JP2008112773A - 太陽電池パネルの製造方法及びシリコン薄膜の形成方法 - Google Patents

太陽電池パネルの製造方法及びシリコン薄膜の形成方法 Download PDF

Info

Publication number
JP2008112773A
JP2008112773A JP2006293508A JP2006293508A JP2008112773A JP 2008112773 A JP2008112773 A JP 2008112773A JP 2006293508 A JP2006293508 A JP 2006293508A JP 2006293508 A JP2006293508 A JP 2006293508A JP 2008112773 A JP2008112773 A JP 2008112773A
Authority
JP
Japan
Prior art keywords
thin film
silicon thin
amorphous silicon
film
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006293508A
Other languages
English (en)
Inventor
Takashi Noguchi
隆 野口
Yasumasa Suzuki
康眞 鈴木
Katsuhiko Fukusato
克彦 福里
Satoshi Shigegaki
聡 茂垣
Kazumune Sakano
一宗 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seika Sangyo Co Ltd
University of the Ryukyus NUC
Original Assignee
Seika Sangyo Co Ltd
University of the Ryukyus NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seika Sangyo Co Ltd, University of the Ryukyus NUC filed Critical Seika Sangyo Co Ltd
Priority to JP2006293508A priority Critical patent/JP2008112773A/ja
Publication of JP2008112773A publication Critical patent/JP2008112773A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】低コスト、高発電効率、軽量であって一般家庭用途への適用が容易であり、しかもパネルの基材に樹脂材料を使用することもできる太陽電池パネルの製造方法及び薄膜シリコンの製造方法を提供すること。
【解決手段】この太陽電池パネルの製造方法は、基材2上にバッファ層3を形成する工程と、バッファ層3上に第1非晶質膜4を製膜する工程と、第1非晶質膜4に第1の正イオン5をドーピングする工程と、第1非晶質膜4をレーザアニールする工程と、第1非晶質膜4上に第2非晶質膜7を製膜する工程と、第2非晶質膜7をレーザアニールする工程と、第2非晶質膜7上に第3非晶質膜8を製膜する工程と、第3非晶質膜8に第2の正イオンを9ドーピングする工程と、第3非晶質膜8をレーザアニールする工程とを有している。
【選択図】図10

Description

本発明は、太陽電池パネルの製造方法及びシリコン薄膜の形成方法に係り、特にアモルファスシリコン薄膜に対してレーザ処理を行うことにより、高効率かつ低コストに太陽電池パネルを製造する製造方法等に関する。
近年、地球温暖化・砂漠化・化石燃料の枯渇等に対する懸念が世界的に問題となっている。そのため、クリーンエネルギーの開発と利用が全人類的な緊急課題とされている。クリーンエネルギーの代表的なものとして、例えば、風力発電・燃料電池・バイオマス発電・太陽光発電等が考えられている。
中でも、太陽光発電は、太陽光という無尽蔵かつクリーンで安定したエネルギー源を利用するものであり、家庭用分野、産業用分野において有効なクリーンエネルギーとして期待が高まっている。
太陽光発電は、太陽光を太陽電池パネルに照射することにより、その光エネルギーを電気エネルギーに変換するものである。太陽電池パネルの材料としてはシリコン(Si)が用いられることが多く、一般に、結晶型シリコン(c−Si)と非結晶型シリコン(a−Si)とに大別される。結晶型シリコンは、さらに単結晶型シリコンと多結晶型シリコンとに分類される。また、非結晶型シリコンはアモルファスシリコンとも呼ばれる。
単結晶型シリコンは、シリコン原子が結晶構造を有し、かつその面方位が一様なシリコン材料である。単結晶型シリコンは、高純度単結晶シリコンインゴット(バルク)をスライスして得られる材料であり、発電効率は一般に20%前後と高い。しかし、材料コストが非常に高価であり一般用途に用いるのが難しく、軍事用途や宇宙用途として用いられることが多い。また、スライスによってパネルを形成するため、シリコン厚さが数100μm程度と厚くなり、それに伴ってパネル全体の重量も重くなってしまうという問題を有している。
多結晶型シリコンは、単結晶型と同様にシリコン原子が結晶構造を有しているが、その各結晶粒表面の面方位が一様でない(多様な)シリコン材料である。この多結晶型シリコンには、シリコンインゴット(バルク)から得られるものと薄膜形成により得られるものとがある。バルクから得られるもの(バルク多結晶型シリコン)は、単結晶シリコンよりも低コストではあるが、発電効率も低い(15%前後)。
このバルク多結晶型シリコンは、単結晶型シリコンに用いられる高純度単結晶シリコンインゴットの両端部分、すなわち面方位が一様とならず単結晶材料の特性を満足しない部分を再度溶融冷却し、それをスライスして得られる。シリコンインゴットのうち、通常は廃棄される部分、すなわち単結晶型シリコン太陽電池材料や半導体材料として使用不可能な特性未達部分を使用するので、材料コストとしては比較的安価である。しかし、近年のシリコン材料形成技術・半導体製造効率向上に伴い、特性不良部分が少なくなってきており、バルク多結晶型シリコンの材料の確保が困難になってきているという問題がある。
一方、薄膜形成により得られるもの(薄膜多結晶型シリコン)は、バルク型多結晶型シリコンよりもさらに低コストであるが、発電効率もさらに低くなってしまう(10%前後)。薄膜多結晶型シリコンは、ガラス等の基材の表面にCVD(Chemical Vapor Deposition)等の薄膜形成技術によって薄膜シリコンが形成されたものである。形成された薄膜シリコンは非結晶質であるので、この薄膜シリコンに700℃程度のアニーリング(熱処理)を行うことにより、多結晶化する。
薄膜多結晶型シリコンでは、薄膜形成技術により形成されたサブミクロン〜数μmの厚さのシリコン薄膜を使用するので、太陽電池パネルを薄く軽く形成することができるという利点がある。一方で、高温でのアニーリングが必要となり、パネルの基材には、耐熱性の高い、一般的に高価なガラス等の材料しか使えないという問題もある。
アモルファスシリコンは、基材表面に薄膜形成技術によりアモルファス薄膜シリコンが形成されたものである。すなわち、上記の薄膜多結晶型シリコンにおいて、アニーリング処理前の状態のものがアモルファスシリコンである。
アモルファスシリコンは、薄膜シリコンであるので、パネルを薄く軽く形成することが可能である。また、材料にシリコンインゴットを使用する必要がなく、アニーリング処理も必要がないことから、薄膜多結晶型シリコンよりもさらに安価に製造することが可能である。材料確保についても心配する必要がない。
しかし、シリコンが非結晶型であることから、発電効率は多結晶型のものよりさらに低くなってしまうという問題がある(8%前後)。また、非結晶のアモルファスを安定化するためにはSi分子の未結合手に水素(H)分子を結合させる必要があり、一般にモノシランガス(SiH)を用いたPlasmaCVDにより薄膜形成を行う。
なお、太陽電池パネルの材料に単結晶型シリコンを用いたものとして、例えば特許文献1に記載のもの、多結晶型シリコンを用いたものとして、例えば特許文献2,3に記載のもの、アモルファスシリコンを用いたものとして、例えば特許文献4に記載のものがある。
特開2002−076382号公報 特開2006−210395号公報 特開2006−100339号公報 特開2002−124689号公報
上記のように、太陽電池パネルのシリコン材料としては多様な形態が存在し、単結晶型、バルク多結晶型、薄膜多結晶型、アモルファスの順に低コストかつ低効率となる。つまり、単結晶型のものを用いると、高効率であるがコストが非常に高くなってしまい、一方、アモルファスのものを用いると、低コストであるが発電効率が低くなってしまうという問題がある。
さらに、バルク材の単結晶型・多結晶型のものは、シリコンパネルが厚く、重量も重いという問題があり、一方、薄膜による多結晶型・アモルファス型のものは、薄く軽く形成することができるものの、基材に耐熱性の高いガラス等の材料を使用する必要があり、結果としてガラス重量のため太陽電池パネル全体の重量はやはり重いものとなってしまう。
本発明は上記の事情に鑑みて為されたもので、低コスト、高発電効率、軽量であって一般家庭用途への適用が容易であり、しかもパネルの基材に樹脂材料を使用することもできる太陽電池パネルの製造方法及び薄膜シリコンの製造方法を提供することを例示的課題とする。
上記の課題を解決するために、本発明の例示的側面としての太陽電池パネルの製造方法は、基材上にバッファ層を形成する工程と、バッファ層上に第1の非晶質シリコン薄膜を製膜する工程と、第1の非晶質シリコン薄膜に第1の正イオンをドーピングする工程と、第1の非晶質シリコン薄膜をレーザアニールする工程と、第1の非晶質シリコン薄膜上に第2の非晶質シリコン薄膜を製膜する工程と、第2の非晶質シリコン薄膜をレーザアニールする工程と、第2の非晶質シリコン薄膜上に第3の非晶質シリコン薄膜を製膜する工程と、第3の非晶質シリコン薄膜に第2の正イオンをドーピングする工程と、第3の非晶質シリコン薄膜をレーザアニールする工程と、を有することを特徴とする。
その基材が、樹脂であってもよい。また、第1及び第3の非晶質シリコン薄膜の膜厚が、ともに30nm以下であってもよい。
第2の非晶質シリコン薄膜を製膜する工程と、第2の非晶質シリコン薄膜をレーザアニールする工程とを、交互に繰り返す工程をさらに有してもよい。
1回の製膜工程において製膜される第2の非晶質シリコン薄膜の膜厚が200nm以上500nm以下であって、繰り返し工程の繰り返し数が4以上であってもよい。
第1、第2及び第3の非晶質シリコン薄膜をスパッタリングにより製膜してもよい。
第1の正イオンが、砒素イオン又は燐イオンであってもよいし、第2の正イオンが、臭素イオンであってもよい。
第1の非晶質シリコン薄膜を波長308nmのエキシマレーザによりレーザアニールしてもよいし、第2の非晶質シリコン薄膜を波長532nmのYAGレーザによりレーザアニールしてもよい。
第3の非晶質シリコン薄膜上に金属層を形成する工程をさらに有してもよい。
本発明の他の例示的側面としてのシリコン薄膜の形成方法は、製膜された第1の非晶質シリコン薄膜に第1の正イオンをドーピングする工程と、第1の非晶質シリコン薄膜をレーザアニールする工程と、第1の非晶質シリコン薄膜上に第2の非晶質シリコン薄膜を製膜する工程と、第2の非晶質シリコン薄膜をレーザアニールする工程と、第2の非晶質シリコン薄膜上に第3の非晶質シリコン薄膜を製膜する工程と、第3の非晶質シリコン薄膜に第2の正イオンをドーピングする工程と、第3の非晶質シリコン薄膜をレーザアニールする工程と、を有することを特徴とする。
本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施の形態によって明らかにされるであろう。
本発明によれば、シリコン薄膜の製膜によって太陽電池パネルを製造するので、太陽電池パネルを薄く軽いものとすることができる。高温でのアニーリングを必要としないので、基材に高い耐熱性が必要なく、例えば樹脂を基材として用いることができる。その結果、さらに一層パネルを軽いものとすることができる。
シリコン薄膜の製膜によって太陽電池パネルを製造することから、材料にシリコンインゴットを使用する必要がない。したがって、パネルを低コストに製造することができ、しかも材料確保の心配もない。
製膜された非晶質シリコン薄膜をレーザアニールすることにより、薄膜中のシリコンを結晶化(疑似単結晶化)することができる。したがって、非晶質シリコン薄膜による太陽電池パネルに比較して非常に高い発電効率を得ることができる。その結果、薄く、軽く、低コストで、かつ高発電効率の太陽電池パネルとすることができる。
そのレーザアニール工程において、第2の非晶質シリコン薄膜を波長532nmのYAGレーザでアニールすれば、膜厚200nm〜500nmの深層部分にまでアニールすることができ、膜厚方向の全域に亘って疑似単結晶化させることができる。
[実施の形態]
以下、本発明の実施の形態に係る太陽電池パネルの製造方法について、図面を用いて説明する。なお、この太陽電池パネルの製造方法を10段階に分類し、各々図1〜図10に示して説明する。
図1は、この太陽電池パネル1(図9参照。)の製造方法の第1段階を示す断面図であって、基材2上にバッファ層3を形成する工程を示している。基材2は、シリコン薄膜を形成する際の基板となる部材であって、例えばガラスが用いられる。しかしながら、基材2に高い耐熱性が要求されない場合は、樹脂を基材2として使用することができる。それにより、太陽電池パネル1を軽量化することができる。
本実施の形態においては、太陽光Sを基材2側(図中矢印X参照)から導入するため、基材2には透明材料を使用する。しかし、シリコン薄膜の形成順序を設計変更することにより、太陽光Sをシリコン薄膜側(図中矢印Y参照)から導入するように太陽電池パネル1を構成すれば、基材2には不透明材料を使用することも可能である。したがって、このような場合、基材2に不透明樹脂や金属板を用いることができる。
バッファ層3は、その上部に製膜されるシリコン薄膜と基材2とが直接接触しないようにするための絶縁層であり、基材2からシリコン薄膜へのコンタミネーションを防止する機能を有する。バッファ層3の材料としては、例えば二酸化ケイ素(SiO)が用いられ、スパッタリングやCVD等により基材2上に薄膜形成される。また、ITO(Indium Tin Oxide)等の透明電極をバッファ層3として使用してもよい。本実施の形態においては、太陽光Sを基材2側から導入するので、このバッファ層3も透明である必要がある。
図2は、太陽電池パネル1の製造方法の第2段階を示す断面図であって、バッファ層3上に第1の非晶質シリコン薄膜(以下、第1非晶質膜という。)4を製膜する工程を示している。第1非晶質膜はシリコンを材料とする薄膜であって、例えばモノシランガス(SiH)やジシランガス(Si)を用いたCVDやスパッタリングによって製膜される。第1非晶質膜4の膜厚としては30nm以下が望ましく、20nm程度がより望ましい。
この製膜工程によって製膜された第1非晶質膜4は、結晶構造を有さず非晶質(すなわちアモルファス)の構造を有している。CVDとしては、例えばPlasma CVD、Plasma Enhanced CVD、Thermal CVD(UHV CVDを含む。)等が用いられる。
ただし、CVDは、その方式によっては450℃〜800℃程度の高温環境下で製膜を行う必要があり、基材2に高い耐熱性が必要とされる場合がある。また、CVDの方式によってはSi分子の未結合手に結合した水素(H)分子を除去するための脱水素工程が必要となる。この脱水素工程においては、第1非晶質膜4を500℃程度の高温でアニールすることが必要であるため、やはり基材2に一定レベル(200度以上)の耐熱性が必要となる。
したがって、余り耐熱性の高くない樹脂等を基材2として用いる場合は、製膜にスパッタリングを用いる方が望ましい。スパッタリングにおいては、室温下での製膜が可能であり、また、高温のアニール工程も必要ない。したがって、基材2に耐熱性の低い材料を用いても問題がない。
ここで、スパッタリングに使用するスパッタガスにアルゴン(Ar)ガスを用いると、一般に、第1非晶質膜4中に一定量のArが取り込まれてしまい、後述するレーザアニール工程において第1非晶質膜4に表面荒れ等の損傷を与える可能性がある。したがって、スパッタガスとしては、キセノン(Xe)ガスを用いることが望ましい。Xeは、膜中に取り込まれるが、一般にその含有量は少ない。
図3は、太陽電池パネル1の製造方法の第3段階を示す断面図であって、第1非晶質膜4に第1の正イオン5をドーピングする工程を示している。この第1の正イオン5は、第1非晶質膜4中でドナーとして機能するイオンであり、例えば砒素イオン(As)や燐イオン(P)が用いられる。
イオンドーピングは、イオン注入機やイオンシャワーによって行われ、そのドープ条件は例えば、5keV、6e16/cmである。この第1の正イオン5のドーピングにより、第1非晶質膜4はN層としての機能を発揮する。
図4は、太陽電池パネル1の製造方法の第4段階を示す断面図であって、第1非晶質膜4をレーザアニールする工程を示している。図11は、そのレーザアニール工程を示す斜視図である。ここでは、レーザ光6の光源として、波長308nmのキセノンクロライド(XeCl)エキシマレーザを使用する。なお、この太陽電池パネル1の製造方法の第4段階については、参考文献1(特開平10−41234号公報)及び参考文献2(特開2001−93854号公報)においても紹介されている。
レーザアニール工程は、第1非晶質膜4をレーザによってアニールし、その非晶質を疑似単結晶化させるための工程である。そのため、第1非晶質膜4の表面に長方形スリット状に成形したレーザ光6をパルス照射させつつ、第1非晶質膜4とレーザ光6とを相対移動させ、第1非晶質膜4の表面全体にレーザ光6が照射されるようにする。
ライン上の細い形状の長方形状や正方形に近い形状の長方形状のビーム照射(例えば、20〜50nsの短パルス照射のものや150〜200nsの長パルス照射のもの)により形成することができる。例えば、ここではレーザ光6のビーム形状を、第1非晶質膜4上で縦400μm×横200mmの長方形スリット状とする。また各パルス照射の1回の照射時間を30nsとし、パルス照射ごとのオーバーラッピングを99%とする。
すなわち、第1非晶質膜4の表面上でレーザ光6が毎回パルス照射するように構成する。それにより、例えば、第1非晶質膜4の表面の任意の点は合計時間にして、30ns×100=3μsの照射を受けることとなる。(レーザーは、線状(実際は幅がある)の形でも矩形でもよく、走査シフトしてもしなくてもよいが、ここでは線状のビームの例を示す。)このレーザアニールによって、図12に示すように、第1非晶質膜4に、例えば(100)面の優先面方位を有する疑似単結晶の核7bが正方配列で形成される。この疑似単結晶の核7b部分は、他の非晶質(アモルファス)部分に比較して、非常に高い発電効率を示すものとなっている。核7bの大きさ及び配列ピッチは、アニール条件(レーザ光6の強度、照射時間、オーバーラッピング等)に基づいて設計することが可能であるが、詳細は省略する。核7bの優先面方位としては、(100)面を例として説明するが、もちろん(111)面や他の結晶面であってもよい。
ここで、疑似単結晶とは、例えば(100)面(もちろん(111)面等他の結晶面であってもよい。)の優先面方位を有する高品質の多結晶を含めての結晶化相である。非晶質膜が「疑似単結晶化される」とは、一定の大きさの疑似単結晶の核が規則的に配列された状態に揃うこともあり、野口により提唱されている、結晶相と従来の多結晶相との間に人工的に作られ存在する新しい(Quasi−Single−Crystalline Semiconductor)”準単結晶半導体相”(T. Noguchi, S. Usui, D.P. Gosain, Y. Ikeda, Mat. Res. Soc. Symp. Proceeding, vol.557, p.217 (2002).以下、参考文献という。)も含むが、ここでは、優先結晶面方位が(100)面で、一般的な溶融により得られる高品質の多結晶相「平均粒径>0.2μm」も擬似単結晶に含める。なお、上記の参考文献では、面方位は一般的に定義されている。
その疑似単結晶の核自体は、単結晶シリコンと同等又はそれに近い発電効率を達成可能であり、非晶質膜が疑似単結晶化されると、薄膜自体の発電特性が多結晶シリコンより優れたものとなる。
なお、図13に、レーザ光のエネルギー(横軸)とシリコンによるその吸収率(縦軸)との関係をXeClエキシマレーザとYAGレーザとで比較したグラフを示す。図中、実線は単結晶シリコンによる吸収、破線は多結晶シリコンによる吸収、一点鎖線は非晶質シリコンによる吸収を示している。
UV領域であるXeClエキシマレーザのエネルギーは可視光(緑)領域であるYAGレーザのエネルギーよりも高く、かつシリコンによる吸収率も高い。すなわち、XeClエキシマレーザは、膜厚の薄い薄膜を効率よくアニールするのに適している。このレーザアニール工程によって、レーザ光6の高いエネルギーが膜厚20nm程度の第1非晶質膜4において吸収され、効率よく疑似単結晶化を行うことができる。吸収率が高いので、アニールに伴う熱が基材2に影響することが殆どない。また、基材2が透明である場合にはレーザ光6を透過するので、より一層影響は少なくなる。
図5は、太陽電池パネル1の製造方法の第5段階を示す断面図であって、XeClエキシマレーザによるレーザアニール処理によって疑似単結晶化された第1非晶質膜4上に第2の非晶質シリコン薄膜(以下、第2非晶質膜という。)7を製膜する工程を示している。
第2非晶質膜7も第1非晶質膜4と同様にシリコンを材料とする薄膜であって、CVDやスパッタ等の製膜方法により製膜される。また、基材2に耐熱性の低い樹脂を用いる場合には、高温環境下でのCVDや脱水素工程を必要としないスパッタリングにより製膜することが望ましい点についても第1非晶質膜4と同様である。
なお、この製膜工程においては、膜厚が200nm以上500nm以下となるように第2非晶質膜7を製膜する。それにより、後述するように、積層の繰り返し回数をなるべく少なくして製造効率を高めつつ、YAGレーザでのレーザアニール工程において、第2非晶質膜7の表面部分から深層部分まで充分にアニールし、疑似単結晶化を行うことができる。
図6は、太陽電池パネル1の製造方法の第6段階を示す断面図であって、第2非晶質膜7をレーザアニールする工程を示している。ここでは、レーザ光6aの光源として、波長532nmのYAGレーザを使用する。
レーザアニール工程は、第2非晶質膜7をレーザによってアニールし、その非晶質を疑似単結晶化させるための工程である。そのため、第2非晶質膜7の表面に長方形スリット状に成形したレーザ光6aをパルス照射させつつ、第2非晶質膜7とレーザ光6aとを相対移動させ、第2非晶質膜7の表面全体にレーザ光6aが照射されるようにする。
例えば、レーザ光6aのビーム形状を、第2非晶質膜7上で縦40μm×横200mmの長方形スリット状とする。また各パルス照射の1回の照射時間を長くし、パルス照射ごとのオーバーラッピングを95%とする。この第2非晶質膜7上へのレーザ光6aの照射の様子は、図11に示すものと略同様であるので、図示は省略する。
このレーザアニールによって、第2非晶質膜7が疑似単結晶化する。具体的には、第1非晶質膜4中に形成された核7bからエピタキシーが生じ、その核7bから膜厚方向に向けて疑似単結晶が成長する。この核7b部分から膜厚方向に成長した疑似単結晶は、他の非晶質(アモルファス)部分に比較して、非常に高い発電効率を示すものとなっている。
第2非晶質膜7の膜厚は200nm以上500nm以下とされ、第1非晶質膜4の膜厚20nm程度に比べ厚いものとなっている。したがって、吸収率の高いXeClエキシマレーザを用いてレーザアニール工程を行うと、第2非晶質膜7の表面部分のみがアニールされ、その深層部分にまでアニールされない(図13参照)。その結果、深層部分が疑似単結晶化されず、核7bからのエピタキシーが生じない。
しかし、XeClエキシマレーザよりも吸収率の低いYAGレーザを用いてレーザアニール工程を行うことにより、第2非晶質膜7の表面部分のみですべてのレーザエネルギーが吸収されてしまうことなく、深層部分にまでレーザエネルギーが到達する。したがって、表面部分から深層部分までの膜厚方向全域に亘って、充分な疑似単結晶化を行うことができる。言い換えれば、YAGレーザによって深層部分にまで充分な疑似単結晶化を行うことができるので、第2非晶質膜7の1回の製膜厚さを200nm以上500nm以下と厚くすることができる。
この第5段階における第2非晶質膜7の製膜工程と、第6段階におけるYAGレーザによるレーザアニール工程とを交互に繰り返す(繰り返し工程)。すなわち、第1非晶質膜4上に第2非晶質膜7を製膜し、YAGレーザによるレーザアニールが完了した後に、再度その上に第2非晶質膜7を積層して製膜し、YAGレーザによるレーザアニール処理を行う。
積層した第2非晶質膜7をYAGレーザによってレーザアニールすると、その下層側の第2非晶質膜7が既に疑似単結晶化しているので、その下層側の第2非晶質膜7からのエピタキシーが生じる。したがって、積層した第2非晶質膜7においても膜厚方向に疑似単結晶が成長し、膜厚方向全域に亘って疑似単結晶化する。
このように、200nm以上500nm以下の膜厚の第2非晶質膜7を順次積層していき、最終的に、第2非晶質膜7の積層体が2μm程度の膜厚となるようにする。そのため、この繰り返し工程の繰り返し数は少なくとも4回以上となる。200nm以上500nm以下の膜厚の第2非晶質膜7を順次繰り返して積層することにより、YAGレーザにより膜厚方向全域に亘る疑似単結晶化を行いつつ、積層体全体としての厚さを大きく確保(2μm程度)することができる。また、その第2非晶質膜7の1回の製膜厚さを200nm以上500nm以下と厚くすることができるので、繰り返し回数を低減することができ、太陽電池パネル1の製造効率を向上させることができる。
なお、アモルファス薄膜太陽電池の場合に行われるのと同様に、この第2非晶質膜7の積層体に4属の元素をドーピングさせ(例えば、膜厚方向にそれぞれ異なる4属元素をドーピングさせ)、そのバンドギャップの値を制御して、より一層発電効率を向上させることができる。すなわち、積層体のうちの一部の第2非晶質膜7をシリコンとカーボンとの結合材料(SiC)とすることにより、太陽光エネルギーのうち主に紫外光成分を高効率に光電変換することができるようになる。さらに、積層体のうちの他の一部の第2非晶質膜7をシリコンとゲルマニウムとの結合材料(SiGe)とすることにより、太陽光エネルギーのうち主に赤外光成分を高効率に光電変換することができるようになる。
例えば、第1非晶質膜4に近い側の第2非晶質膜7をシリコンカーボン(SiC)とし、遠い側(すなわち、第3非晶質膜8に近い側)の第2非晶質膜7をシリコンゲルマニウム(SiGe)とすることにより、基材2側から導入される太陽光Sを紫外光成分から赤外光成分に至るまで非常に効率的に捕捉することができ、高い発電効率を得ることができる。
図7は、太陽電池パネル1の製造方法の第7段階を示す断面図であって、YAGレーザによるレーザアニール処理によって疑似単結晶化された第2非晶質膜7の積層体上に第3の非晶質シリコン薄膜(以下、第3非晶質膜という。)8を製膜する工程を示している。
第3非晶質膜8も第1非晶質膜4と同様にシリコンを材料とする薄膜であって、CVDやスパッタ等の製膜方法により製膜される。また、基材2に耐熱性の低い樹脂を用いる場合には、高温環境下でのCVDや脱水素工程を必要としないスパッタリングにより製膜することが望ましい点についても第1非晶質膜4と同様である。なお、この第3非晶質膜8は、第1非晶質膜4と同様に膜厚30nm以下であることが望ましく、20nm程度であることがより望ましい。
図8は、太陽電池パネル1の製造方法の第8段階を示す断面図であって、第3非晶質膜8に第2の正イオン9をドーピングする工程を示している。この第2の正イオン9は、第3非晶質膜8中でアクセプタとして機能するイオンであり、例えば臭素イオン(B)が用いられる。
イオンドーピングは、イオン注入機やイオンシャワーによって行われ、そのドープ条件は例えば、5keV、1e16/cmである。この第2の正イオン9のドーピングにより、第3非晶質膜8はP層としての機能を発揮する。
図9は、太陽電池パネル1の製造方法の第9段階を示す断面図であって、第3非晶質膜8をレーザアニールする工程を示している。ここでは、レーザ光6bの光源として、レーザ光6aと同様に波長532nmのYAGレーザを使用する。
レーザアニール工程は、第3非晶質膜8をレーザによってアニールし、その非晶質を疑似単結晶化させるための工程である。そのため、第3非晶質膜8の表面に長方形スリット状に成形したレーザ光6bをパルス照射させつつ、第3非晶質膜8とレーザ光6bとを相対移動させ、第3非晶質膜8の表面全体にレーザ光6bが照射されるようにする。ここで、レーザ光6bのビーム形状、パルス照射の1回の照射時間、パルス照射ごとのオーバーラッピング等については、第2非晶質膜7におけるレーザアニールの場合と略同様であるので、詳細は省略する。
このレーザアニールによって、第3非晶質膜8が疑似単結晶化する。具体的には、疑似単結晶化された第2非晶質膜7からのエピタキシーが生じ、第3非晶質膜8の膜厚方向に向けて疑似単結晶が成長する。この疑似単結晶は、他の非晶質(アモルファス)部分に比較して、非常に高い発電効率を示すものとなっている。
なお、第2非晶質膜7のレーザアニール工程においてYAGレーザを用いているので、この第3非晶質膜8のレーザアニール工程においてもYAGレーザを用いた方が、レーザを変更する必要がないので製造工程が簡単となる。しかし、第3非晶質膜8の膜厚は30nm以下であるので、もちろんXeClエキシマレーザによっても充分にアニール及び疑似単結晶化が可能である。
図10は、太陽電池パネル1の製造方法の第10段階(最終段階)を示す断面図であって、第3非晶質膜8上に金属層10を形成して太陽電池パネル1を構成する工程を示している。
この金属層10は、基材2側から導入された太陽光Sを反射するためのものである。第1、第2及び第3非晶質膜4,7,8を通過した太陽光Sを透過させたり吸収したりせずに反射させて、再び第3、第2及び第1非晶質膜8,7,4側へと通過させることにより、一層の発電効率の向上に寄与するものである。
金属層10としては、アルミニウムの他、様々な金属を用いることができるが、もちろん反射率が高い方が望ましい。この金属層10も、スパッタリングにより形成することが可能である。
以上、本発明の好ましい実施の形態を説明したが、本発明はこれらに限定されるものではなく、その要旨の範囲内で様々な変形や変更が可能である。
本発明の実施の形態に係る太陽電池パネルの製造方法の第1段階を示す断面図であって、基材上にバッファ層を形成する工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第2段階を示す断面図であって、バッファ層上に第1の非晶質シリコン薄膜を製膜する工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第3段階を示す断面図であって、第1の非晶質シリコン薄膜に第1の正イオンをドーピングする工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第4段階を示す断面図であって、第1の非晶質シリコン薄膜をレーザアニールする工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第5段階を示す断面図であって、第1の非晶質シリコン薄膜上に第2の非晶質シリコン薄膜を製膜する工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第6段階を示す断面図であって、第2の非晶質シリコン薄膜をレーザアニールする工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第7段階を示す断面図であって、第2の非晶質シリコン薄膜の積層体上に第3の非晶質シリコン薄膜を製膜する工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第8段階を示す断面図であって、第3の非晶質シリコン薄膜に第2の正イオンをドーピングする工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第9段階を示す断面図であって、第3の非晶質シリコン薄膜をレーザアニールする工程を示す図である。 本発明の実施の形態に係る太陽電池パネルの製造方法の第10段階を示す断面図であって、第3の非晶質シリコン薄膜上に金属層を形成する工程を示す図である。 図4のレーザアニール工程を示す斜視図である。 図4のレーザアニール工程によって、第1の非晶質シリコン薄膜に(100)面を例とする優先方位を有する疑似単結晶の核が正方配列で形成された様子を示す斜視図である。 レーザ光のエネルギー(横軸)とシリコンによるその吸収率(縦軸)との関係をXeClエキシマレーザとYAGレーザとで比較したグラフである。
符号の説明
X,Y:矢印
S:太陽光
1:太陽電池パネル
2:基材
3:バッファ層
4:第1の非晶質シリコン薄膜(第1非晶質膜)
5:第1の正イオン
6,6a,6b:レーザ光
7:第2の非晶質シリコン薄膜(第2非晶質膜)
7b:核
8:第3の非晶質シリコン薄膜(第3非晶質膜)
9:第2の正イオン
10:金属層

Claims (12)

  1. 基材上にバッファ層を形成する工程と、
    該バッファ層上に第1の非晶質シリコン薄膜を製膜する工程と、
    該第1の非晶質シリコン薄膜に第1の正イオンをドーピングする工程と、
    該第1の非晶質シリコン薄膜をレーザアニールする工程と、
    該第1の非晶質シリコン薄膜上に第2の非晶質シリコン薄膜を製膜する工程と、
    該第2の非晶質シリコン薄膜をレーザアニールする工程と、
    該第2の非晶質シリコン薄膜上に第3の非晶質シリコン薄膜を製膜する工程と、
    該第3の非晶質シリコン薄膜に第2の正イオンをドーピングする工程と、
    該第3の非晶質シリコン薄膜をレーザアニールする工程と、を有することを特徴とする太陽電池パネルの製造方法。
  2. 前記基材が、樹脂又はガラスであることを特徴とする請求項1に記載の太陽電池パネルの製造方法。
  3. 前記第1及び前記第3の非晶質シリコン薄膜の膜厚が、ともに30nm以下であることを特徴とする請求項1又は請求項2に記載の太陽電池パネルの製造方法。
  4. 前記第2の非晶質シリコン薄膜を製膜する工程と、前記第2の非晶質シリコン薄膜をレーザアニールする工程とを、交互に繰り返す工程をさらに有することを特徴とする請求項1から請求項3のうちいずれか1項に記載の太陽電池パネルの製造方法。
  5. 前記1回の製膜工程において製膜される前記第2の非晶質シリコン薄膜の膜厚が200nm以上500nm以下であって、前記繰り返し工程の繰り返し数が4以上であることを特徴とする請求項4に記載の太陽電池パネルの製造方法。
  6. 前記第1、前記第2及び前記第3の非晶質シリコン薄膜をスパッタリングにより製膜することを特徴とする請求項1から請求項5のうちいずれか1項に記載の太陽電池パネルの製造方法。
  7. 前記第1の正イオンが、砒素イオン又は燐イオンであることを特徴とする請求項1から請求項6のうちいずれか1項に記載の太陽電池パネルの製造方法。
  8. 前記第2の正イオンが、臭素イオンであることを特徴とする請求項1から請求項7のうちいずれか1項に記載の太陽電池パネルの製造方法。
  9. 前記第1の非晶質シリコン薄膜を波長308nmのエキシマレーザによりレーザアニールすることを特徴とする請求項1から請求項8のうちいずれか1項に記載の太陽電池パネルの製造方法。
  10. 前記第2の非晶質シリコン薄膜を波長532nmのYAGレーザによりレーザアニールすることを特徴とする請求項1から請求項9のうちいずれか1項に記載の太陽電池パネルの製造方法。
  11. 該第3の非晶質シリコン薄膜上に金属層を形成する工程をさらに有することを特徴とする請求項1から請求項10のうちいずれか1項に記載の太陽電池パネルの製造方法。
  12. 製膜された第1の非晶質シリコン薄膜に第1の正イオンをドーピングする工程と、
    該第1の非晶質シリコン薄膜をレーザアニールする工程と、
    該第1の非晶質シリコン薄膜上に第2の非晶質シリコン薄膜を製膜する工程と、
    該第2の非晶質シリコン薄膜をレーザアニールする工程と、
    該第2の非晶質シリコン薄膜上に第3の非晶質シリコン薄膜を製膜する工程と、
    該第3の非晶質シリコン薄膜に第2の正イオンをドーピングする工程と、
    該第3の非晶質シリコン薄膜をレーザアニールする工程と、を有することを特徴とするシリコン薄膜の形成方法。
JP2006293508A 2006-10-30 2006-10-30 太陽電池パネルの製造方法及びシリコン薄膜の形成方法 Pending JP2008112773A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006293508A JP2008112773A (ja) 2006-10-30 2006-10-30 太陽電池パネルの製造方法及びシリコン薄膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006293508A JP2008112773A (ja) 2006-10-30 2006-10-30 太陽電池パネルの製造方法及びシリコン薄膜の形成方法

Publications (1)

Publication Number Publication Date
JP2008112773A true JP2008112773A (ja) 2008-05-15

Family

ID=39445145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006293508A Pending JP2008112773A (ja) 2006-10-30 2006-10-30 太陽電池パネルの製造方法及びシリコン薄膜の形成方法

Country Status (1)

Country Link
JP (1) JP2008112773A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993919B2 (en) 2010-04-20 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Laser source and laser beam machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170772A (ja) * 2000-12-04 2002-06-14 Sharp Corp 結晶薄膜製造装置、結晶薄膜製造方法および結晶薄膜素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170772A (ja) * 2000-12-04 2002-06-14 Sharp Corp 結晶薄膜製造装置、結晶薄膜製造方法および結晶薄膜素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993919B2 (en) 2010-04-20 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Laser source and laser beam machine

Similar Documents

Publication Publication Date Title
US11145769B2 (en) Electrode formation for heterojunction solar cells
Catchpole et al. A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates
CN101567408B (zh) 光电转换装置的制造方法
JP2001267611A (ja) 薄膜太陽電池及びその製造方法
KR100659044B1 (ko) 산화아연 박막을 가지는 태양전지 및 그 제조 방법
Gabriel et al. Crystalline silicon on glass—interface passivation and absorber material quality
CN101836300A (zh) 太阳能电池的制造方法
US20120018733A1 (en) Thin Film Solar Cells And Other Devices, Systems And Methods Of Fabricating Same, And Products Produced By Processes Thereof
KR100681162B1 (ko) 반도체 장치 및 그 제조 방법
Gawlik et al. Multicrystalline silicon thin film solar cells on glass with epitaxially grown emitter prepared by a two‐step laser crystallization process
US20100229934A1 (en) Solar cell and method for the same
JP5282198B2 (ja) 多結晶シリコン薄膜の製造方法、多結晶シリコン薄膜基板および多結晶シリコン薄膜型太陽電池
JP4864077B2 (ja) 光電変換装置およびその製造方法
JP2008112773A (ja) 太陽電池パネルの製造方法及びシリコン薄膜の形成方法
JP2010267885A (ja) シリコン系薄膜光電変換装置とその製造方法
JP4441377B2 (ja) 光電変換装置およびその製造方法
TW201228002A (en) Manufacturing method of thin film solar cells and thin film solar cells thereof
JP2008283105A (ja) 太陽電池パネルの製造方法
JP4441298B2 (ja) 光電変換装置およびその製造方法
WO2013040264A1 (en) Zone melt recrystallization of thin films
JP2006073878A (ja) 光電変換装置およびその製造方法
CN102208481A (zh) 一种薄膜太阳能电池的制造方法
KR101789512B1 (ko) 탄화규소 태양전지 제작방법
JP4215694B2 (ja) 光電変換装置およびその製造方法
KR101233206B1 (ko) 버퍼층을 포함하는 실리콘 박막형 광기전력 변환소자 및 그제조방법

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830