JPH10225005A - Circuit for equalizing potential difference of secondary cell - Google Patents

Circuit for equalizing potential difference of secondary cell

Info

Publication number
JPH10225005A
JPH10225005A JP9021534A JP2153497A JPH10225005A JP H10225005 A JPH10225005 A JP H10225005A JP 9021534 A JP9021534 A JP 9021534A JP 2153497 A JP2153497 A JP 2153497A JP H10225005 A JPH10225005 A JP H10225005A
Authority
JP
Japan
Prior art keywords
switch means
potential difference
side switch
electrode side
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9021534A
Other languages
Japanese (ja)
Inventor
Hideyuki Kihara
秀之 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9021534A priority Critical patent/JPH10225005A/en
Publication of JPH10225005A publication Critical patent/JPH10225005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the power consumption of a secondary cell, at the time of equalizing the voltages of the cells. SOLUTION: In this circuit, positive pole side switching means 1, 2, 3 are provided between each positive pole of secondary cells VA, VB, VC connected in series and a capacitor C. Furthermore, negative pole side switching means 4, 5, 6 are provided between each negative pole of the secondary cells VA, VB, VC connected in series and a capacitor C. The circuit controls the positive pole side switching means 1, 2, 3 and the negative pole side switching means 4, 5, 6 in such a way that cyclic 'on' operation is repeated in pair of a positive pole side switching means and a negative pole side switching means connected to the positive and negative poles of a same secondary cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯機器やパーソ
ナルコンピュータ等に内蔵される二次電池(再充電可能
な電池)を使用したバッテリユニットの制御回路のうち
の、特に直列接続されて一つのバッテリユニットを構成
する複数個の二次電池の各々の正負両電極間の電位差
(以下、単に電位差という)を均等化する二次電池電位
差均等化回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control circuit for a battery unit using a secondary battery (rechargeable battery) built in a portable device, a personal computer, or the like. The present invention relates to a secondary battery potential difference equalizing circuit for equalizing a potential difference between positive and negative electrodes of each of a plurality of secondary batteries constituting a battery unit (hereinafter, simply referred to as a potential difference).

【0002】なお、この二次電池の電位差の均等化は以
下に述べるような目的で行われるものである。すなわ
ち、二次電池の物性のばらつきにより、直列接続された
複数個の二次電池の充電中において、あるひとつの二次
電池が過充電されることがないようにし、また上記の二
次電池の使用中(放電中)において、あるひとつの二次
電池が過放電されることがないようにするためである。
過充電あるいは過放電によって、ある二次電池が他の二
次電池と別の電位差で充放電を繰り返されると、その二
次電池の寿命が短くなるからである。
Incidentally, the equalization of the potential difference of the secondary battery is performed for the following purpose. That is, due to the variation in the physical properties of the secondary battery, during charging of a plurality of secondary batteries connected in series, one of the secondary batteries is prevented from being overcharged, and This is to prevent one secondary battery from being overdischarged during use (during discharge).
This is because if a certain secondary battery is repeatedly charged and discharged with another potential difference from another secondary battery due to overcharge or overdischarge, the life of the secondary battery is shortened.

【0003】[0003]

【従来の技術】図2は直列接続した複数個の二次電池を
使用したバッテリユニットの制御回路において、特に各
二次電池の電位差を均等化する電位差均等化回路の従来
例を示す回路図である。図2において、VA,VB,V
Cはそれぞれ二次電池であり、直列接続されている。R
1は二次電池VAの正電極に一端が接続された抵抗、R
2は二次電池VAの負電極すなわち二次電池VBの正電
極に一端が接続された抵抗、R3は二次電池VBの負電
極すなわち二次電池VCの正電極に一端が接続された抵
抗、R4は二次電池VCの負電極に一端が接続された抵
抗である。
2. Description of the Related Art FIG. 2 is a circuit diagram showing a conventional example of a potential difference equalizing circuit for equalizing a potential difference between secondary batteries in a control circuit of a battery unit using a plurality of secondary batteries connected in series. is there. In FIG. 2, VA, VB, V
C is a secondary battery, which is connected in series. R
1 is a resistor having one end connected to the positive electrode of the secondary battery VA, R
2 is a resistor having one end connected to the negative electrode of the secondary battery VA, ie, the positive electrode of the secondary battery VB; R3 is a resistor having one end connected to the negative electrode of the secondary battery VB, ie, the positive electrode of the secondary battery VC; R4 is a resistor having one end connected to the negative electrode of the secondary battery VC.

【0004】1bは抵抗R1の他端に一端を接続したス
イッチ手段、2bは抵抗R2の他端に一端を接続したス
イッチ手段、3bは抵抗R3の他端に一端を接続したス
イッチ手段、4bは抵抗R4の他端に一端を接続したス
イッチ手段であり、各スイッチ手段1b,2b,3b,
4bの他端は共通接続してあり、各々導通状態と開放状
態とを実現する。
1b is a switch means having one end connected to the other end of the resistor R1, 2b is a switch means having one end connected to the other end of the resistor R2, 3b is a switch means having one end connected to the other end of the resistor R3, and 4b is a switch means. Switch means having one end connected to the other end of the resistor R4, and each of the switch means 1b, 2b, 3b,
The other end of 4b is connected in common, and realizes a conduction state and an open state, respectively.

【0005】以上のような抵抗R1〜R4とスイッチ手
段1b,2b,3b,4bとで、直列に接続された3個
の二次電池VA,VB,VCの電位差のばらつきを最小
にする電位差均等化回路が構成されている。以下、この
二次電池電位差均等化回路の動作を説明する。二次電池
VA,VB,VCの電位差がすべて等しい場合には、ス
イッチ手段1b,2b,3b,4bはすべて解放状態と
している。ところが、それぞれの二次電池VA,VB,
VCの物性差等に起因して、例えば二次電池VAの電位
差が他の二次電池VB,VCの電位差に比べ小さくなっ
た場合には、スイッチ手段2b,3bを導通状態にして
二次電池VBを抵抗R2,R3を通じて放電させること
により、二次電池VAの電位に等しくなるまで二次電池
VBの電位差を低下させる。つぎに、上記と同様にして
スイッチ手段3b,4bを導通状態にして二次電池VC
を抵抗R3,R4を通じて放電させることにより、二次
電池VAの電位に等しくなるまで、二次電池VCの電位
差を低下させる。以上の操作により二次電池VA,V
B,VCの電位差が全て等しくなる。
[0005] The above-described resistors R1 to R4 and the switch means 1b, 2b, 3b, 4b equalize the potential difference between the three secondary batteries VA, VB, VC connected in series to minimize the potential difference. Circuit is configured. Hereinafter, the operation of the secondary battery potential difference equalizing circuit will be described. When the potential differences between the secondary batteries VA, VB, and VC are all equal, the switch means 1b, 2b, 3b, and 4b are all in the open state. However, each of the secondary batteries VA, VB,
When the potential difference of the secondary battery VA becomes smaller than the potential difference of the other secondary batteries VB and VC due to a difference in physical properties of the VC, for example, the switching means 2b and 3b are turned on and the secondary battery is turned on. By discharging VB through the resistors R2 and R3, the potential difference of the secondary battery VB is reduced until it becomes equal to the potential of the secondary battery VA. Next, the switching means 3b and 4b are turned on in the same manner as described above to make the secondary battery VC
Is discharged through the resistors R3 and R4 to reduce the potential difference of the secondary battery VC until it becomes equal to the potential of the secondary battery VA. By the above operation, the secondary batteries VA, V
The potential differences between B and VC are all equal.

【0006】ここで、スイッチ1b,2b,3b,4b
の制御について説明する。すなわち、その制御手順とし
ては、まず二次電池VA,VB,VCの電位差を、それ
ぞれ対接地からの電位差に変換し、マイコン側にその電
圧を送信する。対接地電位に変換してマイコン側に出力
する回路も図2あるいは後述の図1が使用される。マイ
コン側では、その電圧を判断して、どのスイッチを開く
か、制御信号を送信する。その制御信号を用いて(一度
スイッチ制御電圧に変換する)、スイッチ1b,2b,
3b,4bのオンオフを制御する。
Here, switches 1b, 2b, 3b, 4b
Will be described. That is, as a control procedure, first, a potential difference between the secondary batteries VA, VB, and VC is converted into a potential difference from the ground, and the voltage is transmitted to the microcomputer side. FIG. 2 or FIG. 1 described later is also used for a circuit that converts the signal to the ground potential and outputs the converted signal to the microcomputer. The microcomputer determines the voltage and sends a control signal indicating which switch to open. Using the control signal (once converted to a switch control voltage), the switches 1b, 2b,
On / off of 3b and 4b is controlled.

【0007】[0007]

【発明が解決しようとする課題】従来、バッテリユニッ
トに使用している各二次電池の電位差を均等化する電位
差均等化回路においては、各二次電池の電位差を均等化
するたびに比較的大きな放電電流が流れるため、二次電
池自体の電力消費が激しくなってバッテリユニットの寿
命が短くなるという問題があった。
Conventionally, in a potential difference equalizing circuit for equalizing the potential difference of each secondary battery used in the battery unit, a relatively large potential difference is obtained every time the potential difference of each secondary battery is equalized. Since the discharge current flows, there is a problem that the power consumption of the secondary battery itself is increased and the life of the battery unit is shortened.

【0008】なお、バッテリユニットの寿命というの
は、機器を駆動可能な時間という意味で使用しており、
寿命が短くなるというのは、二次電池の蓄積エネルギー
が無駄に放出されるために機器を駆動可能な時間が短く
なるということを言っている。ただ、二次電池の交換時
期の目安となる本来の寿命についても、上記のように二
次電池のエネルギー消費が大きいと、充放電を繰り返す
回数が増加し、二次電池自体の寿命が短くなるので、バ
ッテリユニットの二次電池交換の時期が早まる結果にも
なる。
[0008] The life of the battery unit is used to mean the time during which the device can be driven.
The term "short life" means that the time during which the device can be driven is shortened because the energy stored in the secondary battery is wastedly released. However, even with respect to the original life, which is a guide for the replacement time of the secondary battery, if the energy consumption of the secondary battery is large as described above, the number of times of charging and discharging is increased, and the life of the secondary battery itself is shortened As a result, the timing of replacing the secondary battery of the battery unit is also accelerated.

【0009】本発明は上記従来の課題を解決するもので
あり、二次電池の電位差の均等化を行うときの二次電池
の電力消費を最小限に抑えることができる電位差均等化
回路を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a potential difference equalizing circuit capable of minimizing the power consumption of the secondary battery when equalizing the potential difference of the secondary battery. The purpose is to:

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に、本発明の電位差均等化回路は、直列接続された複数
個の二次電池の各々の正電極とコンデンサとの間に複数
個の正電極側スイッチ手段を設けるとともに、直列接続
された複数個の二次電池の各々の負電極とコンデンサと
の間に複数個の負電極側スイッチ手段を設け、複数個の
正電極側スイッチ手段と複数個の負電極側スイッチ手段
を、同一の二次電池の正電極と負電極とに接続された正
電極側スイッチ手段および負電極側スイッチ手段を対に
して一対ずつサイクリックにオン動作を繰り返すように
制御している。
In order to achieve this object, a potential difference equalizing circuit according to the present invention comprises a plurality of series-connected rechargeable batteries, each having a plurality of positive electrodes disposed between a positive electrode and a capacitor. While providing the positive electrode side switch means, providing a plurality of negative electrode side switch means between each negative electrode and the capacitor of the plurality of secondary batteries connected in series, a plurality of positive electrode side switch means A plurality of negative electrode-side switch means are cyclically turned on by a pair of the positive electrode-side switch means and the negative electrode-side switch means connected to the positive electrode and the negative electrode of the same secondary battery. Control.

【0011】これによって、複数個の二次電池の各々の
両電極間にコンデンサが選択的に接続され、かつその接
続状態が順次サイクリックに変更されていくことにな
る。その結果、複数個の二次電池のうちの電位差の大き
いものがコンデンサを充電し、複数個の二次電池のうち
の電位差の小さいものがコンデンサによって充電される
という複数個の二次電池とコンデンサとの間の充放電の
相互作用が生じる。これによって、複数個の二次電池の
うち電位差の大きいものは放電によって電位差が小さく
なり、複数個の二次電池のうち電位差の小さいものはコ
ンデンサの放電によって電位差が大きくなり、複数個の
二次電池の電位差が均等化されることになる。しかも、
複数個の二次電池のうち電位差の大きいものの電気エネ
ルギーがコンデンサを介して複数個の二次電池のうち電
位差の小さいものに移されるので、最小限の電力消費量
で各二次電池の電位差が均等化されることになる。
As a result, a capacitor is selectively connected between both electrodes of each of the plurality of secondary batteries, and the connection state is sequentially changed in a cyclic manner. As a result, a plurality of secondary batteries and a capacitor in which a large potential difference among a plurality of secondary batteries charges a capacitor, and a small potential difference among a plurality of secondary batteries is charged by a capacitor. And a charge / discharge interaction occurs. As a result, among the plurality of secondary batteries, those having a large potential difference have a small potential difference due to discharging, and those having a small potential difference among the plurality of secondary batteries have a large potential difference due to discharging of a capacitor. The potential difference of the battery is equalized. Moreover,
Since the electric energy of one of the plurality of secondary batteries having a large potential difference is transferred to the one of the plurality of secondary batteries having a small potential difference via a capacitor, the potential difference of each of the secondary batteries is reduced with a minimum power consumption. It will be equalized.

【0012】[0012]

【発明の実施の形態】本発明の二次電池電位差均等化回
路は、直列接続された複数個の二次電池の各々の電位差
を均等化するもので、複数個の二次電池の各々の正電極
に一端がそれぞれ接続され他端が共通接続された複数個
の正電極側スイッチ手段と、複数個の二次電池の各々の
負電極に一端がそれぞれ接続され他端が共通接続された
複数個の負電極側スイッチ手段と、複数個の正電極側ス
イッチ手段の他端と複数個の負電極側スイッチ手段の他
端との間に接続されたコンデンサとを備え、複数個の正
電極側スイッチ手段と複数個の負電極側スイッチ手段
を、同一の二次電池の正電極と負電極とに接続された正
電極側スイッチ手段および負電極側スイッチ手段を対に
して一対ずつサイクリックにオン動作を繰り返すように
制御している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A secondary battery potential difference equalizing circuit according to the present invention equalizes the potential difference between a plurality of secondary batteries connected in series. A plurality of positive electrode-side switch means having one end connected to the electrode and the other end commonly connected, and a plurality of switch means having one end connected to each negative electrode of the plurality of secondary batteries and the other end commonly connected Negative electrode side switch means, and a capacitor connected between the other end of the plurality of positive electrode side switch means and the other end of the plurality of negative electrode side switch means, wherein a plurality of positive electrode side switches Means and a plurality of negative electrode side switch means, and a pair of the positive electrode side switch means and the negative electrode side switch means connected to the positive electrode and the negative electrode of the same secondary battery are cyclically turned on. Is controlled to repeat.

【0013】この構成によれば、複数個の二次電池のう
ち電位差の大きいものが放電し、これによってコンデン
サが充電され、コンデンサの蓄積電荷が複数個の二次電
池のうち電位差の小さいものに対して放電し、これによ
って複数個の二次電池のうち電位差の小さいものが充電
されることになる。以上のような複数個の二次電池とコ
ンデンサとの間の充放電の相互作用によって、複数個の
二次電池のうち電位差の大きいものは放電によって電位
差が小さくなり、複数個の二次電池のうち電位差の小さ
いものはコンデンサの放電によって電位差が大きくな
り、複数個の二次電池の電位差が均等化されることにな
る。この際、複数個の二次電池のうち電位差の大きいも
のの電気エネルギーを捨てているではなく、いったんコ
ンデンサに蓄え、それを複数個の二次電池のうち電位差
の小さいものへ与えているので、複数個の二次電池の電
位差を均等化する際における二次電池の電力消費量を最
小限に抑えることができる。
According to this configuration, one of the plurality of rechargeable batteries having a large potential difference is discharged, whereby the capacitor is charged, and the charge stored in the capacitor is reduced to that of the plurality of rechargeable batteries having a small potential difference. In this case, the secondary battery is discharged, whereby the battery having a small potential difference among the plurality of secondary batteries is charged. Due to the charge / discharge interaction between the plurality of secondary batteries and the capacitor as described above, among the plurality of secondary batteries, the one having a large potential difference is reduced in potential by discharge, and the Among them, the one with a small potential difference has a large potential difference due to the discharge of the capacitor, and the potential differences between a plurality of secondary batteries are equalized. At this time, instead of discarding the electrical energy of the plurality of secondary batteries having a large potential difference, the electrical energy is temporarily stored in a capacitor and given to the small number of secondary batteries having a small potential difference. It is possible to minimize the power consumption of the secondary batteries when equalizing the potential difference between the secondary batteries.

【0014】以下、本発明の実施の形態について、図面
を参照しながら説明する。図1は本発明の実施の形態に
おける二次電池電位差均等化回路を示すものである。図
1において、VA,VB,VCはそれぞれ二次電池であ
り、直列接続されている。1,2,3はそれぞれ導通状
態と開放状態とを実現する複数個の正電極側スイッチ手
段であり、複数個の二次電池VA,VB,VCの各々の
正電極に一端がそれぞれ接続され他端が共通接続されて
いる。4,5,6はそれぞれ導通状態と解放状態とを実
現する複数個の負電極側スイッチ手段であり、複数個の
二次電池VA,VB,VCの各々の負電極に一端がそれ
ぞれ接続され他端が共通接続されている。Cは複数個の
正電極側スイッチ手段1,2,3の他端と複数個の負電
極側スイッチ手段4,5,6の他端との間に接続された
コンデンサである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a secondary battery potential difference equalizing circuit according to an embodiment of the present invention. In FIG. 1, VA, VB, and VC are secondary batteries, respectively, which are connected in series. Reference numerals 1, 2, and 3 denote a plurality of positive electrode side switch means for realizing a conductive state and an open state, respectively. One end is connected to each positive electrode of a plurality of secondary batteries VA, VB and VC, respectively. The ends are commonly connected. Reference numerals 4, 5, and 6 denote a plurality of negative electrode side switch means for realizing a conductive state and a released state, respectively. One end is connected to each of the negative electrodes of the plurality of secondary batteries VA, VB, VC, respectively. The ends are commonly connected. C is a capacitor connected between the other end of the plurality of positive electrode side switch means 1, 2, 3 and the other end of the plurality of negative electrode side switch means 4, 5, 6.

【0015】上記の複数個の正電極側スイッチ手段1,
2,3と複数個の負電極側スイッチ手段4,5,6と
は、図示しない制御回路によってオンオフ動作が制御さ
れるが、同一の二次電池の正電極と負電極とに接続され
た正電極側スイッチ手段および負電極側スイッチ手段を
対にして一対ずつサイクリックにオン動作を繰り返すよ
うに制御される。具体的には、正電極側スイッチ手段1
と負電極側スイッチ手段4がオンで残り全てがオフの状
態と、正電極側スイッチ手段2と負電極側スイッチ手段
5がオンで残り全てがオフの状態と、正電極側スイッチ
手段3と負電極側スイッチ手段6がオンで残り全てがオ
フの状態とが、順次サイクリックに繰り返されるよう
に、複数個の正電極側スイッチ手段1,2,3と複数個
の負電極側スイッチ手段4,5,6が制御されることに
なる。
The plurality of positive electrode side switch means 1,
The on / off operations of the switches 2, 3, and the plurality of negative electrode side switch means 4, 5, 6 are controlled by a control circuit (not shown), but the positive and negative electrodes connected to the positive electrode and the negative electrode of the same secondary battery. The electrode-side switch means and the negative-electrode-side switch means are paired and controlled so as to cyclically repeat the ON operation. Specifically, the positive electrode side switch means 1
And the negative electrode side switch means 4 are on and all the rest are off, the positive electrode side switch means 2 and the negative electrode side switch means 5 are on and all the rest are off, and the positive electrode side switch means 3 and the negative The plurality of positive electrode-side switch means 1, 2, 3 and the plurality of negative electrode-side switch means 4, so that the state in which the electrode-side switch means 6 is ON and the rest are all OFF is sequentially and cyclically repeated. 5, 6 will be controlled.

【0016】以上のように構成された二次電池電位差均
等化回路について、その動作を説明する。ここで、連動
する正電極側スイッチ手段1と負電極側スイッチ手段
4、連動する正電極側スイッチ手段2と負電極側スイッ
チ手段5、および連動する正電極側スイッチ手段3と負
電極側スイッチ手段6の3つのスイッチ手段対を各々S
1,S2,S3とする。このスイッチ手段対S1,S
2,S3はそれぞれ導通状態と開放状態の2種類を実現
する。
The operation of the thus configured secondary battery potential difference equalizing circuit will be described. Here, the interlocking positive electrode switch means 1 and the negative electrode switch means 4, the interlocking positive electrode switch means 2 and the negative electrode switch means 5, and the interlocking positive electrode switch means 3 and the negative electrode switch means 6 and three switch means pairs S
1, S2, and S3. This switch means pair S1, S
2 and S3 respectively realize two types of a conductive state and an open state.

【0017】二次電池電位差均等化回路の動作中には、
スイッチ手段対S1,S2,S3のなかで、任意の1組
が導通状態、他の2組が解放状態になり、その組合せは
時間とともに順次サイクリックに変化している。なお、
スイッチ手段対S1,S2,S3がオン動作をする順序
は任意であり、オン動作をする順序を定期的に入れ替え
るようにしてもよい。
During operation of the secondary battery potential difference equalizing circuit,
Of the switch means pairs S1, S2, S3, one set is conductive and the other two sets are open, and the combination changes cyclically with time. In addition,
The order in which the switch means pairs S1, S2, and S3 are turned on is arbitrary, and the order in which they are turned on may be switched periodically.

【0018】例えば一例としては、スイッチ手段対S1
が導通状態、スイッチ手段対S2,S3が解放状態の組
合せの後、スイッチ手段対S2が導通状態、スイッチ手
段対S1,S3が解放状態の組合せ、その後スイッチ手
段対S3が導通状態、スイッチ手段対S1,S2が解放
状態という組合せを時間に対しほぼ均等になる割合で、
順次変化させるようにしている。
For example, as an example, a switch means pair S1
Is a conductive state, the switch means pair S2 and S3 are in a released state, and then the switch means pair S2 is in a conductive state, the switch means pairs S1 and S3 are in a released state. The combination of S1 and S2 being in the released state is a ratio almost equal to time,
It is made to change sequentially.

【0019】スイッチ手段対S1,S2,S3の一連の
時間的な状態変化は、各二次電池VA,VB,VCでコ
ンデンサCを充電する、あるいはコンデンサCの電荷を
二次電池VA,VB,VCに対して放電する作用を与え
ることになる。すなわち、二次電池VA,VB,VCの
うち電位差の大きいものが放電し、これによってコンデ
ンサCが充電され、コンデンサCの蓄積電荷が二次電池
VA,VB,VCのうち電位差の小さいものに対して放
電し、これによって二次電池VA,VB,VCのうち電
位差の小さいものが充電されることになる。
A series of changes in the state of the switch means S1, S2, S3 over time can be achieved by charging the capacitor C with each of the rechargeable batteries VA, VB, VC, or transferring the charge of the capacitor C to the rechargeable batteries VA, VB, This has the effect of discharging to VC. That is, one of the secondary batteries VA, VB, and VC having a large potential difference is discharged, whereby the capacitor C is charged. The accumulated charge of the capacitor C is smaller than that of the secondary batteries VA, VB, and VC having a small potential difference. To discharge the secondary batteries VA, VB, and VC having a small potential difference.

【0020】以上のような二次電池VA,VB,VCと
コンデンサCとの間の充放電の相互作用によって、二次
電池VA,VB,VCのうち電位差の大きいものは放電
によって電位差が小さくなり、二次電池VA,VB,V
Cのうち電位差の小さいものはコンデンサCの放電によ
って電位差が大きくなり、二次電池VA,VB,VCの
電位差が均等化されることになる。
Due to the charging / discharging interaction between the secondary batteries VA, VB, VC and the capacitor C as described above, the potential difference of the secondary batteries VA, VB, VC having a large potential difference is reduced by discharging. , Secondary batteries VA, VB, V
Among C, those having a small potential difference have a large potential difference due to the discharge of the capacitor C, and the potential differences between the secondary batteries VA, VB, and VC are equalized.

【0021】以上の点を具体的に説明すると、二次電池
VA,VB,VCの電位がすべて等しい場合には、コン
デンサCに対する電荷のやり取りはほとんど行われな
い。また、二次電池VCの電位差が二次電池VB,VA
の電位差に比べて小さい場合には、スイッチ手段対S3
が導通状態、スイッチ手段対S1,S2が解放状態の組
合せのときに二次電池VBあるいは二次電池VAにより
コンデンサCに蓄えられた電荷が二次電池VCに供給さ
れ、二次電池VCの電位は二次電池VBあるいは二次電
池VAの電位差まで回復していく。そして、二次電池V
Cに対する放電の結果により低下したコンデンサCの電
位差は、次の組合せ、例えばスイッチ手段対S1が導通
状態、スイッチ手段対S2,S3が解放状態の場合に、
二次電池VAの電位差に充電される。この後、スイッチ
手段対S2が導通状態、スイッチ手段対S1,S3が解
放状態となった場合において、二次電池VAの電位差が
二次電池VBの電位差と等しければ、コンデンサCの充
放電は行われない。また、二次電池VBの電位差の方が
大きければ、コンデンサCの充電が行われ、二次電池V
Bの電位差に充電される。逆に、二次電池VBの電位差
の方が小さければ、コンデンサCの放電が行われ、その
電荷が二次電池VBに供給され、二次電池VBの電位差
が上昇することになる。したがって、二次電池VA,V
B,VCの電位を均等化する際に必要な電荷のやり取り
は、最小限に抑えられる。
Explaining the above points concretely, when the potentials of the secondary batteries VA, VB, VC are all equal, the exchange of electric charge with respect to the capacitor C is hardly performed. Also, the potential difference between the secondary batteries VC is equal to the secondary batteries VB and VA.
If the potential difference is smaller than the potential difference between
Is in a conductive state and the switch means pair S1 and S2 are in a released state, the electric charge stored in the capacitor C by the secondary battery VB or VA is supplied to the secondary battery VC, and the potential of the secondary battery VC is Recovers to the potential difference of the secondary battery VB or the secondary battery VA. And the secondary battery V
The potential difference of the capacitor C lowered as a result of the discharge to C is determined by the following combination, for example, when the switch means pair S1 is conducting and the switch means pairs S2 and S3 are open.
The secondary battery VA is charged to a potential difference. Thereafter, in the case where the switch means pair S2 is in the conducting state and the switch means pairs S1 and S3 are in the open state, if the potential difference of the secondary battery VA is equal to the potential difference of the secondary battery VB, charging and discharging of the capacitor C is not performed. I can't. If the potential difference of the secondary battery VB is larger, the capacitor C is charged and the secondary battery VB is charged.
B is charged to the potential difference. Conversely, if the potential difference of the secondary battery VB is smaller, the capacitor C is discharged, the charge is supplied to the secondary battery VB, and the potential difference of the secondary battery VB increases. Therefore, the secondary batteries VA, V
The exchange of charges necessary for equalizing the potentials of B and VC is minimized.

【0022】以上のように、この実施の形態の二次電池
電位差均等化回路によれば、二次電池VA,VB,VC
のうち電位差の大きいものを電気エネルギーをコンデン
サCを介して二次電池VA,VB,VCのうち電位差の
小さいものに移しており、二次電池VA,VB,VCの
うち電位差の大きいものの電気エネルギーを捨てている
ではなく、いったんコンデンサCに蓄え、それを二次電
池VA,VB,VCのうち電位差の小さいものへ与えて
いるので、二次電池VA,VB,VCの電位差を均等化
する際における二次電池VA,VB,VCの電力消費量
を最小限に抑えることができる。
As described above, according to the secondary battery potential difference equalizing circuit of this embodiment, the secondary batteries VA, VB, VC
Of the secondary batteries VA, VB, and VC are transferred to the one with a small potential difference through the capacitor C, and the electric energy of the one with a large potential difference among the secondary batteries VA, VB, and VC is transferred. Is not stored, but is temporarily stored in the capacitor C, and is given to the secondary battery VA, VB, VC having the smaller potential difference. Therefore, when equalizing the potential difference between the secondary batteries VA, VB, VC, , The power consumption of the secondary batteries VA, VB, and VC can be minimized.

【0023】なお、この実施の形態では、3個直列に接
続された二次電池VA,VB,VCに対する二次電池電
位差均等化回路の構成および動作を説明したが、二次電
池の接続数に制限はなく、2個以上の場合ならすべて同
様に対応することが可能である。また、正電極側スイッ
チ手段1,2,3および負電極側スイッチ手段4,5,
6としては、機械式あるいは電子式リレー装置、P形M
OSトランジスタ単体やP形MOSトランジスタとN形
MOSトランジスタを並列に接続したトランスミッショ
ンゲート等が使用可能である。
In this embodiment, the configuration and operation of the secondary battery potential difference equalizing circuit for the three serially connected secondary batteries VA, VB, and VC have been described. There is no limitation, and it is possible to cope with all cases of two or more. Also, the positive electrode side switch means 1, 2, 3 and the negative electrode side switch means 4, 5,
6 is a mechanical or electronic relay device, P-type M
A single OS transistor, a transmission gate in which a P-type MOS transistor and an N-type MOS transistor are connected in parallel, or the like can be used.

【0024】なお、スイッチ手段としては、N形MOS
トランジスタ単体を使用することも原理的には可能であ
る。ただ、図1のスイッチ1をオンにする場合には、N
形MOSトランジスタのゲート電圧を二次電池VAの電
位より高くする必要があり、別電源を作るためのDC−
DCコンバータやチャージポンプが必要となり、回路が
多少複雑にはなる。
The switching means is an N-type MOS.
It is also possible in principle to use a single transistor. However, when the switch 1 in FIG. 1 is turned on, N
It is necessary to make the gate voltage of the MOS transistor higher than the potential of the secondary battery VA, and the DC-
A DC converter and a charge pump are required, and the circuit becomes somewhat complicated.

【0025】[0025]

【発明の効果】本発明の二次電池電位差均等化回路によ
れば、複数個の二次電池のうち電位差の大きいものの電
気エネルギーをコンデンサを介して複数個の二次電池の
うち電位差の小さいものに移しており、複数個の二次電
池のうち電位差の大きいものの電気エネルギーを捨てて
いるのではなく、いったんコンデンサに蓄え、それを複
数個の二次電池のうち電位差の小さいものへ与えている
ので、複数個の二次電池の電位差を均等化する際におけ
る複数個の二次電池の電力消費量を最小限に抑えること
ができる。
According to the rechargeable battery potential difference equalizing circuit of the present invention, the electric energy of the large potential difference among the plurality of rechargeable batteries is transferred to the rechargeable battery having the small potential difference through the capacitor. Instead of discarding the electrical energy of those with a large potential difference among a plurality of secondary batteries, the energy is temporarily stored in a capacitor and then given to a battery with a small potential difference among a plurality of secondary batteries. Therefore, it is possible to minimize the power consumption of the plurality of secondary batteries when equalizing the potential difference between the plurality of secondary batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態における二次電池電位差
均等化回路の構成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of a secondary battery potential difference equalizing circuit according to an embodiment of the present invention.

【図2】従来例の二次電池電位差均等化回路の構成を示
す回路図である。
FIG. 2 is a circuit diagram showing a configuration of a conventional secondary battery potential difference equalizing circuit.

【符号の説明】[Explanation of symbols]

VA,VB,VC 二次電池 1〜3 正電極側スイッチ手段 4〜6 負電極側スイッチ手段 1b,2b,3b,4b スイッチ手段 R1〜R4 抵抗 C コンデンサ VA, VB, VC Rechargeable batteries 1-3 Positive electrode side switch means 4-6 Negative electrode side switch means 1b, 2b, 3b, 4b Switch means R1-R4 Resistance C capacitor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 直列接続された複数個の二次電池の各々
の正負両電極間の電位差を均等化する二次電池電位差均
等化回路であって、 前記複数個の二次電池の各々の正電極に一端がそれぞれ
接続され他端が共通接続された複数個の正電極側スイッ
チ手段と、前記複数個の二次電池の各々の負電極に一端
がそれぞれ接続され他端が共通接続された複数個の負電
極側スイッチ手段と、前記複数個の正電極側スイッチ手
段の他端と前記複数個の負電極側スイッチ手段の他端と
の間に接続されたコンデンサとを備え、 前記複数個の正電極側スイッチ手段と前記複数個の負電
極側スイッチ手段を、同一の二次電池の正電極と負電極
とに接続された正電極側スイッチ手段および負電極側ス
イッチ手段を対にして1対ずつサイクリックにオン動作
を繰り返すように制御したことを特徴とする二次電池電
位差均等化回路。
1. A secondary battery potential difference equalizing circuit for equalizing a potential difference between positive and negative electrodes of each of a plurality of secondary batteries connected in series, wherein each of the plurality of secondary batteries has a positive polarity. A plurality of positive electrode side switch means each having one end connected to the electrode and the other end commonly connected, and a plurality of positive electrode side switch means each having one end connected to each negative electrode of the plurality of secondary batteries and the other end commonly connected. A plurality of negative electrode side switch means, a capacitor connected between the other end of the plurality of positive electrode side switch means and the other end of the plurality of negative electrode side switch means, A positive electrode side switch means and the plurality of negative electrode side switch means are paired with a positive electrode side switch means and a negative electrode side switch means connected to a positive electrode and a negative electrode of the same secondary battery. I will repeat the ON operation cyclically Battery potential equalization circuit, characterized in that the controlled.
【請求項2】 正電極側スイッチ手段および負電極側ス
イッチ手段をそれぞれMOSトランジスタで構成した請
求項1記載の二次電池電位差均等化回路。
2. The secondary battery potential difference equalizing circuit according to claim 1, wherein each of the positive electrode side switch means and the negative electrode side switch means is constituted by a MOS transistor.
【請求項3】 正電極側スイッチ手段および負電極側ス
イッチ手段をそれぞれ、第1導電型MOSトランジスタ
と第2導電型MOSトランジスタの並列回路からなるト
ランスミッションゲートで構成した請求項1記載の二次
電池電位差均等化回路。
3. The secondary battery according to claim 1, wherein each of the positive electrode side switch means and the negative electrode side switch means is constituted by a transmission gate comprising a parallel circuit of a first conductivity type MOS transistor and a second conductivity type MOS transistor. Potential difference equalization circuit.
JP9021534A 1997-02-04 1997-02-04 Circuit for equalizing potential difference of secondary cell Pending JPH10225005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9021534A JPH10225005A (en) 1997-02-04 1997-02-04 Circuit for equalizing potential difference of secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9021534A JPH10225005A (en) 1997-02-04 1997-02-04 Circuit for equalizing potential difference of secondary cell

Publications (1)

Publication Number Publication Date
JPH10225005A true JPH10225005A (en) 1998-08-21

Family

ID=12057638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9021534A Pending JPH10225005A (en) 1997-02-04 1997-02-04 Circuit for equalizing potential difference of secondary cell

Country Status (1)

Country Link
JP (1) JPH10225005A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091696B2 (en) 2002-09-25 2006-08-15 Yazaki Corporation Method and apparatus for regulating state of charge in battery assembly
US7443138B2 (en) 2005-11-25 2008-10-28 Yazaki Corporation Battery control device for equalization of cell voltages
JP2010104179A (en) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd Power supply device and electric vehicle
US7714539B2 (en) 2005-08-24 2010-05-11 Yazaki Corporation Apparatus for regulating state of charge in battery assembly
JP2011223653A (en) * 2010-04-05 2011-11-04 Isuzu Motors Ltd Voltage regulation system
JP2012044855A (en) * 2010-08-17 2012-03-01 Samsung Electro-Mechanics Co Ltd Apparatus for equalizing voltage using time switch
WO2013137229A1 (en) 2012-03-16 2013-09-19 矢崎総業株式会社 Equalization device
JP2015037339A (en) * 2013-08-12 2015-02-23 住友電気工業株式会社 Power storage device, charging method, and discharging method
JP2017032349A (en) * 2015-07-30 2017-02-09 矢崎総業株式会社 Secondary battery state detection device
US12081049B2 (en) 2019-07-25 2024-09-03 Nuvoton Technology Corporation Japan Battery management circuit, energy storage device, and battery management method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091696B2 (en) 2002-09-25 2006-08-15 Yazaki Corporation Method and apparatus for regulating state of charge in battery assembly
US7714539B2 (en) 2005-08-24 2010-05-11 Yazaki Corporation Apparatus for regulating state of charge in battery assembly
US7443138B2 (en) 2005-11-25 2008-10-28 Yazaki Corporation Battery control device for equalization of cell voltages
JP2010104179A (en) * 2008-10-24 2010-05-06 Sanyo Electric Co Ltd Power supply device and electric vehicle
JP2011223653A (en) * 2010-04-05 2011-11-04 Isuzu Motors Ltd Voltage regulation system
JP2012044855A (en) * 2010-08-17 2012-03-01 Samsung Electro-Mechanics Co Ltd Apparatus for equalizing voltage using time switch
WO2013137229A1 (en) 2012-03-16 2013-09-19 矢崎総業株式会社 Equalization device
JP2015037339A (en) * 2013-08-12 2015-02-23 住友電気工業株式会社 Power storage device, charging method, and discharging method
JP2017032349A (en) * 2015-07-30 2017-02-09 矢崎総業株式会社 Secondary battery state detection device
US10249914B2 (en) 2015-07-30 2019-04-02 Yazaki Corporation Secondary cell state detector
US12081049B2 (en) 2019-07-25 2024-09-03 Nuvoton Technology Corporation Japan Battery management circuit, energy storage device, and battery management method

Similar Documents

Publication Publication Date Title
JP3666037B2 (en) battery pack
JP3681624B2 (en) Charging circuit, charging / discharging circuit, and battery pack
EP3261168B1 (en) Battery stack balancing apparatus
US9537331B2 (en) Battery pack
JP3615507B2 (en) Battery charge rate adjustment circuit
KR960703277A (en) NON-DISSIPATIVE BATTERY CHARGE EQUALIZER
KR20000057966A (en) A Management System for The Rechargerble Battery And A Managing Method Thereby
JP2003157908A (en) Charging device for lithium ion secondary cell, and charging method of the same
KR20020003377A (en) System and method for maintenance charging of battery cells
JPH10225005A (en) Circuit for equalizing potential difference of secondary cell
WO1998008266A1 (en) Power source for an electrical device
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
JPH11262188A (en) Equipment and method for correcting variations in series connected battery
GB2293059A (en) Equalization of charge on series connected cells or batteries
JP2001178010A (en) Charging control system for battery of electric storage cells, particularly for battery of lithium cells
JPH09163615A (en) Battery containing a plurality of cells, especially lithium ion cells, connected in series
EP1263110A2 (en) Battery pack system
JP2003217675A (en) Charging method and device for lithium ion secondary battery
JP3713470B2 (en) Secondary battery charge / discharge controller
JP2010028920A (en) Charger device of battery charger
JPH1186913A (en) Balance circuit of a plurality of chargeable batteries
CN215663045U (en) Battery parallel management system
JP2000217264A (en) Battery classification detecting circuit
TWM566405U (en) DC synchronous charging balance system
JP2000166113A (en) Method and device for balancing lithium ion battery pack

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216