light-receiving layer, the semiconductor light-receiving element having the structure of FIG. 8 as Comparative Example A, and the light-receiving layer having the quantum well structure is illustrated. It was set as Comparative Example B. The laminated structures of the present invention example and the comparative example are shown below.
Example of the present invention (FIG. 1): p-part electrode 12 / layer 9 for scattering and reflecting light / p-type window layer 5 / quantum well structure of undoped InP and InGaAsP 4 / undoped InGaAsN light-receiving layer 3 / n-type InP buffer Layer 2 / n part electrode 11 (epi-down mounting)
Comparative Example A (FIG. 8): p-part electrode 112 / p-type window layer 105 / undoped InGaAsN light-receiving layer 103 / n-type InP buffer layer 102 / n-type InP substrate 101 / n-part electrode 111 (epi-down mounting)
Comparative Example B (FIG. 9): p-part electrode 112 / layer 109 for scattering and reflecting light / p-type window layer 105 / quantum well structure of undoped InP and InGaAsP / n-type InP buffer layer 102 / n-type InP substrate 101 / n electrode 111 (epi-down mounting)

(実験1:−波長2.5μm、3.5μmに対する受光感度−)
実験1では、赤外光源を分光して、波長2.5μm、3.5μmで感度の比較を行った。その結果を表1に示す。
(Experiment 1: Light sensitivity to wavelengths of 2.5 μm and 3.5 μm)
In Experiment 1, the sensitivity was compared at wavelengths of 2.5 μm and 3.5 μm using an infrared light source. The results are shown in Table 1.

Figure 2008153311
Figure 2008153311

表1によれば、比較例Aは波長2.5μmの赤外光には十分高い検出感度を有し、また可視域にも検出感度を有するが、波長3.5μmの赤外光に対してほとんど検出感度を有しない。また、比較例Bでは、波長3.5μmの赤外光には十分高い検出感度を有するが、波長2.5μmの赤外光に対してほとんど検出感度を有しない。これに対して、本発明例の半導体受光素子では、波長2.5μmおよび3.5μmの光に対して、高い検出感度を有する。   According to Table 1, Comparative Example A has sufficiently high detection sensitivity for infrared light with a wavelength of 2.5 μm and also has detection sensitivity in the visible range, but for infrared light with a wavelength of 3.5 μm. It has almost no detection sensitivity. Comparative Example B has sufficiently high detection sensitivity for infrared light having a wavelength of 3.5 μm, but has almost no detection sensitivity for infrared light having a wavelength of 2.5 μm. On the other hand, the semiconductor light receiving element of the example of the present invention has high detection sensitivity with respect to light having wavelengths of 2.5 μm and 3.5 μm.

(実験2:−近赤外域〜赤外域の感度スペクトル−)
上記の本発明例、比較例Aおよび比較例Bの半導体受光素子の近赤外域〜赤外域における感度スペクトルを測定した。測定結果を、図10に示す。図10によれば、比較例Aは波長2.5μmまで、また比較例Bは波長3.5μm近傍にしか、各々感度を有しない。これに対して、本発明例は、短波長域から波長3.5μmまで、途絶えることなく連続的に高い検出感度を有する。このため、上述のように広い範囲の赤外域および可視域に高い検出感度を持つことができ、自動車の夜間視界支援装置、生体医療装置等に強力な有用性を与えることができる。
(Experiment 2: -Sensitivity spectrum from near infrared region to infrared region)
Sensitivity spectra in the near-infrared region to the infrared region of the semiconductor light-receiving elements of the present invention example, comparative example A, and comparative example B were measured. The measurement results are shown in FIG. According to FIG. 10, Comparative Example A has a sensitivity up to a wavelength of 2.5 μm, and Comparative Example B has a sensitivity only in the vicinity of a wavelength of 3.5 μm. On the other hand, the example of the present invention has high detection sensitivity continuously from the short wavelength region to the wavelength of 3.5 μm without interruption. For this reason, as described above, it is possible to have high detection sensitivity in a wide range of infrared region and visible region, and it is possible to give powerful utility to an automobile night vision support device, a biomedical device, and the like.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の半導体受光素子は、赤外域の広い波長域および所定の処理により可視域に、十分高い検出感度を持つため、自動車の夜間視界支援装置、生体医療装置等に用いることにより、これら装置の有用性を大きく高めることができる。   Since the semiconductor light receiving element of the present invention has a sufficiently high detection sensitivity in a visible wavelength range and a predetermined wavelength range in the infrared range, it can be used for a night vision support device of a car, a biomedical device, etc. Usefulness can be greatly increased.

本発明の実施の形態1における半導体受光素子を示す図である。It is a figure which shows the semiconductor light receiving element in Embodiment 1 of this invention. 図1の半導体受光素子のエピタキシャル積層構造を示す図である。It is a figure which shows the epitaxial laminated structure of the semiconductor light receiving element of FIG. 図1の半導体受光素子のアレイ配列を示す断面図である。It is sectional drawing which shows the array arrangement | sequence of the semiconductor light receiving element of FIG. 本発明の実施の形態1における半導体受光素子の作用効果を説明するための図である。It is a figure for demonstrating the effect of the semiconductor light receiving element in Embodiment 1 of this invention. 本発明の実施の形態2における半導体受光素子を示す図である。It is a figure which shows the semiconductor light receiving element in Embodiment 2 of this invention. 図5の半導体受光素子の変形例を示す図である。It is a figure which shows the modification of the semiconductor light receiving element of FIG. 本発明の実施の形態3における半導体受光素子を示す図である。It is a figure which shows the semiconductor light receiving element in Embodiment 3 of this invention. 実施例の比較例Aの半導体受光素子を示す図である。It is a figure which shows the semiconductor light receiving element of the comparative example A of an Example. 実施例の比較例Bの半導体受光素子を示す図である。It is a figure which shows the semiconductor light receiving element of the comparative example B of an Example. 本発明例、比較例A、比較例Bの半導体受光素子の感度スペクトルを示す図である。It is a figure which shows the sensitivity spectrum of the semiconductor light receiving element of the example of the present invention, comparative example A, and comparative example B.

符号の説明Explanation of symbols

1 InP基板、2 InPバッファ層、3 第1の受光層(化合物半導体単層)、4 第2の受光層(量子井戸構造)、5 InP窓層、9 光を散乱させて反射する層、10 半導体受光素子、11 n部電極、12 p部電極、15 p型拡散領域、17 パッシベーション膜、19 散乱させて光を透過する層、33 溝、S 光入射面。   DESCRIPTION OF SYMBOLS 1 InP board | substrate, 2 InP buffer layer, 3 1st light receiving layer (compound semiconductor single layer), 4 2nd light receiving layer (quantum well structure), 5 InP window layer, 9 Layer which scatters and reflects light, 10 Semiconductor light-receiving element, 11 n-part electrode, 12 p-part electrode, 15 p-type diffusion region, 17 passivation film, 19 layer that scatters and transmits light, 33 groove, S light incident surface.

Claims (16)

半導体基板上に形成された半導体受光素子であって、
単層の化合物半導体からなる第1の受光層と、
前記第1の受光層の吸収端より長波長の吸収端を持ち、量子井戸構造からなる第2の受光層とを備えることを特徴とする、半導体受光素子。
A semiconductor light receiving element formed on a semiconductor substrate,
A first light-receiving layer made of a single-layer compound semiconductor;
A semiconductor light-receiving element comprising: a second light-receiving layer having an absorption edge having a longer wavelength than the absorption edge of the first light-receiving layer and having a quantum well structure.
前記第1の受光層は、前記第2の受光層より前記半導体基板から遠い位置に位置し、その第1の受光層に届くように、エピタキシャル層の表面から不純物が導入され、プレーナ構造のpn接合が形成されていることを特徴とする、請求項1に記載の半導体受光素子。   The first light-receiving layer is located farther from the semiconductor substrate than the second light-receiving layer, and impurities are introduced from the surface of the epitaxial layer so as to reach the first light-receiving layer. The semiconductor light receiving element according to claim 1, wherein a junction is formed. 前記第2の受光層よりも光入射面に近い位置に、散乱させて光を透過する層を備えるか、または前記光入射面から前記第2の受光層よりも遠い位置に、光を散乱させて反射する層を備えることを特徴とする、請求項1または2に記載の半導体受光素子。   A layer that scatters and transmits light is provided at a position closer to the light incident surface than the second light receiving layer, or light is scattered at a position farther than the second light receiving layer from the light incident surface. The semiconductor light receiving element according to claim 1, further comprising a reflective layer. 前記半導体基板がInP基板であることを特徴とする、請求項1〜3のいずれかに記載の半導体受光素子。   The semiconductor light receiving element according to claim 1, wherein the semiconductor substrate is an InP substrate. 前記第1の受光層の吸収端が、波長1.7μm〜3μmの範囲内にあることを特徴とする、請求項1〜4のいずれかに記載の半導体受光素子。   5. The semiconductor light receiving element according to claim 1, wherein an absorption edge of the first light receiving layer is in a wavelength range of 1.7 μm to 3 μm. 前記第1の受光層の膜厚が0.1μm以上であることを特徴とする、請求項1〜5のいずれかに記載の半導体受光素子。   The semiconductor light-receiving element according to claim 1, wherein the first light-receiving layer has a thickness of 0.1 μm or more. 前記第1の受光層が、InGaAsN、InGaAsNSbおよびInGaAsNP、のいずれかであることを特徴とする、請求項1〜6のいずれかに記載の半導体受光素子。   The semiconductor light receiving element according to claim 1, wherein the first light receiving layer is one of InGaAsN, InGaAsNSb, and InGaAsNP. 前記第2の受光層がバンド内遷移により受光することを特徴とする、請求項1〜7のいずれかに記載の半導体受光素子。   The semiconductor light receiving element according to claim 1, wherein the second light receiving layer receives light by intraband transition. 前記第2の受光層が1層以上の井戸層を持つことを特徴とする、請求項1〜8のいずれかに記載の半導体受光素子。   The semiconductor light-receiving element according to claim 1, wherein the second light-receiving layer has one or more well layers. 前記第2の受光層の吸収端が、波長3μm〜10μmの範囲内にあることを特徴とする、請求項1〜9のいずれかに記載の半導体受光素子。   10. The semiconductor light receiving element according to claim 1, wherein an absorption edge of the second light receiving layer is in a wavelength range of 3 μm to 10 μm. 前記半導体基板、または前記第1および第2の受光層を前記半導体基板との間に挟むように位置する窓層が、除去されていることを特徴とする、請求項1〜10のいずれかに記載の半導体受光素子。   The window layer positioned so as to sandwich the semiconductor substrate or the first and second light-receiving layers between the semiconductor substrate and the semiconductor substrate is removed. The semiconductor light receiving element as described. 前記半導体受光素子の光入射面と反対側の裏面に、画素領域ごとに位置するアレイ配列の複数の電極を備えることを特徴とする、請求項1〜11のいずれかに記載の半導体受光素子。   The semiconductor light-receiving element according to claim 1, further comprising a plurality of electrodes arranged in an array arranged for each pixel region on a back surface opposite to a light incident surface of the semiconductor light-receiving element. 前記半導体受光素子はpinダイオード構造からなり、前記第1および第2の受光層がアンドープ層であることを特徴とする、請求項1〜12に記載の半導体受光素子。   The semiconductor light-receiving element according to claim 1, wherein the semiconductor light-receiving element has a pin diode structure, and the first and second light-receiving layers are undoped layers. 前記半導体受光素子がアバランシェフォトダイオードであることを特徴とする、請求項1〜12のいずれかに記載の半導体受光素子。   The semiconductor light receiving element according to claim 1, wherein the semiconductor light receiving element is an avalanche photodiode. 前記請求項1〜14のいずれかの半導体受光素子を用いたことを特徴とする、視界支援装置。   A field-of-view support apparatus using the semiconductor light-receiving element according to claim 1. 前記請求項1〜14のいずれかの半導体受光素子を用いたことを特徴とする、生体医療装置。     A biomedical device using the semiconductor light-receiving element according to claim 1.
JP2006337665A 2006-12-14 2006-12-14 Semiconductor light-emitting element, visual-range supporter and organism medical device Pending JP2008153311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337665A JP2008153311A (en) 2006-12-14 2006-12-14 Semiconductor light-emitting element, visual-range supporter and organism medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337665A JP2008153311A (en) 2006-12-14 2006-12-14 Semiconductor light-emitting element, visual-range supporter and organism medical device

Publications (1)

Publication Number Publication Date
JP2008153311A true JP2008153311A (en) 2008-07-03

Family

ID=39655208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337665A Pending JP2008153311A (en) 2006-12-14 2006-12-14 Semiconductor light-emitting element, visual-range supporter and organism medical device

Country Status (1)

Country Link
JP (1) JP2008153311A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009206499A (en) * 2008-02-01 2009-09-10 Sumitomo Electric Ind Ltd Light receiving element, light receiving element array, and manufacturing methods thereof
WO2010029813A1 (en) * 2008-09-11 2010-03-18 住友電気工業株式会社 Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
WO2010032553A1 (en) * 2008-09-22 2010-03-25 住友電気工業株式会社 Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
JP2010142596A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Living body component detection device
WO2010073768A1 (en) * 2008-12-26 2010-07-01 住友電気工業株式会社 Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
WO2010073770A1 (en) * 2008-12-25 2010-07-01 住友電気工業株式会社 Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
WO2010098222A1 (en) 2009-02-25 2010-09-02 浜松ホトニクス株式会社 Photodiode manufacturing method and photodiodes
WO2010098225A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Photodiode and photodiode array
WO2010098201A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Semiconductor photodetection element
WO2010098224A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Semiconductor light-detecting element
WO2010098221A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Photodiode and photodiode array
WO2010140621A1 (en) 2009-06-05 2010-12-09 浜松ホトニクス株式会社 Semiconductor light detecting element and manufacturing method therefor
KR101022651B1 (en) 2009-02-11 2011-03-22 삼성모바일디스플레이주식회사 Photo sensor, the photo sensor apparatus comprising the photosensor, and the display apparatus comprising the same
JP2011101046A (en) * 2011-01-21 2011-05-19 Sumitomo Electric Ind Ltd Imaging apparatus, visual field support apparatus, night vision apparatus, navigation support apparatus, and monitoring apparatus
JP2011137836A (en) * 2011-03-17 2011-07-14 Sumitomo Electric Ind Ltd Moisture detection device, detection device of moisture in living body, detection device of moisture in natural product, and detection device of moisture in product/material
JP2011146725A (en) * 2011-02-21 2011-07-28 Sumitomo Electric Ind Ltd Food quality inspection device, food component inspection device, foreign component inspection device, flavor inspecting device, and transfer-state inspecting device
JP2011151401A (en) * 2011-02-21 2011-08-04 Sumitomo Electric Ind Ltd Biogenic substance detector
US7999231B2 (en) 2008-08-29 2011-08-16 Sumitomo Electric Inductries, Ltd. Moisture detector, biological body moisture detector, natural product moisture detector, and product/material moisture detector
JP2011253834A (en) * 2010-05-31 2011-12-15 Sumitomo Electric Ind Ltd Light receiving element, optical sensor device and method of manufacturing light receiving element
WO2012114849A1 (en) * 2011-02-23 2012-08-30 住友電気工業株式会社 Light-receiving element and method for producing same
JP2012253133A (en) * 2011-06-01 2012-12-20 Hamamatsu Photonics Kk Photodetector
WO2013065639A1 (en) * 2011-11-01 2013-05-10 住友電気工業株式会社 Light receiving element, epitaxial wafer and fabrication method for same
JP2013197547A (en) * 2012-03-22 2013-09-30 Sumitomo Electric Device Innovations Inc Method of manufacturing semiconductor light receiving element
JP2013201465A (en) * 2009-08-01 2013-10-03 Sumitomo Electric Ind Ltd Semiconductor element and manufacturing method of the same
KR20140037917A (en) 2011-07-04 2014-03-27 하마마츠 포토닉스 가부시키가이샤 Photodiode array reference voltage determining method and recommended operation voltage determining method
JP2014138036A (en) * 2013-01-15 2014-07-28 Sumitomo Electric Ind Ltd Light receiving device, method for manufacturing the same, and sensing device
US9691932B2 (en) 2014-09-16 2017-06-27 Kabushiki Kaisha Toshiba Photodetector
JP2017204561A (en) * 2016-05-11 2017-11-16 株式会社東芝 Photodetector, photodetection device, and lidar device
US10347670B2 (en) 2017-03-15 2019-07-09 Kabushiki Kaisha Toshiba Photodetection element
US10353057B2 (en) 2015-07-28 2019-07-16 Kabushiki Kaisha Toshiba Photodetector and LIDAR system including the photodetector
US10600930B2 (en) 2016-03-10 2020-03-24 Kabushiki Kaisha Toshiba Photodetector and LIDAR device using the same
WO2021131759A1 (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor light detection element
WO2021131758A1 (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250379A (en) * 1989-03-23 1990-10-08 Nec Corp Photodetector
JPH03139886A (en) * 1989-10-13 1991-06-14 American Teleph & Telegr Co <Att> Optical element and semiconductor element
JP2000323694A (en) * 1999-05-12 2000-11-24 Fujitsu Ltd Infrared-ray image sensor
WO2005096394A1 (en) * 2004-03-31 2005-10-13 Osram Opto Semiconductors Gmbh Radiation detector
JP2006108675A (en) * 2004-09-30 2006-04-20 Osram Opto Semiconductors Gmbh Beam detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250379A (en) * 1989-03-23 1990-10-08 Nec Corp Photodetector
JPH03139886A (en) * 1989-10-13 1991-06-14 American Teleph & Telegr Co <Att> Optical element and semiconductor element
JP2000323694A (en) * 1999-05-12 2000-11-24 Fujitsu Ltd Infrared-ray image sensor
WO2005096394A1 (en) * 2004-03-31 2005-10-13 Osram Opto Semiconductors Gmbh Radiation detector
JP2006108675A (en) * 2004-09-30 2006-04-20 Osram Opto Semiconductors Gmbh Beam detector

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101032A (en) * 2008-02-01 2011-05-19 Sumitomo Electric Ind Ltd Light receiving element, light receiving element array, and manufacturing methods thereof
JP2009206499A (en) * 2008-02-01 2009-09-10 Sumitomo Electric Ind Ltd Light receiving element, light receiving element array, and manufacturing methods thereof
US8729527B2 (en) 2008-02-01 2014-05-20 Sumitomo Electric Industries, Ltd. Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
US8188559B2 (en) 2008-02-01 2012-05-29 Sumitomo Electric Industries, Ltd. Light-receiving element and light-receiving element array
JP4662188B2 (en) * 2008-02-01 2011-03-30 住友電気工業株式会社 Light receiving element, light receiving element array and manufacturing method thereof
US7999231B2 (en) 2008-08-29 2011-08-16 Sumitomo Electric Inductries, Ltd. Moisture detector, biological body moisture detector, natural product moisture detector, and product/material moisture detector
JP2010067861A (en) * 2008-09-11 2010-03-25 Sumitomo Electric Ind Ltd Image capturing apparatus, view field support apparatus, night vision apparatus, navigation support apparatus, and monitoring apparatus
US8243139B2 (en) 2008-09-11 2012-08-14 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
WO2010029813A1 (en) * 2008-09-11 2010-03-18 住友電気工業株式会社 Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
US8564666B2 (en) 2008-09-11 2013-10-22 Sumitomo Electric Industries, Ltd. Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
JP2010074099A (en) * 2008-09-22 2010-04-02 Sumitomo Electric Ind Ltd Device for inspecting food quality, food composition, foreign matter composition, eating quality and change state
US8546758B2 (en) 2008-09-22 2013-10-01 Sumitomo Electric Industries, Ltd. Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
EP2330630A4 (en) * 2008-09-22 2016-12-28 Sumitomo Electric Industries Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
WO2010032553A1 (en) * 2008-09-22 2010-03-25 住友電気工業株式会社 Food quality examination device, food component examination device, foreign matter component examination device, taste examination device, and changed state examination device
WO2010073769A1 (en) * 2008-12-22 2010-07-01 住友電気工業株式会社 Biological component detection device
US8373156B2 (en) 2008-12-22 2013-02-12 Sumitomo Electric Industries, Ltd. Biological component detection device
JP2010142596A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Living body component detection device
CN102264295A (en) * 2008-12-22 2011-11-30 住友电气工业株式会社 Biological component detection device
US8624189B2 (en) 2008-12-25 2014-01-07 Sumitomo Electric Industries, Ltd. Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
JP2010151690A (en) * 2008-12-25 2010-07-08 Sumitomo Electric Ind Ltd Gas monitoring device, combustion state monitoring device, aging monitoring device, and impurity concentration monitoring device
WO2010073770A1 (en) * 2008-12-25 2010-07-01 住友電気工業株式会社 Gas monitoring device, combustion state monitoring device, secular change monitoring device, and impurity concentration monitoring device
WO2010073768A1 (en) * 2008-12-26 2010-07-01 住友電気工業株式会社 Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
CN102265411A (en) * 2008-12-26 2011-11-30 住友电气工业株式会社 Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
KR101022651B1 (en) 2009-02-11 2011-03-22 삼성모바일디스플레이주식회사 Photo sensor, the photo sensor apparatus comprising the photosensor, and the display apparatus comprising the same
US8779480B2 (en) 2009-02-11 2014-07-15 Samsung Display Co., Ltd. Photosensor, photosensor apparatus including the photosensor, and display apparatus including the photosensor apparatus
US8994135B2 (en) 2009-02-24 2015-03-31 Hamamatsu Photonics K.K. Photodiode and photodiode array
EP3467875A1 (en) 2009-02-24 2019-04-10 Hamamatsu Photonics K.K. Photodiode array
KR20110131171A (en) 2009-02-24 2011-12-06 하마마츠 포토닉스 가부시키가이샤 Photodiode and photodiode array
KR20170038094A (en) 2009-02-24 2017-04-05 하마마츠 포토닉스 가부시키가이샤 Semiconductor light-detecting element
KR20110136789A (en) 2009-02-24 2011-12-21 하마마츠 포토닉스 가부시키가이샤 Photodiode and photodiode array
US9614109B2 (en) 2009-02-24 2017-04-04 Hamamatsu Photonics K.K. Photodiode and photodiode array
KR20170015546A (en) 2009-02-24 2017-02-08 하마마츠 포토닉스 가부시키가이샤 Semiconductor photodetection element
WO2010098224A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Semiconductor light-detecting element
US9419159B2 (en) 2009-02-24 2016-08-16 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US9190551B2 (en) 2009-02-24 2015-11-17 Hamamatsu Photonics K.K. Photodiode and photodiode array
WO2010098225A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Photodiode and photodiode array
US8742528B2 (en) 2009-02-24 2014-06-03 Hamamatsu Photonics K.K. Photodiode and photodiode array
KR20110128789A (en) 2009-02-24 2011-11-30 하마마츠 포토닉스 가부시키가이샤 Semiconductor photodetection element
EP3467882A1 (en) 2009-02-24 2019-04-10 Hamamatsu Photonics K.K. Photodiode and photodiode array
US8916945B2 (en) 2009-02-24 2014-12-23 Hamamatsu Photonics K.K. Semiconductor light-detecting element
EP3399558A1 (en) 2009-02-24 2018-11-07 Hamamatsu Photonics K.K. Semiconductor light-detecting element
WO2010098201A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Semiconductor photodetection element
US9972729B2 (en) 2009-02-24 2018-05-15 Hamamatsu Photonics K.K. Photodiode and photodiode array
WO2010098221A1 (en) 2009-02-24 2010-09-02 浜松ホトニクス株式会社 Photodiode and photodiode array
US8629485B2 (en) 2009-02-24 2014-01-14 Hamamatsu Photonics K.K. Semiconductor photodetection element
US8564087B2 (en) 2009-02-25 2013-10-22 Hamamatsu Photonics K.K. Photodiode manufacturing method and photodiodes
WO2010098222A1 (en) 2009-02-25 2010-09-02 浜松ホトニクス株式会社 Photodiode manufacturing method and photodiodes
WO2010140621A1 (en) 2009-06-05 2010-12-09 浜松ホトニクス株式会社 Semiconductor light detecting element and manufacturing method therefor
JP2013201465A (en) * 2009-08-01 2013-10-03 Sumitomo Electric Ind Ltd Semiconductor element and manufacturing method of the same
JP2011253834A (en) * 2010-05-31 2011-12-15 Sumitomo Electric Ind Ltd Light receiving element, optical sensor device and method of manufacturing light receiving element
JP2011101046A (en) * 2011-01-21 2011-05-19 Sumitomo Electric Ind Ltd Imaging apparatus, visual field support apparatus, night vision apparatus, navigation support apparatus, and monitoring apparatus
JP2011146725A (en) * 2011-02-21 2011-07-28 Sumitomo Electric Ind Ltd Food quality inspection device, food component inspection device, foreign component inspection device, flavor inspecting device, and transfer-state inspecting device
JP2011151401A (en) * 2011-02-21 2011-08-04 Sumitomo Electric Ind Ltd Biogenic substance detector
JP2012174977A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Light-receiving element and manufacturing method therefor
WO2012114849A1 (en) * 2011-02-23 2012-08-30 住友電気工業株式会社 Light-receiving element and method for producing same
JP2011137836A (en) * 2011-03-17 2011-07-14 Sumitomo Electric Ind Ltd Moisture detection device, detection device of moisture in living body, detection device of moisture in natural product, and detection device of moisture in product/material
JP2012253133A (en) * 2011-06-01 2012-12-20 Hamamatsu Photonics Kk Photodetector
KR20140037917A (en) 2011-07-04 2014-03-27 하마마츠 포토닉스 가부시키가이샤 Photodiode array reference voltage determining method and recommended operation voltage determining method
JP2013098385A (en) * 2011-11-01 2013-05-20 Sumitomo Electric Ind Ltd Light receiving element, epitaxial wafer, and manufacturing method of the same
WO2013065639A1 (en) * 2011-11-01 2013-05-10 住友電気工業株式会社 Light receiving element, epitaxial wafer and fabrication method for same
JP2013197547A (en) * 2012-03-22 2013-09-30 Sumitomo Electric Device Innovations Inc Method of manufacturing semiconductor light receiving element
JP2014138036A (en) * 2013-01-15 2014-07-28 Sumitomo Electric Ind Ltd Light receiving device, method for manufacturing the same, and sensing device
US9691932B2 (en) 2014-09-16 2017-06-27 Kabushiki Kaisha Toshiba Photodetector
US10353057B2 (en) 2015-07-28 2019-07-16 Kabushiki Kaisha Toshiba Photodetector and LIDAR system including the photodetector
US10600930B2 (en) 2016-03-10 2020-03-24 Kabushiki Kaisha Toshiba Photodetector and LIDAR device using the same
JP2017204561A (en) * 2016-05-11 2017-11-16 株式会社東芝 Photodetector, photodetection device, and lidar device
US10347670B2 (en) 2017-03-15 2019-07-09 Kabushiki Kaisha Toshiba Photodetection element
WO2021131759A1 (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor light detection element
WO2021131758A1 (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector
JP2021100058A (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector
JP2021100057A (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector

Similar Documents

Publication Publication Date Title
JP2008153311A (en) Semiconductor light-emitting element, visual-range supporter and organism medical device
EP2560214B1 (en) Semiconductor wafer for a light-receiving element or a light-receiving element array in near infrared-region
JP4963120B2 (en) Optical field effect transistor and integrated photo detector using the same
US8564666B2 (en) Image pickup device, visibility support apparatus, night vision device, navigation support apparatus, and monitoring device
US7271405B2 (en) Intersubband detector with avalanche multiplier region
US7932496B2 (en) Infrared detector, infrared detecting apparatus, and method of manufacturing infrared detector
JP2010067861A5 (en)
US8921829B2 (en) Light receiving element, light receiving element array, hybrid-type detecting device, optical sensor device, and method for producing light receiving element array
EP2302678A2 (en) Light detector, light detecting apparatus, infrared detector and infrared detecting apparatus
JP2014209625A (en) Fully colored single pixel equipped with two or four sets of silicon nano wires for image sensor
US10612971B2 (en) Plasmonic avalanche photodetection
JP2008205001A (en) Photodetecting element, sensor and imaging device
CN106340553B (en) Electron transport passage is the quanta cascade infrared detector of oblique transition microstrip type
JP2011204919A (en) Semiconductor wafer, light receiving element, light receiving element array, hybrid type detection device, optical sensor device, and method of manufacturing light receiving element array
JP2011192838A (en) Light-receiving element, light-receiving element array, hybrid detecting device, photo sensor device, and manufacturing method for light-receiving element array
Rutz et al. SWIR photodetector development at Fraunhofer IAF
JP2009099907A (en) Light receiving element array and imaging device
JP2014110391A (en) Light-receiving element array, manufacturing method of the same and sensing device
WO2014002082A2 (en) Photodetector device
CN111628013B (en) Silicon-based annular multiband detector and manufacturing method thereof
JP2011258817A (en) Light receiving element, light receiving element array, hybrid detector, optical sensor device, and method for manufacturing light receiving element array
EP4170733A1 (en) Photodiode and electronic device including the same
JP4706805B2 (en) Imaging device, visual field support device, night vision device, navigation support device, and monitoring device
Ban et al. 1.5-µm optical up-conversion: wafer fusion and related issues
JP2008124182A (en) Optical detector and field of view supporting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120720