JP2008119560A - Steam focusing nozzle and cleaning process - Google Patents

Steam focusing nozzle and cleaning process Download PDF

Info

Publication number
JP2008119560A
JP2008119560A JP2006302861A JP2006302861A JP2008119560A JP 2008119560 A JP2008119560 A JP 2008119560A JP 2006302861 A JP2006302861 A JP 2006302861A JP 2006302861 A JP2006302861 A JP 2006302861A JP 2008119560 A JP2008119560 A JP 2008119560A
Authority
JP
Japan
Prior art keywords
steam
nozzle
side wall
resist
nozzle according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006302861A
Other languages
Japanese (ja)
Inventor
Koji Muranaka
孝司 村中
Akio Komura
明夫 小村
Yoichi Komata
與一 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micro Engineering Inc
Original Assignee
Micro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Engineering Inc filed Critical Micro Engineering Inc
Priority to JP2006302861A priority Critical patent/JP2008119560A/en
Publication of JP2008119560A publication Critical patent/JP2008119560A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam nozzle removing an object to be washed by centralizing steam on a treatment substrate after a steam eruption and utilizing the centralization of a thermal energy and hitting power. <P>SOLUTION: The steam is dispersed on a dispersion board inside the nozzle and the dispersed steam is sprayed to a focusing point on the nozzle central axis at a tapered side wall by Coanda effect. The use of the focusing nozzle having this construction prevents a reduction in the temperature of a high-temperature fluid observed in a general circular nozzle to enable a spraying of the steam good in temperature efficiency on the treatment substrate. Further, the effective use of the thermal energy and the hitting power of the steam centralized by the focusing nozzle enables the cleaning of particles which have been difficult to remove, and the removal of a resist film or the like. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体基板、液晶用ガラス基板、PDP用ガラス基板、プラスチック基板の洗浄やレジスト除去に関する。 The present invention relates to cleaning and resist removal of a semiconductor substrate, a glass substrate for liquid crystal, a glass substrate for PDP, and a plastic substrate.

従来のレジスト除去方法として、薬液を利用するものが主であったが、近年、薬液を用いない蒸気によるレジスト除去方法が提案されている。 As a conventional resist removal method, a method using a chemical solution has been mainly used, but recently, a resist removal method using vapor without using a chemical solution has been proposed.

特許文献1によると、レジスト除去装置内の容器にウエハを設置し、ノズルから蒸気を容器内に噴射、充填し、容器内の圧力を高くして蒸気を液化してウエハに浸透させる。その後、密封状態のままで減圧して一部を再度気化させることでレジストに亀裂を発生させて、レジストを除去する方法がある。しかし、この方法では密閉性の高い容器や加圧装置や減圧装置が必要になるため、半導体や液晶基板やPDP基板の大型化に伴い、装置コストが増大するという問題が考えられる。
特開2005−259743号公報
According to Patent Document 1, a wafer is placed in a container in a resist removal apparatus, vapor is injected and filled into the container from a nozzle, and the pressure in the container is increased to liquefy the vapor and penetrate the wafer. Thereafter, there is a method of removing the resist by generating a crack in the resist by reducing the pressure in the sealed state and vaporizing a part again. However, this method requires a highly airtight container, pressurizing device, and decompressing device, and thus there is a problem that the cost of the device increases as the semiconductor, liquid crystal substrate, and PDP substrate increase in size.
JP 2005-259743 A

特許文献2で提案されているレジスト除去剤噴射装置は、縦長の円筒状中空容器の内部に除去剤の気化手段としての加熱板を備えており、該加熱板の表面まで、有機塩基と有機溶剤とを含有する除去剤を導入できるように構成されている。除去剤を蒸気化して、基板のレジスト膜形成面に向けて噴射することにより、レジスト膜を除去するものである。本発明の実施例のなかで、扇形ノズル(発散角80度程度)にて蒸気を噴射しレジスト膜の除去実験を実施している。まず蒸気のみでレジスト除去を実施したとき、ノズル先端と基板との距離を変えたが、距離が長いとレジスト膜は除去できず、距離を短くした場合にのみ除去できることが確認されている。しかし、この処理には時間を要する。これを改善するために、ノズル内に除去剤(剥離液)を導入し、加熱板にて気化し除去剤を蒸気とともに基板に噴射することによって、レジスト膜の除去時間を短縮している。しかし、この方法では温調されたチャンバーやノズル内に加熱板が必要であり構造が複雑になること、また半導体や液晶基板やPDP基板の大型化に伴い装置コストの増大、薬液使用量の増大等の問題が考えられる。
特開2005−259862号公報
The resist remover injection device proposed in Patent Document 2 includes a heating plate as a removing agent vaporizing means inside a vertically long cylindrical hollow container, and an organic base and an organic solvent are provided up to the surface of the heating plate. It is comprised so that the removal agent containing can be introduce | transduced. The removing agent is vaporized and sprayed toward the resist film forming surface of the substrate to remove the resist film. In the embodiment of the present invention, a resist film removal experiment is performed by spraying steam with a fan-shaped nozzle (divergence angle of about 80 degrees). First, when the resist was removed only with vapor, the distance between the nozzle tip and the substrate was changed, but it was confirmed that the resist film could not be removed if the distance was long, and could only be removed if the distance was shortened. However, this process takes time. In order to improve this, the removal time of the resist film is shortened by introducing a remover (peeling solution) into the nozzle, evaporating it with a heating plate and injecting the remover together with the vapor onto the substrate. However, this method requires a heating plate in the temperature-controlled chamber or nozzle, which complicates the structure. Also, as the semiconductor, liquid crystal substrate, and PDP substrate become larger, the device cost increases and the amount of chemicals used increases. Such a problem is considered.
JP 2005-259862 A

特許文献2の実施例より、水蒸気のみでレジスト膜の除去を行った結果、ノズル先端と基板との距離がレジスト除去に関係することが明らかになっている。本実験で使用されたノズルは広角フラット型蒸気噴射ノズルであり、広角で蒸気を噴射させる。このノズルは常温の気体や液体を噴射する場合に適するノズルであるが、飽和蒸気や過熱蒸気などの高温流体を噴射する場合、周囲空気を巻き込む為、温度が低下するというデメリットをもっている。 As a result of removing the resist film only with water vapor, the example of Patent Document 2 reveals that the distance between the nozzle tip and the substrate is related to the resist removal. The nozzle used in this experiment is a wide-angle flat-type steam injection nozzle, which injects steam at a wide angle. This nozzle is suitable for injecting a normal temperature gas or liquid, but has a demerit that when high temperature fluid such as saturated steam or superheated steam is injected, ambient air is involved and the temperature is lowered.

他のノズルとして末広形状ノズルやスリットノズルがある。末広形状ノズルは、ノズル入り口よりスロート状となり、断熱膨張により大気圧になるように設計した蒸気ノズルであり、鋼材表面の水分・油分の除去、熱間圧延時のデスケーリング等に利用される。このノズルは噴射打力を上げるのに適するが、噴流がある一定角度で広がるように設計されている為、周囲流体を巻き込み蒸気温度が低下する。また、スリットノズルは、幅方向に直線状のスリットをもち、幅方向に均一な噴流を得るノズルで、純水洗浄や基板乾燥用のノズルとして利用される。このノズルから出る噴流を幅方向と直交方向から見たとき、噴流は周囲流体を巻き込みながら広がる。このノズルの場合においても、蒸気温度は低下する。 Other nozzles include a divergent nozzle and a slit nozzle. The divergent nozzle is a steam nozzle that is designed to be throat-shaped from the nozzle entrance and become atmospheric pressure by adiabatic expansion. This nozzle is suitable for increasing the jetting force, but is designed so that the jet spreads at a certain angle, so that the surrounding fluid is involved and the steam temperature is lowered. The slit nozzle is a nozzle that has a linear slit in the width direction and obtains a uniform jet in the width direction, and is used as a nozzle for pure water cleaning or substrate drying. When the jet flowing from this nozzle is viewed from the direction orthogonal to the width direction, the jet spreads while entraining the surrounding fluid. Even in the case of this nozzle, the steam temperature decreases.

よって、蒸気温度低下を防止し、処理基板上に蒸気を集中化させ、熱エネルギーと打力の集中化を利用して洗浄対象物を除去する蒸気ノズルの開発が期待されている。
Therefore, it is expected to develop a steam nozzle that prevents the steam temperature from decreasing, concentrates the steam on the processing substrate, and removes the object to be cleaned by using the concentration of thermal energy and striking force.

上述のごとく、従来のノズルは、蒸気噴出後、周囲流体を巻き込みながら発散角を有する構造であるため、蒸気噴射後、蒸気温度が低下し処理基板上に温度効率のよい蒸気が噴射されないという問題がある。 As described above, since the conventional nozzle has a divergence angle while entraining the surrounding fluid after the steam is ejected, the problem is that the steam temperature is lowered after the steam is injected and the temperature efficient steam is not injected onto the processing substrate. There is.

そこで、従来のノズルにみられる蒸気温度低下を防止し、処理基板上に蒸気を集中化させ、熱エネルギーと打力の集中化を利用して洗浄対象物を除去する蒸気ノズルを提供する。
Therefore, a steam nozzle is provided that prevents a drop in the steam temperature found in conventional nozzles, concentrates the steam on the processing substrate, and removes the object to be cleaned using the concentration of thermal energy and striking force.

非特許文献1によれば、一般的な円形ノズル(3次元軸対象ノズル)から噴流を無限に広い空間中に噴出させると、周囲流体との間の大きな速度勾配(速度差)と粘性作用の結果、周囲の流体を巻き込み噴流幅を広げながら下流方向に流れていく。円形ノズルはこのような特性を持つため、蒸気を噴射したとき、噴出口から処理基板表面の間で周囲流体を巻き込み温度が低下する。本発明のノズルにおいて蒸気はノズル内部で一度分散し、コアンダ効果によりテーパ面に沿って噴出口より下流位置の集束点に案内する流路をとり、従来のノズルにおける発散角がないため、噴出口から処理基板表面の間での蒸気温度の低下を防ぐことが可能である。
社河内 敏彦著、「噴流工学」 p3、森北出版株式会社、2004年3月発行。
According to Non-Patent Document 1, when a jet flow is ejected from a general circular nozzle (three-dimensional axis target nozzle) into an infinitely wide space, a large velocity gradient (velocity difference) between the surrounding fluid and viscous action As a result, it flows in the downstream direction while entraining the surrounding fluid and widening the jet width. Since the circular nozzle has such characteristics, when steam is jetted, the surrounding fluid is entrained between the jetting outlet and the processing substrate surface, and the temperature is lowered. In the nozzle of the present invention, the vapor is once dispersed inside the nozzle, takes a flow path that guides to the converging point downstream of the jet outlet along the tapered surface by the Coanda effect, and there is no divergence angle in the conventional nozzle. It is possible to prevent a decrease in vapor temperature between the surfaces of the processing substrates.
Toshihiko Kawauchi, “Journal Engineering” p3, published by Morikita Publishing Co., Ltd., March 2004.

以下、具体的に図を使って、一般的な円形ノズルと本発明の集束ノズルの違いを説明する。図1に一般的な円形ノズルの蒸気噴流説明図、図2に集束ノズルの蒸気噴流説明図を示す。図1の円形ノズルにおいて流量Qの蒸気は、直径dの円孔(パイプ)を速度変化なしに通過し噴出口42より噴射され、噴出口42から距離hの処理基板表面6に到達する。噴出口より出た噴流は周囲の流体(矢印a)を巻き込み、発散角を広げながら処理基板表面に到達する。このとき処理基板表面上に噴射される蒸気の噴射面積はAである。一方、図2の集束ノズルでは、流量Qの蒸気は直径dの円孔を通過し、分散板31に衝突後、コアンダ効果により分散板傾斜面及び半球状形状側壁31、及びテーパ状側壁41の側壁を経由して、噴出口42から距離hの処理基板表面に集束する。このときの蒸気の噴射面積はBである。一般的な円形ノズルの場合、発散角を有するので噴射面積Aは円孔直径dより大きくなるが、集束ノズルの場合、集束することから噴射面積Bは円孔直径dより小さくなる。したがって、同一流量の飽和蒸気を同一穴径dに導入した場合、噴射面積の小さい集束ノズルにおいて打力の集中化が可能である。 Hereinafter, the difference between a general circular nozzle and the focusing nozzle of the present invention will be described with reference to specific drawings. FIG. 1 shows a vapor jet explanatory diagram of a general circular nozzle, and FIG. 2 shows a vapor jet explanatory diagram of a focusing nozzle. In the circular nozzle of FIG. 1, the vapor having a flow rate Q passes through a circular hole (pipe) having a diameter d without changing its speed, and is jetted from the jet port 42, and reaches the processing substrate surface 6 at a distance h from the jet port 42. The jet coming out of the jet outlet entrains the surrounding fluid (arrow a) and reaches the surface of the processing substrate while widening the divergence angle. At this time, the spray area of the steam sprayed onto the surface of the processing substrate is A. On the other hand, in the focusing nozzle shown in FIG. 2, the vapor having a flow rate Q passes through a circular hole having a diameter d, and after colliding with the dispersion plate 31, the dispersion plate inclined surface and the hemispherical side wall 31 and the tapered side wall 41 are It converges on the processing substrate surface at a distance h from the jet nozzle 42 via the side wall. The steam injection area at this time is B. In the case of a general circular nozzle, since it has a divergence angle, the jetting area A is larger than the circular hole diameter d. Therefore, when saturated steam having the same flow rate is introduced into the same hole diameter d, it is possible to concentrate the striking force in a focusing nozzle having a small injection area.

本発明の集束ノズルにおいて蒸気の集中化を確認する為、噴出口近傍の蒸気温度分布の測定を行った。図3に集束ノズルにおける噴出口近傍の温度分布測定結果を示す。蒸気導入部円孔の直径をd=2mmとし、102℃の飽和蒸気を導入した。噴出口42の中心を座標原点(r=0, h=0)とし、下流方向h=0〜8mm及び半径方向r=0〜3mmとr=0〜−3mmの範囲にて、クロメル-アルメル熱電対を用いて蒸気温度の測定を行った。灰色部イは蒸気温度が100〜102℃の領域であり、噴射口のテーパ側面ロ及びハの位置から集束点二を経由してホまでの領域である。これは、本発明ノズルの設計上の蒸気流路白線ロ〜ニ及びハ〜二及びニ〜ホと一致することから、蒸気はこの流路を通り、集束点二にて合流し、ホまで蒸気温度を維持していることがわかる。以上より、集束ノズルにおいて、蒸気の集中化、及び蒸気温度低下防止が可能であることがされた。 In order to confirm the concentration of steam in the focusing nozzle of the present invention, the steam temperature distribution in the vicinity of the jet outlet was measured. FIG. 3 shows the temperature distribution measurement result in the vicinity of the jet nozzle in the focusing nozzle. The diameter of the steam introduction part circular hole was d = 2 mm, and saturated steam at 102 ° C. was introduced. The center of the jet outlet 42 is the coordinate origin (r = 0, h = 0), and the chromel-alumel thermoelectric is in the range of downstream direction h = 0-8mm and radial direction r = 0-3mm and r = 0-3mm. Steam temperature was measured using a pair. The gray part (a) is a region where the steam temperature is 100 to 102 ° C., and is a region from the position of the tapered side surface (b) and c of the injection port to the point (e) via the converging point (2). This coincides with the white lines of the steam flow in the design of the nozzle of the present invention (b), c, and c, and the steam passes through this flow path and joins at the focal point 2 to reach the steam. It can be seen that the temperature is maintained. From the above, in the focusing nozzle, it has been possible to concentrate the steam and prevent the steam temperature from being lowered.

次に比較として円形ノズルにおいての蒸気温度低下を確認するため、噴出口近傍の蒸気温度分布の測定を行った。図4に円形ノズルにおける噴出口近傍の温度分布測定結果を示す。ノズル導入部円孔の直径をd=2mmとし、102℃の飽和蒸気を導入した。噴出口42の中心を座標原点(r=0, h=0)とし、下流方向h=0〜8mm及び半径方向r=0〜3mmとr=0〜−3mmの範囲にて、クロメル-アルメル熱電対を用いて蒸気温度の測定を行った。蒸気温度は噴射口ヘで102℃、噴射口より5mmはなれた地点トで90℃であった。よって円形ノズルの場合、噴射口からの距離が遠くなるにつれ蒸気温度が低下することが確認できた。 Next, in order to confirm the steam temperature drop in the circular nozzle as a comparison, the steam temperature distribution in the vicinity of the jet nozzle was measured. FIG. 4 shows the result of measuring the temperature distribution in the vicinity of the jet nozzle in the circular nozzle. The diameter of the nozzle introduction part circular hole was d = 2 mm, and saturated steam at 102 ° C. was introduced. The center of the jet outlet 42 is the coordinate origin (r = 0, h = 0), and the chromel-alumel thermoelectric is in the range of downstream direction h = 0-8mm and radial direction r = 0-3mm and r = 0-3mm. Steam temperature was measured using a pair. The steam temperature was 102 ° C. at the injection port and 90 ° C. at a point 5 mm away from the injection port. Therefore, in the case of a circular nozzle, it has been confirmed that the steam temperature decreases as the distance from the injection port increases.

したがって、本発明の集束ノズルを使用することによって、一般的な円形ノズルにみられる蒸気温度低下を防止でき、蒸気を集中化させ、熱エネルギーと打力の集中化が可能となる。
Therefore, by using the focusing nozzle of the present invention, it is possible to prevent a drop in steam temperature seen in a general circular nozzle, to concentrate the steam, and to concentrate the heat energy and the striking force.

以上説明したように本発明のノズルを用いることで、処理基板上に蒸気を集中化させ、熱エネルギーと打力の集中化を利用した洗浄や対象物除去が可能となる。
As described above, by using the nozzle of the present invention, it is possible to concentrate the vapor on the processing substrate, and to perform cleaning and target removal using the concentration of thermal energy and striking force.

以下、本発明の実施の形態を図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図5〜7は本発明の第一の実施形態に係り、図5は本発明ノズルの最良の実施形態を示す集束ノズル構成断面図、図6は噴流モデル図、図7は集束点における衝撃力Fを示すモデル図である。 FIGS. 5 to 7 relate to the first embodiment of the present invention, FIG. 5 is a sectional view of the focusing nozzle structure showing the best embodiment of the nozzle of the present invention, FIG. 6 is a jet model diagram, and FIG. it is a model diagram showing a F y.

図5に示すように、本発明のノズル1は蒸気導入部2、分散部3、集束部4の3部位から構成される3次元軸対象ノズルである。蒸気導入部2は直径d長さLの円筒管からなる蒸気流路を備えている。分散部3は、半径rの半球状空洞内に円錐形の分散板32を中心軸上に配値しており、分散板32斜面と半球状空洞内側壁31との隙間に蒸気流路を備えている。集束部4は、テーパ状に狭まる流路を備えている。 As shown in FIG. 5, the nozzle 1 of the present invention is a three-dimensional axis target nozzle configured from three parts, a steam introduction part 2, a dispersion part 3, and a focusing part 4. The steam introduction part 2 is provided with a steam flow path composed of a cylindrical tube having a diameter d and a length L. The dispersion part 3 has a conical dispersion plate 32 arranged on the central axis in a hemispherical cavity having a radius r, and a steam channel is provided in a gap between the slope of the dispersion plate 32 and the inner wall 31 of the hemispherical cavity. ing. The converging unit 4 includes a flow path that narrows in a tapered shape.

本発明のノズルの機能を説明するために、蒸気を導入した際の蒸気流路を説明する。蒸気5は導入部2の導入口21より導入され、円孔22を通過し、分散部3の円錐形の分散板32の頂点aに衝突し軸対象形に分散される。分散蒸気は、コアンダ効果によって円錐形の分散板の傾斜面に沿って流れ、半球状空洞内側壁31のbに衝突する。ここでもコアンダ効果によって半球状空洞内側壁31及びテーパ状側壁41に沿い噴出口42まで案内され出口より噴射される。噴射蒸気は、ノズル中心軸上で噴射口から距離hの地点61に集束する。 In order to explain the function of the nozzle of the present invention, a steam flow path when steam is introduced will be described. The steam 5 is introduced from the introduction port 21 of the introduction part 2, passes through the circular hole 22, collides with the apex “a” of the conical dispersion plate 32 of the dispersion part 3, and is dispersed into the axial target form. The dispersed steam flows along the inclined surface of the conical dispersion plate by the Coanda effect, and collides with b of the hemispherical cavity inner wall 31. Again, the Coanda effect is guided along the hemispherical cavity inner side wall 31 and the tapered side wall 41 to the jet outlet 42 and injected from the outlet. The jet steam is focused on a point 61 at a distance h from the jet port on the nozzle central axis.

分散蒸気はb点にて半球状空洞内側壁31にT32の角度をなして衝突するが、その際の噴流の分流について説明する。図6は噴流が壁に対し斜めに当たる場合の噴流モデル図を示す。非特許文献2によると、噴流が壁とTをなす角で壁に衝突する際、衝突前の噴流Qと衝突後の噴流Qa及びQbとの関係は式1及び式2であらわされる。式より蒸気の進行方向への噴流Qaを多くし、逆方向への噴流Qbを少なくし、進行方向へのスムーズな蒸気流を得るには、本発明ノズルにおいて入射角T32を極力小さくすればよいことが判る。 Dispersing the vapor impinges at an angle of T 32 hemispherical cavities in the side wall 31 at point b, but described diversion of the jet that time. FIG. 6 shows a jet model when the jet strikes the wall at an angle. According to Non-Patent Document 2, when the jet collides with the wall at an angle forming T with the wall, the relationship between the jet Q before the collision and the jets Q a and Q b after the collision is expressed by Equations 1 and 2. Increasing the jet Q a in the traveling direction of the steam from the equation reduces the jet Q b in the opposite direction, in order to obtain a smooth vapor flow to the traveling direction, minimizing the incidence angle T 32 in the present invention the nozzle I know that I should do.

前田 昌信著、「はじめて学ぶ流体力学」 p84、オーム社出版局、2002年10月発行。Maeda Masanobu, “The first fluid dynamics” p84, published by Ohmsha Publishing Co., Ltd., October 2002.

集束部にてコアンダ効果によりテーパ状側壁に沿って噴出口に案内された分散蒸気は直進噴流となって処理基板とT41の角度をなして衝突する。図7は処理基板への打力Fyを示すモデル図である。図は噴流Qaが処理基板とT41の角度をなして衝突する場合の、打力を示しており、処理基板鉛直下方向への打力FyはFy=FsinT41であらわされる。したがって、テーパ状側壁のテーパ角T41を大きくすることによって、処理基板鉛直下方向への打力を大きくすることが可能となる。 Distributed steam guided to the ejection port along the tapered side wall by the Coanda effect at the focusing unit impinges at an angle of substrate and T 41 becomes straight jet. FIG. 7 is a model diagram showing the striking force Fy to the processing substrate. Figure in the case of jet Q a impinges at an angle of substrate and T 41, it shows a batting power, batting power Fy to substrate vertically downward direction is represented by Fy = FsinT 41. Therefore, by increasing the taper angle T 41 of the tapered side walls, it is possible to increase the liquid-driving power to the substrate vertically downward direction.

また、非特許文献3には、噴流をある角度で衝突させる傾斜2噴流衝突において、衝突角T41が大きい程、噴流幅が狭くなることを示している。
辻本公一、社河内敏彦、安藤俊剛著、「噴流の混合制御に関する数値シュミレーション」、大阪大学サイバーメディアセンター大規模計算機システム利用者報告 vol.1,No.1, 2005.5第1号。
Further, Non-Patent Document 3, in the inclined 2 jet impingement to impinge at an angle to the jet, the larger the collision angle T 41, it is shown that the jet width decreases.
Koichi Enomoto, Toshihiko Kochiuchi, Toshihiro Ando, “Numerical Simulation on Mixing Control of Jet”, Osaka University Cyber Media Center Large-scale Computer System User Report vol.1, No.1, 2005.5 No.1.

以上のことから、集束ノズルの寸法を以下のようにした。円孔22の直径d=2mm、円孔22の長さL=10mm、半球状空洞31の半径r=10mm、円錐形分散板32の分散角T31=60度、b点での衝突角T32=45度、分散板底面の直径f=6.8mm、テーパ状側壁41のテーパ角T41=60度、円孔22の噴射口と円錐形分散板の頂点aまでの距離e=2mmとした。 From the above, the size of the focusing nozzle was set as follows. The diameter d of the circular hole 22 is 2 mm, the length L of the circular hole 22 is 10 mm, the radius r of the hemispherical cavity 31 is 10 mm, the dispersion angle T 31 of the conical dispersion plate 32 is 60 degrees, and the collision angle T at the point b. 32 = 45 degrees, the diameter f of the bottom surface of the dispersion plate f = 6.8 mm, the taper angle T 41 of the tapered side wall 41 = 60 degrees, the distance e = 2 mm between the injection hole of the circular hole 22 and the apex a of the conical dispersion plate did.

(実施例1)
(レジスト除去実験)
(Example 1)
(Resist removal experiment)

以下に本発明のノズルを用いてレジスト除去実験を行った結果を説明する。
ノズル1の蒸気導入口21に、蒸気ボイラにて発生させた飽和蒸気(蒸気流量100L/min)を導入し、集束点61にノズル中心軸と直交するようにレジスト膜付き基板を置き、基板表面に向けて蒸気を噴射した。このとき使用したレジストはポジ型のg線波長用フォトレジストであり、予めスピンコータにて塗布後、ホットプレートにて100℃で10分間焼成したものである。図8にレジスト除去過程を示す写真図を示す。蒸気噴射開始10秒後レジスト膜表面に亀裂が発生し、20秒経過後、レジスト膜が局所的に除去できたことを示している。円形ノズルにて集束ノズルと同様の実験をおこなったが、レジスト表面に全く変化がみられなかった。
The results of a resist removal experiment using the nozzle of the present invention will be described below.
Saturated steam (steam flow rate 100 L / min) generated by a steam boiler is introduced into the steam inlet 21 of the nozzle 1, and a substrate with a resist film is placed at the converging point 61 so as to be orthogonal to the central axis of the nozzle. Steam was sprayed toward. The resist used at this time is a positive-type photoresist for g-line wavelength, which is previously applied with a spin coater and baked at 100 ° C. for 10 minutes on a hot plate. FIG. 8 is a photograph showing the resist removal process. It shows that a crack occurred on the resist film surface 10 seconds after the start of vapor jetting, and the resist film could be removed locally after 20 seconds. An experiment similar to that of the focusing nozzle was performed using a circular nozzle, but no change was observed on the resist surface.

この様に、本発明の集束ノズルを使うことで、処理基板上に蒸気を集中化させ、熱エネルギーと打力の集中化を利用してレジスト膜の除去ができることが証明できた。
(実施例2)
Thus, it was proved that by using the focusing nozzle of the present invention, the vapor can be concentrated on the processing substrate, and the resist film can be removed by utilizing the concentration of thermal energy and striking force.
(Example 2)

本発明の第一の実施例の集束ノズルにおいて、軸中心部に新たに液ノズルを設置し、蒸気とともに液ノズルより界面活性剤やエッチング溶剤やレジスト剥離液などの薬液或いは純水やアルカリ電解水や水素水などの機能水などを一定比率で流すことにより、蒸気による温度効果を利用したより効果の高い洗浄やエッチングやレジスト剥離が実施できる。この2流体ノズルを使うことにより、薬液の温調設備が不要となり、薬液使用量の減少及び装置コストの低減化が期待される。 In the focusing nozzle according to the first embodiment of the present invention, a liquid nozzle is newly installed at the center of the shaft, and a chemical solution such as a surfactant, an etching solvent, a resist stripping solution, pure water, or alkaline electrolyzed water is supplied from the liquid nozzle together with the vapor. By flowing functional water such as hydrogen or hydrogen water at a constant ratio, more effective cleaning, etching, or resist stripping using the temperature effect of steam can be performed. By using this two-fluid nozzle, a temperature control facility for the chemical solution is not required, and a reduction in the amount of chemical solution used and a reduction in device cost are expected.

以上、本発明の実施の形態及び実施例を説明したが、本発明の範囲はこれに限定されるものではない。本発明の第一の実施例のノズルにおいて、分散部の分散板は円錐形状であるが、半円状あるいは、角錐形状または2次曲面あるいは3次曲面の傾斜面をもつ形状であってもよく、頂点或いは中心部に蒸気を衝突させ、コアンダ効果により傾斜面に沿い蒸気を案内するもの機構であればよい。 As mentioned above, although embodiment and the Example of this invention were described, the scope of the present invention is not limited to this. In the nozzle according to the first embodiment of the present invention, the dispersion plate of the dispersion portion has a conical shape, but may have a semicircular shape, a pyramid shape, a quadratic curved surface, or a shape having an inclined surface of a cubic curved surface. Any mechanism may be used as long as it causes steam to collide with the apex or the center and guide the steam along the inclined surface by the Coanda effect.

また、本発明の第一の実施例のノズルにおいて分散部は半球状空洞であり分散蒸気は曲面側壁に衝突するが、テーパ状側壁をもつ一定割合で拡径変化する円筒状空洞であってもよく、または分散蒸気が進入しやすいように、テーパ角を多段展開した空洞であってもよい。 Further, in the nozzle of the first embodiment of the present invention, the dispersion part is a hemispherical cavity and the dispersed vapor collides with the curved side wall, but even if it is a cylindrical cavity having a tapered side wall and changing in diameter at a certain rate. The cavity may have a taper angle that is developed in multiple stages so that dispersed steam can easily enter.

また、本発明の第一の実施例のノズルにおいて集束部は一定割合で縮径変化する円筒状空洞でテーパ状側壁をもち、蒸気はコアンダ効果によってテーパ状側壁に沿い集束点に導かれるが、テーパ角が一定の直線状側壁でなくてもよく、テーパ角が2段以上となる直線状側壁の組み合わせあるいは曲面状側壁であってもよい。
(実施例3)
Further, in the nozzle of the first embodiment of the present invention, the converging part has a tapered side wall with a cylindrical cavity whose diameter changes at a constant rate, and the steam is guided to the converging point along the tapered side wall by the Coanda effect. It may not be a straight side wall with a constant taper angle, but may be a combination of straight side walls with a taper angle of two or more steps or a curved side wall.
(Example 3)

図9に断熱スカート付き集束ノズルの構成断面図を示す。断熱スカート51は噴射口下部に増設し、内径R51、外形R52、厚さ数mm程度の中空円板状である。断熱スカートを増設することで、周囲流体の巻き込みを防止し、集束後の蒸気流を処理基板表面に沿って放射状に流すことが可能となる。この蒸気流を利用して、処理基板表面を過熱するだけでなく、汚染物やレジスト等の剥離物を気流に乗せて処理対象領域外部に運ぶことが可能となる。さらに、断熱スカートの外径R52を大きくすることで、処理基板表面の大面積を加熱できるため、洗浄やレジスト剥離等の処理時間を短縮する効果がある。断熱スカートの形状はこれに限定されない。但し、コアンダ効果によりテーパ状側壁に沿って流れる分散蒸気の流路を妨害しない形状にする必要がある。図9においては、流路を妨害しないように、中空円板の内径R51を噴射口直径R41より大きくした。 FIG. 9 is a sectional view showing the configuration of a focusing nozzle with a heat insulating skirt. The heat insulation skirt 51 is added to the lower portion of the injection port, and has a hollow disk shape with an inner diameter R51, an outer shape R52, and a thickness of several millimeters. By adding the heat insulating skirt, it is possible to prevent the surrounding fluid from being caught and to allow the vapor flow after focusing to flow radially along the surface of the processing substrate. Using this vapor flow, not only the surface of the processing substrate is overheated, but also contaminants and exfoliation such as resist can be carried on the air current and carried outside the processing target region. Furthermore, by increasing the outer diameter R52 of the heat insulating skirt, a large area on the surface of the processing substrate can be heated, so that there is an effect of shortening processing time such as cleaning and resist stripping. The shape of the heat insulation skirt is not limited to this. However, it is necessary to have a shape that does not obstruct the flow path of the dispersed vapor flowing along the tapered side wall due to the Coanda effect. In FIG. 9, the inner diameter R51 of the hollow disc is made larger than the injection port diameter R41 so as not to obstruct the flow path.

また、本発明の第一の実施例のノズルは3次元軸対象ノズルであるが、直線搬送式装置に応用した2次元広幅ノズルであってもよい。分散板の断面形状は、三角形や半円形で横幅方向に長いものでよい。 Moreover, although the nozzle of the first embodiment of the present invention is a three-dimensional axis target nozzle, it may be a two-dimensional wide nozzle applied to a linear conveying apparatus. The cross-sectional shape of the dispersion plate may be triangular or semicircular and long in the lateral width direction.

さらに、本発明のノズルは、半導体、液晶用ガラス基板、PDP用ガラス基板、LCD実装基板の洗浄工程やエッチング工程やレジスト除去工程に使用する洗浄装置、エッチング装置、レジスト除去装置に実施されるものであり、スピン回転装置や直線搬送式装置などに装着して使用する。その際、ノズルは基板の大きさに応じてさらに大きいノズルにしても良いし、同一ノズルを複数個の多段に配置してもよい。 Further, the nozzle of the present invention is implemented in a cleaning apparatus, an etching apparatus, or a resist removal apparatus used for a cleaning process, an etching process, or a resist removal process of a semiconductor, a liquid crystal glass substrate, a PDP glass substrate, and an LCD mounting substrate. It is used by being mounted on a spin rotation device or a linear conveyance device. In that case, the nozzle may be a larger nozzle according to the size of the substrate, or the same nozzle may be arranged in a plurality of stages.

また、本発明のノズルは、上記分野の技術範囲に留まらす、食器洗浄や自動車洗浄などの一般的な洗浄用ノズルとしても活用可能である。本ノズルは蒸気洗浄のみに留まらず、高温流体を用いた洗浄用ノズルとしても使用可能である。
Further, the nozzle of the present invention can be used as a general cleaning nozzle for tableware cleaning, automobile cleaning, and the like, which remains within the technical scope of the above field. This nozzle can be used not only for steam cleaning but also as a cleaning nozzle using a high-temperature fluid.

本発明は導体、液晶用ガラス基板、FPD用ガラス基板、マスク用石英基板、シリコンウェハー、メディア用各種基板などの製造分野での洗浄工程やレジスト除去工程で利用することができる。
INDUSTRIAL APPLICABILITY The present invention can be used in a cleaning process and a resist removal process in the manufacturing field of conductors, glass substrates for liquid crystals, FPD glass substrates, quartz substrates for masks, silicon wafers, various media substrates, and the like.

一般的な円形ノズルの蒸気噴流説明図である。It is steam jet explanatory drawing of a general circular nozzle. 本発明の集束ノズルの蒸気噴流説明図である。It is vapor jet explanatory drawing of the focusing nozzle of this invention. 本発明の集束ノズルにて噴出口近傍の蒸気温度分布を示すグラフ図である。It is a graph which shows vapor | steam temperature distribution of a jet nozzle vicinity in the focusing nozzle of this invention. 円形ノズルにて噴出口近傍の蒸気温度分布を示すグラフ図である。It is a graph which shows the vapor | steam temperature distribution of a jet nozzle vicinity by a circular nozzle. 本発明の集束ノズルの最良の実施形態を示す構成断面図である。It is a structure sectional view showing the best embodiment of the focusing nozzle of the present invention. 噴流が壁に対し斜めに流れが当たる場合の噴流モデル図である。It is a jet model figure when a jet hits a flow with respect to a wall diagonally. 集束点における蒸気噴流の処理基板への衝撃力Fyを示すモデル図である。It is a model figure which shows the impact force Fy to the process board | substrate of a steam jet in a converging point. レジスト除去実験結果を示す写真図である。It is a photograph figure which shows a resist removal experiment result. 断熱スカート付き集束ノズルの構成断面図である。It is a structure sectional view of a focusing nozzle with a heat insulation skirt.

符号の説明Explanation of symbols

1 ノズル
2 蒸気導入部
3 分散部
4 集束部
5 蒸気
6 処理基板
21 導入口
22 円孔
31 半球状空洞内側壁
32 円錐形の分散板
41 テーパ状側壁
42 噴出口
51 断熱スカート
61 集束点
DESCRIPTION OF SYMBOLS 1 Nozzle 2 Steam introducing part 3 Dispersing part 4 Converging part 5 Steam 6 Process substrate 21 Inlet 22 Circular hole 31 Semi-spherical inner wall 32 Conical dispersion plate 41 Tapered side wall 42 Spout 51 Heat insulating skirt 61 Focusing point

Claims (9)

蒸気を分散し、テーパ状側壁にてノズル中心軸上の集束点に案内させる構造をもつことを特徴とする蒸気ノズル。 A steam nozzle having a structure in which steam is dispersed and guided to a converging point on the central axis of the nozzle by a tapered side wall. 蒸気導入部、分散部、集束部を有し、円孔、分散板、テーパ状側壁よりなる請求項1に記載の蒸気ノズル。 The steam nozzle according to claim 1, comprising a steam introduction part, a dispersion part, and a converging part, and comprising a circular hole, a dispersion plate, and a tapered side wall. 前記分散板は、円錐形状または多角錐形状または球面形状または2次曲面あるいは3次曲面の傾斜面をもつ形状であることを特徴とする請求項1及び請求項2記載の蒸気ノズル。 3. The steam nozzle according to claim 1, wherein the dispersion plate has a conical shape, a polygonal pyramid shape, a spherical shape, or a shape having an inclined surface of a quadric surface or a cubic surface. 前記テーパ状側壁は、テーパ角が一定の直線状側壁またはテーパ角が2段以上となる直線状側壁の組み合わせまたは曲面状側壁または直線状側壁と曲面状側壁の組み合わせであることを特徴とする請求項1〜3記載の蒸気ノズル。 The tapered side wall is a straight side wall having a constant taper angle, a combination of straight side walls having a taper angle of two or more, a curved side wall, or a combination of a straight side wall and a curved side wall. Item 3. A steam nozzle according to items 1 to 3. 前記蒸気ノズルの下部に周囲流体の巻き込みを防止し、断熱性を上げる為に、中空円板状の断熱スカートを設置することを特徴とする請求項1〜4記載の蒸気ノズル。 The steam nozzle according to claim 1, wherein a hollow disk-like heat insulation skirt is installed in the lower part of the steam nozzle to prevent the surrounding fluid from being caught and to improve heat insulation. 前記集束部内中心近傍に液ノズルを設け、液ノズルより導入した液を集束部付近で混合する機能をもつことを特徴とする請求項1〜5記載の蒸気ノズル。 6. A steam nozzle according to claim 1, wherein a liquid nozzle is provided near the center in the converging part, and the liquid introduced from the liquid nozzle has a function of mixing near the converging part. 3次元軸対象ノズルまたは2次元広幅ノズルであることを特徴とする請求項1〜6記載の蒸気ノズル。 The steam nozzle according to claim 1, wherein the steam nozzle is a three-dimensional axis target nozzle or a two-dimensional wide nozzle. 請求項1〜請求項7記載の蒸気ノズルを用い、パーティクルや油脂、有機物、ガラスカレット、レジスト等を除去することを特徴とする洗浄方法やレジスト除去方法。 A cleaning method or a resist removal method, wherein particles, oils, organic substances, glass cullet, resist, and the like are removed using the vapor nozzle according to claim 1. 請求項6記載の液ノズルより導入する液は界面活性剤やエッチング溶剤やレジスト剥離液などの薬液或いは純水や機能水などであり、この液を集束部付近にて蒸気と一定割合で混合することにより、温度効果を利用したパーティクルや油脂、有機物、ガラスカレット、レジスト等を除去することを特徴とする洗浄方法やレジスト除去方法。 The liquid introduced from the liquid nozzle according to claim 6 is a surfactant, an etching solvent, a chemical solution such as a resist stripping solution, pure water, functional water, or the like, and this liquid is mixed with steam at a constant ratio in the vicinity of the focusing portion. A cleaning method and a resist removal method characterized by removing particles, fats and oils, organic matter, glass cullet, resist, and the like using temperature effects.
JP2006302861A 2006-11-08 2006-11-08 Steam focusing nozzle and cleaning process Pending JP2008119560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302861A JP2008119560A (en) 2006-11-08 2006-11-08 Steam focusing nozzle and cleaning process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302861A JP2008119560A (en) 2006-11-08 2006-11-08 Steam focusing nozzle and cleaning process

Publications (1)

Publication Number Publication Date
JP2008119560A true JP2008119560A (en) 2008-05-29

Family

ID=39504902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302861A Pending JP2008119560A (en) 2006-11-08 2006-11-08 Steam focusing nozzle and cleaning process

Country Status (1)

Country Link
JP (1) JP2008119560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357610A (en) * 2013-07-18 2013-10-23 宜昌南玻硅材料有限公司 Centralized fluid infusion system and fluid infusion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357610A (en) * 2013-07-18 2013-10-23 宜昌南玻硅材料有限公司 Centralized fluid infusion system and fluid infusion method

Similar Documents

Publication Publication Date Title
KR102346803B1 (en) Substrate processing apparatus and substrate processing method
CN102246281B (en) Method for cleaning object and system for cleaning object
TWI411474B (en) Spray jet cleaning apparatus and method
US7267130B2 (en) Substrate processing apparatus
JP6153110B2 (en) One-component cryogenic fine solid particle continuous production apparatus and its one-component cryogenic fine solid particle continuous production method
US7479205B2 (en) Substrate processing apparatus
JP4763575B2 (en) Substrate processing apparatus and substrate processing method
JP5650896B2 (en) Substrate processing apparatus and substrate processing method
KR20110039040A (en) Two-fluid injection nozzle
US6598805B2 (en) Substrate cleaning apparatus
WO2015147237A1 (en) Substrate treatment device and substrate treatment method
JP2011060954A (en) Method for washing semiconductor wafer
JP2012004331A (en) Cleaning method and cleaning device
JP2006187707A (en) Two-fluid nozzle for cleaning and cleaning method and apparatus
JP2008119560A (en) Steam focusing nozzle and cleaning process
TWI469832B (en) Object cleansing method and object cleansing system
JP2007273806A (en) Semiconductor substrate cleaning method and cleaning apparatus
JP2003209088A (en) Aerosol cleaning method and device thereof
JP2011171691A (en) Semiconductor cleaning system using micro-nano solid
JP2004031924A (en) Aerosol cleaning method and device
KR101976799B1 (en) Steam cleaning system and steam cleaning method using the same
JP2006294762A (en) Substrate processing apparatus
JP2006128332A (en) Equipment and method for treating substrate
JP2002355619A (en) Substrate washing apparatus
KR102130889B1 (en) Fluid providing device