JP2008117883A - Superconductive current-carrying member excellent in transformation capability - Google Patents

Superconductive current-carrying member excellent in transformation capability Download PDF

Info

Publication number
JP2008117883A
JP2008117883A JP2006298604A JP2006298604A JP2008117883A JP 2008117883 A JP2008117883 A JP 2008117883A JP 2006298604 A JP2006298604 A JP 2006298604A JP 2006298604 A JP2006298604 A JP 2006298604A JP 2008117883 A JP2008117883 A JP 2008117883A
Authority
JP
Japan
Prior art keywords
carrying member
oxide superconductor
superconducting current
deformability
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006298604A
Other languages
Japanese (ja)
Other versions
JP5230925B2 (en
Inventor
Mitsuru Morita
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006298604A priority Critical patent/JP5230925B2/en
Publication of JP2008117883A publication Critical patent/JP2008117883A/en
Application granted granted Critical
Publication of JP5230925B2 publication Critical patent/JP5230925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive current-carrying material using an oxide superconductive material excellent in a transformation capability. <P>SOLUTION: Oxide superconductiors 1, 2 having spiral shapes are connected to a copper electrode 3 in an elastically transformable state, and there is provided a superconductive current-carrying member excellent in the transformation capability in which the oxide superconductors 1, 2 can be deformed when receiving tensile stress and bending stress. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、渦巻き形状を有する超伝導体を用いた変形能に優れた超伝導通電部材に関する。   The present invention relates to a superconducting current-carrying member excellent in deformability using a superconductor having a spiral shape.

近年、冷凍機冷却による冷媒を必要としない超伝導マグネットが一般に広く普及している。これはY系及びBi系に代表される高温酸化物超伝導材料を用いた電流リードによるところが大きい。これらの酸化物超伝導体は、液体窒素の沸点(77K)を超える臨界温度を有することから、酸化物超伝導体の高温端(高温領域)を70K程度に冷却することで、超伝導マグネットの冷却温度領域である約4K(10K以下)への熱浸入を大幅に抑制することが可能にした。具体的には、酸化物超伝導体の低い熱伝導率と超伝導状態でのゼロ電気抵抗により、高温領域からの熱浸入と導体内での熱発生が、従来の銅リードに比べ格段に抑制されたためである。   In recent years, superconducting magnets that do not require a refrigerant for cooling a refrigerator are generally widely used. This is largely due to current leads using high-temperature oxide superconducting materials typified by Y-based and Bi-based materials. Since these oxide superconductors have a critical temperature exceeding the boiling point (77K) of liquid nitrogen, cooling the high temperature end (high temperature region) of the oxide superconductor to about 70K, Thermal intrusion to about 4K (10K or less), which is the cooling temperature range, can be greatly suppressed. Specifically, the low thermal conductivity of oxide superconductors and zero electrical resistance in the superconducting state significantly suppresses heat intrusion from high-temperature regions and heat generation in conductors compared to conventional copper leads. It was because it was done.

電流リードに代表されるこのような酸化物超伝導材料を用いた通電部材は、Y系又は希土類系材料を用いた物として、例えば、特許文献1、非特許文献1等に開示されている。また、Bi系材料を用いた物として、例えば、特許文献2、非特許文献2等に開示されている。   A current-carrying member using such an oxide superconducting material typified by a current lead is disclosed in, for example, Patent Document 1, Non-Patent Document 1, and the like as a material using a Y-based or rare-earth material. Moreover, as a thing using Bi type material, it is disclosed by patent document 2, nonpatent literature 2, etc., for example.

一方、渦巻き状の酸化物超伝導材料の加工法に関しては、特許文献3に開示されている。この特許文献3は、難加工性の酸化物超電導体を精密加工できる加工方法並びに精密加工された酸化物超電導素子に関するものであり、実施例等に渦巻き形状を有する超電導体の加工法について記載されている。しかしながら、特許文献3の発明の名称に記載されているように、電流リードではなく、磁場発生を目的とするマグネット用の素材としての使用が記載されている。なお、特許文献3には、渦巻き状の酸化物超伝導材料の弾性変形能又はこれを用いた通電部材の変形能等については、何も記載されていない。   On the other hand, Patent Document 3 discloses a method for processing a spiral oxide superconducting material. This Patent Document 3 relates to a processing method capable of precision processing a difficult-to-process oxide superconductor and a precision processed oxide superconductor element, and describes a processing method of a superconductor having a spiral shape in Examples and the like. ing. However, as described in the title of the invention of Patent Document 3, the use as a material for a magnet for generating a magnetic field is described instead of a current lead. Patent Document 3 does not describe anything about the elastic deformability of the spiral oxide superconducting material or the deformability of the current-carrying member using the same.

特開2004−47259号公報JP 2004-47259 A 特開2002−280212号公報JP 2002-280212 A 特開2005−191538号公報JP 2005-191538 A H. Teshima, M. Sawamura and H. Hosei, "Properties of a few hundred A class Y-B-C-O bulk current lead usable in magnetic fields", Physica C, Vol.378-381 (2002) p.827-832H. Teshima, M. Sawamura and H. Hosei, "Properties of a few hundred A class Y-B-C-O bulk current lead usable in magnetic fields", Physica C, Vol. 378-381 (2002) p.827-832 Proceedings of the 4th International Symposium on Superconductivity (ISS'91) (Advances in Superconductivity IV), October 14-17, 1991, Tokyo, p.621Proceedings of the 4th International Symposium on Superconductivity (ISS'91) (Advances in Superconductivity IV), October 14-17, 1991, Tokyo, p.621

電流リードに代表される通電部材は、多くの場合、装置間又は端子間を電気的に接続するための部品であるので、通電部材その物が柔軟性を有することが望ましい。これは、柔軟性を有することにより、装置組立工程における自由度が増し、作業効率が向上する他、装置の移動に伴う衝撃の緩和や冷却による熱収縮で発生する応力の緩和等、通電部材を組み込んだ装置の信頼性向上をもたらすことができる。   In many cases, a current-carrying member represented by a current lead is a component for electrically connecting between devices or terminals, and it is desirable that the current-carrying member itself has flexibility. This is because the flexibility increases the degree of freedom in the device assembly process and improves the work efficiency, as well as reducing the impact caused by movement of the device and the stress generated by thermal contraction due to cooling. The reliability of the incorporated device can be improved.

しかしながら、酸化物超伝導材料は、銅等の金属材料に比べ延性、展性、剛性等の加工性が悪く、柔軟性(変形能)に欠けている。   However, oxide superconducting materials have poor workability such as ductility, malleability, rigidity and the like, and lack flexibility (deformability) compared to metal materials such as copper.

本発明は前述の問題点に鑑み、酸化物超伝導材料を用いた、変形能に優れた超伝導通電材料を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a superconducting current-carrying material having an excellent deformability using an oxide superconducting material.

本発明の要旨は、素材として変形能に乏しい酸化物超伝導材料に対し、変形し易い形状を付与することで、酸化物超伝導材料を組み込んだ通電部材全体として、高い変形能を有する通電部材を提供するものであり、具体的には、以下のとおりである。
(1)渦巻き形状の酸化物超伝導体が弾性変形された状態で電極に接続されてなることを特徴とする変形能に優れた超伝導通電部材。
(2)前記渦巻き形状の酸化物超伝導体の弾性変形率(酸化物超伝導体の最大寸法に対する最大変位の割合)が3%以上であることを特徴とする(1)に記載の変形能に優れた超伝導通電部材。
(3)前記電極に複数の渦巻き形状の酸化物超伝導体が接続されてなり、前記酸化物超伝導体が互いに磁場を打ち消し合う方向に渦巻き方向が配置されてなることを特徴とする(1)又は(2)に記載の変形能に優れた超伝導通電部材。
(4)通電方向又は電極間の方向の酸化物超伝導体の長さ又は電極間距離(D)が、通電方向又は電極間の方向と直交する方向の酸化物超伝導体の寸法(幅又は太さ:W)に対し、W>Dであることを特徴とする(1)〜(3)のいずれかに記載の変形能に優れた超伝導通電部材。
(5)通電方向の長さに対し直交する方向(幅又は太さ)の比率(幅/長さ:W/D)が1.5〜10の範囲であることを特徴とする(4)に記載の変形能に優れた超伝導通電部材。
(6)前記渦巻き形状の酸化物超伝導体が、変形可能な形状を有する部材で覆われてなることを特徴とする(1)〜(5)のいずれかに記載の変形能に優れた超伝導通電部材。
(7)前記酸化物超伝導体を覆う部材が蛇腹状の形状を有することを特徴とする(6)に記載の変形能に優れた超伝導通電部材。
(8)前記電極が、銅、銅合金、銀又は銀合金のいずれかであることを特徴とする(1)〜(7)のいずれかに記載の変形能に優れた超伝導通電部材。
(9)前記酸化物超伝導体が、単結晶状のREBa2Cu37-x相(REはYを含む希土類元素又はそれらの組み合わせ、xは酸素欠損量)中にRE2BaCuO5相が微細分散した組織を有することを特徴とする(1)〜(8)のいずれかに記載の変形能に優れた超伝導通電部材。
(10)前記酸化物超伝導体中に、銀又は銀化合物の1種以上が5〜25体積%分散してなることを特徴とする(9)に記載の変形能に優れた超伝導通電部材。
(11)少なくとも1つの方向に対し、3%以上の弾性変形領域を有することを特徴とする(1)〜(10)のいずれかに記載の変形能に優れた超伝導通電部材。
(12)少なくとも1つの角度に対し、5°以上の弾性変形領域を有することを特徴とする(1)〜(10)のいずれかに記載の変形能に優れた超伝導通電部材。
The gist of the present invention is that the current-carrying member having high deformability as the whole current-carrying member incorporating the oxide superconducting material is given to the oxide superconducting material having poor deformability as a material by giving a shape that is easy to deform. Specifically, it is as follows.
(1) A superconducting current-carrying member excellent in deformability, characterized in that a spiral oxide superconductor is elastically deformed and connected to an electrode.
(2) The deformability according to (1), wherein the elastic deformation rate of the spiral oxide superconductor (the ratio of the maximum displacement to the maximum size of the oxide superconductor) is 3% or more. Superconducting current-carrying member with excellent resistance.
(3) A plurality of spiral oxide superconductors are connected to the electrode, and the spiral direction is arranged in a direction in which the oxide superconductors cancel each other's magnetic field (1) Or a superconducting current-carrying member having excellent deformability as described in (2).
(4) The length of the oxide superconductor in the energization direction or the direction between the electrodes or the distance (D) between the electrodes is the dimension of the oxide superconductor in the direction perpendicular to the energization direction or the direction between the electrodes (width or The superconducting current-carrying member having excellent deformability according to any one of (1) to (3), wherein W> D with respect to thickness (W).
(5) The ratio (width / length: W / D) of the direction (width / thickness) orthogonal to the length of the energizing direction is in the range of 1.5 to 10 in (4) A superconducting current-carrying member having excellent deformability as described.
(6) The superoxide having excellent deformability according to any one of (1) to (5), wherein the spiral oxide superconductor is covered with a member having a deformable shape. Conductive conducting member.
(7) The superconducting current-carrying member having excellent deformability as set forth in (6), wherein the member covering the oxide superconductor has a bellows shape.
(8) The superconducting current-carrying member having excellent deformability according to any one of (1) to (7), wherein the electrode is any one of copper, a copper alloy, silver, or a silver alloy.
(9) The oxide superconductor has a RE 2 BaCuO 5 phase in a single-crystal REBa 2 Cu 3 O 7-x phase (RE is a rare earth element including Y or a combination thereof, x is an oxygen deficiency amount). The superconducting current-carrying member excellent in deformability according to any one of (1) to (8), characterized in that has a finely dispersed structure.
(10) One or more types of silver or a silver compound are dispersed in the oxide superconductor in an amount of 5 to 25% by volume. .
(11) The superconducting current-carrying member having excellent deformability according to any one of (1) to (10), which has an elastic deformation region of 3% or more with respect to at least one direction.
(12) The superconducting current-carrying member having excellent deformability according to any one of (1) to (10), having an elastic deformation region of 5 ° or more with respect to at least one angle.

本発明によれば、高い変形能を有する超伝導通電部材を提供することにより、金属系超伝導マグネット及び酸化物系超伝導マグネット等の超伝導マグネットの設計・製造を容易にし、作業性・信頼性向上及びコスト低減等の効果があるとともに、マグネット以外に低温領域で比較的大きな電流を要する機器等に関しても同様の効果が期待できる。   According to the present invention, by providing a superconducting current-carrying member having high deformability, it is easy to design and manufacture superconducting magnets such as metal-based superconducting magnets and oxide-based superconducting magnets, and workability and reliability are improved. In addition to magnets, the same effect can be expected for devices that require a relatively large current in a low temperature region in addition to magnets.

本発明は、前記課題に鑑み、変形能に乏しい酸化物超伝導体を用いながらも、通電部材全体としては高い柔軟性を有する超伝導通電部材を提供するものである。   In view of the above problems, the present invention provides a superconducting energizing member having high flexibility as the entire energizing member while using an oxide superconductor with poor deformability.

酸化物超伝導材料は、基本的に脆性材料であるため、応力に対して割れやクラックの発生が生じやすく、特に、結晶構造が2次元的であるため、所謂a−b面間でへき開を起こしやすい。また、酸化物超伝導材料は結晶粒界が超伝導的に弱結合となるため、十分な臨界電流密度特性を得るには、単結晶状の材料又は高度に配向した材料である必要があり、割れの問題が発生しやすい。しかしながら、このような脆性材料においても付与する形状によっては、全体として十分な変形能を与えることができる。   Since the oxide superconducting material is basically a brittle material, cracks and cracks are likely to occur with respect to stress. In particular, since the crystal structure is two-dimensional, cleavage is caused between so-called ab planes. Easy to wake up. In addition, since the oxide superconducting material has a superconducting weak bond at the crystal grain boundary, it is necessary to be a single crystal material or a highly oriented material in order to obtain sufficient critical current density characteristics. Prone to cracking problems. However, depending on the shape to be imparted even in such a brittle material, sufficient deformability can be imparted as a whole.

具体的には、薄い板状の酸化物超伝導体をサンドブラスト加工等により、図1に示すような渦巻き形状に加工することで外周端と内周端の位置関係において、ある程度の変位が、弾性変形領域内において可能となる。即ち、渦巻き形状を付与することで、超伝導体に割れ、クラック等の欠陥を発生させることなく、さらに十分な臨界電流密度特性を維持しつつ、変形させることが可能になる。このとき、図1には円に近い形状の渦巻き形状を示したが、四角形、六角形等の多角形の渦巻き形状としてもよい。   Specifically, by processing a thin plate-shaped oxide superconductor into a spiral shape as shown in FIG. 1 by sandblasting or the like, a certain amount of displacement is elastic in the positional relationship between the outer peripheral end and the inner peripheral end. This is possible in the deformation area. That is, by providing a spiral shape, the superconductor can be deformed while maintaining a sufficient critical current density characteristic without causing defects such as cracks and cracks. At this time, FIG. 1 shows a spiral shape close to a circle, but a polygonal spiral shape such as a quadrangle or a hexagon may be used.

例えば、90K級の臨界温度を有する希土類(RE)型酸化物超伝導材料において、高い臨界電流密度特性を有するQMG材料(単結晶状のREBa2Cu37-x中にRE2BaCuO5が微細分散した材料、REはYを含む希土類元素又はそれらの組み合わせ、xは酸素欠損量)は、比較的強い圧縮応力下においても、3%の変形を与えた場合、確実に割れやクラックが発生し、特性劣化が起こる。 For example, in a rare earth (RE) type oxide superconducting material having a critical temperature of 90K class, a QMG material having high critical current density characteristics (RE 2 BaCuO 5 is contained in a single-crystal REBa 2 Cu 3 O 7-x). The finely dispersed material, RE is a rare earth element including Y or a combination thereof, and x is an oxygen deficiency amount) is reliably cracked or cracked when deformed by 3% even under relatively strong compressive stress. However, characteristic deterioration occurs.

これに対して、図1に示すような渦巻き形状有する場合は、渦巻きの面内方向においても3%の変形に対して、割れ、クラック等が発生せず特性劣化も起こらない。さらには、渦巻き面と垂直方向においては外周端と内周端のとの変位は、10%を超えた場合においても特性劣化が起こらない。この時の弾性変形率は、「酸化物超伝導体の最大寸法に対する最大変位の割合」として計算する。   On the other hand, when it has a spiral shape as shown in FIG. 1, even in the in-plane direction of the spiral, 3% deformation does not cause cracks, cracks, etc., and characteristic deterioration does not occur. Furthermore, in the direction perpendicular to the spiral surface, even when the displacement between the outer peripheral end and the inner peripheral end exceeds 10%, characteristic deterioration does not occur. The elastic deformation rate at this time is calculated as “the ratio of the maximum displacement to the maximum dimension of the oxide superconductor”.

また、図1に示すような渦巻き形状を有する厚さ1mmのQMG材料の場合、割れやクラックを発生しない状態での最大の弾性変形率は、42%であった。この最大弾性変形率は、巻き線の断面積が小さくなれば大きくなる傾向にある。しかしながら、断面積を極端に細くした場合、自重又は振動時の自重による加重に耐えられなくなるため、巻き線の断面積は1mm2超が望ましく、この場合、最大弾性変形率は80%程度になる。 Further, in the case of a 1 mm thick QMG material having a spiral shape as shown in FIG. 1, the maximum elastic deformation rate in a state where no cracks or cracks occurred was 42%. This maximum elastic deformation rate tends to increase as the cross-sectional area of the winding decreases. However, when the cross-sectional area is made extremely thin, it becomes impossible to withstand the load due to its own weight or its own weight during vibration. Therefore, the cross-sectional area of the winding is preferably more than 1 mm 2 , and in this case, the maximum elastic deformation rate is about 80%. .

電流リード等の通電部材においては、その部材内において磁場の発生を避けることが望ましい。その理由としては、磁場の発生によって臨界電流密度特性が低下することや、誘導成分を最小にし、抵抗成分のみの通電部材とすることが電気回路上必要となることが多いからである。このような場合、渦巻きによって発生する磁場を打ち消し合うように、2枚の渦巻き状酸化物超伝導体を電気的に接続した超伝導体を用いることで、磁場の発生を抑制した通電部材が可能となる。   In a current-carrying member such as a current lead, it is desirable to avoid generation of a magnetic field in the member. This is because the critical current density characteristic is reduced due to the generation of a magnetic field, and it is often necessary on an electric circuit to minimize the inductive component and to use a current-carrying member having only a resistance component. In such a case, a current-carrying member that suppresses the generation of a magnetic field is possible by using a superconductor in which two spiral oxide superconductors are electrically connected so as to cancel the magnetic field generated by the spiral. It becomes.

超伝導マグネットを小型軽量化するには、熱の浸入を防ぐ電流リードの熱絶縁特性を向上させるとともに、短尺化されていることが望ましい。即ち、通電方向の通電部材の長さは短いことが望まれる。このような状況は、図2に示すように、2つの銅電極3間に渦巻き状の酸化物超伝導体1、2を配置することによって可能になる。具体的には、通電方向と垂直方向に距離を稼ぐことにより高い熱絶縁性を得ることが可能となると同時に、通電部材全体を通電方向に対して短くすることが可能となる。このような配置においては、酸化物超伝導体の長さ(又は電極間距離)(D)が、通電方向又は電極間の方向と直交する方向の超伝導体の幅(W)に対し、より大きい(W>D)ことになる。一方、DがWに対して極端に小さい場合は、曲げ角度が十分に取れない状況になる。そこで、鋭意検討を重ねた結果、W/Dが1.5〜10の範囲にあることが、より望ましいことを見出した。   In order to reduce the size and weight of the superconducting magnet, it is desirable to improve the thermal insulation characteristics of the current lead that prevents heat from entering and to shorten the length of the superconducting magnet. That is, it is desirable that the length of the energization member in the energization direction is short. Such a situation is made possible by arranging spiral oxide superconductors 1 and 2 between two copper electrodes 3 as shown in FIG. Specifically, it is possible to obtain high thermal insulation by increasing the distance in the direction perpendicular to the energization direction, and at the same time, it is possible to shorten the entire energization member with respect to the energization direction. In such an arrangement, the length (or interelectrode distance) (D) of the oxide superconductor is more than the width (W) of the superconductor in the energizing direction or the direction orthogonal to the direction between the electrodes. It will be large (W> D). On the other hand, when D is extremely small with respect to W, the bending angle cannot be sufficiently obtained. Thus, as a result of extensive studies, it was found that W / D is more preferably in the range of 1.5 to 10.

通電部材中の酸化物超伝導体を覆う部材は、通電部材全体として高い変形能を付与するために、それ自身に高い変形能を有することが望ましい。例えば、図2の構成では、銅電極3間を結ぶ材料としてステンレス製の蛇腹加工されたベローズパイプ4を用いることで、銅電極3間の相対位置が変化しやすいようになっている。酸化物超伝導材料に渦巻き形状を付与し、かつ銅電極3間に変形しやすい形状のカバーを配置することによって、内部の酸化物超伝導材料を保護しつつ、通電部材全体に高い変形能を付与することが可能となる。なお、電極は銅、銅合金、銀又は銀合金のいずれか1つであることが望ましい。   The member covering the oxide superconductor in the current-carrying member desirably has a high deformability in itself in order to impart a high deformability to the whole current-carrying member. For example, in the configuration of FIG. 2, the relative position between the copper electrodes 3 can be easily changed by using a bellows pipe 4 made of stainless steel as a material for connecting the copper electrodes 3. By providing a spiral shape to the oxide superconducting material and arranging a cover having a shape that is easily deformed between the copper electrodes 3, while protecting the oxide superconducting material inside, the entire energizing member has high deformability. It becomes possible to grant. The electrode is preferably any one of copper, copper alloy, silver or silver alloy.

電極3間を結ぶ酸化物超伝導材料には、Bi系やRE系の焼結体やテープ線材等も使用可能であるが、磁場中の臨界電流密度特性及び取り扱いやすさの観点から、単結晶状のREBa2Cu37-x中にRE2BaCuO5が微細分散したQMG材料が望ましい。さらには、銀又は銀化合物の粒子が5〜25mass%分散していることが望ましい。これは、銀又は銀化合物粒子の存在により、酸化物超伝導材料自身の機械的強度の向上が可能となるためである。5%未満ではその効果が不十分であり、また25%超では、超伝導相自身の体積分率が低下し、臨界電流密度特性を低下させてしまう可能性が高いため望ましくない。 Bi-based and RE-based sintered bodies and tape wires can be used as the oxide superconducting material connecting the electrodes 3, but from the viewpoint of critical current density characteristics in a magnetic field and ease of handling, a single crystal A QMG material in which RE 2 BaCuO 5 is finely dispersed in a shaped REBa 2 Cu 3 O 7-x is desirable. Furthermore, it is desirable that 5 to 25 mass% of silver or silver compound particles are dispersed. This is because the mechanical strength of the oxide superconducting material itself can be improved by the presence of silver or silver compound particles. If it is less than 5%, the effect is insufficient, and if it exceeds 25%, the volume fraction of the superconducting phase itself is lowered, and there is a high possibility that the critical current density characteristic is lowered.

図2に示すような構成を有する電流リード等の通電部材は、全体の長さの3%以上の引っ張りによる変形に対しても劣化はない。また、片持ち曲げ変形においても、図3に示す曲げ角度として5°以上の変形に対しても特性劣化はない。これに対し、例えば、棒状の超伝導材料が銅電極間に配置されている通常の電流リードでは、3%の伸び、及び5°の曲げ変形に対しては、確実に特性劣化が起こる。通電部材全体の最大の伸び率及び曲げ率に関しては、渦巻き状の超伝導の変形能からの制約ではなく、むしろ、カバーの変形能又は電極寸法等の設計上の制約で決まる。図3に示す通電部材の場合、伸び率はカバーの破壊、又は、電極とカバーとの接続部の破壊が律速条件となる。最大曲げ率に関しては、曲げに伴う電極間の接触及び電極とカバーとの接続部の破壊が律速条件となる。使用に際しての実質的な最大伸び率及び最大曲げ率は、それぞれ15%以下、30°以下となるよう設計することが望ましい。   The current-carrying member such as a current lead having the configuration shown in FIG. 2 is not deteriorated even by deformation caused by pulling of 3% or more of the entire length. Further, even in the cantilever bending deformation, there is no characteristic deterioration even when the bending angle shown in FIG. On the other hand, for example, in a normal current lead in which a rod-shaped superconducting material is arranged between copper electrodes, the characteristic deterioration surely occurs with respect to 3% elongation and 5 ° bending deformation. The maximum elongation rate and bending rate of the entire current-carrying member are not limited by the spiral superconducting deformability, but rather by design constraints such as cover deformability or electrode dimensions. In the case of the energizing member shown in FIG. 3, the rate of elongation is determined by the breaking of the cover or the breaking of the connecting portion between the electrode and the cover. Regarding the maximum bending rate, the contact between the electrodes and the destruction of the connection portion between the electrodes and the cover are the rate-limiting conditions. It is desirable to design the substantial maximum elongation and maximum bending rate to be 15% or less and 30 ° or less, respectively.

(実施例1)
10質量%の銀を添加した直径50mm、厚さ25mmのGd系QMG材料(単結晶状のGdBa2Cu37-x中にGd2BaCuO5が微細分散した材料)をスライス切断し、直径50mm、厚さ1mmの超伝導ウエハーを作製した。c軸はウエハー面の法線とほぼ一致していた。続いて、図1に示す、外径44mmの渦巻き形状に、サンドブラスト法を用いて加工した。同様にして、2枚作製した後、内周端及び外周端に銀をスパッタ法により製膜した。その後、酸素アニール処理を施し、渦巻き形状を有する酸化物超伝導材料1、2を作製した。
(Example 1)
Slice and cut a Gd-based QMG material (a material in which Gd 2 BaCuO 5 is finely dispersed in a single crystalline GdBa 2 Cu 3 O 7-x ) having a diameter of 50 mm and a thickness of 25 mm to which 10% by mass of silver has been added. A superconducting wafer having a thickness of 50 mm and a thickness of 1 mm was produced. The c-axis almost coincided with the normal of the wafer surface. Then, it processed into the spiral shape of outer diameter 44mm shown in FIG. 1 using the sandblasting method. Similarly, after two sheets were produced, silver was formed on the inner peripheral end and the outer peripheral end by a sputtering method. Thereafter, oxygen annealing treatment was performed, and oxide superconducting materials 1 and 2 having a spiral shape were produced.

得られた渦巻き形状の酸化物超伝導体1、2を、図2に示すように、銅電極3間に通電により発生する磁場を打ち消し合うように配置した。この時、コイル内周端同士を半田接続するとともに、外周端(約1周分)をそれぞれ銅電極3に半田接続した。さらに、厚さ0.2mmのSUS316L製の蛇腹加工されたベローズパイプ4により銅電極3間を覆うように銅電極3と半田接続した。   The obtained spiral oxide superconductors 1 and 2 were arranged so as to cancel the magnetic fields generated by energization between the copper electrodes 3 as shown in FIG. At this time, the inner peripheral ends of the coils were soldered together, and the outer peripheral ends (about one turn) were soldered to the copper electrodes 3 respectively. Furthermore, the copper electrode 3 was solder-connected so as to cover the space between the copper electrodes 3 by a bellows pipe 4 made of SUS316L and having a thickness of 0.2 mm.

このようにして得られた通電部材中の酸化物超伝導体の弾性変形率は、1つの超伝導導体の最大寸法(44mm)に対し、最大変位が10mmであり、弾性変形率として22.7%となり、3%を超えている。また、電極間距離は、20mm、超伝導体の幅は、44mmであり、W/Dは、2.2となり、1.5以上であった。   The elastic deformation rate of the oxide superconductor in the current-carrying member thus obtained has a maximum displacement of 10 mm with respect to the maximum dimension (44 mm) of one superconductive conductor, and the elastic deformation rate is 22.7. %, Exceeding 3%. The distance between the electrodes was 20 mm, the width of the superconductor was 44 mm, and the W / D was 2.2, which was 1.5 or more.

また、得られた通電部材を液体窒素中(77K)で冷却し、540Aの通電容量を有することを確認した。   Moreover, the obtained electricity supply member was cooled in liquid nitrogen (77K), and it confirmed that it had an electricity supply capacity of 540A.

次に、以上のように作製した通電部材に対し、電極の両端を引っ張る試験を実施した。通電部材の通電方向の長さ80mmに対して、2.5mmの変位を与えた。このような引っ張り試験の後、液体窒素中(77K)で冷却し、通電容量を測定したところ、引っ張り試験前の540Aと同じであった。   Next, the test which pulls the both ends of an electrode with respect to the electricity supply member produced as mentioned above was implemented. A displacement of 2.5 mm was applied to the length of 80 mm in the energizing direction of the energizing member. After such a tensile test, cooling in liquid nitrogen (77K) and measuring the current carrying capacity were the same as 540A before the tensile test.

さらにまた、片側の銅電極を固定し、もう一端の電極に対し通電方向に対して垂直方向に応力を加え、通電部材に対して曲げ試験を行なった。図3に示すように、6°の曲げを加えた後、液体窒素中(77K)で冷却し、通電容量を測定したところ、曲げ試験前の540Aと同じであった。   Furthermore, a copper electrode on one side was fixed, stress was applied to the electrode on the other end in a direction perpendicular to the energizing direction, and a bending test was performed on the energizing member. As shown in FIG. 3, after bending at 6 °, cooling in liquid nitrogen (77K) and measuring the current carrying capacity, it was the same as 540A before the bending test.

これらの結果から、この通電部材は、3.1%の引っ張り変形及び6°の曲げ変形に対しても、耐え得ることが明らかになった。   From these results, it was revealed that this energizing member can withstand 3.1% tensile deformation and 6 ° bending deformation.

比較材として、棒状(2.0mm×1.0mm×40mm)の酸化物超伝導体(本実施例と同一組成成分)を、前記渦巻き形状の酸化物超伝導体に換えて作製した通電部材を図4に示す。棒状超伝導体5の両端部各10mmは、銅電極3中の穴に埋め込まれ、半田接続された。得られた通電部材に対し、同様の引っ張り試験及び曲げ試験をそれぞれ実施したところ、0.5%の引っ張り変形及び1°の曲げ変形に対して、通電部材中の超伝導体は破壊し、ゼロ抵抗での導通が得られない状態にあった。   As a comparative material, a current-carrying member produced by replacing a bar-shaped (2.0 mm × 1.0 mm × 40 mm) oxide superconductor (same composition component as in this example) with the spiral oxide superconductor. As shown in FIG. 10 mm each of both end portions of the rod-shaped superconductor 5 was embedded in a hole in the copper electrode 3 and soldered. When the same tensile test and bending test were performed on the obtained current-carrying member, the superconductor in the current-carrying member was destroyed with respect to 0.5% tensile deformation and 1 ° bending deformation, and zero. It was in a state where conduction with resistance was not obtained.

このことから、棒状の酸化物超伝導材料自体の弾性変形率は、引っ張りに対しては0.5%未満、曲げに対しては1°未満であることが分かった。これらのことから渦巻き形状を付与した酸化物超伝導体を有する通電部材は、高い変形能を有することが確かめられた。   From this, it was found that the elastic deformation rate of the rod-shaped oxide superconducting material itself was less than 0.5% with respect to tension and less than 1 ° with respect to bending. From these facts, it was confirmed that the current-carrying member having the oxide superconductor provided with the spiral shape has high deformability.

(実施例2)
14質量%の銀を添加した直径50mm、厚さ25mmのGd(50)−Dy(50)系QMG材料(単結晶状のGd0.5Dy0.5Ba2Cu37-x中にGdDyBaCuO5が微細分散した材料)をスライス切断し、直径50mm、厚さ1.2mmの超伝導ウエハーを作製した。c軸はウエハー面の法線とほぼ一致していた。続いて、図1に示す、外径44mmの渦巻き形状に、サンドブラスト法を用いて加工した。その後、内周端及び外周端に銀をスパッタ法により製膜した。
(Example 2)
Gd (50) -Dy (50) -based QMG material having a diameter of 50 mm and a thickness of 25 mm to which 14% by mass of silver has been added (GdDyBaCuO 5 is fine in single-crystal Gd 0.5 Dy 0.5 Ba 2 Cu 3 O 7-x The dispersed material was sliced and a superconducting wafer having a diameter of 50 mm and a thickness of 1.2 mm was produced. The c-axis almost coincided with the normal of the wafer surface. Then, it processed into the spiral shape of outer diameter 44mm shown in FIG. 1 using the sandblasting method. Thereafter, silver was formed on the inner peripheral edge and the outer peripheral edge by sputtering.

得られた渦巻き形状の酸化物超伝導体を、図5に示すように、銀電極6間の銀ペースト焼付け接続部7に接続されるように配置した。その後、コイル内周端及び外周端(約1周分)をそれぞれ銀電極6に銀ペーストにより接続した。超伝導体及び銀電極6に対して、約880℃で焼付け処理を行なった後、酸素アニール処理を施した。さらに、厚さ0.3mmのSUS304製の蛇腹加工されたベローズパイプ4により、銀電極6間を覆うように銀電極6と半田接続した。このようにして得られた通電部材中の酸化物超伝導体の弾性変形率は、1つの超伝導導体の最大寸法(44mm)に対し、最大変位が10mmであり、弾性変形率として22.7%であり、3%を超えている。また、電極間距離は10mm、超伝導体の幅は44mmであり、W/Dは、4.4となり、1.5以上であった。   The obtained spiral oxide superconductor was disposed so as to be connected to the silver paste baking connection portion 7 between the silver electrodes 6 as shown in FIG. Thereafter, the inner peripheral end and the outer peripheral end (about one turn) of the coil were respectively connected to the silver electrode 6 by silver paste. The superconductor and silver electrode 6 were baked at about 880 ° C. and then subjected to oxygen annealing. Furthermore, the silver electrodes 6 were soldered so as to cover the space between the silver electrodes 6 by a bellows pipe 4 made of SUS304 having a thickness of 0.3 mm and processed into a bellows. The elastic deformation rate of the oxide superconductor in the current-carrying member thus obtained has a maximum displacement of 10 mm with respect to the maximum dimension (44 mm) of one superconductive conductor, and the elastic deformation rate is 22.7. %, Exceeding 3%. The distance between the electrodes was 10 mm, the width of the superconductor was 44 mm, and the W / D was 4.4, which was 1.5 or more.

また、得られた通電部材を液体窒素中(77K)で冷却し、520Aの通電容量を有することを確認した。   Moreover, the obtained electricity supply member was cooled in liquid nitrogen (77K), and it confirmed that it had an electricity supply capacity of 520A.

次に、以上のように作製した通電部材に対し、銀電極6の両端を引っ張る試験を実施した。通電部材の通電方向の長さ70mmに対して、2.5mmの変位を与えた。このような引っ張り試験の後、液体窒素中(77K)で冷却し、通電容量を測定したところ、引っ張り試験前の520Aと同じであった。   Next, the test which pulls the both ends of the silver electrode 6 with respect to the electricity supply member produced as mentioned above was implemented. A displacement of 2.5 mm was applied to a length of 70 mm in the energizing direction of the energizing member. After such a tensile test, it was cooled in liquid nitrogen (77K), and the current carrying capacity was measured. As a result, it was the same as 520A before the tensile test.

さらにまた、片側の銀電極を固定し、もう一端の電極に対し通電方向に対して垂直方向に応力を加え通電部材に対して曲げ試験を行なった。図3に示すような方法により、5.5°の曲げを加えた後、液体窒素中(77K)で冷却し、通電容量を測定したところ、曲げ試験前の520Aと同じであった。   Furthermore, a silver electrode on one side was fixed, a stress was applied to the electrode on the other end in a direction perpendicular to the energizing direction, and a bending test was performed on the energizing member. After bending at 5.5 ° by the method shown in FIG. 3 and cooling in liquid nitrogen (77K) and measuring the current carrying capacity, it was the same as 520A before the bending test.

これらのことから、この通電部材は、3.5%の引っ張り変形及び5.5°の曲げ変形に対しても、耐え得ることが明らかになった。   From these facts, it was revealed that this energizing member can withstand 3.5% tensile deformation and 5.5 ° bending deformation.

渦巻き形状を付与したQMG材料(外周44.0mm、厚さ1.0mm、内周14.0mm)を示す図である。It is a figure which shows the QMG material (44.0 mm of outer periphery, thickness 1.0mm, inner periphery 14.0mm) which provided the spiral shape. 渦巻き状QMG材料を2枚接続し、銅電極間に配置した通電部材の構成例を示す図である。It is a figure which shows the structural example of the electricity supply member which connected two spiral QMG materials and was arrange | positioned between copper electrodes. 曲げ応力の印加時における通電部材の変形の外観例を示す図である。It is a figure which shows the example of an external appearance of a deformation | transformation of the electricity supply member at the time of application of a bending stress. 比較材に用いた棒状の超伝導材料及びこれを用いた通電部材の構成例を示す図である。It is a figure which shows the structural example of the rod-shaped superconducting material used for the comparison material, and an electricity supply member using the same. 一つの渦巻き状QMGを銀電極間に配置した通電部材の構成例を示す図である。It is a figure which shows the structural example of the electricity supply member which has arrange | positioned one spiral QMG between silver electrodes.

符号の説明Explanation of symbols

1 渦巻き形状の酸化物超伝導体
2 渦巻き形状の酸化物超伝導体
3 銅電極
4 蛇腹加工されたベローズパイプ
5 棒状超伝導体
6 銀電極
7 銀ペースト焼付け接続部
DESCRIPTION OF SYMBOLS 1 Spiral-shaped oxide superconductor 2 Spiral-shaped oxide superconductor 3 Copper electrode 4 Bellows pipe processed into bellows 5 Bar-shaped superconductor 6 Silver electrode 7 Silver paste baking connection part

Claims (12)

渦巻き形状の酸化物超伝導体が弾性変形された状態で電極に接続されてなることを特徴とする変形能に優れた超伝導通電部材。   A superconducting current-carrying member excellent in deformability, characterized in that a spiral oxide superconductor is connected to an electrode in an elastically deformed state. 前記渦巻き形状の酸化物超伝導体の弾性変形率(酸化物超伝導体の最大寸法に対する最大変位の割合)が3%以上であることを特徴とする請求項1に記載の変形能に優れた超伝導通電部材。   The elastic deformation rate (the ratio of the maximum displacement with respect to the maximum dimension of the oxide superconductor) of the spiral oxide superconductor is 3% or more. Superconducting current-carrying member. 前記電極に複数の渦巻き形状の酸化物超伝導体が接続されてなり、前記酸化物超伝導体が互いに磁場を打ち消し合う方向に渦巻き方向が配置されてなることを特徴とする請求項1又は2に記載の変形能に優れた超伝導通電部材。   3. A plurality of spiral oxide superconductors are connected to the electrode, and the spiral direction is arranged in a direction in which the oxide superconductors cancel out magnetic fields with each other. A superconducting current-carrying member having excellent deformability as described in 1. 通電方向又は電極間の方向の酸化物超伝導体の長さ又は電極間距離(D)が、通電方向又は電極間の方向と直交する方向の酸化物超伝導体の寸法(幅又は太さ:W)に対し、W>Dであることを特徴とする請求項1〜3のいずれか1項に記載の変形能に優れた超伝導通電部材。   The dimension (width or thickness) of the oxide superconductor in the direction perpendicular to the energizing direction or the direction between the electrodes is the length of the oxide superconductor in the energizing direction or the direction between the electrodes or the interelectrode distance (D). The superconducting conductive member having excellent deformability according to any one of claims 1 to 3, wherein W> D with respect to W). 通電方向の長さに対し直交する方向(幅又は太さ)の比率(幅/長さ:W/D)が1.5〜10の範囲であることを特徴とする請求項4に記載の変形能に優れた超伝導通電部材。   5. The deformation according to claim 4, wherein the ratio (width / length: W / D) of the direction (width or thickness) orthogonal to the length of the energization direction is in the range of 1.5-10. Superconducting current-carrying member with excellent performance. 前記渦巻き形状の酸化物超伝導体が、変形可能な形状を有する部材で覆われてなることを特徴とする請求項1〜5のいずれか1項に記載の変形能に優れた超伝導通電部材。   The superconducting current-carrying member excellent in deformability according to any one of claims 1 to 5, wherein the spiral oxide superconductor is covered with a member having a deformable shape. . 前記酸化物超伝導体を覆う部材が蛇腹状の形状を有することを特徴とする請求項6に記載の変形能に優れた超伝導通電部材。   The superconducting current-carrying member excellent in deformability according to claim 6, wherein the member covering the oxide superconductor has a bellows shape. 前記電極が、銅、銅合金、銀又は銀合金のいずれか1つであることを特徴とする請求項1〜7のいずれか1項に記載の変形能に優れた超伝導通電部材。   The superconducting current-carrying member excellent in deformability according to any one of claims 1 to 7, wherein the electrode is any one of copper, a copper alloy, silver, or a silver alloy. 前記酸化物超伝導体が、単結晶状のREBa2Cu37-x相(REはYを含む希土類元素又はそれらの組み合わせ、xは酸素欠損量)中にRE2BaCuO5相が微細分散した組織を有することを特徴とする請求項1〜8のいずれか1項に記載の変形能に優れた超伝導通電部材。 In the oxide superconductor, the RE 2 BaCuO 5 phase is finely dispersed in a single-crystal REBa 2 Cu 3 O 7-x phase (RE is a rare earth element including Y or a combination thereof, x is an oxygen deficiency amount). The superconducting current-carrying member having excellent deformability according to any one of claims 1 to 8, wherein the conductive material has a deformed structure. 前記酸化物超伝導体中に、銀又は銀化合物の1種以上が5〜25体積%分散してなることを特徴とする請求項9に記載の変形能に優れた超伝導通電部材。   The superconducting current-carrying member excellent in deformability according to claim 9, wherein at least one kind of silver or a silver compound is dispersed in the oxide superconductor in an amount of 5 to 25% by volume. 少なくとも1つの方向に対し、3%以上の弾性変形領域を有することを特徴とする請求項1〜10のいずれか1項に記載の変形能に優れた超伝導通電部材。   The superconducting current-carrying member excellent in deformability according to any one of claims 1 to 10, having an elastic deformation region of 3% or more with respect to at least one direction. 少なくとも1つの角度に対し、5°以上の弾性変形領域を有することを特徴とする請求項1〜10のいずれか1項に記載の変形能に優れた超伝導通電部材。   The superconducting current-carrying member excellent in deformability according to any one of claims 1 to 10, which has an elastic deformation region of 5 ° or more with respect to at least one angle.
JP2006298604A 2006-11-02 2006-11-02 Superconducting current-carrying member with excellent deformability Active JP5230925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298604A JP5230925B2 (en) 2006-11-02 2006-11-02 Superconducting current-carrying member with excellent deformability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298604A JP5230925B2 (en) 2006-11-02 2006-11-02 Superconducting current-carrying member with excellent deformability

Publications (2)

Publication Number Publication Date
JP2008117883A true JP2008117883A (en) 2008-05-22
JP5230925B2 JP5230925B2 (en) 2013-07-10

Family

ID=39503598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298604A Active JP5230925B2 (en) 2006-11-02 2006-11-02 Superconducting current-carrying member with excellent deformability

Country Status (1)

Country Link
JP (1) JP5230925B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585723A (en) * 1991-09-27 1993-04-06 Ngk Insulators Ltd Production of rare earth element-containing oxide superconductor
JPH0745420A (en) * 1993-07-29 1995-02-14 Toshiba Corp Current lead of superconducting apparatus
JPH07320929A (en) * 1994-04-01 1995-12-08 Fuji Electric Co Ltd Superconducting device use current lead
JPH0869719A (en) * 1994-08-30 1996-03-12 Toshiba Corp Current lead for superconducting device
JPH08321416A (en) * 1994-04-27 1996-12-03 Fuji Electric Co Ltd Current lead for superconducting device
JP2004047259A (en) * 2002-07-11 2004-02-12 Nippon Steel Corp Oxide superconductor current-carrying element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585723A (en) * 1991-09-27 1993-04-06 Ngk Insulators Ltd Production of rare earth element-containing oxide superconductor
JPH0745420A (en) * 1993-07-29 1995-02-14 Toshiba Corp Current lead of superconducting apparatus
JPH07320929A (en) * 1994-04-01 1995-12-08 Fuji Electric Co Ltd Superconducting device use current lead
JPH08321416A (en) * 1994-04-27 1996-12-03 Fuji Electric Co Ltd Current lead for superconducting device
JPH0869719A (en) * 1994-08-30 1996-03-12 Toshiba Corp Current lead for superconducting device
JP2004047259A (en) * 2002-07-11 2004-02-12 Nippon Steel Corp Oxide superconductor current-carrying element

Also Published As

Publication number Publication date
JP5230925B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
CN107077927B (en) The manufacturing method of oxide superconducting wire rod, superconducting apparatus and oxide superconducting wire rod
JP7377703B2 (en) Superconducting wire, superconducting wire manufacturing method, and MRI apparatus
JPH11144938A (en) Current lead device and refrigerator-cooled superconducting magnet
JP5724029B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
RU2518505C1 (en) Strip high-temperature superconductors
JP5022279B2 (en) Oxide superconducting current lead
WO2002103716A1 (en) Superconducting wire material and method for preparation thereof, and superconducting magnet using the same
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP2002525790A (en) Protected superconducting component and its manufacturing method
JP2006332577A (en) Oxide superconductor coil, its manufacturing method, its exciting method, its cooling method and magnet system
JP4838199B2 (en) Oxide superconducting current lead
JP5011181B2 (en) Oxide superconducting current lead
JP6471625B2 (en) Superconducting conductive element
JP5230925B2 (en) Superconducting current-carrying member with excellent deformability
JP3701985B2 (en) Oxide superconducting current lead
JP6364235B2 (en) Superconducting coil electrode structure
JP3711159B2 (en) Oxide superconducting current lead
US10748691B2 (en) Oxide superconducting bulk magnet
JP7335501B2 (en) Oxide superconducting bulk conductor and current-carrying element
JP4901585B2 (en) Oxide superconducting current lead
JP7127463B2 (en) Oxide superconducting bulk conductor
JP3831307B2 (en) Low resistance conductor and method of manufacturing the same
JP2560088B2 (en) How to join superconductors
US20070191232A1 (en) Superconductor Wire Material Having Structure For Inhibiting Crack, Superconductor Power Cable Using The Same And Manufacturing Method Thereof
JPH0817621A (en) Superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110818

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5230925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350