JP2008119960A - Fluid jet apparatus - Google Patents

Fluid jet apparatus Download PDF

Info

Publication number
JP2008119960A
JP2008119960A JP2006306852A JP2006306852A JP2008119960A JP 2008119960 A JP2008119960 A JP 2008119960A JP 2006306852 A JP2006306852 A JP 2006306852A JP 2006306852 A JP2006306852 A JP 2006306852A JP 2008119960 A JP2008119960 A JP 2008119960A
Authority
JP
Japan
Prior art keywords
fluid
temperature
plate member
ejection device
fluid ejection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006306852A
Other languages
Japanese (ja)
Other versions
JP4986025B2 (en
Inventor
Takeshi Takeuchi
健 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2006306852A priority Critical patent/JP4986025B2/en
Publication of JP2008119960A publication Critical patent/JP2008119960A/en
Application granted granted Critical
Publication of JP4986025B2 publication Critical patent/JP4986025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid jet apparatus capable of appropriately controlling the temperature of jetting fluid. <P>SOLUTION: The fluid jet apparatus jets the fluid flowing in a flowing part 13 from a jetting part 12 to the resin film side through a flow path 11 in manufacturing long resin film. The fluid jet apparatus laminates a plate member 2 formed with a groove part used as the flow path 11 and has a temperature regulating mechanism 3 for regulating the temperature of the fluid passing through the flow path 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、長尺状の樹脂フィルムを製造する際に、流入部に流入した流体を、流路を介して噴出部から前記樹脂フィルムの側に噴出する流体噴出装置に関する。   The present invention relates to a fluid ejection device that ejects a fluid that has flowed into an inflow portion from an ejection portion to the resin film side through a flow path when a long resin film is manufactured.

この種の流体噴出装置は、長尺状の樹脂フィルムを製造する際に、例えば、樹脂フィルムを成形・延伸等するために用いられる。
このような流体噴出装置として、例えば特許文献1及び特許文献2に記載されたものが知られている。
This type of fluid ejection device is used, for example, for molding / stretching a resin film when producing a long resin film.
As such a fluid ejection device, for example, those described in Patent Literature 1 and Patent Literature 2 are known.

すなわち、特許文献1及び特許文献2には、多孔質焼結金属や無機多孔質材料等で構成された流体噴出装置を芯部材として用い、加熱押出機から管状に押出された熱可塑性樹脂の内面に対向させて配置し、この流体噴出装置から温度調節機構により温度を調節した空気などの流体を噴出させながら、前記熱可塑性樹脂を管状樹脂フィルムに成形することが記載されている。
また、上述の文献には、流体噴出装置をマンドレルとして用い、マンドレルから温度調節機構により温度を調節した空気などの流体を噴出しながら管状樹脂フィルムを延伸することも記載されている。
上述のように、流体を噴出しながら管状樹脂フィルムの成形・延伸を行うことにより、芯部材やマンドレルと管状樹脂フィルムとの間の摩擦を低減することができる。また、管状樹脂フィルムにキズが生じるのを防止することができる。さらに、温度調節機構によって流体の温度を調節することにより、熱可塑性樹脂の急激な温度変化を防止することができる。これにより、管状樹脂フィルムにキズ・皺等が生じるのを防止することができる。
That is, in Patent Document 1 and Patent Document 2, an inner surface of a thermoplastic resin extruded in a tubular shape from a heating extruder using a fluid ejection device composed of a porous sintered metal or an inorganic porous material as a core member. The thermoplastic resin is formed into a tubular resin film while ejecting a fluid such as air whose temperature is adjusted by a temperature adjusting mechanism from the fluid ejecting apparatus.
In addition, the above-described document also describes that a fluid ejection device is used as a mandrel, and a tubular resin film is stretched while ejecting a fluid such as air whose temperature is regulated by a temperature regulation mechanism from the mandrel.
As described above, by forming and stretching the tubular resin film while ejecting the fluid, friction between the core member or mandrel and the tubular resin film can be reduced. Moreover, it is possible to prevent the tubular resin film from being scratched. Furthermore, by adjusting the temperature of the fluid by the temperature adjusting mechanism, it is possible to prevent a sudden temperature change of the thermoplastic resin. Thereby, it is possible to prevent the tubular resin film from being scratched or wrinkled.

特開2004−314588号公報(明細書[0045]段落及び図1)JP 2004-314588 A (paragraph [0045] paragraph and FIG. 1) 特開2004−314589号公報(明細書[0037]段落及び図1)JP 2004-314589 A (paragraph [0037] paragraph and FIG. 1)

しかし、従来の流体噴出装置は、多孔質焼結金属や無機多孔質材料等で構成されるため、流路を流通する流体の温度を十分に調節することができず、流体噴出装置に供給される流体の温度と流体噴出装置から噴出される流体の温度との間に差が生じ、適切な温度の流体を噴出することができない場合があった。   However, since the conventional fluid ejection device is composed of a porous sintered metal, an inorganic porous material, or the like, the temperature of the fluid flowing through the flow path cannot be sufficiently adjusted and is supplied to the fluid ejection device. In some cases, there is a difference between the temperature of the fluid to be ejected and the temperature of the fluid ejected from the fluid ejection device, and the fluid having an appropriate temperature cannot be ejected.

本発明は上述の問題点に鑑みてなされたものであり、流体の温度を適切に制御することができる流体噴出装置を提供することにある。   This invention is made | formed in view of the above-mentioned problem, and is providing the fluid ejection apparatus which can control the temperature of the fluid appropriately.

本発明の第1特徴構成は、長尺状の樹脂フィルムを製造する際に、流入部に流入した流体を、流路を介して噴出部から前記樹脂フィルムの側に噴出する流体噴出装置であって、前記流路となる溝部を形成した板部材を積層するとともに、前記流路を通過する流体に対して温度を調節する温度調節機構を備えた点にある。   A first characteristic configuration of the present invention is a fluid ejection device that ejects fluid that has flowed into an inflow portion from the ejection portion toward the resin film via a flow path when a long resin film is manufactured. In addition, a plate member in which a groove portion serving as the flow path is stacked, and a temperature adjustment mechanism for adjusting the temperature of the fluid passing through the flow path is provided.

本構成により、流路を通過する流体に対して直接温度を調節することができるので、従来のように、予め温度を調節した流体を流体噴出装置に供給する場合と比較して、噴出部から噴出される流体の温度を最適に調節することができる。   With this configuration, the temperature can be directly adjusted with respect to the fluid passing through the flow path. Therefore, as compared with the conventional case where the fluid whose temperature is adjusted in advance is supplied to the fluid ejection device, the ejection portion The temperature of the ejected fluid can be adjusted optimally.

本発明の第2特徴構成は、各板部材の前記溝部を形成してある面及び前記溝部が形成してある面の裏面のうちの少なくとも何れか一方の面に沿って前記温度調節機構が設けてある点にある。   According to a second characteristic configuration of the present invention, the temperature adjusting mechanism is provided along at least one of a surface of each plate member on which the groove is formed and a back surface of the surface on which the groove is formed. It is in a certain point.

本構成により、流路に近接して温度調節機構を配置することとなるので、流体の温度をより正確に調節することができる。   With this configuration, the temperature adjustment mechanism is disposed close to the flow path, so that the temperature of the fluid can be adjusted more accurately.

本発明の第3特徴構成は、前記溝部を形成する領域が複数の流路用小領域に区分してあり、前記流路用小領域毎に溝部が形成してある点にある。   The third characteristic configuration of the present invention is that a region where the groove is formed is divided into a plurality of small regions for flow paths, and a groove is formed for each small region for flow paths.

本構成により前記流路用小領域毎に独立して流体の流量を調節することができるので、樹脂フィルムの形状に応じて、各部の温度に差が生じる各部の温度に差が生じる樹脂フィルム等には、当該樹脂フィルムの位置毎に異なった流量の流体を噴出することができる。   Since the flow rate of the fluid can be adjusted independently for each small area for the flow path by this configuration, the resin film in which the temperature of each part is different depending on the shape of the resin film, etc. In this case, fluids having different flow rates can be ejected for each position of the resin film.

本発明の第4特徴構成は、前記温度調節機構が複数の温度調節用小領域に区分してあり、前記温度調節用小領域毎に温度調節が可能に構成してある点にある。   According to a fourth characteristic configuration of the present invention, the temperature adjustment mechanism is divided into a plurality of temperature adjustment subregions, and the temperature adjustment is possible for each of the temperature adjustment subregions.

本構成により、前記温度調整用小領域毎に独立して流体の温度を調節することができるので、樹脂フィルムの形状に応じて、各部の温度に差が出る各部の温度に差が生じる樹脂フィルム等には、当該樹脂フィルムの位置毎に異なった温度の流体を噴出することができる。   With this configuration, since the temperature of the fluid can be adjusted independently for each of the temperature adjustment subregions, the resin film in which the temperature of each part varies depending on the shape of the resin film. For example, fluids having different temperatures can be ejected for each position of the resin film.

本発明の第5特徴構成は、前記流路用小領域毎に前記温度調節用小領域が設けた点にある。   The fifth characteristic configuration of the present invention is that the temperature adjusting small region is provided for each of the flow channel small regions.

本構成により、温度調節用小領域毎に独立して流体が流通することとなる。このため、他の温度調節用小領域を流通する流体の影響を受けることが無いので、温度調節用小領域毎に流体の温度を確実に調節することができる。   With this configuration, the fluid flows independently for each small region for temperature adjustment. For this reason, since it does not receive to the influence of the fluid which distribute | circulates the other small area for temperature control, the temperature of the fluid can be adjusted reliably for every small area for temperature control.

本発明の第6特徴構成は、前記溝部が屈曲若しくは彎曲して形成してある点にある。   A sixth characteristic configuration of the present invention is that the groove is formed by bending or bending.

本構成により、流入部と噴出部とを直線で連通した場合よりも流路長を長くすることができる。このため、流体の温度を調節できる領域が長くなり、流体の温度を確実に調節することができる。   With this configuration, the flow path length can be made longer than when the inflow portion and the ejection portion are connected in a straight line. For this reason, the area | region which can adjust the temperature of a fluid becomes long, and can adjust the temperature of a fluid reliably.

本発明の第7特徴構成は、一つの前記噴出部に複数の流路を連通させるように前記溝部を形成した点にある。   A seventh characteristic configuration of the present invention is that the groove portion is formed so that a plurality of flow paths are communicated with one of the ejection portions.

本構成のように、特定の噴出部に対して、複数の流路からの流体を供給することで、仮に、夫々の流路を流通する流体の温度にバラつきがある場合でも、流体の温度を均一化することができる。   As in this configuration, by supplying fluid from a plurality of flow paths to a specific ejection portion, even if the temperature of the fluid flowing through each flow path varies, the temperature of the fluid can be reduced. It can be made uniform.

本発明の第8特徴構成は、前記流体噴出装置が円筒形状の外周面および円筒形状の内周面の少なくとも何れか一方を有しており、前記流体噴出装置が有する円筒形状の面のうち少なくとも何れか一つについて噴出部を設けてある点にある。   According to an eighth feature of the present invention, the fluid ejection device has at least one of a cylindrical outer peripheral surface and a cylindrical inner peripheral surface, and at least one of the cylindrical surfaces of the fluid ejection device. It exists in the point which has provided the ejection part about any one.

本構成により、略円筒状の外周面を管状樹脂フィルムの内周面に対向させて、あるいは略円筒状の内周面を管状樹脂フィルムの外周面に管状樹脂フィルムの外周を対向させて、管状樹脂フィルムに対して流体を噴出することができる。   With this configuration, the substantially cylindrical outer peripheral surface is opposed to the inner peripheral surface of the tubular resin film, or the substantially cylindrical inner peripheral surface is opposed to the outer peripheral surface of the tubular resin film, and the outer periphery of the tubular resin film is opposed to the tubular resin film. A fluid can be ejected to the resin film.

[実施形態1]
以下に、本発明の第1の実施形態について図面を参照して説明する。ここでは、本発明に係る流体噴出装置1を、図1に示すように管状樹脂フィルム6を成形する際に、加熱押出機7から管状に押し出された熱可塑性樹脂の外周面に対向して配置した外側部材として用いた例について説明する。
[Embodiment 1]
A first embodiment of the present invention will be described below with reference to the drawings. Here, the fluid ejection device 1 according to the present invention is disposed so as to face the outer peripheral surface of the thermoplastic resin extruded into a tubular shape from the heating extruder 7 when the tubular resin film 6 is formed as shown in FIG. An example used as an outer member will be described.

本発明に係る流体噴出装置1は、略円筒形状を有し、この円筒形状の内周面に流体を噴出する噴出部12が形成してある。
流体噴出装置1は、例えば空気圧縮機などの流体供給手段(不図示)から流入部13に供給された流体としての空気を、流路11を介して噴出部12から噴出し、熱可塑性樹脂の外周に対して流体を噴出しつつ、管状樹脂フィルム6を成形する。流体は、流路11を流通する際に、温度調節機構3によりその温度が所期の温度に調節される。
The fluid ejection device 1 according to the present invention has a substantially cylindrical shape, and an ejection portion 12 that ejects fluid is formed on the inner circumferential surface of the cylindrical shape.
The fluid ejection device 1 ejects air as a fluid supplied from a fluid supply means (not shown) such as an air compressor to the inflow portion 13 from the ejection portion 12 via the flow path 11 and is made of thermoplastic resin. The tubular resin film 6 is formed while ejecting fluid to the outer periphery. When the fluid flows through the flow path 11, the temperature is adjusted to a desired temperature by the temperature adjustment mechanism 3.

このように、流体噴出装置1から熱可塑性樹脂の外周に、温度を調節した流体を噴出しながら管状樹脂フィルム6を成形することにより、外気の影響による熱可塑性樹脂の温度の急激な変化を防ぐことができ、成形された管状樹脂フィルム6にキズ・皺等が生じることを防止することができる。   Thus, by forming the tubular resin film 6 while ejecting the fluid whose temperature is adjusted from the fluid ejection device 1 to the outer periphery of the thermoplastic resin, a sudden change in the temperature of the thermoplastic resin due to the influence of outside air is prevented. It is possible to prevent the molded tubular resin film 6 from being scratched or wrinkled.

図1に示すように、この流体噴出装置1は、板部材2と板状のヒータ部材31(温度調節機構3の一例)とを、周期的に積層して構成してある。
流体噴出装置1の外周面に流体が流入する流入部13が形成してあり、内周面には流体を噴出する噴出部12が形成してある。また、流入部13と噴出部12とを連通する流路11が形成してある。流入部13には、流体供給手段が接続され、流体供給手段から流入部13に供給された流体が、流路11を介して噴出部12から噴出される。
As shown in FIG. 1, the fluid ejection device 1 is configured by periodically laminating a plate member 2 and a plate-like heater member 31 (an example of the temperature adjustment mechanism 3).
An inflow portion 13 through which fluid flows is formed on the outer peripheral surface of the fluid ejection device 1, and an ejection portion 12 for ejecting fluid is formed on the inner peripheral surface. Moreover, the flow path 11 which connects the inflow part 13 and the ejection part 12 is formed. A fluid supply means is connected to the inflow portion 13, and the fluid supplied from the fluid supply means to the inflow portion 13 is ejected from the ejection portion 12 through the flow path 11.

次に、流体噴出装置1を構成する各部材について説明する。
図2に示すように、板部材2は、例えば第1板部材2aと第2板部材2bとから構成される。第1板部材2aは、円形の金属板の中央部に流体噴出装置1の内周面を構成する穴部22を形成した平座金状の形状を有している。また、板部材2の外周の付近には、棒部材41挿入用の穴部23が複数個(本実施形態では4つ)形成してある。第1板部材2aの一方の面には、流入部13・流路11・噴出部12を形成する溝部21が、第1板部材2aの内周と外周とを連通して設けてある。この溝部21は複数設けられ、放射線状に形成してある。溝部21は、特に限定されないが例えば機械加工・放電加工などにより形成することができる。第2板部材2bは、第1板部材2aと同様の形状を有するが、溝部21が形成されていない点で、第1板部材2aとは異なる。
Next, each member which comprises the fluid ejection apparatus 1 is demonstrated.
As shown in FIG. 2, the plate member 2 includes, for example, a first plate member 2a and a second plate member 2b. The first plate member 2a has a flat washer-like shape in which a hole 22 constituting the inner peripheral surface of the fluid ejection device 1 is formed at the center of a circular metal plate. Further, a plurality of holes (four in this embodiment) for inserting the rod member 41 are formed in the vicinity of the outer periphery of the plate member 2. On one surface of the first plate member 2a, a groove portion 21 that forms the inflow portion 13, the flow path 11, and the ejection portion 12 is provided so as to communicate the inner periphery and the outer periphery of the first plate member 2a. A plurality of the groove portions 21 are provided and formed radially. The groove 21 is not particularly limited, but can be formed by, for example, machining or electric discharge machining. The second plate member 2b has the same shape as the first plate member 2a, but differs from the first plate member 2a in that the groove 21 is not formed.

図2に示すように、ヒータ部材31は、例えば板部材2と同様に平座金形状を有し、棒部材41挿入用の穴部31aが形成してある。ヒータ部材31としては、特に限定されないが、ニクロム線などの抵抗部材を、マイカなどの絶縁部材で絶縁したものを耐熱金属板で被覆したプレートヒータを用いることができる。ヒータ部材31は、電源(不図示)に接続してある。なお、ヒータ部材31は、板部材2に沿って設けてあればよく、必ずしも板部材2と同形状でなくてもよい。また、ヒータ部材3は、必ずしも板部材2の全範囲に渡って設けられていなくても良い。   As shown in FIG. 2, the heater member 31 has a flat washer shape like the plate member 2, for example, and is formed with a hole 31 a for inserting the bar member 41. The heater member 31 is not particularly limited, and a plate heater in which a resistance member such as a nichrome wire is insulated with an insulating member such as mica and covered with a heat-resistant metal plate can be used. The heater member 31 is connected to a power source (not shown). The heater member 31 only needs to be provided along the plate member 2 and does not necessarily have the same shape as the plate member 2. The heater member 3 does not necessarily have to be provided over the entire range of the plate member 2.

図2に示すように、第1板部材2aの溝部21が形成してある面と第2板部材2bとを対向させ、この2枚の板部材2とヒータ部材31とが交互に積層され、夫々の穴部23,31aに棒部材41が挿入される。棒部材41の両端は雄ネジが形成されており、その両端にナット42が締結される。積層された板部材2及びヒータ部材31がナット42により一体的に固定さ、流体噴出装置1を構成する。   As shown in FIG. 2, the surface of the first plate member 2 a where the groove portion 21 is formed and the second plate member 2 b are opposed to each other, and the two plate members 2 and the heater members 31 are alternately stacked. The rod member 41 is inserted into each of the holes 23 and 31a. Both ends of the bar member 41 are formed with male screws, and nuts 42 are fastened to both ends. The laminated plate member 2 and heater member 31 are integrally fixed by a nut 42 to constitute the fluid ejection device 1.

上述のように、板部材2とヒータ部材31とを積層することにより、流路11に近接してヒータ部材31を配置することとなり、流路11を通過する流体に対して直接温度を調節することができる。このため、従来のように、予め温度を調節した流体を流体噴出装置1に供給する場合と比較して、噴出部12から噴出される流体の温度を確実に調節することができる。   As described above, by laminating the plate member 2 and the heater member 31, the heater member 31 is disposed close to the flow path 11, and the temperature is directly adjusted with respect to the fluid passing through the flow path 11. be able to. For this reason, compared with the case where the fluid which adjusted the temperature beforehand is supplied to the fluid ejection apparatus 1 like the past, the temperature of the fluid ejected from the ejection part 12 can be adjusted reliably.

また、この流体噴出装置1では、板部材2とヒータ部材31とが周期的に積層してあるので、夫々にヒータ部材31の調節温度を変化させることにより、流体噴出装置1の長手方向に沿って、流体の温度を変化させることができる。そこで、例えば熱可塑性樹脂6の温度が高い上流側では、流体の温度を高く設定し、熱可塑性樹脂6の温度がある程度低くなる下流側に向かって流体の温度を低下させるなど、熱可塑性樹脂の状態に応じて適切に流体の温度を制御することができる。   Moreover, in this fluid ejection apparatus 1, since the plate member 2 and the heater member 31 are periodically laminated, the adjustment temperature of the heater member 31 is changed to change the longitudinal direction of the fluid ejection apparatus 1 respectively. Thus, the temperature of the fluid can be changed. Therefore, for example, on the upstream side where the temperature of the thermoplastic resin 6 is high, the temperature of the fluid is set high, and the temperature of the fluid is lowered toward the downstream side where the temperature of the thermoplastic resin 6 is lowered to some extent. The temperature of the fluid can be appropriately controlled according to the state.

[実施形態2]
以下に、本発明の第2の実施形態について図面を参照して説明する。ここでは、本発明に係る流体噴出装置1を、図3に示すように管状樹脂フィルム6の成形に用いる芯部材に適用した場合を例として説明する。
本発明に係る流体噴出装置1は、加熱押出機7から管状押出された熱可塑性樹脂の内周に対向するように配置してある。流体噴出装置1は、流体供給手段(不図示)により流入部13に供給された流体としての空気を、流路11を介して噴出部12から噴出し、熱可塑性樹脂の内周に対して流体を噴出しつつ、管状樹脂フィルム6を成形する。このように、流体噴出装置1から流体を噴出しながら管状樹脂フィルム6を成形することにより、流体噴出装置1と熱可塑性樹脂との間の摩擦を低減することができ、成形された管状樹脂フィルムにキズ・皺等が生じることを防止することができる。
[Embodiment 2]
The second embodiment of the present invention will be described below with reference to the drawings. Here, the case where the fluid ejection device 1 according to the present invention is applied to a core member used for forming the tubular resin film 6 as shown in FIG. 3 will be described as an example.
The fluid ejection device 1 according to the present invention is arranged so as to face the inner periphery of a thermoplastic resin tubularly extruded from the heating extruder 7. The fluid ejection device 1 ejects air as a fluid supplied to the inflow portion 13 by a fluid supply means (not shown) from the ejection portion 12 via the flow path 11, and flows into the inner periphery of the thermoplastic resin. The tubular resin film 6 is formed while jetting out. Thus, by forming the tubular resin film 6 while ejecting the fluid from the fluid ejection device 1, the friction between the fluid ejection device 1 and the thermoplastic resin can be reduced, and the molded tubular resin film is formed. Scratches, wrinkles, etc. can be prevented from occurring.

図3に示すように、この流体噴出装置1は、複数の板部材2とヒータ部材31とを積層して、その両端にフタ部材4を設け、略円筒形状に構成してある。流体噴出装置1の中心部には、長手方向に延在する流体貯留部14が形成してある。流体噴出装置1の内周面には、流体貯留部14に開口する流入部13が形成してあり、外周面には、流体を噴出する噴出部12が形成してある。また、流入部13と噴出部12とを連通する流路11が形成してある。流体貯留部14には、流体供給手段(不図示)が接続され、流体供給手段から流体貯留部14に供給された流体が、流入部13から流路11に流入し、流路11を介して噴出部12から噴出される。ここで、流体貯留部14の流通抵抗が流路11の流体抵抗と比較して無視できるように、流体貯留部14の断面積は流路11の断面積と比較して非常に大きく設定してある。流体貯留部14をこのように設定することにより、流路11の位置に拘わらず、各流路11に略同一の供給圧で流体を供給することができる。また、流体貯留部14で、流体が所期の温度に近い温度に調節されてから流路11に供給されることとなるので、流路11における流体の温度調節が確実になる。   As shown in FIG. 3, the fluid ejection device 1 has a substantially cylindrical shape in which a plurality of plate members 2 and a heater member 31 are stacked and lid members 4 are provided at both ends thereof. A fluid reservoir 14 extending in the longitudinal direction is formed at the center of the fluid ejection device 1. An inflow portion 13 that opens to the fluid storage portion 14 is formed on the inner peripheral surface of the fluid ejection device 1, and an ejection portion 12 that ejects fluid is formed on the outer peripheral surface. Moreover, the flow path 11 which connects the inflow part 13 and the ejection part 12 is formed. A fluid supply means (not shown) is connected to the fluid storage section 14, and the fluid supplied from the fluid supply means to the fluid storage section 14 flows into the flow path 11 from the inflow section 13 and passes through the flow path 11. It is ejected from the ejection part 12. Here, the cross-sectional area of the fluid reservoir 14 is set to be very large compared to the cross-sectional area of the channel 11 so that the flow resistance of the fluid reservoir 14 can be ignored compared to the fluid resistance of the channel 11. is there. By setting the fluid reservoir 14 in this way, fluid can be supplied to each channel 11 with substantially the same supply pressure regardless of the position of the channel 11. In addition, since the fluid is adjusted to a temperature close to the desired temperature in the fluid storage unit 14 and then supplied to the flow path 11, the temperature of the fluid in the flow path 11 is reliably adjusted.

以下、流体噴出装置1を構成する各部材の詳細について説明する。
図4に示すように、板部材2は、第1の実施形態の場合と同様に、第1板部材2aと第2板部材2bとから構成される。第1板部材2aは、円形の金属板の中央部に流体貯留部14を構成する穴部22を形成した平座金状の形状を有している。板部材2の一方の面には、流入部13・流路11・噴出部12を形成する溝部21が、板部材2の穴部22と外周とを連通して設けてある。この溝部21は、第1の実施形態と同様に複数のものが放射線状に形成してある。第2板部材2bは、第1板部材2aと同様の形状を有しているが、溝部21を形成していない点で第1板部材2aとは異なる。第1板部材2a及び第2板部材2bには、第1の実施形態の場合と同様に、棒部材41挿入用の穴部23が形成してある。
Hereinafter, the detail of each member which comprises the fluid ejection apparatus 1 is demonstrated.
As shown in FIG. 4, the plate member 2 includes a first plate member 2a and a second plate member 2b, as in the case of the first embodiment. The first plate member 2a has a flat washer-like shape in which a hole 22 constituting the fluid reservoir 14 is formed at the center of a circular metal plate. On one surface of the plate member 2, a groove portion 21 that forms the inflow portion 13, the flow path 11, and the ejection portion 12 is provided so that the hole portion 22 of the plate member 2 communicates with the outer periphery. As in the first embodiment, a plurality of grooves 21 are formed radially. The second plate member 2b has the same shape as the first plate member 2a, but differs from the first plate member 2a in that the groove 21 is not formed. In the first plate member 2a and the second plate member 2b, a hole 23 for inserting the bar member 41 is formed as in the case of the first embodiment.

図4に示すように、ヒータ部材31は、第1の実施形態の場合と同様の形状を有する。フタ部材4は、板部材2及びヒータ部材31と同径の円板形状を有しており、板部材2及びヒータ部材31と同様に、棒部材41挿入用の穴部43が形成してある。   As shown in FIG. 4, the heater member 31 has the same shape as in the first embodiment. The lid member 4 has a disk shape with the same diameter as the plate member 2 and the heater member 31, and a hole 43 for inserting the rod member 41 is formed in the same manner as the plate member 2 and the heater member 31. .

図4に示すように、第1板部材2aの溝部21が形成してある面と第2板部材2bとを対向させ、この2枚の板部材2とヒータ部材31とが交互に積層され、その両端にフタ部材4を設け、穴部23,31a,43に棒部材41が挿入される。棒部材41の両端は雄ネジが形成されており、その両端にナット42が締結される。積層された板部材2及びヒータ部材31は、フタ部材4に狭持され一体的に固定される。   As shown in FIG. 4, the surface of the first plate member 2 a where the groove portion 21 is formed and the second plate member 2 b are opposed to each other, and the two plate members 2 and the heater members 31 are alternately stacked. Lid members 4 are provided at both ends, and rod members 41 are inserted into the holes 23, 31 a, 43. Both ends of the bar member 41 are formed with male screws, and nuts 42 are fastened to both ends. The laminated plate member 2 and heater member 31 are sandwiched and fixed integrally with the lid member 4.

この流体噴出装置1では、板部材2とヒータ部材31とが周期的に積層してあるので、夫々にヒータ部材31の調節温度を変化させることにより、流体噴出装置1の長手方向に沿って、流体の温度を変化させることができる。そこで、例えば加熱押出機7から押出された直後の温度の高い熱可塑性樹脂に対しては高温の流体を噴出し、熱可塑性樹脂の温度がある程度低くなる下流側に向かって流体の温度を低下させるなど、熱可塑性樹脂の状態に応じて適切に流体の温度を制御することができる。   In this fluid ejection device 1, since the plate member 2 and the heater member 31 are periodically stacked, by changing the adjustment temperature of the heater member 31 respectively, along the longitudinal direction of the fluid ejection device 1, The temperature of the fluid can be changed. Therefore, for example, a high-temperature fluid is ejected to a thermoplastic resin having a high temperature immediately after being extruded from the heating extruder 7, and the temperature of the fluid is lowered toward the downstream side where the temperature of the thermoplastic resin is lowered to some extent. For example, the temperature of the fluid can be appropriately controlled according to the state of the thermoplastic resin.

[実施形態3]
以下に、本発明の第3の実施形態について図面を参照して説明する。上述の実施形態では、流体噴出装置1を管状樹脂フィルムの成形に適用した例を説明したが、この流体噴出装置1は、管状樹脂フィルム以外にも適用可能である。
図5に示すように、この流体噴出装置1は、例えばT−ダイ8により成形され平面状の樹脂フィルム9を冷却する際に利用可能である。この流体噴出装置1は、樹脂フィルム9に対向して設けられ、樹脂フィルム9に対して、流体として空気を噴出する。
この流体噴出装置1は、例えば四角形形状の板部材2とヒータ部材31とを積層して構成してある。流体噴出装置1の対向する1組の側面に流入部13及び噴出部12が各別に形成してあり、前記流入部13と前記噴出部12とを連通するように流路11が形成してある。流入部13から流体が供給され、この流体が流路11を流通して噴出部12から噴出される。
[Embodiment 3]
The third embodiment of the present invention will be described below with reference to the drawings. In the above-described embodiment, the example in which the fluid ejection device 1 is applied to the formation of the tubular resin film has been described. However, the fluid ejection device 1 can be applied to other than the tubular resin film.
As shown in FIG. 5, the fluid ejection device 1 can be used when a flat resin film 9 formed by, for example, a T-die 8 is cooled. The fluid ejection device 1 is provided to face the resin film 9 and ejects air as a fluid to the resin film 9.
The fluid ejection device 1 is configured by stacking, for example, a rectangular plate member 2 and a heater member 31. An inflow portion 13 and an ejection portion 12 are separately formed on a pair of side surfaces facing the fluid ejection device 1, and a flow path 11 is formed so as to communicate the inflow portion 13 and the ejection portion 12. . A fluid is supplied from the inflow portion 13, and the fluid flows through the flow path 11 and is ejected from the ejection portion 12.

以下、流体噴出装置1を構成する各部材について説明する。
図6に示すように、板部材2は、第1板部材2aと第2板部材2bとから構成される。第1板部材2aは、例えば四角形状を有し、第1板部材2aの一方の面には、当該第1板部材2aの対向する一組の辺を連通するように複数の溝部21が形成してある。第2板部材2bは、第1板部材2aと同様の形状を有するが、溝部21を形成していない点で第1板部材2aとは異なる。第1板部材2a及び第2板部材2bには、棒部材41が挿入される穴部22が形成してある。
Hereinafter, each member which comprises the fluid ejection apparatus 1 is demonstrated.
As shown in FIG. 6, the plate member 2 includes a first plate member 2a and a second plate member 2b. The first plate member 2a has, for example, a rectangular shape, and a plurality of groove portions 21 are formed on one surface of the first plate member 2a so as to communicate a pair of opposing sides of the first plate member 2a. It is. The second plate member 2b has the same shape as the first plate member 2a, but differs from the first plate member 2a in that the groove 21 is not formed. The first plate member 2a and the second plate member 2b are formed with holes 22 into which the bar members 41 are inserted.

図6に示すように、ヒータ部材31は、第1板部材2a及び第2板部材2bと同様の形状を有し、棒部材41挿入用の穴部31aが形成してある。
第1板部材2a、第2板部材2b及びヒータ部材31は、上述の実施形態の場合と同様に積層され、棒部材41及びナット42により、一体的に保持され、流体噴出装置1が構成される。
As shown in FIG. 6, the heater member 31 has the same shape as the first plate member 2a and the second plate member 2b, and is formed with a hole 31a for inserting the rod member 41.
The first plate member 2a, the second plate member 2b, and the heater member 31 are stacked in the same manner as in the above-described embodiment, and are integrally held by the bar member 41 and the nut 42, and the fluid ejection device 1 is configured. The

[別実施形態1]
溝部21の形状は上述の実施形態に限られるものではない。溝部21のその他の形状を、流体噴出装置1を外側部材として利用する場合を例に説明する。なお、これらの溝部21の形状は、流体噴出装置1を外側部材以外に利用する場合も適用可能である。
[Another embodiment 1]
The shape of the groove 21 is not limited to the above-described embodiment. The other shape of the groove part 21 is demonstrated to the case where the fluid ejection apparatus 1 is utilized as an outer member. In addition, the shape of these groove parts 21 is applicable also when using the fluid ejection apparatus 1 other than an outer member.

図7に示すように、この溝部21は、板部材2の外周に連通するとともに板部材2の周方向に沿って蛇行しつつ板部材2の径方向に延在する第1部分21aと、当該第1部分21aに連通するとともに板部材2の周方向に延在する第2部分21bと、当該第2部分21bと板部材2の内周とを連通する第3部分21cとから構成してある。前記第3部分21cは、板部材2の周方向に沿って、複数形成してある。ここで、第3部分21cは、第1部分21a及び第2部分21bと比較して、その幅及び深さが小さく設定してある。
上述の溝部21が、板部材2の径方向に沿って複数(本実施形態では、4つ)形成してある。この実施形態では、溝部21同士が互いに連通しないように形成してある。つまり、板部材2の前記溝部21を形成する領域が複数の流路用小領域(本実施形態では、4つ)に区分してあり、前記流路用小領域毎に前記溝部21が形成してある。
As shown in FIG. 7, the groove 21 communicates with the outer periphery of the plate member 2 and meanders along the circumferential direction of the plate member 2 while extending in the radial direction of the plate member 2; The second portion 21b communicates with the first portion 21a and extends in the circumferential direction of the plate member 2, and the third portion 21c communicates with the second portion 21b and the inner periphery of the plate member 2. . A plurality of the third portions 21 c are formed along the circumferential direction of the plate member 2. Here, the third portion 21c is set to have a smaller width and depth than the first portion 21a and the second portion 21b.
A plurality (four in this embodiment) of the above-described groove portions 21 are formed along the radial direction of the plate member 2. In this embodiment, the groove portions 21 are formed so as not to communicate with each other. That is, the region of the plate member 2 in which the groove 21 is formed is divided into a plurality of small flow passage regions (four in this embodiment), and the groove 21 is formed for each small flow passage region. It is.

このように構成することにより、溝部21を直線形状にする場合と比較して、流路11長を大きく確保することができる。このため、流体の温度を調節するための領域を大きくすることができるので、確実に流体の温度を調節することができる。また、第1部分21a及び第2部分21bと比較して、第3部分21cの流通抵抗が大きくなるので、流体噴出装置1の周方向における流体噴出量のバラつきを低減することができる。また、流路用小領域毎に独立して流体の流量や温度を調節することができるので、樹脂フィルムの形状に応じて、各部の温度に差が生じる樹脂フィルム等には、当該樹脂フィルムの位置毎に異なった流量や温度の流体を噴出することができる。   By comprising in this way, compared with the case where the groove part 21 is made into linear shape, the flow path 11 length can be ensured large. For this reason, since the area | region for adjusting the temperature of the fluid can be enlarged, the temperature of the fluid can be adjusted reliably. In addition, since the flow resistance of the third portion 21c is larger than that of the first portion 21a and the second portion 21b, the variation in the fluid ejection amount in the circumferential direction of the fluid ejection device 1 can be reduced. In addition, since the flow rate and temperature of the fluid can be adjusted independently for each small area for the flow path, depending on the shape of the resin film, the resin film having a difference in the temperature of each part has Fluids with different flow rates and temperatures can be ejected at each position.

図8に示すように、この溝部21は、同心円状に複数形成された環状の第1部分21aと、板部材2の外周と前記第1部分21aとを連通する第2部分21bと、前記第1部分21a同士を連通する第3部分21cと、前記第1部分21aと板部材2の内周とを連通する第4部分21dとを有し、網目状形成してある。つまり一つの噴出部12に複数の流路11を連通させるように溝部21が形成してある。
このように構成することにより、特定の噴出部12に対して、複数の流路11からの流体が供給されることとなる。このため、例え夫々の流路11を流通する流体間に温度のバラつきがあった場合でも、流体の温度を均一化することができる。
As shown in FIG. 8, the groove 21 includes a plurality of concentric annular first portions 21a, a second portion 21b communicating the outer periphery of the plate member 2 and the first portion 21a, and the first portion 21a. The first portion 21a has a third portion 21c that communicates with each other, and a fourth portion 21d that communicates the first portion 21a with the inner periphery of the plate member 2, and is formed in a mesh shape. That is, the groove part 21 is formed so that the several flow path 11 may be connected to the one ejection part 12. FIG.
With this configuration, fluid from the plurality of flow paths 11 is supplied to the specific ejection portion 12. For this reason, even when there is a variation in temperature between the fluids flowing through the respective flow paths 11, the temperature of the fluid can be made uniform.

図9(a)に示すように、この第1板部材2aの溝部21は、板部材2の外周に連通する第1部分21aと第1部分21aに連通し周方向に沿って、らせん状に延在する第2部分21bと、板部材2の内周に環状に連通する第3部分21cとを有する。
本実施形態において、第1部分21aが板部材2の周方向の4箇所に分配して形成してあり、夫々の第1部分21aから第2部分21bがらせん状に延在している。板部材2の穴部の付近には第3部分21cが、穴部の全周に渡って内周に連通する様に形成してあり、この第3部分21cに夫々の第2部分21bが連通している。なお、図9(b)に示すように、第3部分21cの深さは、第1部分21a及び第2部分21bの深さに比べて小さく設定してある。これにより、第3部分21cの流通抵抗が第1部分21a及び第2部分21bの流通抵抗よりも大きくなるように構成してある。
この第1板部材2aと第2板部材2bとを積層すると、第1部分21aの外周側の端部が流入部13を構成し、第3部分21cが噴出部12を構成する。この実施形態において、流体噴出装置1の外周部に4つの流入部が形成され、流体噴出装置1の内周部の全領域に亘って連続する一つの噴出部が形成される。
上述のように、溝部21を板部材2の周方向に沿って、らせん状に形成することにより、流路11の長さを大きくすることができるので、確実に流体の温度を調節することができる。
As shown in FIG. 9A, the groove portion 21 of the first plate member 2a is spirally formed along the circumferential direction in communication with the first portion 21a communicating with the outer periphery of the plate member 2 and the first portion 21a. It has the 2nd part 21b extended and the 3rd part 21c connected to the inner periphery of the board member 2 cyclically | annularly.
In this embodiment, the 1st part 21a is distributed and formed in four places of the circumferential direction of the plate member 2, and the 2nd part 21b is extended from each 1st part 21a in the shape of a spiral. A third portion 21c is formed in the vicinity of the hole portion of the plate member 2 so as to communicate with the inner periphery over the entire circumference of the hole portion, and each second portion 21b communicates with the third portion 21c. is doing. In addition, as shown in FIG.9 (b), the depth of the 3rd part 21c is set small compared with the depth of the 1st part 21a and the 2nd part 21b. Thereby, it is comprised so that the distribution resistance of the 3rd part 21c may become larger than the distribution resistance of the 1st part 21a and the 2nd part 21b.
When this 1st board member 2a and the 2nd board member 2b are laminated | stacked, the edge part of the outer peripheral side of the 1st part 21a will comprise the inflow part 13, and the 3rd part 21c will comprise the ejection part 12. FIG. In this embodiment, four inflow parts are formed in the outer peripheral part of the fluid ejection apparatus 1, and one ejection part continuous over the whole area | region of the inner peripheral part of the fluid ejection apparatus 1 is formed.
As described above, since the length of the flow path 11 can be increased by forming the groove portion 21 in a spiral shape along the circumferential direction of the plate member 2, the temperature of the fluid can be reliably adjusted. it can.

なお、上述の実施形態において、第1板部材2aにのみ溝部21を形成する例を示したが、第2板部材2bにも溝部21を形成しても良い。
また、第2板部材2bを用いず、複数の第1板部材2aの溝部21を形成した面と、溝部21を形成していない面とを対向させて流路11を構成しても良い。
In the above-described embodiment, the example in which the groove portion 21 is formed only in the first plate member 2a has been described. However, the groove portion 21 may be formed also in the second plate member 2b.
Moreover, you may comprise the flow path 11 by making the surface in which the groove part 21 of the some 1st plate member 2a formed and the surface in which the groove part 21 is not formed facing each other, without using the 2nd plate member 2b.

また、上述の実施形態において板部材2は、例えば、当該板部材2の周方向に複数個に分割されている、当該板部材2の所定領域毎に分割されているなど上述以外の形状であっても良い。   Further, in the above-described embodiment, the plate member 2 has a shape other than those described above, such as being divided into a plurality of parts in the circumferential direction of the plate member 2 and being divided for each predetermined region of the plate member 2. May be.

[別実施形態2]
上述の実施形態において、温度調節機構3としてヒータ部材31を用いて、流体を暖める場合を例に説明した。しかし、温度調節機構3は、上述のものに限られず、冷却するものであっても良い。例えばペルチェ素子や冷却流体を流通させたジャケット等であってもよい。この場合、ジャケットに流通させる流体の温度を調節することにより、流路11を流通する流体の温度を調節することができる。なお、ジャケットを流通させる流体としては、例えば、空気・水・水蒸気・液体窒素など調節する温度に応じて適宜選択することができる。
[Another embodiment 2]
In the above-described embodiment, the case where the heater member 31 is used as the temperature adjustment mechanism 3 to heat the fluid has been described as an example. However, the temperature adjustment mechanism 3 is not limited to the one described above, and may be a cooling mechanism. For example, a Peltier element or a jacket in which a cooling fluid is circulated may be used. In this case, the temperature of the fluid flowing through the flow path 11 can be adjusted by adjusting the temperature of the fluid flowing through the jacket. In addition, as a fluid which distribute | circulates a jacket, it can select suitably according to the temperature to adjust, such as air, water, water vapor | steam, liquid nitrogen, for example.

[別実施形態3]
上述の実施形態において、温度調節機構3は、板部材2の所定領域毎ごとに温度調節可能に構成してもよい。つまり、温度調節機構3は、複数の温度調節用小領域に区分されて、当該温度調節用小領域毎に温度調節可能に構成されてもよい。
[Another embodiment 3]
In the above-described embodiment, the temperature adjustment mechanism 3 may be configured to be temperature adjustable for each predetermined region of the plate member 2. That is, the temperature adjustment mechanism 3 may be divided into a plurality of temperature adjustment subregions and configured to be temperature adjustable for each temperature adjustment subregion.

例えば上述の第1の実施形態及び第2の実施形態において、温度調節機構3を、径方向の温度調節用小領域に分割して構成するなど、径方向の所定領域毎に温度調節可能に構成しても良い。また、上述の第3の実施形態において、例えば、温度調節機構3を流入部13の側から流出部12の側に向けて複数の温度調節用小領域に分割して構成するなど、流路11の延在方向の所定領域毎に温度調節可能に構成してもよい。
温度調節機構3をこのように構成して、例えば流体噴出装置1の流入部13の側から噴出部12の側に向かって温度が高くなるように温度を調節することにより、流体が噴出部12の側に近接するほど膨張して体積が大きくなるので、流体を確実に噴出することができる。
For example, in the first embodiment and the second embodiment described above, the temperature adjustment mechanism 3 is configured so as to be temperature-adjustable for each predetermined region in the radial direction, such as being configured by dividing the temperature adjustment mechanism 3 into small regions for temperature adjustment in the radial direction You may do it. In the third embodiment described above, for example, the temperature adjustment mechanism 3 is divided into a plurality of temperature adjustment subregions from the inflow portion 13 side toward the outflow portion 12 side. You may comprise so that temperature adjustment is possible for every predetermined area | region of the extending direction.
By configuring the temperature adjusting mechanism 3 in this way and adjusting the temperature so that, for example, the temperature increases from the inflow portion 13 side of the fluid ejection device 1 toward the ejection portion 12 side, the fluid is ejected from the ejection portion 12. Since it expands and the volume increases as it approaches the side, the fluid can be reliably ejected.

また、上述の第1の実施形態及び第2の実施形態において、温度調節機構3を周方向に区分された複数の温度調節用小領域から構成してもよい。この場合、例えば、前記流路用小領域毎に前記温度調節用小領域を設けるとよい。このように構成することにより、温度調節用小領域毎に独立して流体が流通することとなる。このため、他の温度調節用小領域を流通する流体の影響を受けることが無いので、温度調節用小領域毎に流体の温度を確実に調節することができる。   In the first embodiment and the second embodiment described above, the temperature adjustment mechanism 3 may be composed of a plurality of small regions for temperature adjustment divided in the circumferential direction. In this case, for example, the temperature adjusting small region may be provided for each of the flow channel small regions. By comprising in this way, a fluid will distribute | circulate independently for every small area | region for temperature control. For this reason, since it does not receive to the influence of the fluid which distribute | circulates the other small area for temperature control, the temperature of the fluid can be adjusted reliably for every small area for temperature control.

また、上述の第3の実施形態において、温度調節機構3を、流路の延在方向に垂直な方向に沿った複数の温度調整用小領域から構成する等、流路11の延在方向に垂直な方向の所定領域毎に温度調節可能に構成しても良い。本実施形態のように、平面状の樹脂フィルム9に流体を噴出する場合、例えば樹脂フィルム9の端部への流体の温度を中央部の流体の温度よりも高く設定する等、流体噴出装置1の幅方向で流体の温度を変化させる必要がある場合がある。そこで、温度調節機構3をこのように構成することにより、流体噴出装置1の幅方向における流体の温度を適切に調節することができる。   Further, in the third embodiment described above, the temperature adjustment mechanism 3 includes a plurality of small regions for temperature adjustment along the direction perpendicular to the extension direction of the flow path, and so on in the extending direction of the flow path 11. You may comprise so that temperature adjustment is possible for every predetermined area | region of a perpendicular direction. When the fluid is ejected onto the planar resin film 9 as in the present embodiment, the fluid ejecting apparatus 1 is configured such that, for example, the temperature of the fluid to the end of the resin film 9 is set higher than the temperature of the fluid at the center. It may be necessary to change the temperature of the fluid in the width direction. Therefore, by configuring the temperature adjustment mechanism 3 in this way, the temperature of the fluid in the width direction of the fluid ejection device 1 can be appropriately adjusted.

また、上述の実施形態において、第1板部材2a及び第2板部材2bと温度調節機構3を交互に積層する例を示したが、例えば第1板部材2a及び第2板部材2bを複数回積層した後に温度調節機構3を積層する等上述以外の構成であってもよい。   Moreover, in the above-mentioned embodiment, although the example which laminates | stacks the 1st board member 2a and the 2nd board member 2b, and the temperature control mechanism 3 alternately was shown, for example, the 1st board member 2a and the 2nd board member 2b are carried out several times. A configuration other than that described above, such as stacking the temperature control mechanism 3 after stacking, may be used.

また、上述の実施形態において、板部材2と略同じ形状の温度調節機構3を用いる例を示したが、例えば温度調節機構3を、板部材2の溝部21が形成してある面及びその裏面の他、板部材2の側面にも沿うように構成する等、上述以外の構成であってもよい。   Moreover, in the above-mentioned embodiment, although the example using the temperature control mechanism 3 of the shape substantially the same as the board member 2 was shown, the surface in which the groove part 21 of the plate member 2 is formed, for example, the temperature control mechanism 3, and its back surface In addition to the above, a configuration other than the above may be employed, such as a configuration along the side surface of the plate member 2.

[別実施形態4]
上述の実施形態では管状樹脂フィルム6を成形する例について説明したが、この流体噴出装置1は管状樹脂フィルム6を二軸延伸する際にも利用することができる。
管状樹脂フィルム6を二軸延伸する際には、例えば、上述の実施形態2の流体噴出装置1において板部材2径を連続的に変化させて、円錐台形状の流体噴出装置1を構成しても良い。
[Another embodiment 4]
Although the above-mentioned embodiment demonstrated the example which shape | molds the tubular resin film 6, this fluid ejecting apparatus 1 can be utilized also when extending the tubular resin film 6 biaxially.
When the tubular resin film 6 is biaxially stretched, for example, the diameter of the plate member 2 is continuously changed in the fluid ejection device 1 of the above-described embodiment 2 to configure the frustoconical fluid ejection device 1. Also good.

また、上述の実施形態において、流体として空気を噴出する場合を例に説明した。しかし、流体は空気に限定されるものではなく、例えば水・アルコール等の液体、水蒸気・窒素等の気体等、樹脂フィルムの種類等に応じて適宜選択することができる。   Moreover, in the above-mentioned embodiment, the case where air was ejected as a fluid was described as an example. However, the fluid is not limited to air, and can be appropriately selected according to the type of resin film, for example, a liquid such as water or alcohol, a gas such as water vapor or nitrogen.

本発明の流体噴出装置1は、長尺状の樹脂フィルムを製造する際に利用可能である。   The fluid ejection device 1 of the present invention can be used when a long resin film is produced.

本発明の流体噴出装置を示す図。The figure which shows the fluid ejection apparatus of this invention. 流体噴出装置を構成する各部材を示す図The figure which shows each member which comprises the fluid ejection apparatus 本願の流体噴出装置の別の実施形態を示す図The figure which shows another embodiment of the fluid ejection apparatus of this application 流体噴出装置を構成する各部材を示す図The figure which shows each member which comprises the fluid ejection apparatus 本願の流体噴出装置の別の実施形態を示す図The figure which shows another embodiment of the fluid ejection apparatus of this application 流体噴出装置を構成する各部材を示す図The figure which shows each member which comprises the fluid ejection apparatus 溝部の別の実施形態を示す図The figure which shows another embodiment of a groove part 溝部の別の実施形態を示す図The figure which shows another embodiment of a groove part 溝部の別の実施形態を示す図The figure which shows another embodiment of a groove part

符号の説明Explanation of symbols

1 流体噴出装置
11 流路
12 噴出部
13 流入部
2 板部材
21 溝部
3 温度調節機構
DESCRIPTION OF SYMBOLS 1 Fluid ejection apparatus 11 Flow path 12 Ejection part 13 Inflow part 2 Plate member 21 Groove part 3 Temperature control mechanism

Claims (8)

長尺状の樹脂フィルムを製造する際に、流入部に流入した流体を、流路を介して噴出部から前記樹脂フィルムの側に噴出する流体噴出装置であって、
前記流路となる溝部を形成した板部材を積層するとともに、前記流路を通過する流体に対して温度を調節する温度調節機構を備えた流体噴出装置。
When producing a long resin film, a fluid ejection device that ejects the fluid that has flowed into the inflow portion from the ejection portion to the resin film side through a flow path,
A fluid ejecting apparatus including a temperature adjusting mechanism for laminating plate members having grooves formed as the flow paths and adjusting the temperature of the fluid passing through the flow paths.
各板部材の前記溝部を形成してある面及び前記溝部が形成してある面の裏面のうちの少なくとも何れか一方の面に沿って前記温度調節機構が設けてある請求項1に記載の流体噴出装置。   2. The fluid according to claim 1, wherein the temperature adjustment mechanism is provided along at least one of a surface of each plate member on which the groove is formed and a back surface of the surface on which the groove is formed. Spouting device. 前記溝部を形成する領域が複数の流路用小領域に区分してあり、前記流路用小領域毎に前記溝部が形成してある請求項1又は2に記載の流体噴出装置。   3. The fluid ejection device according to claim 1, wherein an area for forming the groove is divided into a plurality of small areas for flow paths, and the groove is formed for each of the small areas for flow paths. 前記温度調節機構が複数の温度調節用小領域に区分してあり、前記温度調節用小領域毎に温度調節が可能に構成してある請求項1〜3の何れか一項に記載の流体噴出装置。   The fluid ejection according to any one of claims 1 to 3, wherein the temperature adjustment mechanism is divided into a plurality of temperature adjustment subregions, and the temperature adjustment is possible for each of the temperature adjustment subregions. apparatus. 前記流路用小領域毎に前記温度調節用小領域が設けてある請求項4に記載の流体噴出装置。   The fluid ejection device according to claim 4, wherein the temperature adjusting small region is provided for each of the flow channel small regions. 前記溝部が屈曲若しくは彎曲して形成してある請求項1〜5の何れか一項に記載の流体噴出装置。   The fluid ejection device according to claim 1, wherein the groove is formed by bending or bending. 一つの前記噴出部に複数の流路を連通させるように前記溝部が形成してある請求項1〜6の何れか一項に記載の流体噴出装置。   The fluid ejection device according to any one of claims 1 to 6, wherein the groove portion is formed so that a plurality of flow paths communicate with one ejection portion. 前記流体噴出装置が円筒形状の外周面および円筒形状の内周面の少なくとも何れか一方を有しており、前記流体噴出装置が有する円筒形状の面のうち少なくとも何れか一つについて噴出部を設けてある請求項1〜7の何れか一項に記載の流体噴出装置。   The fluid ejection device has at least one of a cylindrical outer peripheral surface and a cylindrical inner peripheral surface, and an ejection portion is provided on at least one of the cylindrical surfaces of the fluid ejection device The fluid ejection device according to any one of claims 1 to 7.
JP2006306852A 2006-11-13 2006-11-13 Fluid ejection device Expired - Fee Related JP4986025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306852A JP4986025B2 (en) 2006-11-13 2006-11-13 Fluid ejection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306852A JP4986025B2 (en) 2006-11-13 2006-11-13 Fluid ejection device

Publications (2)

Publication Number Publication Date
JP2008119960A true JP2008119960A (en) 2008-05-29
JP4986025B2 JP4986025B2 (en) 2012-07-25

Family

ID=39505253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306852A Expired - Fee Related JP4986025B2 (en) 2006-11-13 2006-11-13 Fluid ejection device

Country Status (1)

Country Link
JP (1) JP4986025B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128823A (en) * 1982-01-28 1983-08-01 Showa Denko Kk Sizing mandrel
JPH09327859A (en) * 1996-06-10 1997-12-22 Tomy Kikai Kogyo Kk Apparatus for supplying cooling medium of extrusion molding machine
JPH11300827A (en) * 1998-04-22 1999-11-02 Okura Ind Co Ltd Auxiliary air ring, and thickness accuracy improvement system for inflation molding using auxiliary air ring
JP2004314588A (en) * 2003-01-31 2004-11-11 Sumitomo Bakelite Co Ltd Device for and method of manufacturing tubular resin film
JP2005212316A (en) * 2004-01-30 2005-08-11 Sekisui Plastics Co Ltd Method and apparatus for producing thermoplastic resin sheet
WO2005097469A1 (en) * 2004-04-05 2005-10-20 Akira Shimizu Inflation film producing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128823A (en) * 1982-01-28 1983-08-01 Showa Denko Kk Sizing mandrel
JPH09327859A (en) * 1996-06-10 1997-12-22 Tomy Kikai Kogyo Kk Apparatus for supplying cooling medium of extrusion molding machine
JPH11300827A (en) * 1998-04-22 1999-11-02 Okura Ind Co Ltd Auxiliary air ring, and thickness accuracy improvement system for inflation molding using auxiliary air ring
JP2004314588A (en) * 2003-01-31 2004-11-11 Sumitomo Bakelite Co Ltd Device for and method of manufacturing tubular resin film
JP2005212316A (en) * 2004-01-30 2005-08-11 Sekisui Plastics Co Ltd Method and apparatus for producing thermoplastic resin sheet
WO2005097469A1 (en) * 2004-04-05 2005-10-20 Akira Shimizu Inflation film producing apparatus

Also Published As

Publication number Publication date
JP4986025B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
RU2239556C1 (en) Method and a device for extrusion of a tubular film
JP4527776B2 (en) Film blow mold for producing tubular film
KR20200057115A (en) Pedestal with multi-zone temperature control and multiple purge capabilities
US5462423A (en) Apparatus for non-mechanical die lip temperature adjustment in an extruder
JP4986025B2 (en) Fluid ejection device
JP4739970B2 (en) Multilayer film / sheet molding die and multilayer film / sheet molding method
JP2001260116A (en) Method and apparatus for manufacturing ceramic molding
JP2009160571A (en) Device and method for delivering fluid, in particular hot-melt adhesive
US8801417B2 (en) Sheet forming die and sheet forming method
JP4882331B2 (en) Laminate sheet manufacturing apparatus and method
US20070134357A1 (en) Pipe molding system with vacuum and temperature controls of cooling plugs
JP2009248421A (en) Sheet film forming roll and sheet film forming apparatus
JP7344209B2 (en) extrusion equipment
JP6704836B2 (en) Heating device
US3060505A (en) Extrusion die
JP4018824B2 (en) Fluid widening discharge device
KR101715699B1 (en) Slot coater having fluid control means
JP4957956B2 (en) Porous material
JP2023150723A (en) Die, and sheet forming apparatus
JP2004330537A (en) Thickness deviation adjustment type air ring
JP6592559B1 (en) Label heating device
JP2013202794A (en) Die for extrusion molding and method of manufacturing sheet-like body using the die
US7057138B2 (en) Apparatus for controlling temperature profiles in liquid droplet ejectors
JP2008272989A (en) Feed block, apparatus for molding laminated resin film or sheet, and method for producing laminated resin film or sheet
US20180169959A1 (en) Device for welding plastic films by means of hot gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees