JP2008115643A - Geotextile/geogrid with distortion detecting function, and distortion detecting system - Google Patents

Geotextile/geogrid with distortion detecting function, and distortion detecting system Download PDF

Info

Publication number
JP2008115643A
JP2008115643A JP2006301453A JP2006301453A JP2008115643A JP 2008115643 A JP2008115643 A JP 2008115643A JP 2006301453 A JP2006301453 A JP 2006301453A JP 2006301453 A JP2006301453 A JP 2006301453A JP 2008115643 A JP2008115643 A JP 2008115643A
Authority
JP
Japan
Prior art keywords
geogrid
geotextile
strain
detection function
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006301453A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yokota
横田善弘
Hisashi Kawai
河合寿
Koichi Yoshida
吉田浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Kosen Co Ltd
Original Assignee
Maeda Kosen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Kosen Co Ltd filed Critical Maeda Kosen Co Ltd
Priority to JP2006301453A priority Critical patent/JP2008115643A/en
Publication of JP2008115643A publication Critical patent/JP2008115643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geogrid/geotextile with a distortion detecting function, which is excellent in economical efficiency and handleability. <P>SOLUTION: The geotextile or geogrid with the distortion detecting function is formed by arranging longitudinal members and transverse members like a grid. According to the structure of the geotextile or geogrid, reinforcing wires are arranged in the longitudinal members or the transverse members, and conductive wires capable of adjusting breaking distortion are also arranged in the longitudinal members or the transverse members almost in parallel with the reinforcing wires, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は土木工事において、例えば盛土補強用として土中に埋設され、土中での歪みが検出できるジオグリッド又はジオテキスタイル及び破断歪み検知システムに関するものである。   The present invention relates to a geogrid or geotextile and a breakage strain detection system that are embedded in soil, for example, for embankment reinforcement, and capable of detecting strain in the soil.

従来、直立面や急勾配斜面の盛土を補強する土木工事用の補強材として、前記直立面や急勾配斜面に埋設されるジオグリッドやジオテキスタイル等が知られている。
これらの盛土補強材の歪み変化を検知することにより、盛土の変形を検出する方法がある。
ジオグリッド/ジオテキスタイルの歪み変化の測定には、ジオグリッド/ジオテキスタイルの内部に光ファイバを配置する方式や、ジオグリッド/ジオテキスタイルの表面に歪みゲージを付設する方法がある。
Conventionally, geogrids, geotextiles, and the like embedded in the upright surfaces and steep slopes are known as reinforcing materials for civil engineering work that reinforce the upright surfaces and steep slope embankments.
There is a method of detecting the deformation of the embankment by detecting the distortion change of these embankment reinforcements.
There are two methods for measuring the strain change of the geogrid / geotextile: a method of arranging an optical fiber inside the geogrid / geotextile, and a method of attaching a strain gauge to the surface of the geogrid / geotextile.

しかし、上記のジオグリッドやジオテキスタイルの歪み測定方法には以下のような問題があった。
<1>歪みゲージは、局所での測定に限定されてしまう。
<2>歪みゲージは、ジオグリッド/ジオテキスタイルの表面に付設するため、耐久性が低い。
<3>光ファイバは熱に弱いため、溶融した材料を基にジオグリッドを製造する過程で、光ファイバをジオグリッドの内部に直接組込むことが難しい。
<4>光ファイバは折り曲げに弱いため、取扱が難しい。
<5>光ファイバの歪み計測には複数の計測機器が必要となる。また、計測機器が高価である。
However, the above-described geogrid and geotextile distortion measurement methods have the following problems.
<1> The strain gauge is limited to local measurement.
<2> Since the strain gauge is attached to the surface of the geogrid / geotextile, its durability is low.
<3> Since an optical fiber is vulnerable to heat, it is difficult to directly incorporate an optical fiber into the geogrid in the process of manufacturing the geogrid based on a molten material.
<4> Optical fibers are difficult to handle because they are vulnerable to bending.
<5> Measurement of optical fiber strain requires a plurality of measuring devices. Moreover, the measuring instrument is expensive.

本発明は以上の点に鑑みて成されたもので、経済性、取扱性に優れた歪み検出機能付きジオグリッド/ジオテキスタイルを提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide a geogrid / geotextile with a strain detection function that is excellent in economic efficiency and handling.

上記目的を達成するためになされた本願の第1発明は、縦材と横材とを格子状に形成した、ジオテキスタイル又はジオグリッドであって、前記縦材又は前記横材に沿って補強線を配置し、該補強線の一本又は複数本を、破断歪みを調節可能な導電線とすることを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッドを提供する。
本願の第2発明は、縦材と横材とを格子状に形成した、ジオテキスタイル又はジオグリッドであって、前記縦材又は前記横材の内部に補強線を配置し、前記縦材又は前記横材内であって、前記補強線と略平行に、破断歪みを調節可能な導電線を配置することを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッドを提供する。
本願の第3発明は、第1発明又は第2発明に記載のジオテキスタイル又はジオグリッドにおいて、前記導電体を複数本配置し、並列する2本の前記導電体の一方の端部を連続させたことを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッドを提供する。
本願の第4発明は、第3発明に記載のジオテキスタイル又はジオグリッドにおいて、前記複数本の導電体は、予め破断歪みを調節し、前記ジオテキスタイル又はジオグリッドと一体としたことを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッドを提供する。
本願の第5発明は、第3発明に記載のジオテキスタイル又はジオグリッドにおいて、前記複数本の導電体の外周面に凹部を所定間隔で形成し、前記凹部の断面形状及び断面積により破断歪みが異なることを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッドを提供する。
本願の第6発明は、第4発明又は第5発明に記載の歪み検出機能付きジオテキスタイル又はジオグリッドを土木構造物内部に敷設し、前記複数本の導電体の破断を検出することにより、前記ジオテキスタイル又はジオグリッド及び前記土木構造物の健全性を検知することを特徴とする、破断歪み検知システムを提供する。
The first invention of the present application made to achieve the above object is a geotextile or geogrid in which longitudinal members and transverse members are formed in a lattice shape, and a reinforcing wire is provided along the longitudinal member or the transverse member. A geotextile or geogrid with a strain detection function is provided, wherein the geotextile or geogrid with a strain detection function is provided, wherein one or a plurality of the reinforcing wires are conductive wires capable of adjusting a breaking strain.
A second invention of the present application is a geotextile or geogrid in which longitudinal members and transverse members are formed in a lattice shape, and a reinforcing wire is disposed inside the longitudinal member or the transverse member, and the longitudinal member or the transverse member is arranged. Provided is a geotextile or geogrid with a strain detection function, characterized in that a conductive wire capable of adjusting a breaking strain is disposed in the material substantially parallel to the reinforcing wire.
According to a third invention of the present application, in the geotextile or geogrid according to the first invention or the second invention, a plurality of the conductors are arranged and one end of the two conductors arranged in parallel is made continuous. A geotextile or geogrid with a distortion detection function is provided.
According to a fourth invention of the present application, in the geotextile or geogrid according to the third invention, the plurality of conductors are adjusted in advance to break strain and integrated with the geotextile or geogrid. Provide geotextiles or geogrids with detection capabilities.
According to a fifth invention of the present application, in the geotextile or geogrid according to the third invention, recesses are formed at predetermined intervals on the outer peripheral surface of the plurality of conductors, and the fracture strain differs depending on the cross-sectional shape and cross-sectional area of the recesses. A geotextile or geogrid with a distortion detection function is provided.
According to a sixth invention of the present application, the geotextile with a strain detection function according to the fourth or fifth invention or a geogrid is laid in a civil engineering structure, and the geotextile is detected by detecting breakage of the plurality of conductors. Alternatively, the present invention provides a fracture strain detection system that detects the soundness of a geogrid and the civil engineering structure.

本発明は、上記した課題を解決するための手段により、次のような効果の少なくとも一つを得ることができる。
<1>ジオグリッド/ジオテキスタイルが盛土内に埋設されている状況においても、健全度評価ができる。
<2>導電体が金属線であるため、製造や取り扱いが容易である。
<3>破断歪みの異なる複数本の導電体を組み込むことにより、検出できる歪みに幅を持たせることができる。
<4>導電体の破断を検知することにより、ジオグリッド/ジオテキスタイルの伸び歪みを検出するため、検出装置が簡易ですむ。
The present invention can obtain at least one of the following effects by means for solving the above-described problems.
<1> The degree of soundness can be evaluated even when the geogrid / geotextile is buried in the embankment.
<2> Since the conductor is a metal wire, manufacturing and handling are easy.
<3> By incorporating a plurality of conductors having different breaking strains, it is possible to give a width to the detectable strains.
<4> By detecting the breakage of the conductor, the elongation strain of the geogrid / geotextile is detected, so the detection device is simple.

以下、図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(1)歪み検出機能付きジオグリッドの概要
図1に歪み検出機能付きジオグリッド10の斜視図を示す。
本発明は、ジオグリッド本体14に、導電体20を一体に組み込んだものである。
ジオグリッド本体14に変形や伸長等の歪みを生じると、ジオグリッド本体14に作用する歪みがそのまま導電体20に伝わる。歪みが導電体20の破断歪みより大きければ、導電体20は破断する。よって、この破断を検知することで、ジオグリッド本体14に作用した歪みを監視するものである。
以下、各部材について詳述する。
(1) Outline of Geogrid with Strain Detection Function FIG. 1 is a perspective view of a geogrid 10 with a strain detection function.
In the present invention, the conductor 20 is integrated into the geogrid body 14.
When distortion such as deformation or extension occurs in the geogrid main body 14, the distortion acting on the geogrid main body 14 is directly transmitted to the conductor 20. If the strain is larger than the breaking strain of the conductor 20, the conductor 20 breaks. Therefore, the strain acting on the geogrid body 14 is monitored by detecting this breakage.
Hereinafter, each member will be described in detail.

(2)ジオグリッド本体
ジオグリッド本体14は、例えばポリエチレン等の樹脂を材料として、横材11と縦材12からなる格子で形成されている。横材11又は縦材12の少なくとも一方にアラミド繊維、炭素繊維やガラス繊維等の補強線13を入れて、強度を増している。
(2) Geogrid body The geogrid body 14 is formed of a lattice made of a cross member 11 and a vertical member 12 made of a resin such as polyethylene. A reinforcing wire 13 such as an aramid fiber, carbon fiber or glass fiber is inserted into at least one of the cross member 11 or the vertical member 12 to increase the strength.

(3)導電体
導電体20は、金属繊維やアルミからなる金属線等の電気を流す材質により構成する。
導電体20が金属線の場合には、図1及び図2に示すように、外周部に凹部21を一定間隔で設けることで、ジオグリッド本体14の母材が凹部21に付着し、ジオグリッド本体14と導電体20との一体性が高まる。これにより、ジオグリッド本体14と導電体20との間の摩擦力が向上し、ジオグリッド本体14の変位に対する導電体20の追従性が向上する。また、凹部21は軸方向に螺旋状になるように配置することで、導電体20の全周面でジオグリッド本体14に固定され、一体性がさらに高まる。
(3) Conductor The conductor 20 is made of a material that conducts electricity, such as a metal wire or a metal wire made of aluminum.
When the conductor 20 is a metal wire, as shown in FIG. 1 and FIG. 2, the base material of the geogrid body 14 adheres to the recess 21 by providing the recesses 21 at the outer peripheral portion at a constant interval. The integrity of the main body 14 and the conductor 20 is increased. Thereby, the frictional force between the geogrid body 14 and the conductor 20 is improved, and the followability of the conductor 20 with respect to the displacement of the geogrid body 14 is improved. Further, by arranging the concave portion 21 so as to be spiral in the axial direction, the entire periphery of the conductor 20 is fixed to the geogrid main body 14 and the integrity is further enhanced.

導電体20は、材質や、凹部21の断面積や断面形状を変えることにより、破断歪みを調節することができる。
凹部21の軸方向又は円周方向の断面形状を、図3に示すように、(a)台形、(b)三角形、(c)矩形等にすることにより、破断歪みを変えることができる。
The conductor 20 can adjust the breaking strain by changing the material, the cross-sectional area and the cross-sectional shape of the recess 21.
As shown in FIG. 3, the fracture strain can be changed by making the cross-sectional shape of the recess 21 in the axial direction or the circumferential direction into (a) a trapezoid, (b) a triangle, (c) a rectangle or the like.

また、導電体20をジオグリッド本体14と一体化する前に、予め引張して歪みを付与し、破断歪みを変えることができる。その際、引張する長さを変えることにより、容易に破断歪みを調節することができる。
導電体20の破断歪みは、補強線13の破断歪みよりも小さくなるように構成する。
例えば、補強線13としてアラミド繊維を用いた場合、破断歪みは4.5%以下となる。
導電体20としてアルミ線を用いる場合、破断歪みは38%程度であるため、上記の破断歪みの変更方法により、破断歪みが3%以下となるように調節する。
In addition, before the conductor 20 is integrated with the geogrid body 14, the strain can be applied by applying tension in advance to change the breaking strain. At that time, the breaking strain can be easily adjusted by changing the pulling length.
The breaking strain of the conductor 20 is configured to be smaller than the breaking strain of the reinforcing wire 13.
For example, when an aramid fiber is used as the reinforcing wire 13, the breaking strain is 4.5% or less.
When an aluminum wire is used as the conductor 20, since the breaking strain is about 38%, the breaking strain is adjusted to 3% or less by the above-described method for changing the breaking strain.

(4)歪みの検出
導電体20はジオグリッド本体14と一体となるので、ジオグリッド本体14に作用する歪みが、そのまま導電体20に作用する。作用する歪みが導電体20の破断歪みより大きければ、導電体20は破断する。
そこで、導電体20に電流を流して破断状態を調べ、破断した導電体20の破断歪みを確認することで、ジオグリッド本体14に作用した歪みの大きさが分かり、健全性を確認することができる。
導電体20の破断は、破断検出装置23で検知する。破断検出装置23は導電体20が通電するかどうかを確認するだけのものでよいため、取り扱いが容易で、簡易な、導通試験器等の装置で検知することができる。
また、導電体20の破断歪みは、補強線13の破断歪みよりも小さいため、補強線13よりも導電体20の方が先に破断する。
これにより、ジオグリッド本体14が破断する前に、導電体20の破断を検知することができる。
(4) Detection of strain Since the conductor 20 is integrated with the geogrid body 14, the strain acting on the geogrid body 14 acts on the conductor 20 as it is. If the acting strain is larger than the breaking strain of the conductor 20, the conductor 20 breaks.
Therefore, by checking the rupture state by flowing current through the conductor 20 and confirming the rupture strain of the ruptured conductor 20, the magnitude of the strain acting on the geogrid main body 14 can be understood and the soundness can be confirmed. it can.
The breakage of the conductor 20 is detected by the breakage detector 23. Since the break detection device 23 only needs to confirm whether or not the conductor 20 is energized, it is easy to handle and can be detected by a simple device such as a continuity tester.
Further, since the breaking strain of the conductor 20 is smaller than the breaking strain of the reinforcing wire 13, the conductor 20 breaks earlier than the reinforcing wire 13.
Thereby, before the geogrid main body 14 breaks, the breakage of the conductor 20 can be detected.

また、歪み検出機能付きジオグリッド10には図4に示すように、破断歪みが異なるように調節した複数本の導電体20a、20bを配置することができる。
破断歪みの異なる導電体20a、20bを配置することにより、検知できる歪みに幅を持たせることができ、歪み検出機能付きジオグリッド10の健全度をより詳細に把握することができる。
並列する2本の導電体20a、20bを、一方の端部で連続部22a、22bを設けて、導電するように連続させる。これにより、もう一方の端部で通電の確認を行うことができる。
In addition, as shown in FIG. 4, a plurality of conductors 20 a and 20 b adjusted to have different breaking strains can be arranged in the geogrid 10 with a strain detection function.
By arranging the conductors 20a and 20b having different breaking strains, it is possible to give a wide range to the detectable strains and to grasp the soundness of the geogrid 10 with the strain detection function in more detail.
Two conductors 20a and 20b arranged in parallel are provided so as to be continuous by providing continuous portions 22a and 22b at one end. Thereby, energization can be checked at the other end.

(5)使用方法の一例
歪み検出機能付きジオグリッド10を補強材として、土木構造物である盛土30に敷設させた状態を図5に示す。
土がジオグリッド本体14の格子の間隔に入り、土を拘束して土の滑りを抑えると共に、土の移動により格子に引張力や収縮力が働く。その結果、ジオグリッド内部の導電体20に歪みが生じ、歪みが導電体20の破断歪みより大きくなると、導電体20に破断が生じる。
そこで、その導電体20の破断を検知することにより、盛土30の歪みを検出することができる。
また、歪み検出機能付きジオグリッド10を盛土30に層状に配置することにより、盛土30全体の歪みを観測することができる。
(5) An example of usage method The state laid in the embankment 30 which is a civil engineering structure by using the geogrid 10 with a strain detection function as a reinforcing material is shown in FIG.
The soil enters the grid interval of the geogrid body 14, restrains the soil and suppresses the slip of the soil, and tensile force and contraction force act on the lattice by the movement of the soil. As a result, the conductor 20 inside the geogrid is distorted, and when the strain is larger than the rupture strain of the conductor 20, the conductor 20 is ruptured.
Therefore, the distortion of the embankment 30 can be detected by detecting the breakage of the conductor 20.
Moreover, the distortion of the whole embankment 30 can be observed by arrange | positioning the geogrid 10 with a distortion detection function in the embankment 30 in layers.

歪み観測は、破断検出装置23により常時通電状態を確認してもよいし、必要時のみ確認してもよい。破断検出装置23は簡易なものであるため、必要時に、迅速に、容易に破断検知ができる。   Strain observation may be performed by confirming the energized state with the rupture detection device 23 or only when necessary. Since the breakage detection device 23 is simple, breakage can be detected quickly and easily when necessary.

また、歪み検出機能付きジオグリッド10は、盛土補強材として盛土の歪みを検出できる他に、補強材、排水材、土木シート、フィルタ、遮水シートなどの土木用材料として使用することにより、これらの本来の機能と共に、歪みを検出する目的としても使用することができる。   Moreover, the geogrid 10 with a strain detection function can detect the distortion of the embankment as an embankment reinforcing material, and can be used as a civil engineering material such as a reinforcing material, a drainage material, a civil engineering sheet, a filter, and a water shielding sheet. It can be used for the purpose of detecting distortion together with the original function.

本発明の実施例2は、歪み検出機能付きジオテキスタイルに関するものである。
図6に示すように、ポリエステル繊維等からなる横材41及び縦材42を編みこんでジオテキスタイル本体43を構成する際に、導電体20を編み込んで一体に形成したものである。
編みこむことによりジオテキスタイル本体43と導電体20との一体性が高まり、ジオテキスタイル本体の変位に対する導電体20の追従性が向上する。
Embodiment 2 of the present invention relates to a geotextile with a distortion detection function.
As shown in FIG. 6, when the geotextile main body 43 is formed by weaving a cross member 41 and a vertical member 42 made of polyester fiber or the like, the conductor 20 is knitted and formed integrally.
By knitting, the integrity of the geotextile body 43 and the conductor 20 is increased, and the followability of the conductor 20 with respect to the displacement of the geotextile body is improved.

導電体20をジオテキスタイル本体43と一体化する前に、予め引張して歪みを付与し、破断歪みを変えることができる。その際、引張する長さを変えることにより、容易に破断歪みを調節することができる。
ポリエステル繊維の破断歪みは20〜40%であるため、導電体20の破断歪みが20%以下の範囲となるものを複数本編みこむことで、検知できる歪みに幅を持たせることができ、歪み検出機能付きジオテキスタイル40の健全度をより詳細に把握することができる。
Before the conductor 20 is integrated with the geotextile main body 43, the strain can be applied by applying tension in advance to change the breaking strain. At that time, the breaking strain can be easily adjusted by changing the pulling length.
Since the breaking strain of the polyester fiber is 20 to 40%, it is possible to increase the width of the detectable strain by weaving a plurality of conductors 20 having a breaking strain of 20% or less. The soundness of the geotextile 40 with functions can be grasped in more detail.

また、歪み検出機能付きジオテキスタイル40とすることにより、上述の歪み検出機能付きジオグリッド10のように盛土補強材として盛土の歪みを検出できる他に、補強材、排水材、土木シート、フィルタ、遮水シートなどの土木用材料のジオテキスタイルに使用でき、これらの本来の機能と共に、歪みを検出する目的としても使用することができる。   Further, by using the geotextile 40 with strain detection function, it is possible to detect the distortion of the embankment as the embankment reinforcing material like the above-described geogrid 10 with the strain detection function, as well as the reinforcing material, drainage material, civil engineering sheet, filter, shielding. It can be used for geotextiles of civil engineering materials such as water sheets, and can be used for the purpose of detecting distortion along with their original functions.

歪み検出機能付きジオグリッドの説明図Illustration of Geogrid with strain detection function ジオグリッド本体の横断断面図Cross section of geogrid body 凹部の形状の説明図Illustration of the shape of the recess 歪み検出機能付きジオグリッドの一部拡大図Partial enlarged view of geogrid with strain detection function 歪み検出機能付きジオグリッドを盛土変位の計測用途に適用した説明図。Explanatory drawing which applied geogrid with a distortion detection function to the measurement use of embankment displacement. 歪み検出機能付きジオテキスタイルの説明図Illustration of geotextile with strain detection function

符号の説明Explanation of symbols

10 歪み検出機能付きジオグリッド
11 横材
12 縦材
13 補強線
14 ジオグリッド本体
20 導電体
21 凹部
22 連続部
23 破断検出装置
30 盛土
40 歪み検出機能付きジオテキスタイル
41 横材
42 縦材
43 ジオテキスタイル本体
DESCRIPTION OF SYMBOLS 10 Geogrid with strain detection function 11 Cross member 12 Vertical member 13 Reinforcement line 14 Geogrid body 20 Conductor 21 Recess 22 Continuous part 23 Break detection device 30 Embankment 40 Geotextile with strain detection function 41 Cross member 42 Vertical member 43 Geotextile body

Claims (6)

縦材と横材とを格子状に形成した、ジオテキスタイル又はジオグリッドであって、
前記縦材又は前記横材に沿って補強線を配置し、
該補強線の一本又は複数本を、破断歪みを調節可能な導電線とすることを特徴とする、
歪み検出機能付きジオテキスタイル又はジオグリッド。
A geotextile or geogrid in which vertical and cross members are formed in a grid,
A reinforcing wire is arranged along the vertical member or the cross member,
One or more of the reinforcing wires are conductive wires capable of adjusting the breaking strain,
Geotextile or geogrid with strain detection function.
縦材と横材とを格子状に形成した、ジオテキスタイル又はジオグリッドであって、
前記縦材又は前記横材の内部に補強線を配置し、
前記縦材又は前記横材内であって、前記補強線と略平行に、破断歪みを調節可能な導電線を配置することを特徴とする、
歪み検出機能付きジオテキスタイル又はジオグリッド。
A geotextile or geogrid in which vertical and cross members are formed in a grid,
A reinforcing wire is disposed inside the longitudinal member or the transverse member,
In the longitudinal member or the transverse member, a conductive wire capable of adjusting the breaking strain is disposed substantially parallel to the reinforcing wire,
Geotextile or geogrid with strain detection function.
請求項1又は請求項2に記載のジオテキスタイル又はジオグリッドにおいて、前記導電体を複数本配置し、並列する2本の前記導電体の一方の端部を連続させたことを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッド。   The geotextile or geogrid according to claim 1 or 2, wherein a plurality of the conductors are arranged, and one end of the two conductors arranged in parallel is made continuous. Functional geotextile or geogrid. 請求項3に記載のジオテキスタイル又はジオグリッドにおいて、前記複数本の導電体は、予め破断歪みを調節し、前記ジオテキスタイル又はジオグリッドと一体としたことを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッド。   4. The geotextile or geogrid according to claim 3, wherein the plurality of conductors are adjusted in advance to break strain and integrated with the geotextile or geogrid. . 請求項3に記載のジオテキスタイル又はジオグリッドにおいて、前記複数本の導電体の外周面に凹部を所定間隔で形成し、前記凹部の断面形状及び断面積により破断歪みが異なることを特徴とする、歪み検出機能付きジオテキスタイル又はジオグリッド。   The geotextile or geogrid according to claim 3, wherein recesses are formed at predetermined intervals on the outer peripheral surface of the plurality of conductors, and the fracture strain differs depending on the cross-sectional shape and cross-sectional area of the recesses. Geotextile or geogrid with detection function. 請求項4又は請求項5に記載の歪み検出機能付きジオテキスタイル又はジオグリッドを土木構造物内部に敷設し、前記複数本の導電体の破断を検出することにより、前記ジオテキスタイル又はジオグリッド及び前記土木構造物の健全性を検知することを特徴とする、破断歪み検知システム。   The geotextile or geogrid and the civil engineering structure according to claim 4 or 5, wherein the geotextile or geogrid with a strain detection function is laid in a civil engineering structure and the breakage of the plurality of conductors is detected. A fracture strain detection system characterized by detecting the soundness of an object.
JP2006301453A 2006-11-07 2006-11-07 Geotextile/geogrid with distortion detecting function, and distortion detecting system Pending JP2008115643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301453A JP2008115643A (en) 2006-11-07 2006-11-07 Geotextile/geogrid with distortion detecting function, and distortion detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301453A JP2008115643A (en) 2006-11-07 2006-11-07 Geotextile/geogrid with distortion detecting function, and distortion detecting system

Publications (1)

Publication Number Publication Date
JP2008115643A true JP2008115643A (en) 2008-05-22

Family

ID=39501810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301453A Pending JP2008115643A (en) 2006-11-07 2006-11-07 Geotextile/geogrid with distortion detecting function, and distortion detecting system

Country Status (1)

Country Link
JP (1) JP2008115643A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187392B1 (en) 2012-01-10 2012-10-02 (주)에스엠테크텍스 A plastic matter of grid form having steel material and method for producing the same
JP2014519596A (en) * 2011-04-13 2014-08-14 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ Geosynthetic materials that can be used in sensors, manufacturing methods thereof, and uses thereof
CN108166547A (en) * 2018-01-30 2018-06-15 山东大学 Resistance value alertness grid settlement of foundation tests system and method
CN108317948A (en) * 2018-01-30 2018-07-24 山东大学 Resistance value alertness grid foundation displacement tests system and method
CN109459094A (en) * 2018-12-29 2019-03-12 山东大学 Grid displacement test system and method based on ten axle sensors
CN110258226A (en) * 2019-07-08 2019-09-20 深圳大学 The intelligent TGXG captured for road reinforcement, pavement monitoring, traffic information
JP2020084542A (en) * 2018-11-22 2020-06-04 太平洋セメント株式会社 Safety evaluation method for soil retaining structure and corrosion sensor
JP2021116601A (en) * 2020-01-27 2021-08-10 前田工繊株式会社 Soil moisture measurement sensor and capacitance type moisture meter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595803A (en) * 1979-01-17 1980-07-21 Eijiro Hirose Manufacture of distortion alarm and distortion detection electrode
JPH01127715A (en) * 1987-11-11 1989-05-19 Kuraray Co Ltd Sheet for civil and building construction work control and managing method therewith
JPH1130571A (en) * 1997-07-11 1999-02-02 Shimizu Corp Soundness judging device for structure
JP2000055748A (en) * 1998-08-03 2000-02-25 Yoshihiro Sugimura Sensor for monitoring soundness of structural member
JP2002023030A (en) * 2000-06-30 2002-01-23 Hitachi Cable Ltd Production method for optical cable for sensing distortion
JP2002122414A (en) * 2000-10-13 2002-04-26 Maeda Kosen Co Ltd Sheet body for detecting strain and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595803A (en) * 1979-01-17 1980-07-21 Eijiro Hirose Manufacture of distortion alarm and distortion detection electrode
JPH01127715A (en) * 1987-11-11 1989-05-19 Kuraray Co Ltd Sheet for civil and building construction work control and managing method therewith
JPH1130571A (en) * 1997-07-11 1999-02-02 Shimizu Corp Soundness judging device for structure
JP2000055748A (en) * 1998-08-03 2000-02-25 Yoshihiro Sugimura Sensor for monitoring soundness of structural member
JP2002023030A (en) * 2000-06-30 2002-01-23 Hitachi Cable Ltd Production method for optical cable for sensing distortion
JP2002122414A (en) * 2000-10-13 2002-04-26 Maeda Kosen Co Ltd Sheet body for detecting strain and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519596A (en) * 2011-04-13 2014-08-14 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ Geosynthetic materials that can be used in sensors, manufacturing methods thereof, and uses thereof
KR101187392B1 (en) 2012-01-10 2012-10-02 (주)에스엠테크텍스 A plastic matter of grid form having steel material and method for producing the same
CN108166547A (en) * 2018-01-30 2018-06-15 山东大学 Resistance value alertness grid settlement of foundation tests system and method
CN108317948A (en) * 2018-01-30 2018-07-24 山东大学 Resistance value alertness grid foundation displacement tests system and method
JP2020084542A (en) * 2018-11-22 2020-06-04 太平洋セメント株式会社 Safety evaluation method for soil retaining structure and corrosion sensor
JP7212881B2 (en) 2018-11-22 2023-01-26 太平洋セメント株式会社 Safety evaluation method and corrosion sensor for earth retaining structures
CN109459094A (en) * 2018-12-29 2019-03-12 山东大学 Grid displacement test system and method based on ten axle sensors
CN109459094B (en) * 2018-12-29 2023-11-21 山东大学 Grating displacement testing system and method based on ten-axis sensor
CN110258226A (en) * 2019-07-08 2019-09-20 深圳大学 The intelligent TGXG captured for road reinforcement, pavement monitoring, traffic information
JP2021116601A (en) * 2020-01-27 2021-08-10 前田工繊株式会社 Soil moisture measurement sensor and capacitance type moisture meter
JP7376375B2 (en) 2020-01-27 2023-11-08 前田工繊株式会社 Soil moisture measurement sensor and capacitive moisture meter

Similar Documents

Publication Publication Date Title
JP2008115643A (en) Geotextile/geogrid with distortion detecting function, and distortion detecting system
EP1857595B1 (en) Use of a multi-functional, sensor-based geo textile system for dyke improvement, spatial expansion of dyke monitoring for identification of dangers in case of flood
CN102640232B (en) Have bend sensor cable and for detecting bending surveillance at least one cable and method
JP2008175562A (en) Strain measuring system
US9097562B2 (en) Flexible strip comprising at least one optical fibre for carrying out deformation and/or temperature measurements
CN105696633A (en) Monitoring system and monitoring method for support effect of slide-resistant piles
CN103292721B (en) A kind of fiber grating wide range strain transducer of monitoring prestress steel twist line strain
TW200829900A (en) A device, a system, and a method for detecting and locating malfunction in a hydralic work, and also a hydraulic work fitted with the device
CN106471302B (en) Flexible pipe body and forming method thereof, line equipment and forming method thereof and method for incuding flexible pipe body shape
KR100978383B1 (en) Landfill site monitoring system using optical fiber sensor
CN111936251B (en) Sensor-mounted metal mesh
CN110319862A (en) A kind of helical structure device for distributing optical fiber sensing in civil engineering
CN110714489A (en) Distributed optical fiber sensing monitoring system for horizontal displacement of foundation pit and periphery
AU2004318809A1 (en) Method for locating and measuring deformations in a work of civil engineering
JP2009293325A (en) Apparatus for confirming condition of anchoring function
CN110285769A (en) A kind of scale expansion device for distributive fiber optic strain sensing
JP5761686B2 (en) PC cable breakage detection method for PC structures
JP4105123B2 (en) Structure displacement / deformation detection system using optical fiber sensor
JP3602401B2 (en) A method for detecting a state change of a structure using an optical fiber sensor
JP4792129B1 (en) Earth and sand disaster detection system
JPH11326149A (en) Method for verifying development of damage after reinforcement of concrete structure
JP3725513B2 (en) Structure displacement / deformation detector using optical fiber cable
JP3528083B2 (en) Planar body for detecting distortion and method of manufacturing the same
EP2791714B1 (en) Detection and/or surveillance device for optically invisible objects
JP2006317461A (en) Optical distortion sensor and bank monitoring system using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918