JP2008115932A - Torque transmitting member and harmonic drive gear - Google Patents

Torque transmitting member and harmonic drive gear Download PDF

Info

Publication number
JP2008115932A
JP2008115932A JP2006298926A JP2006298926A JP2008115932A JP 2008115932 A JP2008115932 A JP 2008115932A JP 2006298926 A JP2006298926 A JP 2006298926A JP 2006298926 A JP2006298926 A JP 2006298926A JP 2008115932 A JP2008115932 A JP 2008115932A
Authority
JP
Japan
Prior art keywords
cylindrical body
spline
torque transmission
transmission member
elastic modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006298926A
Other languages
Japanese (ja)
Inventor
Takuo Yamaguchi
拓郎 山口
Toshio Hori
年雄 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006298926A priority Critical patent/JP2008115932A/en
Publication of JP2008115932A publication Critical patent/JP2008115932A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torque transmitting member having excellent durability and torsional rigidity and a harmonic drive gear therefor. <P>SOLUTION: The torque transmitting member is made of a Ti-based alloy comprising a thermo-elastic type martensitic single phase or the like, and is provided with a cylindrical body and a bottom part. The cylindrical body has a toothed or splined plastic part in the peripheral surface opposite to the bottom part and a non-toothed or non-splined part in the outer peripheral surface on the bottom part side. The rigidity of the end side opposite to the bottom part of the cylindrical body is different from the rigidity of the bottom end side of the cylindrical body, and the modulus of elasticity in the non-toothed or non-splined part of the cylindrical body is continuously reduced from the bottom end side of the cylindrical body to the end opposite to the bottom end side. The ratio of the average modulus of elasticity of the toothed or splined region of the cylindrical body and the average modulus of elasticity of the bottom part is 0.9 or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トルク伝達用部材及び波動歯車装置に係り、更に詳細には、優れた耐久性とねじり剛性を有するトルク伝達用部材及びこれを用いた波動歯車装置に関する。   The present invention relates to a torque transmission member and a wave gear device, and more particularly to a torque transmission member having excellent durability and torsional rigidity, and a wave gear device using the same.

歯車に代表されるトルク伝達用部材は、歯車の歯やスプラインのように回転方向に繰り返し力を受けて弾性変形させられる部位を有する。
そして、機械的な拘束があるなどの理由により、その変形量が一定である場合には、トルク伝達用部材に発生する応力は、それを構成する材料の弾性率が高いほど大きいものとなる。
A torque transmission member typified by a gear has a portion that is elastically deformed by repeatedly receiving a force in the rotational direction, such as a gear tooth or a spline.
When the amount of deformation is constant due to a mechanical constraint, the stress generated in the torque transmission member increases as the elastic modulus of the material constituting the member increases.

このような一定変形が生じるトルク伝達用部材を組み込んだ装置の一例として、ロボットの関節の制御などに用いられる波動歯車装置がある(特許文献1〜3参照。)。
特開2005−36937号公報 特開2005−98479号公報 特開2006−57684号公報
As an example of a device incorporating a torque transmission member that causes such a constant deformation, there is a wave gear device used for controlling a joint of a robot (see Patent Documents 1 to 3).
JP-A-2005-36937 JP 2005-98479 A JP 2006-57684 A

しかしながら、波動歯車装置においてトルク伝達用部材を構成する材料については殆ど検討がなされておらず、優れた耐久性とねじり剛性を有するトルク伝達用部材を用いた波動歯車装置が提供されていなかった。   However, the materials constituting the torque transmission member in the wave gear device have hardly been studied, and a wave gear device using a torque transmission member having excellent durability and torsional rigidity has not been provided.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、優れた耐久性とねじり剛性を有するトルク伝達用部材及びこれを用いた波動歯車装置を提供することにある。   The present invention has been made in view of such problems of the prior art, and an object thereof is to provide a torque transmission member having excellent durability and torsional rigidity, and a wave gear device using the torque transmission member. It is to provide.

本発明者らは、上記目的を達成するため鋭意検討を重ねたところ、所定の金属組織を有するチタン基合金製であって、円筒状胴部と、底部とを備え、円筒状胴部が、底部と反対側の外周面に歯形又はスプラインが形成されている歯形又はスプライン形成部位と、底部側の外周面に歯形又はスプラインが形成されていない歯形又はスプライン未形成部位とを有し、円筒状胴部の底部反対側端部位の剛性と円筒状胴部の底部側端部位の剛性とが異なり、且つ少なくとも円筒状胴部の歯形又はスプライン未形成部位における弾性率が円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少しており、且つ円筒状胴部の歯形又はスプライン形成部位の平均弾性率(Es)と底部の平均弾性率(Eb)との比(Es/Eb)が0.9以下であるものとすることなどにより、上記目的が達成できることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies in order to achieve the above object, and are made of a titanium-based alloy having a predetermined metal structure, and include a cylindrical body portion and a bottom portion. It has a tooth profile or spline formation site where a tooth profile or spline is formed on the outer peripheral surface opposite to the bottom portion, and a tooth profile or spline non-formation site where no tooth profile or spline is formed on the outer peripheral surface of the bottom side, and is cylindrical The rigidity of the end part on the opposite side of the bottom part of the body part is different from the rigidity of the end part on the bottom part side of the cylindrical body part. The ratio of the average elastic modulus (Es) of the tooth profile or spline forming portion of the cylindrical body to the average elastic modulus (Eb) of the bottom portion (Es / Eb) is 0.9 or less Such as by a certain one, it found that the above object can be attained, thereby completing the present invention.

即ち、本発明のトルク伝達用部材は、チタン基合金製であり、且つ熱弾性型マルテンサイト相単相及び熱弾性型マルテンサイト相と体心立方格子から成る相との2相の少なくとも一方から成り、円筒状胴部と、円筒状胴部の一方の開放端部位に配設された底部と、を備え、円筒状胴部が、底部と反対側の外周面に歯形又はスプラインが形成されている歯形又はスプライン形成部位を有し、且つ底部側の外周面に歯形又はスプラインが形成されていない歯形又はスプライン未形成部位を有するトルク伝達用部材であって、円筒状胴部の底部反対側端部位の剛性と円筒状胴部の底部側端部位の剛性とが異なり、且つ少なくとも円筒状胴部の歯形又はスプライン未形成部位における弾性率が円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少しており、且つ円筒状胴部の歯形又はスプライン形成部位の平均弾性率(Es)と底部の平均弾性率(Eb)との比(Es/Eb)が0.9以下であることを特徴とする。   That is, the torque transmission member of the present invention is made of a titanium-based alloy, and includes at least one of a thermoelastic martensite phase single phase and a thermoelastic martensite phase and a phase composed of a body-centered cubic lattice. Comprising a cylindrical body part and a bottom part disposed at one open end portion of the cylindrical body part, and the cylindrical body part is formed with a tooth shape or a spline on the outer peripheral surface opposite to the bottom part. A torque transmitting member having a tooth form or spline forming portion and having a tooth shape or spline non-formed portion on the outer peripheral surface on the bottom side, the end opposite to the bottom of the cylindrical body The rigidity of the part is different from the rigidity of the end part on the bottom side of the cylindrical body, and at least the elastic modulus in the tooth shape of the cylindrical body part or the part where the spline is not formed is from the bottom side end part of the cylindrical body part to the bottom opposite end. Over the region The ratio (Es / Eb) between the average elastic modulus (Es) of the tooth profile or spline forming portion of the cylindrical body and the average elastic modulus (Eb) of the bottom is 0.9 or less. It is characterized by that.

また、本発明の波動歯車装置は、上記本発明のトルク伝達用部材を用いたことを特徴とする。   The wave gear device of the present invention uses the torque transmission member of the present invention.

本発明によれば、所定の金属組織を有するチタン基合金製であって、円筒状胴部と、底部とを備え、円筒状胴部が、底部と反対側の外周面に歯形又はスプラインが形成されている歯形又はスプライン形成部位と、底部側の外周面に歯形又はスプラインが形成されていない歯形又はスプライン未形成部位とを有し、円筒状胴部の底部反対側端部位の剛性と円筒状胴部の底部側端部位の剛性とが異なり、且つ少なくとも円筒状胴部の歯形又はスプライン未形成部位における弾性率が円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少しており、且つ円筒状胴部の歯形又はスプライン形成部位の平均弾性率(Es)と底部の平均弾性率(Eb)との比(Es/Eb)が0.9以下であるものとすることなどとしたため、優れた耐久性とねじり剛性を有するトルク伝達用部材及びこれを用いた波動歯車装置を提供することができる。   According to the present invention, it is made of a titanium-based alloy having a predetermined metal structure, and includes a cylindrical body part and a bottom part, and the cylindrical body part forms a tooth profile or a spline on the outer peripheral surface opposite to the bottom part. The tooth profile or spline forming portion that is formed, and the tooth shape or spline non-formed portion where the tooth shape or spline is not formed on the outer peripheral surface on the bottom side, the rigidity and cylindrical shape of the end portion on the opposite side of the bottom of the cylindrical body The rigidity of the bottom side end part of the body part is different, and at least the elastic modulus in the tooth profile of the cylindrical body part or the spline-unformed part continuously decreases from the bottom side end part of the cylindrical body part to the opposite end part of the bottom part. And the ratio (Es / Eb) between the average elastic modulus (Es) of the tooth profile or spline forming portion of the cylindrical body and the average elastic modulus (Eb) of the bottom is 0.9 or less. Excellent resistance to It is possible to provide a wave gear device using a member and this torque transmission having a torsional rigidity and resistance.

以下、本発明のトルク伝達用部材について説明する。なお、本明細書において、濃度や含有量などについての「%」は、特記しない限り質量百分率を表わすものとする。
上述の如く、本発明のトルク伝達用部材は、チタン基合金製であり、且つ熱弾性型マルテンサイト相単相及び熱弾性型マルテンサイト相と体心立方格子から成る相との2相の少なくとも一方から成り、円筒状胴部と、円筒状胴部の一方の開放端部位に配設された底部と、を備え、円筒状胴部が、底部と反対側の外周面に歯形又はスプラインが形成されている歯形又はスプライン形成部位を有し、且つ底部側の外周面に歯形又はスプラインが形成されていない歯形又はスプライン未形成部位を有するトルク伝達用部材であって、円筒状胴部の底部反対側端部位の剛性と円筒状胴部の底部側端部位の剛性とが異なり、且つ少なくとも円筒状胴部の歯形又はスプライン未形成部位における弾性率が円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少しており、且つ円筒状胴部の歯形又はスプライン形成部位の平均弾性率(Es)と底部の平均弾性率(Eb)との比(Es/Eb)が0.9以下であるものである。
このような構成とすることにより、優れた耐久性とねじり剛性を有するトルク伝達用部材となる。
Hereinafter, the torque transmission member of the present invention will be described. In the present specification, “%” for concentration, content, and the like represents a mass percentage unless otherwise specified.
As described above, the torque transmission member of the present invention is made of a titanium-based alloy and has at least two phases of a thermoelastic martensite phase and a phase composed of a thermoelastic martensite phase and a body-centered cubic lattice. The cylindrical body includes a cylindrical body and a bottom disposed at one open end portion of the cylindrical body, and the cylindrical body forms a tooth profile or spline on the outer peripheral surface opposite to the bottom. A torque transmitting member having a tooth profile or spline forming portion and having a tooth shape or spline non-formed portion not formed on the outer peripheral surface on the bottom side, opposite to the bottom of the cylindrical body portion The rigidity of the side end part is different from the rigidity of the bottom side end part of the cylindrical body, and at least the elastic modulus in the tooth profile of the cylindrical body or the part where the spline is not formed is opposite to the bottom from the bottom side end part of the cylindrical body. On the side edge The ratio (Es / Eb) of the average elastic modulus (Es) of the tooth profile or spline forming portion of the cylindrical body and the average elastic modulus (Eb) of the bottom is 0.9 or less. It is what is.
By setting it as such a structure, it becomes the member for torque transmission which has the outstanding durability and torsional rigidity.

まず、本発明のトルク伝達用部材においては、トルク伝達用部材が、チタン基合金製であり、且つ熱弾性型マルテンサイト相単相及び熱弾性型マルテンサイト相と体心立方格子から成る相との2相の少なくとも一方から成ることを要する。
このようなトルク伝達用部材は、低弾性率でありながら、大きな強度低下を生じないため、優れた耐久性とねじれ剛性を有するものとなり、トルク伝達性能を向上させることができる。
First, in the torque transmission member of the present invention, the torque transmission member is made of a titanium-based alloy and has a thermoelastic martensite phase single phase and a phase composed of a thermoelastic martensite phase and a body-centered cubic lattice. It is necessary to consist of at least one of the following two phases.
Such a torque transmission member has a low elastic modulus and does not cause a significant decrease in strength. Therefore, the torque transmission member has excellent durability and torsional rigidity, and can improve torque transmission performance.

これは、熱弾性型マルテンサイト変態を生じる材料では超弾性又はごく低い弾性率を示すものがあり、その変形には通常の格子の変形に加えてマルテンサイトによる変形が関与しているためと現時点では推定される。その中でも、体心立方格子から成る母相から熱弾性型マルテンサイト変態するチタン基合金では、可逆的な変形量が大きく、また、永久変形が起こるいわゆる降伏応力が高いので、繰り返し使用しても金属格子中に欠陥が入りにくく、その弾性的な特性が変化し難いためであると現時点では推定される。
ここで、体心立方格子から成る相としては、例えば不規則構造としてA2を挙げることができ、規則構造としてB2やD0が挙げられる。
This is because some materials that cause thermoelastic martensitic transformation exhibit superelasticity or very low elastic modulus, and the deformation involves deformation by martensite in addition to normal lattice deformation. Is estimated. Among them, a titanium-based alloy that undergoes thermoelastic martensitic transformation from a matrix consisting of a body-centered cubic lattice has a large amount of reversible deformation and a high so-called yield stress that causes permanent deformation. It is presumed at the present time that defects are unlikely to enter the metal lattice and its elastic characteristics are difficult to change.
Here, the phase consisting of body-centered cubic lattice, can be cited A2, for example, as irregularities include B2 and D0 3 as ordered structure.

一方、非熱弾性型マルテンサイト組織を有する材料の一例としては、一般の炭素鋼が挙げられる。非熱弾性型マルテンサイトの場合、マルテンサイト変態に伴い大きな体積変化が生じて大量の結晶格子欠陥、いわゆる転位が導入されるので、その変形は、不可逆となって超弾性や低い弾性率を示すことはない。   On the other hand, as an example of a material having a non-thermoelastic martensitic structure, general carbon steel can be cited. In the case of non-thermoelastic martensite, a large volume change occurs due to the martensitic transformation and a large amount of crystal lattice defects, so-called dislocations, are introduced, so that the deformation becomes irreversible and exhibits superelasticity and low elastic modulus. There is nothing.

なお、金属材料においては、引張りによって変化させた場合、応力に比例した歪みを生じる弾性変形を生じた後、更に引張り続けると永久変形を生じて除荷しても元の形状に回復しなくなる。そして、一般的な金属材料では、弾性変形は金属結晶格子間隔の変化によってもたらされるので、金属ごとにその値は大きく変わらないことが知られている。   In addition, in a metal material, when it is changed by tension, after elastic deformation that generates strain proportional to the stress is generated, if it is further pulled, permanent deformation occurs and the original shape is not recovered even after unloading. In general metal materials, it is known that the elastic deformation is brought about by a change in the metal crystal lattice spacing, so that the value does not change greatly for each metal.

また、本発明のトルク伝達用部材においては、円筒状胴部と、円筒状胴部の一方の開放端部位に配設された底部と、を備え、円筒状胴部が、底部と反対側の外周面に歯形又はスプラインが形成されている歯形又はスプライン形成部位を有し、且つ底部側の外周面に歯形又はスプラインが形成されていない歯形又はスプライン未形成部位を有することを要する。
このようなトルク伝達用部材は、例えば波動歯車装置の一部を構成するカップ型やハット型の可撓性外歯歯車、いわゆるフレクシブルスプラインとして利用できる。
The torque transmission member of the present invention includes a cylindrical body and a bottom disposed at one open end portion of the cylindrical body, and the cylindrical body is opposite to the bottom. It is necessary to have a tooth profile or a spline formation site where a tooth profile or a spline is formed on the outer peripheral surface, and a tooth profile or a spline non-formation site where no tooth profile or a spline is formed on the outer peripheral surface on the bottom side.
Such a torque transmission member can be used as, for example, a cup-type or hat-type flexible external gear that constitutes a part of a wave gear device, a so-called flexible spline.

更に、本発明のトルク伝達用部材においては、円筒状胴部の底部反対側端部位の剛性と円筒状胴部の底部側端部位の剛性とが異なり、且つ少なくとも円筒状胴部の歯形又はスプライン未形成部位における弾性率が円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少しており、且つ円筒状胴部の歯形又はスプライン形成部位の平均弾性率(Es)と底部の平均弾性率(Eb)との比(Es/Eb)が0.9以下であることを要する。
このようなトルク伝達用部材は、例えば波動歯車装置の一部を構成するカップ型やハット型の可撓性外歯歯車、いわゆるフレクシブルスプラインとして好適に利用できる。
Furthermore, in the torque transmitting member of the present invention, the rigidity of the end portion on the opposite side of the bottom portion of the cylindrical body portion is different from the rigidity of the bottom side end portion portion of the cylindrical body portion, and at least the tooth profile or spline of the cylindrical body portion. The elastic modulus in the non-formed part continuously decreases from the bottom side end part of the cylindrical body part to the opposite side end part of the cylindrical body part, and the average elastic modulus (Es) of the tooth form or spline forming part of the cylindrical body part and It is necessary that the ratio (Es / Eb) to the average elastic modulus (Eb) at the bottom is 0.9 or less.
Such a torque transmission member can be suitably used as, for example, a cup-type or hat-type flexible external gear constituting a part of the wave gear device, a so-called flexible spline.

一方、円筒状胴部の底部反対側端部位の剛性と円筒状胴部の底部側端部位の剛性とが異ならない場合には、部材全体の剛性を上げようとすると、定変形量で使用される部材に高い応力が発生し、特にスプライン部の強度・耐久性の低下を招く。逆に剛性を低下させると、ねじり変形量が大きくなり、トルク変動に伴うヒステリシスロスの増大によって効率が低下するおそれがある。
また、少なくとも円筒状胴部の歯形又はスプライン未形成部位における弾性率が円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少していない場合には、応力集中が起こるため、優れた耐久性とねじれ剛性を有するものとならず、トルク伝達性能を向上させることができない。
更に、Es/Ebが0.9を超える場合には、スプライン部の低弾性化による強度・耐久性と底部近傍の高剛性を効果的に両立することができない。
On the other hand, if the rigidity of the end portion on the opposite side of the bottom portion of the cylindrical body is not different from the rigidity of the end portion on the bottom side of the cylindrical body, it is used at a constant deformation amount to increase the rigidity of the entire member. High stress is generated in the member, and particularly the strength and durability of the spline part are lowered. Conversely, if the rigidity is lowered, the amount of torsional deformation increases, and the efficiency may decrease due to an increase in hysteresis loss accompanying torque fluctuation.
In addition, stress concentration occurs when the elastic modulus at least in the tooth shape of the cylindrical body or the spline-unformed part does not continuously decrease from the bottom side end part to the opposite side end part of the cylindrical body part. It does not have excellent durability and torsional rigidity, and the torque transmission performance cannot be improved.
Furthermore, when Es / Eb exceeds 0.9, it is impossible to effectively achieve both strength and durability due to low elasticity of the spline portion and high rigidity in the vicinity of the bottom portion.

そして、より安定した品質を製造コストの大きな上昇を伴わずに実現し得るようにするという観点からは、円筒状胴部の歯形又はスプライン未形成部位の底部側における弾性率は50GPa以上であることが好ましい。
また、円筒状胴部の歯形又はスプライン未形成部位だけでなく、歯形又はスプライン形成部位の全部又は一部を含む円筒状胴部における弾性率が円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少していることが好ましい。
And, from the viewpoint of enabling more stable quality to be realized without a large increase in manufacturing cost, the elastic modulus on the bottom side of the tooth profile of the cylindrical body portion or the spline-unformed part is 50 GPa or more. Is preferred.
In addition, the elastic modulus of the cylindrical body including all or a part of the tooth profile or spline formation part as well as the tooth shape or spline non-formation part of the cylindrical body is opposite to the bottom side end part of the cylindrical body part. It is preferable that it decreases continuously toward the end part.

また、本発明のトルク伝達用部材においては、円筒状胴部の歯形又はスプライン形成部位の硬度(Hvs)と底部の硬度(Hvb)との比(Hvs/Hvb)が1.1以上であることが好ましい。
このようなトルク伝達用部材は、より高い減速比でも塑性変形するおそれがなく高トルクを伝達することができる。
また、加工性の観点からは、具体的には1.1〜1.5であることが好ましい。
一方、Hvs/Hvbが1.1未満の場合には、スプライン部の低弾性化による強度・耐久性と底部近傍の高剛性を効果的に両立することができないことがある。
In the torque transmission member of the present invention, the ratio (Hvs / Hvb) of the hardness (Hvs) of the tooth profile or spline forming portion of the cylindrical body to the hardness (Hvb) of the bottom is 1.1 or more. Is preferred.
Such a torque transmitting member can transmit high torque without the possibility of plastic deformation even at a higher reduction ratio.
Moreover, from a workability viewpoint, it is specifically preferable that it is 1.1-1.5.
On the other hand, when Hvs / Hvb is less than 1.1, the strength / durability due to the low elasticity of the spline part and the high rigidity in the vicinity of the bottom part may not be effectively compatible.

更に、本発明のトルク伝達用部材においては、円筒状胴部の歯形又はスプライン形成部位が熱弾性型マルテンサイト相単相から成ると共に、円筒状胴部の歯形又はスプライン未形成部位が熱弾性型マルテンサイト相と体心立方格子から成る相との2相から成ることが望ましい。
このようなトルク伝達用部材は、より安定して上記の弾性率及び硬度の連続的な変化を実現することができる。
Further, in the torque transmission member of the present invention, the tooth form or spline forming part of the cylindrical body is composed of a thermoelastic martensite phase single phase, and the tooth form or spline non-formed part of the cylindrical body is thermoelastic type. It is desirable to consist of two phases, a martensite phase and a phase consisting of a body-centered cubic lattice.
Such a torque transmission member can realize the continuous change in the elastic modulus and hardness more stably.

ここで、本発明のトルク伝達用部材を図面に基づいて詳細に説明する。
図1は、本発明のトルク伝達用部材の一実施形態であるカップ型の可撓性外歯歯車を側面から見た構成概略図である。
同図に示すように、カップ型の可撓性外歯歯車10は、円筒状胴部12と底部14とを備え、円筒状胴部12は、スプライン形成部位12Aとスプライン未形成部位12Bとを有している。
そして、上述したように、このカップ型の可撓性外歯歯車10がチタン基合金製であり、且つ熱弾性型マルテンサイト相単相及び熱弾性型マルテンサイト相と体心立方格子から成る相との2相の少なくとも一方から成り、円筒状胴部12の底部反対側端部位の剛性と円筒状胴部12の底部側端部位の剛性とが異なり、且つ少なくとも円筒状胴部12のスプライン未形成部位12Bにおける弾性率が円筒状胴部12の底部側端部位から底部反対側端部位にかけて連続的に減少しており、且つ円筒状胴部12のスプライン形成部位12Aの平均弾性率(Es)と底部14の平均弾性率(Eb)との比(Es/Eb)が0.9以下となっている。
Here, the torque transmission member of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a cup-type flexible external gear as an embodiment of the torque transmission member of the present invention as viewed from the side.
As shown in the figure, the cup-shaped flexible external gear 10 includes a cylindrical body 12 and a bottom 14, and the cylindrical body 12 includes a spline forming part 12A and a spline non-formed part 12B. Have.
As described above, the cup-type flexible external gear 10 is made of a titanium-based alloy, and includes a thermoelastic martensite phase single phase and a thermoelastic martensite phase and a body-centered cubic lattice. The rigidity of the end portion on the opposite side to the bottom of the cylindrical body 12 is different from the rigidity of the end portion on the bottom side of the cylindrical body 12, and at least the spline of the cylindrical body 12 is not splined. The elastic modulus in the formation part 12B continuously decreases from the bottom side end part of the cylindrical body part 12 to the opposite end part of the bottom part, and the average elastic modulus (Es) of the spline formation part 12A of the cylindrical body part 12 And the average elastic modulus (Eb) of the bottom 14 (Es / Eb) is 0.9 or less.

次に、上述したトルク伝達用部材の製造方法の一例について説明する。
上述したトルク伝達用部材は、以下のようにして製造することができる。
まず、チタン基合金の円板状板材を用い、トルク伝達用部材の円筒状胴部を冷間加工する。その際、スプライン未形成部位においては底部側端部位から底部反対側端部位にかけて連続的に加工率(圧延率など。)を低減させる。なお、このとき底部の加工率を0とする。
また、スプラインは歯切り加工により形成すればよいが、工程を簡略化するために、冷間加工を兼ねた歯型転造にて成形してもよい。
次いで、必要に応じて、底部を時効処理する。
なお、底部近傍の弾性率を更に高めるために、体心立方格子から成る相単相となる高温域とした後、300〜600℃程度での時効析出処理を行ってもよい。析出相は弾性率を著しく増大させると共に、強度を大きく向上させる。
歯形又はスプライン形成部位の低い弾性率と両立させるためには、底部のみを時効温度に保持すればよく、この場合でも加熱による温度勾配が生じるため、析出相の割合は連続的に変化し、これに伴って、弾性率も連続的に変化することになる。
これにより、図1に示すようなトルク伝達用部材が完成する。
Next, an example of a method for manufacturing the above-described torque transmission member will be described.
The torque transmission member described above can be manufactured as follows.
First, a cylindrical body of a torque transmitting member is cold worked using a titanium-based alloy disk-shaped plate material. At that time, the processing rate (rolling rate, etc.) is continuously reduced from the bottom side end part to the bottom opposite side end part in the spline-unformed part. At this time, the processing rate of the bottom is set to zero.
In addition, the spline may be formed by gear cutting, but in order to simplify the process, it may be formed by tooth rolling that also serves as cold working.
Next, the bottom is aged as necessary.
In order to further increase the elastic modulus in the vicinity of the bottom portion, an aging precipitation treatment at about 300 to 600 ° C. may be performed after a high temperature region that is a single phase composed of a body-centered cubic lattice. The precipitated phase significantly increases the elastic modulus and greatly improves the strength.
In order to achieve compatibility with the low elastic modulus of the tooth profile or spline formation site, it is only necessary to keep the bottom part at the aging temperature. Even in this case, a temperature gradient is generated by heating, so the ratio of the precipitated phase changes continuously. Along with this, the elastic modulus also changes continuously.
Thereby, the torque transmission member as shown in FIG. 1 is completed.

なお、このトルク伝達用部材は、次のようにして製造してもよい。
図2は、トルク伝達用部材の製造方法の一例を示す説明図である。
図2(a)に示すように、中心部から外周部にかけて肉厚が連続的に増加しているチタン基合金製の概円形状板材50を用い、図2(b)に示すような、成形型60に略円形状板材50をコマ70を押し付けることにより成形するへらしぼりなどの方法で漸次肉厚を低減する冷間加工によって中心部と外周部の肉厚が同じになるように概形を形成すれば、円筒状胴部においては底部側端部位から底部反対側端部位にかけて連続的に圧延率は変化することになり、弾性率を連続的に減少させることができる。
なお、概円形状板材50は、図示しないが、凸形状の金型にて熱間鍛造することにより簡便に得ることができる。
また、外周部の肉厚は中心部の肉厚に対して、250%以上であればよい。
しかる後、上述したようにスプラインを形成するなどして、図1に示すようなトルク伝達用部材が完成する。
The torque transmission member may be manufactured as follows.
FIG. 2 is an explanatory view showing an example of a method for manufacturing a torque transmitting member.
As shown in FIG. 2 (a), a substantially circular plate 50 made of a titanium-based alloy whose thickness continuously increases from the central part to the outer peripheral part is used, as shown in FIG. 2 (b). A rough shape is formed so that the thickness of the central portion and the outer peripheral portion becomes the same by cold working that gradually reduces the thickness by a method such as sparing to form the substantially circular plate material 50 by pressing the top 70 against the die 60. If it forms, in a cylindrical trunk | drum, a rolling rate will change continuously from a bottom part side edge part to a bottom part opposite side edge part, and an elastic modulus can be decreased continuously.
In addition, although not shown in figure, the substantially circular shaped board | plate material 50 can be easily obtained by hot forging with a convex-shaped metal mold | die.
Moreover, the thickness of an outer peripheral part should just be 250% or more with respect to the thickness of a center part.
Thereafter, the spline is formed as described above to complete the torque transmission member as shown in FIG.

次に、本発明の波動歯車装置について説明する。
上述の如く、本発明の波動歯車装置は、上記本発明のトルク伝達用部材を用いたものであり、更に具体的には、トルク伝達用部材を波動歯車装置のカップ型やハット型の可撓性外歯歯車、いわゆるフレクシブルプラインとして用いたものである。
Next, the wave gear device of the present invention will be described.
As described above, the wave gear device of the present invention uses the torque transmission member of the present invention, and more specifically, the torque transmission member is a flexible cup-type or hat-type of the wave gear device. External gear, so-called flexible pipeline.

ここで、本発明の波動歯車装置について図面に基づいて詳細に説明する。
図3は、本発明の波動歯車装置の一実施形態であるカップ型の可撓性外歯歯車を用いた波動歯車装置を軸方向から見た構成概略図である。
同図に示すように、波動歯車装置は、円環状の剛性内歯歯車20と、この内側に同軸状態に配設されたカップ型の可撓性外歯歯車10と、この内側に嵌合された楕円状の波動発生器30とを備える。
このような波動歯車装置が作動する場合は、可撓性外歯歯車10は、波動発生器30によって、楕円状に撓められ、楕円の長軸の部分においては、剛性内歯歯車20と歯がかみ合い、短軸の部分においては、歯が完全に離れた状態となる。例えば剛性内歯歯車20を固定し、波動発生器30を回転させると、可撓性外歯歯車10は弾性変形し、剛性内歯歯車20との歯がかみ合う位置が順次移動する。そして、例えば可撓性外歯歯車10の歯数が2つ少ない場合には、波動発生器30が180度回転すると可撓性外歯歯車10は歯数1つ分だけ、回転方向と逆方向に移動(回転)し、波動発生器30が1回転すると可撓性外歯歯車10は歯数2つ分だけ、回転方向と逆方向に移動(回転)し、この動きがトルクとして取り出され、伝達される。
また、通常は、波動発生器30によって入力し、可撓性外歯歯車10の図示しない底部から出力する。
Here, the wave gear device of the present invention will be described in detail with reference to the drawings.
FIG. 3 is a schematic configuration view of a wave gear device using a cup-type flexible external gear, which is an embodiment of the wave gear device of the present invention, viewed from the axial direction.
As shown in the figure, the wave gear device is fitted with an annular rigid internal gear 20, a cup-type flexible external gear 10 disposed coaxially inside the annular rigid internal gear 20, and the inside thereof. And an elliptical wave generator 30.
When such a wave gear device is operated, the flexible external gear 10 is bent into an ellipse by the wave generator 30, and the rigid internal gear 20 and the tooth are formed in the long axis portion of the ellipse. The teeth are completely separated from each other at the short axis portion. For example, when the rigid internal gear 20 is fixed and the wave generator 30 is rotated, the flexible external gear 10 is elastically deformed, and the positions at which the teeth with the rigid internal gear 20 mesh are sequentially moved. For example, when the number of teeth of the flexible external gear 10 is two, when the wave generator 30 is rotated 180 degrees, the flexible external gear 10 is rotated in the direction opposite to the rotation direction by one tooth. When the wave generator 30 rotates once, the flexible external gear 10 moves (rotates) in the direction opposite to the rotation direction by the number of teeth of 2, and this movement is taken out as torque. Communicated.
Moreover, it inputs normally with the wave generator 30 and outputs from the bottom part which the flexible external gear 10 does not illustrate.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
具体的には、以下の各例に記載したような操作を行い、図1に示したようなカップ型のトルク伝達用部材を作製し、その性能を評価した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
Specifically, the operations described in the following examples were performed to produce a cup-type torque transmission member as shown in FIG. 1 and its performance was evaluated.

(実施例1)
チタン(Ti)61重量部とニオブ(Nb)35重量部とスズ(Sn)4重量部とを用い、アルゴン雰囲気中でアーク溶解して、出発材(以下、「Ti−35Nb−4Sn材」という。)を得た。
次いで、このTi−35Nb−4Sn材に、溶体化処理(温度:1150℃、時間:24時間、雰囲気:アルゴン中)を行った後、1000℃で熱間鍛造し、カップ型の略形状のトルク伝達用部材を得た(肉厚は1.6mmであった。)。
更に、このカップ型の略形状のトルク伝達用部材を底部反対側端部位から底部側端部位にかけて連続的に圧延率(加工率)を低減する表1に示す冷間加工をした。
しかる後、スプラインを歯切り加工によって形成して、図1に示すような本例のトルク伝達用部材を得た(円筒状部位外径:100mm、円筒状部位長さ:100mm)。
(Example 1)
Using 61 parts by weight of titanium (Ti), 35 parts by weight of niobium (Nb) and 4 parts by weight of tin (Sn), arc melting was performed in an argon atmosphere, and the starting material (hereinafter referred to as “Ti-35Nb-4Sn material”). .)
Next, this Ti-35Nb-4Sn material was subjected to a solution treatment (temperature: 1150 ° C., time: 24 hours, atmosphere: in argon), then hot forged at 1000 ° C., and a cup-shaped substantially torque. A member for transmission was obtained (wall thickness was 1.6 mm).
Further, this cup-shaped substantially torque transmitting member was cold worked as shown in Table 1 to continuously reduce the rolling rate (working rate) from the bottom side opposite end part to the bottom side end part.
Thereafter, a spline was formed by gear cutting to obtain a torque transmission member of this example as shown in FIG. 1 (cylindrical part outer diameter: 100 mm, cylindrical part length: 100 mm).

(実施例2)
圧延率(加工率)を低減する表1に示す冷間加工を実施した以外は実施例1と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Example 2)
A torque transmission member of this example was obtained by repeating the same operation as in Example 1 except that the cold working shown in Table 1 for reducing the rolling rate (working rate) was performed.

(実施例3)
圧延率(加工率)を低減する表1に示す冷間加工を実施した以外は実施例1と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Example 3)
A torque transmission member of this example was obtained by repeating the same operation as in Example 1 except that the cold working shown in Table 1 for reducing the rolling rate (working rate) was performed.

(実施例4)
歯切り加工を行った後に、底部をヒータによって加熱して400℃で2時間保持し、その間、スプライン形成部位を冷却して200℃以下で保持した以外は、実施例1と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
Example 4
After gear cutting, the bottom was heated with a heater and held at 400 ° C. for 2 hours, while the spline formation site was cooled and held at 200 ° C. or lower, and the same operation as in Example 1 was repeated. The torque transmission member of this example was obtained.

(実施例5)
歯切り加工を行った後に、底部をヒータによって加熱して400℃で2時間保持し、その間、スプライン形成部位を冷却して200℃以下で保持した以外は、実施例3と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Example 5)
After gear cutting, the bottom was heated with a heater and held at 400 ° C. for 2 hours, while the spline formation site was cooled and held at 200 ° C. or lower, and the same operation as in Example 3 was repeated. The torque transmission member of this example was obtained.

(比較例1)
圧延率(加工率)を低減する表1に示す冷間加工を実施した以外は、実施例1と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Comparative Example 1)
Except that the cold working shown in Table 1 for reducing the rolling rate (working rate) was performed, the same operation as in Example 1 was repeated to obtain the torque transmission member of this example.

(比較例2)
圧延率(加工率)を低減する表1に示す冷間加工を実施した以外は、実施例1と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Comparative Example 2)
Except that the cold working shown in Table 1 for reducing the rolling rate (working rate) was performed, the same operation as in Example 1 was repeated to obtain the torque transmission member of this example.

(比較例3)
圧延率(加工率)を低減しない表1に示す冷間加工を実施した以外は、実施例1と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Comparative Example 3)
Except for performing the cold working shown in Table 1 that does not reduce the rolling rate (working rate), the same operation as in Example 1 was repeated to obtain the torque transmission member of this example.

(比較例4)
チタン(Ti)92.5重量部とアルミニウム(Al)5重量部とスズ(Sn)2.5重量部とを用い、アルゴン雰囲気中でアーク溶解して、出発材(以下、「Ti−5Al−2.5Sn材」という。)を得た。
次いで、Ti−5Al−2.5Sn材に代えて、このTi−35Nb−4Sn材を用いた以外は、実施例1と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Comparative Example 4)
Using 92.5 parts by weight of titanium (Ti), 5 parts by weight of aluminum (Al), and 2.5 parts by weight of tin (Sn), arc melting was performed in an argon atmosphere to obtain a starting material (hereinafter referred to as “Ti-5Al— 2.5Sn material ").
Subsequently, except having used this Ti-35Nb-4Sn material instead of Ti-5Al-2.5Sn material, the same operation as Example 1 was repeated and the torque transmission member of this example was obtained.

(比較例5)
圧延率(加工率)を低減する表1に示す冷間加工を実施した以外は、比較例4と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Comparative Example 5)
Except that the cold working shown in Table 1 for reducing the rolling rate (working rate) was performed, the same operation as in Comparative Example 4 was repeated to obtain the torque transmission member of this example.

(比較例6)
圧延率(加工率)を低減しない表1に示す冷間加工を実施した以外は、比較例4と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
(Comparative Example 6)
Except for performing the cold working shown in Table 1 that does not reduce the rolling rate (working rate), the same operation as in Comparative Example 4 was repeated to obtain the torque transmission member of this example.

(比較例7)
Ti−5Al−2.5Sn材に代えて、S25C材を用いた以外は、比較例4と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
なお、比重による慣性重量の差が無いように、カップ型の略形状のトルク伝達用部材の肉厚は1mmとした。
(Comparative Example 7)
The torque transmission member of this example was obtained by repeating the same operation as in Comparative Example 4 except that the S25C material was used instead of the Ti-5Al-2.5Sn material.
The thickness of the cup-shaped substantially torque transmitting member was 1 mm so that there was no difference in inertia weight due to specific gravity.

(比較例8)
Ti−5Al−2.5Sn材に代えて、S25C材を用いた以外は、比較例5と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
なお、比重による慣性重量の差が無いように、カップ型の略形状のトルク伝達用部材の肉厚は1mmとした。
(Comparative Example 8)
The torque transmission member of this example was obtained by repeating the same operation as in Comparative Example 5 except that the S25C material was used instead of the Ti-5Al-2.5Sn material.
The thickness of the cup-shaped substantially torque transmitting member was 1 mm so that there was no difference in inertia weight due to specific gravity.

(比較例9)
Ti−5Al−2.5Sn材に代えて、S25C材を用いた以外は、比較例6と同様の操作を繰り返し、本例のトルク伝達用部材を得た。
なお、比重による慣性重量の差が無いように、カップ型の略形状のトルク伝達用部材の肉厚は1mmとした。
(Comparative Example 9)
The torque transmission member of this example was obtained by repeating the same operation as in Comparative Example 6 except that the S25C material was used instead of the Ti-5Al-2.5Sn material.
The thickness of the cup-shaped substantially torque transmitting member was 1 mm so that there was no difference in inertia weight due to specific gravity.

また、上記各例のトルク伝達用部材から底部とスプライン形成部位の板状試験片を切り出し、金属組織の観察を行った。
金属組織を透過型電子顕微鏡にて観察し、解析したところ、実施例1〜実施例5及び比較例1〜比較例3においては、それぞれ熱弾性型マルテンサイト相と体心立方格子から成る相との2相の存在が確認され、比較例4〜6においては、それぞれ六方最密格子から成る相のみの存在が確認され、比較例7〜9においては、非弾性型マルテンサイト相と面心立方格子から成る相である残留オーステナイトの存在が確認された。
Moreover, the plate-shaped test piece of a bottom part and a spline formation site | part was cut out from the member for torque transmission of each said example, and the metal structure was observed.
When the metal structure was observed and analyzed with a transmission electron microscope, in Examples 1 to 5 and Comparative Examples 1 to 3, a phase composed of a thermoelastic martensite phase and a body-centered cubic lattice was used. In Comparative Examples 4 to 6, the existence of only a phase composed of a hexagonal close-packed lattice was confirmed. In Comparative Examples 7 to 9, the inelastic martensite phase and the face-centered cubic were confirmed. The presence of retained austenite, a phase composed of lattices, was confirmed.

更に、上記各例のトルク伝達用部材から底部とスプライン形成部位の板状試験片を切り出し、弾性率及び硬度の測定を行った。
各例の仕様の一部を表1に示す。なお、表1中「Hvs」はスプライン形成部位のビッカース硬度(Hv0.1)を、「Hvb」は底部のビッカース硬度(Hv0.1)を、「Es」はスプライン形成部位の平均弾性率(GPa)を、「Eb」は底部の平均弾性率(GPa)を示す。
Further, plate-like test pieces at the bottom and the spline formation site were cut out from the torque transmission member in each of the above examples, and the elastic modulus and hardness were measured.
A part of the specification of each example is shown in Table 1. In Table 1, “Hvs” represents the Vickers hardness (Hv0.1) of the spline formation site, “Hvb” represents the Vickers hardness (Hv0.1) of the bottom portion, and “Es” represents the average elastic modulus (GPa) of the spline formation site. "Eb" indicates the average elastic modulus (GPa) of the bottom.

Figure 2008115932
Figure 2008115932

[性能評価]
(スプライン形成部位発生応力評価試験及びねじれ角評価試験)
上記各例のトルク伝達用部材を用いて、図3に示すような波動歯車装置を組み立て、剛性内歯歯車20を固定し、波動発生器30から100Nmのトルクを入力し、可撓性外歯歯車10の図示しない底部から出力した。
この際にスプライン形成部位に発生する応力とねじれ角を測定した。
得られた結果を表1に併記する。
[Performance evaluation]
(Spline formation site generated stress evaluation test and torsion angle evaluation test)
A wave gear device as shown in FIG. 3 is assembled using the torque transmission member in each of the above examples, the rigid internal gear 20 is fixed, a torque of 100 Nm is input from the wave generator 30, and the flexible external teeth Output from the bottom of the gear 10 (not shown).
At this time, the stress and the twist angle generated at the spline formation site were measured.
The obtained results are also shown in Table 1.

表1より、本発明の範囲に属する実施例1〜実施例5においては、スプライン形成部位の平均弾性率比がいずれも大きく低下していることが分かる。また、その効果は圧延率が高いほど大きいことも分かる。
これにより、一定変形させられるスプライン形成部位に発生する応力は74〜95[MPa]程度となり、ねじれ角は4.6〜7.8×10−3radに抑制された。
特に、底部を加熱する時効析出処理を行った実施例4及び実施例5においては、スプライン形成部位の低弾性率化と底部近傍のねじり剛性の向上とが両立できている。
From Table 1, it can be seen that in Examples 1 to 5 belonging to the scope of the present invention, the average elastic modulus ratio of the spline-formed portion is greatly reduced. Moreover, it turns out that the effect is so large that a rolling rate is high.
Thereby, the stress which generate | occur | produces in the spline formation site | part deform | transformed by fixed deformation was set to about 74-95 [MPa], and the twist angle was suppressed to 4.6-7.8 * 10 < -3 > rad.
In particular, in Example 4 and Example 5 in which the aging precipitation treatment for heating the bottom portion was performed, both the reduction of the elastic modulus of the spline forming portion and the improvement of the torsional rigidity in the vicinity of the bottom portion can be achieved.

一方、比較例1及び比較例2においては、圧延率が低く、十分に加工歪が与えられないため、所望の平均弾性率比や硬度比が得られず、スプライン形成部位における発生応力が増大した。また、比較例3では、十分な圧縮率であったために、弾性率は低下したが、底部にかけて圧延率を低下させなかったために、ねじり剛性が著しく悪化した。更に、比較例4〜6においては、結晶構造が六方最密格子から成る相のみであったため、圧延率によらず、発生応力が低減できなかった。更にまた、比較例7〜9においては、非熱弾性型マルテンサイト相であったため、圧延率によらず、発生応力が低減できなかった。   On the other hand, in Comparative Example 1 and Comparative Example 2, since the rolling rate is low and sufficient processing strain is not given, the desired average elastic modulus ratio and hardness ratio cannot be obtained, and the generated stress at the spline formation site is increased. . In Comparative Example 3, the elastic modulus was reduced because the compression rate was sufficient, but the torsional rigidity was remarkably deteriorated because the rolling rate was not lowered toward the bottom. Furthermore, in Comparative Examples 4 to 6, since the crystal structure was only a phase composed of a hexagonal close-packed lattice, the generated stress could not be reduced regardless of the rolling rate. Furthermore, in Comparative Examples 7 to 9, since it was a non-thermoelastic martensite phase, the generated stress could not be reduced regardless of the rolling rate.

本発明のトルク伝達用部材の一実施形態であるカップ型の可撓性外歯歯車を側面から見た構成概略図である。It is the structure schematic which looked at the cup-shaped flexible external gear which is one Embodiment of the member for torque transmission of this invention from the side surface. トルク伝達用部材の製造方法の一例を示す説明図である。It is explanatory drawing which shows an example of the manufacturing method of the member for torque transmission. 本発明の波動歯車装置の一実施形態であるカップ型の可撓性外歯歯車を用いた波動歯車装置を軸方向から見た構成概略図である。It is the structure schematic which looked at the wave gear apparatus using the cup type flexible external gear which is one Embodiment of the wave gear apparatus of this invention from the axial direction.

符号の説明Explanation of symbols

10 可撓性外歯歯車
12 円筒状胴部
12A スプライン形成部位
12B スプライン未形成部位
14 底部
20 剛性内歯歯車
30 波動発生器
50 概円形状板材
60 成形型
70 コマ
DESCRIPTION OF SYMBOLS 10 Flexible external gear 12 Cylindrical trunk | drum 12A Spline formation site | part 12B Spline non-formation site | part 14 Bottom part 20 Rigid internal gear 30 Wave generator 50 Substantially circular board | plate material 60 Molding | die 70 top

Claims (4)

チタン基合金製であり、且つ熱弾性型マルテンサイト相単相及び熱弾性型マルテンサイト相と体心立方格子から成る相との2相の少なくとも一方から成り、
円筒状胴部と、該円筒状胴部の一方の開放端部位に配設された底部と、を備え、
上記円筒状胴部が、上記底部と反対側の外周面に歯形又はスプラインが形成されている歯形又はスプライン形成部位を有し、且つ上記底部側の外周面に歯形又はスプラインが形成されていない歯形又はスプライン未形成部位を有するトルク伝達用部材であって、
上記円筒状胴部の底部反対側端部位の剛性と上記円筒状胴部の底部側端部位の剛性とが異なり、且つ少なくとも上記円筒状胴部の歯形又はスプライン未形成部位における弾性率が上記円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に減少しており、且つ上記円筒状胴部の歯形又はスプライン形成部位の平均弾性率(Es)と上記底部の平均弾性率(Eb)との比(Es/Eb)が0.9以下である、ことを特徴とするトルク伝達用部材。
It is made of a titanium-based alloy and comprises at least one of a thermoelastic martensite phase single phase and a thermoelastic martensite phase and a phase consisting of a body-centered cubic lattice,
A cylindrical body, and a bottom disposed at one open end of the cylindrical body,
The cylindrical body has a tooth shape or spline forming portion in which a tooth shape or a spline is formed on the outer peripheral surface opposite to the bottom portion, and a tooth shape in which the tooth shape or the spline is not formed on the outer peripheral surface of the bottom portion side. Or a torque transmission member having a spline-unformed part,
The rigidity of the end portion on the opposite side of the bottom portion of the cylindrical body is different from the rigidity of the end portion on the bottom side of the cylindrical body, and at least the elastic modulus in the tooth profile or spline-unformed portion of the cylindrical body is the cylinder. Continuously decreasing from the bottom side end part to the bottom opposite side end part of the cylindrical body part, and the average elastic modulus (Es) of the tooth form or spline forming part of the cylindrical body part and the average elastic modulus of the bottom part ( A torque transmitting member, wherein a ratio (Es / Eb) to Eb) is 0.9 or less.
少なくとも上記円筒状胴部の歯形又はスプライン未形成部位における硬度が、上記円筒状胴部の底部側端部位から底部反対側端部位にかけて連続的に増加しており、
上記円筒状胴部の歯形又はスプライン形成部位の硬度(Hvs)と上記底部の硬度(Hvb)との比(Hvs/Hvb)が1.1以上である、ことを特徴とする請求項1に記載のトルク伝達用部材。
Hardness in at least the tooth profile or spline non-formed part of the cylindrical body part continuously increases from the bottom side end part of the cylindrical body part to the bottom opposite side end part,
The ratio (Hvs / Hvb) of the hardness (Hvs) of the tooth profile or spline forming portion of the cylindrical body part to the hardness (Hvb) of the bottom part is 1.1 or more. Torque transmission member.
上記円筒状胴部の歯形又はスプライン形成部位が熱弾性型マルテンサイト相単相から成り、上記円筒状胴部の歯形又はスプライン未形成部位が熱弾性型マルテンサイト相と体心立方格子から成る相との2相から成ることを特徴とする請求項1に記載のトルク伝達用部材。   The tooth form or spline forming part of the cylindrical body is composed of a thermoelastic martensite phase single phase, and the tooth form or spline non-formed part of the cylindrical body is a phase composed of a thermoelastic martensite phase and a body-centered cubic lattice. The torque transmission member according to claim 1, wherein the torque transmission member is composed of two phases. 請求項1〜3のいずれか1つの項に記載のトルク伝達用部材を用いたことを特徴とする波動歯車装置。   A wave gear device using the torque transmitting member according to any one of claims 1 to 3.
JP2006298926A 2006-11-02 2006-11-02 Torque transmitting member and harmonic drive gear Pending JP2008115932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298926A JP2008115932A (en) 2006-11-02 2006-11-02 Torque transmitting member and harmonic drive gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298926A JP2008115932A (en) 2006-11-02 2006-11-02 Torque transmitting member and harmonic drive gear

Publications (1)

Publication Number Publication Date
JP2008115932A true JP2008115932A (en) 2008-05-22

Family

ID=39502040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298926A Pending JP2008115932A (en) 2006-11-02 2006-11-02 Torque transmitting member and harmonic drive gear

Country Status (1)

Country Link
JP (1) JP2008115932A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017515059A (en) * 2014-04-09 2017-06-08 カリフォルニア インスティチュート オブ テクノロジー Bulk metallic glass-based wave gear device and system and method for implementing wave gear device components
JP2019138343A (en) * 2018-02-07 2019-08-22 国立研究開発法人宇宙航空研究開発機構 Wave gear device
US10487934B2 (en) 2014-12-17 2019-11-26 California Institute Of Technology Systems and methods for implementing robust gearbox housings
US10690227B2 (en) 2015-03-05 2020-06-23 California Institute Of Technology Systems and methods for implementing tailored metallic glass-based strain wave gears and strain wave gear components
US10883528B2 (en) 2015-03-11 2021-01-05 California Institute Of Technology Systems and methods for structurally interrelating components using inserts made from metallic glass-based materials
US10890238B2 (en) 2016-03-28 2021-01-12 Seiko Epson Corporation Robot, flexible gear, gear device, and manufacturing method of flexible gear
US10941847B2 (en) 2012-06-26 2021-03-09 California Institute Of Technology Methods for fabricating bulk metallic glass-based macroscale gears
US10953688B2 (en) 2015-03-12 2021-03-23 California Institute Of Technology Systems and methods for implementing flexible members including integrated tools made from metallic glass-based materials
US10968527B2 (en) 2015-11-12 2021-04-06 California Institute Of Technology Method for embedding inserts, fasteners and features into metal core truss panels
US11014162B2 (en) 2017-05-26 2021-05-25 California Institute Of Technology Dendrite-reinforced titanium-based metal matrix composites
US11123797B2 (en) 2017-06-02 2021-09-21 California Institute Of Technology High toughness metallic glass-based composites for additive manufacturing
US11155907B2 (en) 2013-04-12 2021-10-26 California Institute Of Technology Systems and methods for shaping sheet materials that include metallic glass-based materials
US11185921B2 (en) 2017-05-24 2021-11-30 California Institute Of Technology Hypoeutectic amorphous metal-based materials for additive manufacturing
US11198181B2 (en) 2017-03-10 2021-12-14 California Institute Of Technology Methods for fabricating strain wave gear flexsplines using metal additive manufacturing
US11400613B2 (en) 2019-03-01 2022-08-02 California Institute Of Technology Self-hammering cutting tool
US11591906B2 (en) 2019-03-07 2023-02-28 California Institute Of Technology Cutting tool with porous regions
US11680629B2 (en) 2019-02-28 2023-06-20 California Institute Of Technology Low cost wave generators for metal strain wave gears and methods of manufacture thereof
US11859705B2 (en) 2019-02-28 2024-01-02 California Institute Of Technology Rounded strain wave gear flexspline utilizing bulk metallic glass-based materials and methods of manufacture thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10941847B2 (en) 2012-06-26 2021-03-09 California Institute Of Technology Methods for fabricating bulk metallic glass-based macroscale gears
US11920668B2 (en) 2012-06-26 2024-03-05 California Institute Of Technology Systems and methods for implementing bulk metallic glass-based macroscale gears
US11155907B2 (en) 2013-04-12 2021-10-26 California Institute Of Technology Systems and methods for shaping sheet materials that include metallic glass-based materials
JP2017515059A (en) * 2014-04-09 2017-06-08 カリフォルニア インスティチュート オブ テクノロジー Bulk metallic glass-based wave gear device and system and method for implementing wave gear device components
US10487934B2 (en) 2014-12-17 2019-11-26 California Institute Of Technology Systems and methods for implementing robust gearbox housings
US10690227B2 (en) 2015-03-05 2020-06-23 California Institute Of Technology Systems and methods for implementing tailored metallic glass-based strain wave gears and strain wave gear components
US10883528B2 (en) 2015-03-11 2021-01-05 California Institute Of Technology Systems and methods for structurally interrelating components using inserts made from metallic glass-based materials
US10953688B2 (en) 2015-03-12 2021-03-23 California Institute Of Technology Systems and methods for implementing flexible members including integrated tools made from metallic glass-based materials
US10968527B2 (en) 2015-11-12 2021-04-06 California Institute Of Technology Method for embedding inserts, fasteners and features into metal core truss panels
US10890238B2 (en) 2016-03-28 2021-01-12 Seiko Epson Corporation Robot, flexible gear, gear device, and manufacturing method of flexible gear
US11839927B2 (en) 2017-03-10 2023-12-12 California Institute Of Technology Methods for fabricating strain wave gear flexsplines using metal additive manufacturing
US11198181B2 (en) 2017-03-10 2021-12-14 California Institute Of Technology Methods for fabricating strain wave gear flexsplines using metal additive manufacturing
US11185921B2 (en) 2017-05-24 2021-11-30 California Institute Of Technology Hypoeutectic amorphous metal-based materials for additive manufacturing
US11905578B2 (en) 2017-05-24 2024-02-20 California Institute Of Technology Hypoeutectic amorphous metal-based materials for additive manufacturing
US11014162B2 (en) 2017-05-26 2021-05-25 California Institute Of Technology Dendrite-reinforced titanium-based metal matrix composites
US11123797B2 (en) 2017-06-02 2021-09-21 California Institute Of Technology High toughness metallic glass-based composites for additive manufacturing
US11773475B2 (en) 2017-06-02 2023-10-03 California Institute Of Technology High toughness metallic glass-based composites for additive manufacturing
JP7072144B2 (en) 2018-02-07 2022-05-20 国立研究開発法人宇宙航空研究開発機構 Wave gear device
JP2019138343A (en) * 2018-02-07 2019-08-22 国立研究開発法人宇宙航空研究開発機構 Wave gear device
US11680629B2 (en) 2019-02-28 2023-06-20 California Institute Of Technology Low cost wave generators for metal strain wave gears and methods of manufacture thereof
US11859705B2 (en) 2019-02-28 2024-01-02 California Institute Of Technology Rounded strain wave gear flexspline utilizing bulk metallic glass-based materials and methods of manufacture thereof
US11400613B2 (en) 2019-03-01 2022-08-02 California Institute Of Technology Self-hammering cutting tool
US11591906B2 (en) 2019-03-07 2023-02-28 California Institute Of Technology Cutting tool with porous regions

Similar Documents

Publication Publication Date Title
JP2008115932A (en) Torque transmitting member and harmonic drive gear
JP5732468B2 (en) Nitinol appliance with improved fatigue resistance
CN102844130B (en) Metallic glass fastening screw and its manufacture method
JP5201724B2 (en) Method of manufacturing high strength titanium alloy golf club head member and golf club head member
JP2007040517A (en) Harmonic speed reducer and its manufacturing method
JP2017515059A (en) Bulk metallic glass-based wave gear device and system and method for implementing wave gear device components
JP3934372B2 (en) High strength and low Young&#39;s modulus β-type Ti alloy and method for producing the same
JP2010029934A (en) Over-growth working method for workpiece
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
US20110079944A1 (en) Alloy for spring, plate material for spring, and spring member
JP6079404B2 (en) Method for forging disc-shaped products
JP2009228053A (en) Titanium material and method for producing the same
JP6621196B2 (en) β-type reinforced titanium alloy and method for producing β-type reinforced titanium alloy
JP2012224935A (en) Titanium alloy billet and method for producing titanium alloy billet, and method for producing titanium alloy forged material
CN107177756A (en) A kind of metal nano material of wide temperature range high intensity line elasticity and its preparation method and application
JP2017137881A (en) Robot and Flexible Gear Device
JP5874707B2 (en) Titanium alloy with high strength, high Young&#39;s modulus and excellent fatigue properties and impact toughness
JP2008231553A (en) Method for producing low elastic titanium alloy sheet and titanium alloy sheet
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP5668712B2 (en) A hard pure titanium plate excellent in impact resistance and a method for producing the same.
Kuramoto et al. Strengthening the alloys with elastic softening in shear modulus C′
JP3994763B2 (en) Torsion bar manufacturing method and torsion bar
JP4900574B2 (en) Power transmission component and manufacturing method thereof
JP2001204639A (en) Cutter for kitchen utensil, hardening method for the cutter, and rotary cooking implement provided with the cutter
JP2013170271A (en) Titanium alloy member deformed into same direction as working direction with heat treatment, and method for manufacturing the same