JP2008123868A - Cell voltage balancing device of secondary battery - Google Patents

Cell voltage balancing device of secondary battery Download PDF

Info

Publication number
JP2008123868A
JP2008123868A JP2006307287A JP2006307287A JP2008123868A JP 2008123868 A JP2008123868 A JP 2008123868A JP 2006307287 A JP2006307287 A JP 2006307287A JP 2006307287 A JP2006307287 A JP 2006307287A JP 2008123868 A JP2008123868 A JP 2008123868A
Authority
JP
Japan
Prior art keywords
voltage
current
cell
current path
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006307287A
Other languages
Japanese (ja)
Inventor
Shinsaku Kuroda
真作 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2006307287A priority Critical patent/JP2008123868A/en
Publication of JP2008123868A publication Critical patent/JP2008123868A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly equalize the voltages of single cells. <P>SOLUTION: In the cell voltage balancing device of a secondary battery for equalizing the cell voltages of respective single cells 1a by connecting a current path CP with resistors 3a and 3c in parallel with each of the respective single cells 1a and making a current flow to the current path CP, a current control means CC for controlling the size of the current to be made to flow to the current path CP is provided. When the voltage of the single cell 1a is elevated to be equal to or higher than a balance operation start voltage set at a voltage value lower than a charging target voltage, the current control means CC executes control for each single cell 1a so that the current made to flow to the current path CP connected in parallel with the single cell 1a may increase as the difference between the voltage of the single cell 1a and the balance operation start voltage is large, according to the difference. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の単電池を直列接続して構成された組電池に対して、抵抗を有する電流路が各単電池の夫々と並列に接続され、前記電流路に電流を流すことにより各単電池の電池電圧を均等化する二次電池のセル電圧バランス装置に関する。   The present invention relates to an assembled battery configured by connecting a plurality of single cells in series, and a current path having a resistance is connected in parallel to each of the single cells, and each unit is configured to flow a current through the current path. The present invention relates to a cell voltage balance device for a secondary battery that equalizes the battery voltage of the battery.

複数の単電池にて構成される組電池を機器等に組み込んで組電池への充電や組電池からの放電を行う場合、組電池を構成する各単電池の特性ばらつきによって、同時に充放電を行っても充電の進行の程度及び劣化の程度が異なって電池電圧や内部抵抗などの電池特性が単電池間でばらついてしまう場合が少なくない。
このような単電池間の電圧のばらつきを放置すると、一部の単電池に負担がかかり劣化が促進されることになるため、下記特許文献1にも記載されているような、各単電池の電圧を均等化する装置を備えて単電池間の電圧ばらつきを抑制することが考えられている。
各単電池の電圧を均等化するための回路構成としては種々のものが考えられるが、下記特許文献1にも記載のような直列接続された抵抗とスイッチ装置との対を各単電池と並列に接続する回路構成をとるものが良く知られている。
単電池と並列に接続する抵抗及びスイッチ装置の対の使用形態としては、下記特許文献1に記載のように、各単電池間のばらつきが大きくなったときに、電圧の高い単電池について、スイッチ装置を閉じ状態に切換えて、抵抗及びスイッチ装置の対を通して充電電流をバイパスさせると共にその単電池を放電させる、という手法が考えられている。
特開平10−050352号公報
When an assembled battery composed of a plurality of single cells is incorporated into a device, etc., and charged or discharged from the assembled battery, charging and discharging are performed simultaneously due to variations in the characteristics of the individual cells constituting the assembled battery. However, there are many cases where the battery characteristics such as battery voltage and internal resistance vary among the single cells due to differences in the degree of progress and deterioration of charging.
If such a variation in voltage between the single cells is left unattended, some single cells are burdened and deterioration is promoted. Therefore, as described in Patent Document 1 below, It is considered to provide a device for equalizing the voltage to suppress voltage variation between the single cells.
Various circuit configurations for equalizing the voltage of each unit cell are conceivable, but a pair of a resistor and a switch device connected in series as described in Patent Document 1 below is parallel to each unit cell. Those having a circuit configuration to be connected to are well known.
As a usage pattern of a pair of a resistor and a switch device connected in parallel with the unit cell, as described in Patent Document 1 below, when the variation between the unit cells is large, A method has been considered in which the device is switched to a closed state so that the charging current is bypassed and the cell is discharged through a pair of a resistor and a switch device.
JP-A-10-0050352

しかしながら、上記従来構成では、各単電池と並列に接続された抵抗の抵抗値を小さくしてたくさんの電流を逃がしてやることで、各単電池の電圧の均等化を急速に進行させることができるようにも考えられるが、実際にはそのようには行かない。
この理由を、単電池と並列に接続された抵抗へ単電池から放電する場合における単電池の電圧変化を概略的に示す図7を用いて簡単に説明する。
抵抗へ逃がす電流の電流値を大きく設定すると、抵抗への通電開始に伴って、電圧均等化のための目標電圧に向かって単電池の電圧は急速に低下する(図7(a)及び(b))。
However, in the above-described conventional configuration, by equalizing the voltage of each unit cell, the resistance value of the resistor connected in parallel with each unit cell can be reduced to release a lot of current. It seems like, but in fact it doesn't go that way.
The reason for this will be briefly described with reference to FIG. 7 schematically showing the voltage change of the cell when discharging from the cell to the resistor connected in parallel with the cell.
When the current value of the current released to the resistor is set to be large, the voltage of the single cell rapidly decreases toward the target voltage for voltage equalization with the start of energization of the resistor (FIGS. 7A and 7B). )).

単電池の電圧が電圧均等化の目標電圧まで低下すると、抵抗への通電は停止されるのであるが、このように急速に単電池の電圧を低下させた場合は、抵抗へ通電するのを停止したからと言って単電池の電圧がその時点の電圧で安定するわけではない。
すなわち、抵抗への通電を停止しても、単電池の内部で化学反応が進行し、図7(c)のように単電池の電圧が大きく上昇してしまうのである。
この単電池の電圧上昇に伴って、単電池の電圧を低下させるべく抵抗への通電が再開するので、以降は、抵抗への通電による単電池の電圧低下と抵抗への通電停止による単電池の電圧上昇とを繰り返して、単電池の電圧が振動状態で昇降してしまうことになる。
従って、抵抗に逃がす電流の電流値を大きい値に設定して単電池の電圧の均等化を急速に進行させるようにしたつもりが、単電池の電圧を振動的に変化させてなかなか安定しない状態としてしまうのである。
これに対して、単電池と並列に接続した抵抗に逃がす電流の電流値を小さい値に設定すると、上記のような単電池の電圧の振動的な変化は抑制できるが、単電池の電圧の低下速度自体が遅くなるので、電圧の均等化が遅れることになる。
本発明は、かかる実情に鑑みてなされたものであって、その目的は、単電池の電圧の均等化をより迅速に行えるようにする点にある。
When the cell voltage drops to the target voltage for voltage equalization, the energization to the resistor is stopped, but when the cell voltage is rapidly reduced in this way, the energization to the resistor is stopped. However, the voltage of the single cell does not stabilize at the current voltage.
That is, even if the current supply to the resistor is stopped, the chemical reaction proceeds inside the unit cell, and the voltage of the unit cell greatly increases as shown in FIG.
As the voltage of the unit cell rises, energization to the resistor is resumed in order to reduce the voltage of the unit cell. Henceforth, the unit cell voltage decreases due to the energization of the resistor and the energization of the unit is stopped. The voltage rise is repeated, and the voltage of the unit cell rises and falls in a vibrating state.
Therefore, the current value of the current that escapes to the resistor is set to a large value so that the equalization of the voltage of the single cell proceeds rapidly, but the voltage of the single cell is changed oscillatingly so that it is not stable. It ends up.
On the other hand, if the current value of the current that escapes to the resistor connected in parallel with the unit cell is set to a small value, the above-described vibrational change in the unit cell voltage can be suppressed, but the unit cell voltage decreases. Since the speed itself is slow, voltage equalization is delayed.
The present invention has been made in view of such circumstances, and an object of the present invention is to make it possible to more quickly equalize the voltages of the unit cells.

本出願の第1の発明は、複数の単電池を直列接続して構成された組電池に対して、抵抗を有する電流路が各単電池の夫々と並列に接続され、前記電流路に電流を流すことにより各単電池の電池電圧を均等化する二次電池のセル電圧バランス装置において、前記電流路に流す電流の大小を制御する電流制御手段が備えられ、前記電流制御手段は、前記単電池の電圧が充電目標電圧よりも低い電圧値に設定されているバランス動作開始電圧以上に上昇したときに、前記単電池の電圧と前記バランス動作開始電圧との差に応じて、その差が大である程、前記単電池と並列に接続されている前記電流路に流す電流が大となるように、前記単電池毎に制御するように構成されている。   In the first invention of the present application, a current path having a resistance is connected in parallel to each of the unit cells, and a current is supplied to the current path with respect to the assembled battery configured by connecting a plurality of unit cells in series. In the cell voltage balance device of the secondary battery that equalizes the battery voltage of each single battery by flowing, a current control means for controlling the magnitude of the current flowing through the current path is provided, and the current control means includes the single battery When the voltage of the battery rises above the balance operation start voltage set to a voltage value lower than the charge target voltage, the difference is large depending on the difference between the voltage of the single cell and the balance operation start voltage. The unit is configured to control each unit cell so that the current flowing through the current path connected in parallel with the unit cell increases.

すなわち、組電池を構成する何れかの単電池の電池電圧が前記バランス動作開始電圧以上となったとき、その単電池と並列に接続されている電流路に電流が逃がされる。
このとき、前記電流路に流れる電流の電流値は、単電池の電圧が前記バランス動作開始電圧を超える程度が大きい程、大となる。
従って、単電池を放電させて均等化する場合では、単電池の電圧が前記バランス動作開始電圧から大きくかけ離れているときは、単電池の電圧は高速に前記バランス動作開始電圧へと低下し、単電池の電圧が前記バランス動作開始電圧に近づくと、単電池の電圧が低下するスピードは遅くなって緩やかに前記バランス動作開始電圧に向かうことになる。
この結果、前記バランス動作開始電圧に近づいて、前記電流路への通電を停止しても、その後の単電池の電圧上昇を十分に抑制することができる。
That is, when the battery voltage of any single battery constituting the assembled battery becomes equal to or higher than the balance operation start voltage, the current is released to the current path connected in parallel with the single battery.
At this time, the current value of the current flowing through the current path increases as the degree to which the voltage of the single cell exceeds the balance operation start voltage is increased.
Therefore, in the case where the cells are discharged and equalized, when the voltage of the cells is far from the balance operation start voltage, the voltage of the cells decreases to the balance operation start voltage at a high speed. When the voltage of the battery approaches the balance operation start voltage, the speed at which the voltage of the cell decreases is slowed down and gradually toward the balance operation start voltage.
As a result, even if energization to the current path is stopped near the balance operation start voltage, the subsequent voltage increase of the unit cell can be sufficiently suppressed.

又、本出願の第2の発明は、上記第1の発明の構成に加えて、前記電流路の抵抗が複数個の抵抗にて構成されると共に、前記複数の抵抗への通電を個別に入り切りするためのスイッチ装置が前記電流路に備えられ、前記電流制御手段は、前記スイッチ装置の開閉を制御するように構成されている。
すなわち、前記単電池の電圧と前記バランス動作開始電圧との差に応じて、その差が大である程、前記単電池と並列に接続されている前記電流路に流す電流が大となるように制御するための構成として、前記電流路に備えられる複数個の抵抗について個別に通電を入り切りして、前記電流路の実質的な抵抗値を複数段階に変化させる。
According to a second aspect of the present application, in addition to the configuration of the first aspect of the invention, the current path is composed of a plurality of resistors, and energization of the plurality of resistors is individually performed. A switch device is provided in the current path, and the current control means is configured to control opening and closing of the switch device.
That is, according to the difference between the voltage of the unit cell and the balance operation start voltage, the larger the difference, the larger the current flowing through the current path connected in parallel with the unit cell. As a configuration for controlling, energization is individually turned on and off for a plurality of resistors provided in the current path, and a substantial resistance value of the current path is changed in a plurality of stages.

又、本出願の第3の発明は、上記第1の発明に構成に加えて、前記電流制御手段は、前記単電池の電圧と前記バランス動作開始電圧との差に相当する電圧を出力するアナログ演算回路と、そのアナログ演算回路の出力電圧に相当する電流が前記電流路の前記抵抗に流れるように制御する電圧−電流変換回路とを備えて構成されている。
すなわち、前記単電池の電圧と前記バランス動作開始電圧との差に応じて、その差が大である程、前記単電池と並列に接続されている前記電流路に流す電流が大となるように制御するための構成として、電圧−電流変換回路を備えて、電圧制御にて前記電流路に逃がす電流値を設定すると共に、その電圧−電流変換回路に電流値を指示するための電圧を、単電池の電圧と前記バランス動作開始電圧との差に相当する電圧をアナログ演算回路にて生成する。
従って、前記電流路に流れる電流は、単電池の電圧と前記バランス動作開始電圧との差に対してリニアに且つ連続的に変化する。
According to a third invention of the present application, in addition to the configuration of the first invention, the current control means outputs an analog corresponding to a difference between the voltage of the unit cell and the balance operation start voltage. An arithmetic circuit and a voltage-current conversion circuit that controls the current corresponding to the output voltage of the analog arithmetic circuit to flow through the resistor in the current path are configured.
That is, according to the difference between the voltage of the unit cell and the balance operation start voltage, the larger the difference, the larger the current flowing through the current path connected in parallel with the unit cell. As a configuration for controlling, a voltage-current conversion circuit is provided, a current value to be released to the current path is set by voltage control, and a voltage for instructing the current value to the voltage-current conversion circuit is simply set. A voltage corresponding to the difference between the battery voltage and the balance operation start voltage is generated by an analog arithmetic circuit.
Therefore, the current flowing through the current path changes linearly and continuously with respect to the difference between the voltage of the unit cell and the balance operation start voltage.

上記第1の発明によれば、単電池の電圧が前記バランス動作開始電圧から大きくかけ離れているときは、単電池の電圧は高速に前記バランス動作開始電圧へと低下し、前記バランス動作開始電圧に近づいて、前記電流路への通電を停止しても、その後の単電池の電圧上昇を十分に抑制することができる。
これによって、前記電流路へ電流を逃がすことによる単電池の電圧の均等化をより迅速に行えるものとなった。
又、上記第2の発明によれば、前記電流路に備えられる複数個の抵抗について個別に通電を入り切りして、前記電流路の実質的な抵抗値を複数段階に変化させるので、比較的に簡素な構成で迅速な電圧の均等化を図れる。
又、上記第3の発明によれば、前記電流路に流れる電流は、単電池の電圧と前記バランス動作開始電圧との差に対してリニアに且つ連続的に変化するので、例えば単電池と並列に接続する抵抗の抵抗値を段階的に切換え制御するような構成に比べて各単電池毎の電圧のばらつきをより一層抑制できる。
According to the first aspect of the invention, when the voltage of the unit cell is far from the balance operation start voltage, the voltage of the unit cell is rapidly reduced to the balance operation start voltage, and the balance operation start voltage is reduced. Even if it approaches and stops the energization to the said current path, the subsequent voltage rise of the cell can be suppressed sufficiently.
As a result, the voltage of the unit cells can be equalized more quickly by letting the current flow to the current path.
According to the second aspect of the invention, since the plurality of resistors provided in the current path are individually turned on and off, and the substantial resistance value of the current path is changed in a plurality of stages. Quick voltage equalization can be achieved with a simple configuration.
According to the third aspect of the invention, the current flowing through the current path changes linearly and continuously with respect to the difference between the voltage of the unit cell and the balance operation start voltage. As compared with the configuration in which the resistance value of the resistor connected to the switch is controlled in a stepwise manner, it is possible to further suppress the variation in voltage of each unit cell.

すなわち、単電池と並列に接続する抵抗の抵抗値を段階的に切換える手法では、抵抗値を同じ値に設定しても、各単電池毎に内部抵抗が多少ばらつくことに起因して前記電流路に流れる電流の電流値が微妙にばらついてしまう。この電流値のばらつきは、単電池の電圧が前記バランス動作開始電圧に近づいて低い電流値となっている状態においても、最終的に安定する電池電圧を各単電池間でばらつかせてしまう原因となる。
これに対して、単電池の電圧と前記バランス動作開始電圧との差に基づいて前記電流路に流れる電流を設定する回路構成とすることで、各単電池の内部抵抗のばらつきには影響を受けずに前記電流路に流れる電流の電流値が設定されることになり、しかも、その電流値は単電池の電圧と前記バランス動作開始電圧との差に対してリニアに且つ連続的に変化するので、各単電池間の電圧のばらつきがきわめて精度良く抑制されることになる。
That is, in the method of switching the resistance value of the resistor connected in parallel with the unit cell in a stepwise manner, even if the resistance value is set to the same value, the internal resistance varies somewhat for each unit cell. The current value of the current flowing through the subtle varies. This variation in the current value is the cause that the finally stable battery voltage varies among the single cells even when the voltage of the single cells approaches the balance operation start voltage and becomes a low current value. It becomes.
On the other hand, by adopting a circuit configuration in which the current flowing through the current path is set based on the difference between the voltage of the unit cell and the balance operation start voltage, it is affected by variations in the internal resistance of each unit cell. Therefore, the current value of the current flowing through the current path is set, and the current value changes linearly and continuously with respect to the difference between the voltage of the unit cell and the balance operation start voltage. Thus, variations in voltage between the single cells are suppressed with extremely high accuracy.

以下、本発明の二次電池のセル電圧バランス装置の実施の形態を、二次電池の一例であるリチウムイオン電池の充電装置の一部として備える場合について、図面に基づいて説明する。
<第1実施形態>
本第1実施形態において充電の対象となるリチウムイオン電池1は、図1に示すように、複数の単電池1aを直列接続して組電池として構成されたものであり、そのリチウムイオン電池1を充電する充電装置BCは、リチウムイオン電池1へ充電電流を供給する充電電源2と、セル電圧バランス装置3とを備えて構成されている。
本第1実施形態の充電装置BCは、充電対象のリチウムイオン電池1と共に航空機あるいは自動車等の移動体に搭載されて、その移動体の動力機器等に大電流を供給する場合を想定しており、リチウムイオン電池1を構成する単電池1aの個数は図1に示すものよりも多いが、説明の便宜上単電池1aの個数が4個であるとして説明する。
尚、本第1実施形態では、図面等において単電池1aを適宜に「セル」と表現する場合がある。
Hereinafter, the case where the embodiment of the cell voltage balance device of the secondary battery of the present invention is provided as a part of a charging device of a lithium ion battery which is an example of a secondary battery will be described based on the drawings.
<First Embodiment>
As shown in FIG. 1, a lithium ion battery 1 to be charged in the first embodiment is configured as a battery pack by connecting a plurality of single cells 1a in series. The charging device BC for charging includes a charging power source 2 that supplies a charging current to the lithium ion battery 1 and a cell voltage balance device 3.
The charging device BC of the first embodiment is assumed to be mounted on a mobile object such as an aircraft or an automobile together with the lithium ion battery 1 to be charged, and supply a large current to a power device or the like of the mobile object. Although the number of unit cells 1a constituting the lithium ion battery 1 is larger than that shown in FIG. 1, it is assumed that the number of unit cells 1a is four for convenience of explanation.
In the first embodiment, the unit cell 1a may be appropriately expressed as “cell” in the drawings and the like.

セル電圧バランス装置3は、直列接続された抵抗3a及びスイッチ装置3bの対と、同じく直列接続された抵抗3c及びスイッチ装置3dの対とが、各単電池1aの夫々に対して並列に接続されて構成されており、抵抗3a,3cを有する電流路CPが各単電池1aの夫々と並列に接続されている。
セル電圧バランス装置3の各単電池1aに対応する回路部分には、更に、スイッチ装置3b,3dの開閉(オンオフ)を制御する制御回路3eが備えられている。
スイッチ装置3b,3dは、バイポーラ型のトランジスタにて構成されている。
制御回路3eがスイッチ装置3b,3dの開閉を制御して、電流路CPに電流を流すことにより、各単電池1aの電池電圧を均等化する。
In the cell voltage balance device 3, a pair of a resistor 3a and a switch device 3b that are connected in series and a pair of a resistor 3c and a switch device 3d that are also connected in series are connected in parallel to each of the unit cells 1a. A current path CP having resistors 3a and 3c is connected in parallel with each of the single cells 1a.
The circuit portion corresponding to each unit cell 1a of the cell voltage balance device 3 is further provided with a control circuit 3e for controlling opening / closing (ON / OFF) of the switch devices 3b and 3d.
The switch devices 3b and 3d are composed of bipolar transistors.
The control circuit 3e controls the opening and closing of the switch devices 3b and 3d and causes the current to flow through the current path CP, thereby equalizing the battery voltage of each unit cell 1a.

本第1実施形態では、抵抗3aを75Ω、抵抗3cを22Ωとして、抵抗3aと抵抗3cとは異なる抵抗値のものを使用している。
このように電流路CPに備える抵抗を複数個の抵抗3a,3cにて構成し、それら複数の抵抗3a,3cへの通電を個別に入り切りするスイッチ装置3b,3dを電流路CPに備えることで、スイッチ装置3b,3dの開閉を適宜に切換えて、電流路CPの実効的なインピーダンスを切換える。
In the first embodiment, the resistor 3a is set to 75Ω, the resistor 3c is set to 22Ω, and the resistors 3a and 3c having different resistance values are used.
In this way, the resistance provided in the current path CP is constituted by a plurality of resistors 3a and 3c, and the current path CP is provided with switch devices 3b and 3d for individually turning on and off the plurality of resistors 3a and 3c. The switch devices 3b and 3d are appropriately switched to open and close to switch the effective impedance of the current path CP.

この電流路CPでの実効的なインピーダンスの切換えについて、便宜上、スイッチ装置3b,3dの双方を閉じ状態(オン状態)として、抵抗3a,3cの双方に通電する場合を「モード1」、スイッチ装置3bを開き状態(オフ状態),スイッチ装置3dを閉じ状態(オン状態)として、抵抗3aには通電せずに抵抗3cのみに通電する場合を「モード2」、スイッチ装置3bを閉じ状態(オン状態),スイッチ装置3dを開き状態(オフ状態)として、抵抗3aのみに通電し抵抗3cには通電しない場合を「モード3」、スイッチ装置3b,3dの双方を開き状態(オフ状態)として、抵抗3a,3cの双方に通電しない場合を「モード4」として説明する。   Regarding the effective impedance switching in the current path CP, for convenience, when both the switch devices 3b and 3d are closed (on state) and both the resistors 3a and 3c are energized, “mode 1”, the switch device 3b is in the open state (off state), the switch device 3d is in the closed state (on state), and only the resistor 3c is energized without energizing the resistor 3a is “mode 2”, and the switch device 3b is in the closed state (on) State), the switch device 3d is in the open state (off state), the case where only the resistor 3a is energized and the resistor 3c is not energized is "mode 3", and both the switch devices 3b and 3d are in the open state (off state) The case where the resistors 3a and 3c are not energized will be described as “mode 4”.

仮に、単電池1aの電圧が4.0Vであるとすると、「モード1」では電流路CPには262mA、「モード2」では電流路CPには182mA、「モード3」では電流路CPには53mA、「モード4」では電流路CPには0mAの電流が流れ、充電電源2から供給される電流あるいは単電池1aからの放電電流を電流路CPに逃がすことになる。   Assuming that the voltage of the unit cell 1a is 4.0 V, the current path CP is 262 mA in the “mode 1”, the current path CP is 182 mA in the “mode 2”, and the current path CP is “mode 3”. In 53 mA, “mode 4”, a current of 0 mA flows in the current path CP, and the current supplied from the charging power source 2 or the discharge current from the unit cell 1 a is released to the current path CP.

制御回路3eは、上記のようにスイッチ装置3b,3dのオンオフを切換えて、「モード1」,「モード2」,「モード3」及び「モード4」の夫々に設定するために図2に示す回路を備えている。
図2に示す制御回路3eは、1つの単電池1aに対応する制御回路3eを抜き出して示すものであり、回路の接続状態を分り易くするために、単電池1a,抵抗3a,3c及びスイッチ装置3b,3dも併せて図示している。
The control circuit 3e switches on and off the switching devices 3b and 3d as described above, and sets them to “mode 1”, “mode 2”, “mode 3” and “mode 4” as shown in FIG. It has a circuit.
The control circuit 3e shown in FIG. 2 is an extracted control circuit 3e corresponding to one single cell 1a, and in order to make the connection state of the circuit easy to understand, the single cell 1a, resistors 3a and 3c, and a switch device 3b and 3d are also illustrated.

制御回路3eは、単電池1aの電圧によって上記の4つのモードを切換える。
具体的には、制御回路3eは、図3に縦軸で示す単電池1aの電圧(セル電圧)が、「Vb」未満では「モード4」に、「Vb」以上「Vm」未満では「モード3」に、「Vm」以上「Vt」未満では「モード2」に、「Vt」以上では「モード1」に設定するように、スイッチ装置3b,3dの開閉を制御する。
ここで、Vt>Vm>Vb>0であり、「Vt」は、充電装置BCによる各単電池1aの充電目標電圧であり、「Vb」は、その充電目標電圧よりも低い電圧に設定されているバランス動作開始電圧である。
「Vm」は、ここでは、「Vb」と「Vt」との中間位置に設定している。
具体的な数値例で示すと、「Vt」は4.025V、「Vm」は4.013V、「Vb」は4.000Vのように設定できる。
The control circuit 3e switches between the above four modes according to the voltage of the unit cell 1a.
Specifically, the control circuit 3e sets “mode 4” when the voltage (cell voltage) of the unit cell 1a indicated by the vertical axis in FIG. The switch devices 3b and 3d are controlled to be opened and closed so that “3” is set to “mode 2” when “Vm” or more and less than “Vt”, and “mode 1” is set to “Vt” or more.
Here, Vt>Vm>Vb> 0, “Vt” is a charging target voltage of each unit cell 1a by the charging device BC, and “Vb” is set to a voltage lower than the charging target voltage. This is the balance operation start voltage.
Here, “Vm” is set at an intermediate position between “Vb” and “Vt”.
As a specific numerical example, “Vt” can be set to 4.025V, “Vm” can be set to 4.013V, and “Vb” can be set to 4.0000V.

制御回路3eには、「Vb」に相当する基準電圧を出力するツェナーダイオード41、「Vm」に相当する基準電圧を出力するツェナーダイオード42、及び、「Vt」に相当する基準電圧を出力するツェナーダイオード43が備えられており、これらのツェナーダイオード41,42,43が出力する基準電圧と、単電池1aの電圧(セル電圧)とをコンパレータ44,45,46,47にて比較して、その比較結果の出力によって上記の各モードの切換えを行う。
尚、これらの基準電圧の生成するための電源としては、一対の端子T1,T2から例えば15Vの電圧が別途供給されている。
The control circuit 3e includes a Zener diode 41 that outputs a reference voltage corresponding to “Vb”, a Zener diode 42 that outputs a reference voltage corresponding to “Vm”, and a Zener that outputs a reference voltage corresponding to “Vt”. The diode 43 is provided, and the reference voltage output from the Zener diodes 41, 42, 43 and the voltage (cell voltage) of the unit cell 1a are compared by the comparators 44, 45, 46, 47, The above modes are switched according to the output of the comparison result.
As a power source for generating these reference voltages, a voltage of, for example, 15 V is separately supplied from a pair of terminals T1 and T2.

上記のようにモードを切換える場合において、スイッチ装置3dは、「モード1」及び「モード2」で閉じ状態(オン状態)、「モード3」及び「モード4」で開き状態(オフ状態)であるので電圧「Vm」との比較のみで良く、「Vm」に相当する基準電圧を出力するツェナーダイオード42の出力と単電池1aの電圧(セル電圧)とを比較するコンパレータ47の出力でスイッチ装置3dを直接駆動している。
一方、スイッチ装置3bは、「モード1」から「モード4」へあるいはその逆に順次に移行するとき、閉じ状態(オン状態)と開き状態(オフ状態)とに交互に切り替わることになる。
In the case of switching the mode as described above, the switch device 3d is in the closed state (ON state) in “mode 1” and “mode 2”, and in the open state (OFF state) in “mode 3” and “mode 4”. Therefore, only the comparison with the voltage “Vm” is sufficient, and the switch device 3d is output by the output of the comparator 47 that compares the output of the Zener diode 42 that outputs the reference voltage corresponding to “Vm” with the voltage (cell voltage) of the unit cell 1a. Is driving directly.
On the other hand, when the switch device 3b sequentially shifts from “mode 1” to “mode 4” or vice versa, the switch device 3b is alternately switched between a closed state (on state) and an open state (off state).

このような切換え動作をさせるために、「Vb」に相当する基準電圧を出力するツェナーダイオード41の出力と単電池1aの電圧(セル電圧)とを比較するコンパレータ44の出力と、「Vm」に相当する基準電圧を出力するツェナーダイオード42の出力と単電池1aの電圧(セル電圧)とを比較するコンパレータ45の出力とを、排他的論理和ゲート48へ入力させ、更に、「Vt」に相当する基準電圧を出力するツェナーダイオード43の出力と単電池1aの電圧(セル電圧)とを比較するコンパレータ46の出力と、排他的論理和ゲート48の出力とを、ORゲート49へ入力させて、ORゲート49の出力にてスイッチ装置3bを駆動している。
図2では、論理値「1」をHレベルに対応させて、排他的論理和ゲート48は「モード3」の電圧範囲のときにおいてのみ「1」を出力し、コンパレータ46は「モード1」の電圧範囲のときにおいてのみ「1」を出力し、ORゲート49によってそれらの論理和で駆動されるスイッチ装置3bは、「モード1」及び「モード3」の電圧範囲のときに閉じ状態(オン状態)となる。
In order to perform such a switching operation, the output of the comparator 44 that compares the output of the Zener diode 41 that outputs the reference voltage corresponding to “Vb” and the voltage (cell voltage) of the unit cell 1a, and “Vm” The output of the Zener diode 42 that outputs the corresponding reference voltage and the output of the comparator 45 that compares the voltage (cell voltage) of the unit cell 1a are input to the exclusive OR gate 48 and further correspond to “Vt”. The output of the comparator 46 that compares the output of the Zener diode 43 that outputs the reference voltage to the voltage of the single cell 1a (cell voltage) and the output of the exclusive OR gate 48 are input to the OR gate 49, The switch device 3b is driven by the output of the OR gate 49.
In FIG. 2, the logical value “1” is made to correspond to the H level, and the exclusive OR gate 48 outputs “1” only in the voltage range of “mode 3”, and the comparator 46 is in “mode 1”. The switch device 3b that outputs “1” only in the voltage range and is driven by the OR of the OR gate 49 is in the closed state (ON state) in the “mode 1” and “mode 3” voltage ranges. )

以上のような回路動作で、各制御回路3eは、対応する単電池1aの電圧が、4.000V未満であればスイッチ装置3b,3dの双方を開き状態とし(モード4)、4.000V以上で4.013V未満であればスイッチ装置3bを閉じ状態で且つスイッチ装置3dを開き状態とし(モード3)、4.013V以上で4.025V未満であればスイッチ装置3bを開き状態で且つスイッチ装置3dを閉じ状態とし(モード2)、4.025V以上であればスイッチ装置3b,3dの双方を閉じ状態とする(モード1)。
これによって、電流制御手段CCである制御回路3eが、スイッチ装置3b,3dの開閉を制御して、単電池1aの電圧が「Vt」(充電目標電圧)よりも低い電圧値に設定されている「Vb」(バランス動作開始電圧)以上に上昇したときに、単電池1aの電圧と「Vb」(バランス動作開始電圧)との差に応じて、その差が大である程、単電池1aと並列に接続されている電流路CPに流す電流が大となるように、単電池1a毎に電流路CPに流す電流の大小を制御していることになっている。
With the circuit operation as described above, each control circuit 3e opens both of the switch devices 3b and 3d when the voltage of the corresponding cell 1a is less than 4.000V (mode 4), 4.000V or more. If it is less than 4.013V, the switch device 3b is closed and the switch device 3d is opened (mode 3). If it is 4.013V or more and less than 4.025V, the switch device 3b is open and the switch device 3d is closed (mode 2), and if it is 4.025 V or higher, both switch devices 3b and 3d are closed (mode 1).
Thereby, the control circuit 3e which is the current control means CC controls the opening and closing of the switch devices 3b and 3d, and the voltage of the unit cell 1a is set to a voltage value lower than “Vt” (charge target voltage). When the voltage rises above “Vb” (balance operation start voltage), the larger the difference between the voltage of the cell 1 a and “Vb” (balance operation start voltage), the more the cell 1 a The magnitude of the current flowing through the current path CP is controlled for each unit cell 1a so that the current flowing through the current path CP connected in parallel is increased.

例えば、新しいリチウムイオン電池1を充電装置BCに組み込んだときに、各単電池1aの電圧が図3に示すような状態となっていると、充電電源2からの電流が供給されていない状態では、各単電池1aに並列に接続されている電流路CPでの電流は図4に示す状態となる。
直列接続された4つの単電池1aを、電圧の高い側から「#1」,「#2」,「#3」,「#4」と表記して、「Vm」以上で且つ「Vt」未満となっている「#1」の単電池1aは「モード2」となって抵抗3cを経て電流が流れ、「Vt」以上となっている「#2」の単電池1aは「モード1」となって抵抗3a,3cの双方を経て電流が流れ、「Vb」以上で且つ「Vm」未満となっている「#3」の単電池1aは「モード3」となって抵抗3aを経て電流が流れ、「Vb」未満となっている「#4」の単電池1aは「モード4」となって抵抗3a,3cの何れにも通電されない。
尚、図4においては、スイッチ装置3b,3dの設定状態を見易く表示するために、一般的なスイッチの記号にて開閉状態を表記している。
For example, when a new lithium ion battery 1 is incorporated in the charging device BC and the voltage of each unit cell 1a is in the state shown in FIG. 3, the current from the charging power source 2 is not supplied. The current in the current path CP connected in parallel to each unit cell 1a is in the state shown in FIG.
Four unit cells 1a connected in series are expressed as “# 1”, “# 2”, “# 3”, “# 4” from the higher voltage side, and are “Vm” or more and less than “Vt” The “# 1” unit cell 1a becomes “mode 2” and the current flows through the resistor 3c, and the “# 2” unit cell 1a which is “Vt” or more becomes “mode 1”. The current flows through both the resistors 3a and 3c, and the cell # 1 of “# 3” that is equal to or higher than “Vb” and lower than “Vm” becomes “mode 3” and the current flows through the resistor 3a. The unit cell 1a of “# 4” that is less than “Vb” is in “mode 4” and is not energized in any of the resistors 3a and 3c.
In FIG. 4, in order to display the setting state of the switch devices 3b and 3d in an easy-to-see manner, the open / closed state is indicated by a general switch symbol.

このように電流路CPに流す電流が制御されることで、単電池1aの電圧と前記バランス動作開始電圧との差が大きい程、単電池1aから放電される電流、あるいは、充電電源2からの供給電流を単電池1aを通過させずに電流路CPに逃がす電流が大となり、単電池1aの電圧と前記バランス動作開始電圧との差が大きい程、単電池1aの電圧が前記バランス動作開始電圧に近づく速度、あるいは、単電池1aの電圧上昇を抑制する程度が大となる。
これによって、各単電池1aの電圧は効率良く均等化されていく。
By controlling the current flowing through the current path CP in this way, the larger the difference between the voltage of the unit cell 1a and the balance operation start voltage, the greater the current discharged from the unit cell 1a, or from the charging power source 2. The greater the difference between the voltage of the single cell 1a and the balance operation start voltage is, the larger the current that releases the supply current to the current path CP without passing through the single cell 1a, the more the voltage of the single cell 1a becomes the balance operation start voltage. The rate of approaching or the degree to which the voltage rise of the unit cell 1a is suppressed increases.
Thereby, the voltage of each unit cell 1a is equalized efficiently.

<第2実施形態>
本第2実施形態において充電の対象となるリチウムイオン電池1は、上記第1実施形態と同一のものであり、図5に示すように、複数の単電池1aを直列接続して組電池として構成されている。
そのリチウムイオン電池1を充電する充電装置BCが、リチウムイオン電池1へ充電電流を供給する充電電源2と、セル電圧バランス装置3とを備えて構成されている点も上記第1実施形態と同様である。
本第2実施形態の充電装置BCも、充電対象のリチウムイオン電池1と共に航空機あるいは自動車等の移動体に搭載されて、その移動体の動力機器等に大電流を供給する場合を想定しており、本実施形態においても、説明の便宜上単電池1aの個数が4個であるとして説明する。
<Second Embodiment>
The lithium ion battery 1 to be charged in the second embodiment is the same as that in the first embodiment, and as shown in FIG. 5, a plurality of unit cells 1a are connected in series to form an assembled battery. Has been.
Similarly to the first embodiment, the charging device BC for charging the lithium ion battery 1 includes a charging power source 2 that supplies a charging current to the lithium ion battery 1 and a cell voltage balance device 3. It is.
The charging device BC of the second embodiment is also assumed to be mounted on a mobile object such as an aircraft or an automobile together with the lithium-ion battery 1 to be charged, and supply a large current to the power equipment of the mobile object. In this embodiment, the number of single cells 1a is assumed to be four for convenience of explanation.

本実施形態のセル電圧バランス装置3では、上記第1実施形態における抵抗3a,3c、スイッチ装置3b,3d及び制御回路3eに対応する機能を有する電圧均等化回路10が各単電池1a毎に備えられている。
各単電池1aに対応する電圧均等化回路10の回路構成は全て同一であり、図6に示す回路で構成されている。
In the cell voltage balance device 3 of the present embodiment, a voltage equalizing circuit 10 having a function corresponding to the resistors 3a and 3c, the switch devices 3b and 3d, and the control circuit 3e in the first embodiment is provided for each unit cell 1a. It has been.
The circuit configuration of the voltage equalization circuit 10 corresponding to each unit cell 1a is the same, and is configured by the circuit shown in FIG.

図6に示す電圧均等化回路10は、抵抗11,12及びバイポーラ型のトランジスタ13を有して構成される電流路CPが単電池1aと並列に接続され、その電流路CPを流れる電流を制御するためにアナログ演算回路14と電圧−電流変換回路15とが備えられている。
アナログ演算回路14及び電圧−電流変換回路15の制御下で、電流路CPに電流を流すことにより各単電池1aの電池電圧を均等化していく。
In the voltage equalization circuit 10 shown in FIG. 6, a current path CP including resistors 11 and 12 and a bipolar transistor 13 is connected in parallel with the unit cell 1a, and the current flowing through the current path CP is controlled. For this purpose, an analog arithmetic circuit 14 and a voltage-current conversion circuit 15 are provided.
Under the control of the analog arithmetic circuit 14 and the voltage-current conversion circuit 15, the battery voltage of each unit cell 1a is equalized by passing a current through the current path CP.

アナログ演算回路14は、単電池1aの電圧と上記第1実施形態と同様のバランス動作開始電圧との差に相当する電圧を出力する回路であり、抵抗21,22,23,24及びオペアンプ25とによって差動増幅器を構成している。
このアナログ演算回路14の2入力のうちの一方の電圧は、直列接続の抵抗26,27の接続点から入力され、他方の電圧は、直列接続の抵抗28及びツェナーダイオード29の接続点から入力される。
The analog arithmetic circuit 14 is a circuit that outputs a voltage corresponding to the difference between the voltage of the unit cell 1a and the balance operation start voltage similar to that of the first embodiment, and includes resistors 21, 22, 23, and 24, an operational amplifier 25, and the like. Constitutes a differential amplifier.
One voltage of the two inputs of the analog arithmetic circuit 14 is input from the connection point of the series-connected resistors 26 and 27, and the other voltage is input from the connection point of the series-connected resistor 28 and the Zener diode 29. The

抵抗26と抵抗27との抵抗値の比率は、上記第1実施形態と同様にバランス動作開始電圧を4.000Vに設定したとすると、直列接続された抵抗26及び抵抗27の両端電圧が4.0Vであるときに、オペアンプ25に入力される抵抗27の両端電圧がツェナーダイオード29が出力する基準電圧に一致するように設定されている。
従って、アナログ演算回路14の出力電圧(オペアンプ25の出力電圧)は、単電池1aの電圧と前記バランス動作開始電圧との差を設定倍(抵抗21,22,23,24,26,27の抵抗値等で決まる倍率)した電圧を出力し、単電池1aの電圧が4.0Vであるとき、アナログ演算回路14の出力電圧は0Vとなる。
As for the ratio of the resistance values of the resistor 26 and the resistor 27, if the balance operation start voltage is set to 4.000 V as in the first embodiment, the voltage across the resistor 26 and the resistor 27 connected in series is 4. When the voltage is 0 V, the voltage across the resistor 27 input to the operational amplifier 25 is set to match the reference voltage output from the Zener diode 29.
Therefore, the output voltage of the analog arithmetic circuit 14 (the output voltage of the operational amplifier 25) is a set multiple (resistors 21, 22, 23, 24, 26, 27) of the difference between the voltage of the unit cell 1a and the balance operation start voltage. When the voltage of the unit cell 1a is 4.0V, the output voltage of the analog arithmetic circuit 14 is 0V.

電圧−電流変換回路15は、オペアンプ31と、FET型のトランジスタ32とを備えて構成されている。
オペアンプ31の反転入力には抵抗12での発生電圧が入力されるように帰還回路が構成されており、オペアンプ31は、アナログ演算回路14の出力電圧(オペアンプ25の出力電圧)と抵抗12の両端電圧が一致するようにトランジスタ32及びトランジスタ13を制御する。
従って、アナログ演算回路14の出力電圧に相当する電圧が電流路CPの抵抗11,12に流れるように制御される。
The voltage-current conversion circuit 15 includes an operational amplifier 31 and an FET type transistor 32.
The feedback circuit is configured so that the voltage generated by the resistor 12 is input to the inverting input of the operational amplifier 31, and the operational amplifier 31 has both the output voltage of the analog arithmetic circuit 14 (the output voltage of the operational amplifier 25) and both ends of the resistor 12. The transistors 32 and 13 are controlled so that the voltages match.
Therefore, the voltage corresponding to the output voltage of the analog arithmetic circuit 14 is controlled to flow through the resistors 11 and 12 of the current path CP.

以上をまとめると、単電池1aの電圧を「Vc」、バランス動作開始電圧を「Vb」としたとき、電流路CPの抵抗11,12に流れる電流「I」は、I=β×(Vc−Vb)となる。ここで「β」は比例係数である。
例えば、Vb=4.000Vの条件下で、β=1.3となるように、抵抗12,21,22,23,24,26,27の抵抗値を定めると、Vc=4.0V,4.05V,4.10V,4.15V,4.20Vのとき、電流路CPに流れる電流値は、夫々、I=0mA,65.0mA,130mA,195mA,260mAとなる。
In summary, when the voltage of the cell 1a is “Vc” and the balance operation start voltage is “Vb”, the current “I” flowing through the resistors 11 and 12 of the current path CP is I = β × (Vc− Vb). Here, “β” is a proportionality coefficient.
For example, when the resistance values of the resistors 12, 21, 22, 23, 24, 26, and 27 are determined so that β = 1.3 under the condition of Vb = 4.0000V, Vc = 4.0V, 4 When .05V, 4.10V, 4.15V, and 4.20V, the current values flowing in the current path CP are I = 0 mA, 65.0 mA, 130 mA, 195 mA, and 260 mA, respectively.

これは、アナログ演算回路14及び電圧−電流変換回路15を備えて構成される電流制御手段CCが、単電池1aの電圧が充電目標電圧(「Vt」:第1実施形態と同様)よりも低い電圧値に設定されているバランス動作開始電圧(「Vb」)以上に上昇したときに、単電池1aの電圧と前記バランス動作開始電圧との差に応じて、その差が大である程、単電池1aと並列に接続されている電流路CPに流す電流が大となるように、単電池1a毎に制御していることになる。   This is because the voltage of the unit cell 1a is lower than the charging target voltage ("Vt": the same as in the first embodiment) in the current control means CC configured to include the analog arithmetic circuit 14 and the voltage-current conversion circuit 15. When the voltage rises to a value equal to or higher than the balance operation start voltage (“Vb”) set in the voltage value, the difference between the voltage of the single cell 1a and the balance operation start voltage increases as the difference increases. Control is performed for each unit cell 1a so that the current flowing through the current path CP connected in parallel with the battery 1a becomes large.

上記第1実施形態と同様に、このように電流路CPに流す電流が制御されることで、単電池1aの電圧と前記バランス動作開始電圧との差が大きい程、単電池1aから放電される電流、あるいは、充電電源2からの供給電流を単電池1aを通過させずに電流路CPに逃がす電流が大となり、単電池1aの電圧と前記バランス動作開始電圧との差が大きい程、単電池1aの電圧が前記バランス動作開始電圧に近づく速度、あるいは、単電池1aの電圧上昇を抑制する程度が大となる。
これによって、各単電池1aの電圧は効率良く均等化されていく。
As in the first embodiment, the current flowing through the current path CP is controlled in this way, so that the larger the difference between the voltage of the unit cell 1a and the balance operation start voltage, the greater the discharge from the unit cell 1a. The larger the difference between the voltage of the unit cell 1a and the balance operation start voltage is, the larger the current or the current that releases the supply current from the charging power source 2 to the current path CP without passing through the unit cell 1a. The speed at which the voltage of 1a approaches the balance operation start voltage, or the degree to which the voltage increase of the unit cell 1a is suppressed increases.
Thereby, the voltage of each unit cell 1a is equalized efficiently.

<その他の実施形態>
以下、本発明の別実施形態を列記する。
(1)上記第1実施形態では、並列に接続された抵抗3a,3c夫々の通電・非通電を切換えて電流路CPの実効的なインピーダンスを合計4段階に切換えることで、電流路CPに流す電流の大小を制御しているが、電流路CPにおける複数の抵抗の接続形態は直列接続又は並列接続を組合わせて多様に変更可能である。
(2)上記第1実施形態では、並列に接続された抵抗3a,3c夫々の通電・非通電を切換えて電流路CPの実効的なインピーダンスを合計4段階に切換えることで、電流路CPに流す電流の大小を制御しているが、例えばデジタル制御ポテンショメータ等を利用して多段階に抵抗値を切換えて、電流の大小を制御するように構成しても良い。
<Other embodiments>
Hereinafter, other embodiments of the present invention will be listed.
(1) In the first embodiment described above, the effective impedance of the current path CP is switched to a total of four stages by switching energization / non-energization of each of the resistors 3a and 3c connected in parallel, thereby allowing the current path CP to flow. Although the magnitude of the current is controlled, the connection form of the plurality of resistors in the current path CP can be variously changed by combining series connection or parallel connection.
(2) In the first embodiment described above, the effective impedance of the current path CP is switched to a total of four stages by switching the energization / non-energization of the resistors 3a and 3c connected in parallel to flow through the current path CP. Although the magnitude of the current is controlled, the magnitude of the current may be controlled by switching the resistance value in multiple stages using, for example, a digital control potentiometer.

本発明の第1実施形態にかかる回路の全体構成図1 is an overall configuration diagram of a circuit according to a first embodiment of the present invention. 本発明の第1実施形態にかかる要部回路図1 is a circuit diagram of a main part according to a first embodiment of the present invention. 本発明の第1実施形態にかかる単電池の電圧ばらつきを示す図The figure which shows the voltage dispersion | variation of the cell concerning 1st Embodiment of this invention. 本発明の第1実施形態にかかる電流路の通電経路の状態を示す図The figure which shows the state of the electricity supply path | route of the current path concerning 1st Embodiment of this invention. 本発明の第2実施形態にかかる回路の全体構成図Overall configuration diagram of a circuit according to a second embodiment of the present invention. 本発明の第2実施形態にかかる要部回路図Main part circuit diagram concerning 2nd Embodiment of this invention 大電流で一律に均等化したときの変化状態を説明するための図Diagram for explaining the state of change when equalizing uniformly with a large current

符号の説明Explanation of symbols

1 組電池
1a 単電池
3a,3c,11,12 抵抗
3b,3d スイッチ装置
14 アナログ演算回路
15 電圧−電流変換回路
CC 電流制御手段
CP 電流路
1 assembled battery 1a single cell 3a, 3c, 11, 12 resistance 3b, 3d switch device 14 analog operation circuit 15 voltage-current conversion circuit CC current control means CP current path

Claims (3)

複数の単電池を直列接続して構成された組電池に対して、抵抗を有する電流路が各単電池の夫々と並列に接続され、前記電流路に電流を流すことにより各単電池の電池電圧を均等化する二次電池のセル電圧バランス装置であって、
前記電流路に流す電流の大小を制御する電流制御手段が備えられ、
前記電流制御手段は、前記単電池の電圧が充電目標電圧よりも低い電圧値に設定されているバランス動作開始電圧以上に上昇したときに、前記単電池の電圧と前記バランス動作開始電圧との差に応じて、その差が大である程、前記単電池と並列に接続されている前記電流路に流す電流が大となるように、前記単電池毎に制御するように構成されている二次電池のセル電圧バランス装置。
With respect to an assembled battery configured by connecting a plurality of single cells in series, a current path having resistance is connected in parallel with each of the single cells, and a current is passed through the current path, whereby the battery voltage of each single cell is A cell voltage balancing device for a secondary battery that equalizes
Current control means for controlling the magnitude of the current flowing in the current path is provided;
The current control means is configured such that when the voltage of the unit cell rises above the balance operation start voltage set to a voltage value lower than the charge target voltage, the difference between the unit cell voltage and the balance operation start voltage Accordingly, the secondary battery is configured to control each unit cell so that the larger the difference is, the larger the current flowing through the current path connected in parallel with the unit cell is. Battery cell voltage balance device.
前記電流路の抵抗が複数個の抵抗にて構成されると共に、前記複数の抵抗への通電を個別に入り切りするためのスイッチ装置が前記電流路に備えられ、
前記電流制御手段は、前記スイッチ装置の開閉を制御するように構成されている請求項1記載の二次電池のセル電圧バランス装置。
The current path is composed of a plurality of resistors, and the current path is provided with a switch device for individually turning on and off the plurality of resistors.
2. The cell voltage balance device for a secondary battery according to claim 1, wherein the current control means is configured to control opening and closing of the switch device.
前記電流制御手段は、前記単電池の電圧と前記バランス動作開始電圧との差に相当する電圧を出力するアナログ演算回路と、そのアナログ演算回路の出力電圧に相当する電流が前記電流路の前記抵抗に流れるように制御する電圧−電流変換回路とを備えて構成されている請求項1記載の二次電池のセル電圧バランス装置。   The current control means includes an analog arithmetic circuit that outputs a voltage corresponding to a difference between the voltage of the unit cell and the balance operation start voltage, and a current corresponding to an output voltage of the analog arithmetic circuit is the resistance of the current path. The cell voltage balance apparatus of the secondary battery of Claim 1 comprised including the voltage-current conversion circuit controlled so that it may flow into.
JP2006307287A 2006-11-13 2006-11-13 Cell voltage balancing device of secondary battery Pending JP2008123868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307287A JP2008123868A (en) 2006-11-13 2006-11-13 Cell voltage balancing device of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307287A JP2008123868A (en) 2006-11-13 2006-11-13 Cell voltage balancing device of secondary battery

Publications (1)

Publication Number Publication Date
JP2008123868A true JP2008123868A (en) 2008-05-29

Family

ID=39508395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307287A Pending JP2008123868A (en) 2006-11-13 2006-11-13 Cell voltage balancing device of secondary battery

Country Status (1)

Country Link
JP (1) JP2008123868A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888106A (en) * 2010-06-11 2010-11-17 李小平 Equalization management system and method of series connected battery pack
WO2011118484A1 (en) * 2010-03-24 2011-09-29 株式会社Gsユアサ Secondary battery system
JP2013099093A (en) * 2011-10-31 2013-05-20 Sumitomo Electric Ind Ltd Power supply apparatus
JP2013146160A (en) * 2012-01-16 2013-07-25 Ntt Facilities Inc Charge control system and charge control method of battery pack
JP2013146159A (en) * 2012-01-16 2013-07-25 Ntt Facilities Inc Charge control system and charge control method of battery pack
CN103887844A (en) * 2012-12-20 2014-06-25 诺基亚公司 Balancing of battery cells connected in parallel
US9054400B2 (en) 2011-01-21 2015-06-09 Gs Yuasa International Ltd. Battery system
JP2015180131A (en) * 2014-03-19 2015-10-08 矢崎総業株式会社 Equalization device
JPWO2015118872A1 (en) * 2014-02-07 2017-03-23 日本電気株式会社 Voltage difference correction device and voltage difference correction method
KR20170062764A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Apparatus and method for battery cell balancing
JP2017112677A (en) * 2015-12-15 2017-06-22 株式会社デンソー Battery pack monitoring system
KR20180034944A (en) * 2016-09-28 2018-04-05 주식회사 엘지화학 System and method for balancing current consumption
JP2019017215A (en) * 2017-07-10 2019-01-31 田淵電機株式会社 Power storage device and equalization method therefor
US10291061B2 (en) 2017-03-27 2019-05-14 Brother Kogyo Kabushiki Kaisha Charger and charge control method
JP2019179626A (en) * 2018-03-30 2019-10-17 株式会社Gsユアサ Power storage device
JP2020502969A (en) * 2017-04-17 2020-01-23 エルジー・ケム・リミテッド Overcharge prevention device and method
CN110843592A (en) * 2019-11-30 2020-02-28 湖南海博瑞德电智控制技术有限公司 Alternating current charging signal control guiding device for electric automobile
JP2022546518A (en) * 2019-12-06 2022-11-04 ジャン、チャオジョン System for Forming and Testing Batteries in Parallel and Series

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118484A1 (en) * 2010-03-24 2011-09-29 株式会社Gsユアサ Secondary battery system
CN102640382A (en) * 2010-03-24 2012-08-15 株式会社杰士汤浅国际 Secondary battery system
JPWO2011118484A1 (en) * 2010-03-24 2013-07-04 株式会社Gsユアサ Secondary battery system
CN101888106A (en) * 2010-06-11 2010-11-17 李小平 Equalization management system and method of series connected battery pack
US9054400B2 (en) 2011-01-21 2015-06-09 Gs Yuasa International Ltd. Battery system
JP2013099093A (en) * 2011-10-31 2013-05-20 Sumitomo Electric Ind Ltd Power supply apparatus
JP2013146159A (en) * 2012-01-16 2013-07-25 Ntt Facilities Inc Charge control system and charge control method of battery pack
JP2013146160A (en) * 2012-01-16 2013-07-25 Ntt Facilities Inc Charge control system and charge control method of battery pack
CN103887844A (en) * 2012-12-20 2014-06-25 诺基亚公司 Balancing of battery cells connected in parallel
CN103887844B (en) * 2012-12-20 2016-05-18 诺基亚技术有限公司 The balance of the battery unit being connected in parallel
JPWO2015118872A1 (en) * 2014-02-07 2017-03-23 日本電気株式会社 Voltage difference correction device and voltage difference correction method
JP2015180131A (en) * 2014-03-19 2015-10-08 矢崎総業株式会社 Equalization device
KR20170062764A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Apparatus and method for battery cell balancing
KR102035683B1 (en) * 2015-11-30 2019-10-23 주식회사 엘지화학 Apparatus and method for battery cell balancing
WO2017104374A1 (en) * 2015-12-15 2017-06-22 株式会社デンソー Assembled battery monitoring system
JP2017112677A (en) * 2015-12-15 2017-06-22 株式会社デンソー Battery pack monitoring system
KR20180034944A (en) * 2016-09-28 2018-04-05 주식회사 엘지화학 System and method for balancing current consumption
KR102167922B1 (en) 2016-09-28 2020-10-20 주식회사 엘지화학 System and method for balancing current consumption
US10291061B2 (en) 2017-03-27 2019-05-14 Brother Kogyo Kabushiki Kaisha Charger and charge control method
US11165262B2 (en) 2017-04-17 2021-11-02 Lg Chem, Ltd. Apparatus and method for preventing overcharge
JP2020502969A (en) * 2017-04-17 2020-01-23 エルジー・ケム・リミテッド Overcharge prevention device and method
JP7001229B2 (en) 2017-04-17 2022-01-19 エルジー・ケム・リミテッド Overcharge prevention device and method
JP2019017215A (en) * 2017-07-10 2019-01-31 田淵電機株式会社 Power storage device and equalization method therefor
JP2019179626A (en) * 2018-03-30 2019-10-17 株式会社Gsユアサ Power storage device
JP7099008B2 (en) 2018-03-30 2022-07-12 株式会社Gsユアサ Power storage device
CN110843592B (en) * 2019-11-30 2021-04-02 湖南海博瑞德电智控制技术有限公司 Alternating current charging signal control guiding device for electric automobile
CN110843592A (en) * 2019-11-30 2020-02-28 湖南海博瑞德电智控制技术有限公司 Alternating current charging signal control guiding device for electric automobile
JP2022546518A (en) * 2019-12-06 2022-11-04 ジャン、チャオジョン System for Forming and Testing Batteries in Parallel and Series
JP7400083B2 (en) 2019-12-06 2023-12-18 ジャン、チャオジョン System for forming and testing batteries in parallel and series

Similar Documents

Publication Publication Date Title
JP2008123868A (en) Cell voltage balancing device of secondary battery
JP5007493B2 (en) Power supply
JP5175937B2 (en) Uniform charging method and apparatus for series connected battery strings
US7863863B2 (en) Multi-cell battery pack charge balance circuit
JP2007318950A (en) Cell voltage balancing device for secondary battery
JP4691064B2 (en) Battery leveling device for battery pack
JP6030817B2 (en) Battery state monitoring circuit and battery device
WO2018139337A1 (en) Electrical device
CN104852421B (en) Balancing device and method
JP2011522504A (en) Two-stage equal charging method and apparatus for series connected battery strings
KR102443667B1 (en) balancing apparatus, and battery management system and battery pack including the same
JP2009071936A (en) Voltage equalization system for battery pack
JP2006050898A5 (en)
JP5555744B2 (en) System and method for battery charging
US9172258B2 (en) Circuit for balancing cells
JP2015033230A (en) Equalization device for battery pack
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
EP2355303A2 (en) Battery pack
JP6066840B2 (en) Charge / discharge control circuit and battery device
JP2013013292A (en) Cell balancing circuit based on energy transfer via inductor
JP2005312298A (en) Charging device
WO2021010388A1 (en) Battery management circuit and power storage device
JP2016040999A (en) Charged state equalization method of storage battery device
KR101736008B1 (en) Device for active cell balancing using bidirectional DC-DC converter
JPH10225005A (en) Circuit for equalizing potential difference of secondary cell