JP2008111849A - Noncontact temperature sensor - Google Patents

Noncontact temperature sensor Download PDF

Info

Publication number
JP2008111849A
JP2008111849A JP2007328385A JP2007328385A JP2008111849A JP 2008111849 A JP2008111849 A JP 2008111849A JP 2007328385 A JP2007328385 A JP 2007328385A JP 2007328385 A JP2007328385 A JP 2007328385A JP 2008111849 A JP2008111849 A JP 2008111849A
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
space
holding body
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007328385A
Other languages
Japanese (ja)
Other versions
JP4415045B2 (en
Inventor
Jun Kamiyama
準 神山
Shinichi Saito
信一 斉藤
Toshiyuki Nojiri
俊幸 野尻
Kenichi Hiroe
健一 廣江
Shunichi Okada
俊一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Electronics Corp
Original Assignee
Ishizuka Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Electronics Corp filed Critical Ishizuka Electronics Corp
Priority to JP2007328385A priority Critical patent/JP4415045B2/en
Publication of JP2008111849A publication Critical patent/JP2008111849A/en
Application granted granted Critical
Publication of JP4415045B2 publication Critical patent/JP4415045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2039Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat with means for controlling the fixing temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control

Abstract

<P>PROBLEM TO BE SOLVED: To provide noncontact temperature sensor which accurately can detect skin temperature of sensing object and also accurately can measure it in a short time. <P>SOLUTION: This noncontact temperature sensor includes a support 21 which has light guiding section for guiding infrared radiation entered from aperture 21a; a resin film 23 arranged on other end aperture on the light guiding section of the above support 21; a lid member 29 with space area for preparing space behind the above resin film 23 formed to be mounted on the support 21; a heat-sensitive element 25 for infrared light detection which is arranged on the space area side of the resin film 23 to sense infrared radiation entered from aperture 21a; and heat-sensitive elements 26 and 27 for temperature compensation which are arranged on surfaces of or inside the support 21 other than inside the space of the space area to detect temperature of the support 21. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非接触温度センサに関し、詳しくは、複写機等の定着装置において、用紙上の未定着トナー像を定着されるために、定着装置の加熱定着ローラのような回転体の表面温度を非接触で検知する非接触温度センサに係わるものである。     The present invention relates to a non-contact temperature sensor, and more specifically, in order to fix an unfixed toner image on a sheet in a fixing device such as a copying machine, the surface temperature of a rotating body such as a heating fixing roller of the fixing device. The present invention relates to a non-contact temperature sensor that detects non-contact.

従来、複写機の加熱定着ローラの温度センサとしては、感熱素子をローラ表面に接触させて温度検出する接触型の温度センサが主として使用されている。この種の接触型温度センサは、加熱定着ローラの表面温度を正確に検知できる利点があるものの、感熱素子の接触部が一定圧で加熱定着ローラ表面に圧接されているために、接触部の部材や感熱素子によって加熱定着ローラ表面を傷つける欠点があった。   2. Description of the Related Art Conventionally, as a temperature sensor for a heat fixing roller of a copying machine, a contact type temperature sensor that detects a temperature by bringing a thermosensitive element into contact with the roller surface is mainly used. Although this type of contact-type temperature sensor has the advantage of being able to accurately detect the surface temperature of the heat-fixing roller, the contact portion of the heat-sensitive element is pressed against the surface of the heat-fixing roller at a constant pressure. In addition, there is a drawback that the surface of the heat fixing roller is damaged by the heat sensitive element.

また、接触型温度センサの接触部材は、長時間の使用に耐え得る耐磨耗性の高いものであって、かつ感熱素子を圧接するバネ材の圧力が加わるために一定厚み以上の材料を使用しなければならない。そのために、接触型温度センサの感熱素子部分の熱容量が大きくなり、所望の熱応答特性が得られない欠点がある。   In addition, the contact member of the contact-type temperature sensor has high wear resistance that can withstand long-term use, and the pressure of the spring material that presses the thermal element is applied, so a material with a certain thickness or more is used. Must. For this reason, the heat capacity of the thermal element portion of the contact-type temperature sensor increases, and there is a drawback that desired thermal response characteristics cannot be obtained.

このような欠点を解決する温度センサとして、非接触型の温度検出器がある。この種の従来例1としては、本出願人が、実願平3−27515号で開示した温度センサがある。この非接触温度検出器は、導電箔による二本のリード部を形成した電気絶縁性の耐熱基板と、この耐熱基板の二本のリード部間の小孔上に載置されて、二本のリード部間に接続された感熱素子と、少なくともこの感熱素子の部分および前記耐熱基板のリード部近傍が大きく開口されていて、その開口の下面に前記耐熱基板を取り付ける支持体と、前記支持体の前記開口部の上面に取り付けた支持体よりも熱容量の小さい薄膜状の遮蔽板とで構成したものである。この温度センサは、被検知体の温度を非接触で検知することができるとともに、センサの熱容量を低下させることができるので、熱応答性の優れた特性を得ることができる。   As a temperature sensor that solves such a drawback, there is a non-contact type temperature detector. As a conventional example 1 of this type, there is a temperature sensor disclosed by the present applicant in Japanese Patent Application No. 3-27515. This non-contact temperature detector is mounted on an electrically insulating heat-resistant substrate having two lead portions formed of conductive foil and a small hole between the two lead portions of the heat-resistant substrate. A heat-sensitive element connected between the lead parts, at least a part of the heat-sensitive element and a vicinity of the lead part of the heat-resistant substrate, and a support body for attaching the heat-resistant substrate to the lower surface of the opening; It is composed of a thin-film shielding plate having a smaller heat capacity than the support attached to the upper surface of the opening. Since this temperature sensor can detect the temperature of the object to be detected in a non-contact manner and can reduce the heat capacity of the sensor, it is possible to obtain characteristics with excellent thermal responsiveness.

従来例2としては、図13に示した非接触型温度センサがある。この温度センサは、円筒状の非接触型温度センサ本体10の先端に、フレンネルレンズからなる光学系3が設けられ、本体内にサーモパイルからなる赤外線検出器1と、赤外線検出器1の温度を計測する温度センサ2と、光学系3の温度を計測する温度センサ4とが備えられている。温度センサ2,4はポジスタが用いられている。   As a conventional example 2, there is a non-contact type temperature sensor shown in FIG. In this temperature sensor, an optical system 3 composed of a Fresnel lens is provided at the tip of a cylindrical non-contact temperature sensor body 10, and the temperature of the infrared detector 1 composed of a thermopile and the temperature of the infrared detector 1 is measured in the body. A temperature sensor 2 for measuring and a temperature sensor 4 for measuring the temperature of the optical system 3 are provided. The temperature sensors 2 and 4 are posistors.

図14は、図13の非接触型温度センサの信号処理回路を示している。赤外線検出器1からの出力は、極性切換部5を経て増幅部6で増幅され、二重積分回路からなるA/D変換部9でデジタル信号に変換され、その後、マイクロコンピュータ11で演算処理されている。温度センサ2,4には定電流源8から定電流が供給され、温度センサ2,4からの信号は、スイッチング部7で切り換えてA/D変換部9でデジタル信号に変換した後、マイクロコンピュータ11で演算処理されている。温度センサ2は、赤外線検出器1の温度を検出し、温度センサ4は光学系3の温度を検出している。これらの温度センサにより計測された温度差に基づいて、光学系に起因する誤差を補償する温度補償手段を備えた非接触型温度センサの信号処理回路である。
実開平4−122341号公報
FIG. 14 shows a signal processing circuit of the non-contact temperature sensor of FIG. The output from the infrared detector 1 is amplified by the amplification unit 6 via the polarity switching unit 5, converted into a digital signal by the A / D conversion unit 9 comprising a double integration circuit, and then processed by the microcomputer 11. ing. A constant current is supplied from the constant current source 8 to the temperature sensors 2 and 4, and signals from the temperature sensors 2 and 4 are switched by the switching unit 7 and converted into digital signals by the A / D conversion unit 9, and then the microcomputer 11 is processed. The temperature sensor 2 detects the temperature of the infrared detector 1, and the temperature sensor 4 detects the temperature of the optical system 3. It is a signal processing circuit of a non-contact type temperature sensor provided with temperature compensation means for compensating for an error caused by the optical system based on a temperature difference measured by these temperature sensors.
Japanese Utility Model Publication No. 4-122341

従来例1の非接触型温度センサは、複写機の加熱定着ローラに使用した場合、耐熱基板上の感熱素子の感熱面と、ローラ表面との距離を0.5mm程度に設定しなければ十分な感度が得られない欠点がある。このような距離設定は、極めて難しく、加熱定着ローラに近接して実装した場合、複写機の紙詰まりが発生した際に温度センサを壊すなどの問題があった。   The non-contact temperature sensor of Conventional Example 1 is sufficient if the distance between the heat-sensitive surface of the heat-sensitive element on the heat-resistant substrate and the roller surface is not set to about 0.5 mm when used in a heat fixing roller of a copying machine. There is a drawback that sensitivity cannot be obtained. Such distance setting is extremely difficult, and when mounted close to the heat fixing roller, there is a problem that the temperature sensor is broken when a paper jam occurs in the copying machine.

図13の従来例2の非接触型温度センサでは、赤外線入射面に光学系3が設けられており、加熱定着ローラに装着された場合、光学系3にトナーが付着し易い欠点があり、光学系3の表面にトナーが付着して汚染による赤外線透過量の変化が生じる欠点がある。赤外線フィルタ等の光学系3の表面にトナーやほこりが付着して、光学系3の表面の汚染が進行すると、検知出力が低下して、正確な温度検知ができない欠点があり、正確に温度制御しなけれがならない用途には、利用することができない欠点があった。従って、非接触型温度センサでは、周囲温度の変化によって、被検知体からの赤外線の放射則が変化するために、周囲温度を計測する別の温度補償用の温度センサを取り付けて、周囲温度の変化を検出している。図14に示した信号処理回路を用いて、光学系3の汚染による透過量の変化を併せて、周囲温度の変化に応じて関数テーブルを切り換えるといった複雑な数値計算を、マイクロコンピュータ11で演算処理する必要があった。   In the non-contact type temperature sensor of Conventional Example 2 in FIG. 13, the optical system 3 is provided on the infrared incident surface, and there is a defect that the toner tends to adhere to the optical system 3 when mounted on the heat fixing roller. There is a drawback in that the toner adheres to the surface of the system 3 and the amount of transmitted infrared rays changes due to contamination. If toner or dust adheres to the surface of the optical system 3, such as an infrared filter, and the contamination of the surface of the optical system 3 proceeds, the detection output will be reduced and accurate temperature detection will not be possible. For applications that must be done, there was a drawback that they could not be used. Therefore, in the non-contact type temperature sensor, since the radiation law of infrared rays from the object to be detected changes due to the change in the ambient temperature, another temperature compensation temperature sensor for measuring the ambient temperature is attached, and the ambient temperature A change is detected. Using the signal processing circuit shown in FIG. 14, a complicated numerical calculation such as switching of the function table according to the change of the ambient temperature is performed by the microcomputer 11 together with the change of the transmission amount due to the contamination of the optical system 3. There was a need to do.

さらに、赤外線検出器として知られているサーミスタボロメータ、サーモパイル、焦電センサ等を用いる方法がある。しかし、サーミスタボロメータ、サーモパイルは、感度が小さくコストが高い欠点がある。また、焦電センサは、チョッパが必要であるために信頼性に問題があり、定着装置等の高温下で用いるためには、温度補償等の技術的な問題点があって、使用するのが難しい。   Further, there is a method using a thermistor bolometer, a thermopile, a pyroelectric sensor or the like known as an infrared detector. However, the thermistor bolometer and thermopile have the disadvantages of low sensitivity and high cost. In addition, the pyroelectric sensor has a problem in reliability because it requires a chopper, and there are technical problems such as temperature compensation in order to use it under a high temperature such as a fixing device. difficult.

本発明は、上述のような課題に鑑みなされたものであり、被検知体の表面温度を正確に検出し、被検知体の表面温度を短時間に、かつ正確に計測することができる非接触温度センサを提供することを目的とするものである。   The present invention has been made in view of the problems as described above, and can detect the surface temperature of the detected object accurately and can accurately measure the surface temperature of the detected object in a short time. The object is to provide a temperature sensor.

上記課題を解決するためになされた請求項1記載の発明は、開口部から入射した赤外線を導く導光部を有する保持体と、該保持体の前記導光部の他端開口部に配置した樹脂フィルムと、該樹脂フィルムの背後に空間を設けるための空間部が形成され前記保持体に取り付けられる蓋部材と、前記樹脂フィルムの前記空間部側に配置され、前記開口部から入射する赤外線を検知する赤外線検知用感熱素子と、前記空間部の空間内以外の前記保持体の表面または内部に配置され前記保持体の温度を検知する温度補償用感熱素子とからなることを特徴とする。   The invention according to claim 1, which has been made in order to solve the above-described problem, is arranged in a holding body having a light guide portion that guides infrared light incident from an opening portion, and the other end opening portion of the light guide portion of the holding body. A resin film, a lid member formed with a space for providing a space behind the resin film and attached to the holding body, and an infrared ray that is disposed on the space part side of the resin film and is incident from the opening. It comprises a heat-sensitive element for detecting infrared rays to be detected, and a temperature-compensating heat-sensitive element that is arranged on the surface or inside of the holding body other than in the space and detects the temperature of the holding body.

上記課題を解決するためになされた請求項2記載の発明は、赤外線入射開口部を有する保持体と、該保持体の前記開口部の裏側に配置した樹脂フィルムと、該樹脂フィルムの背後に空間を設けるための空間部が形成され前記保持体に取り付けられる蓋部材と、前記樹脂フィルムの前記空間部側に配置され、前記開口部から入射する赤外線を検知する赤外線検知用感熱素子と、前記保持体の表面に配置され前記保持体の温度を検知する温度補償用感熱素子とからなり、前記蓋部材には、前記温度補償用感熱素子の背後に空間を設けるための凹部がさらに形成されており、前記赤外線検知用感熱素子および前記温度補償用感熱素子は、それぞれ、前記空間部の空間内および前記凹部の空間内に閉塞されるように収納されていることを特徴とする。   The invention according to claim 2, which has been made to solve the above problems, includes a holder having an infrared incident opening, a resin film disposed on the back side of the opening of the holder, and a space behind the resin film. A lid member that is formed on the holding body and is disposed on the space portion side of the resin film and that detects infrared rays incident from the opening, and the holding member. A temperature-compensating thermosensitive element that is disposed on the surface of the body and detects the temperature of the holding body, and the lid member further includes a recess for providing a space behind the temperature-compensating thermosensitive element. The infrared detecting thermal element and the temperature compensating thermal element are housed so as to be closed in the space of the space and the space of the recess, respectively.

上記課題を解決するためになされた請求項3記載の発明は、請求項2記載の非接触温度センサにおいて、前記凹部の空間の大きさは、前記空間部の空間の大きさより小さくなっていることを特徴とする。   The invention according to claim 3, which has been made to solve the above problem, is the non-contact temperature sensor according to claim 2, wherein the size of the space of the concave portion is smaller than the size of the space of the space portion. It is characterized by.

上記課題を解決するためになされた請求項4記載の発明は、請求項2または3記載の非接触温度センサにおいて、前記赤外線検知用感熱素子および前記温度補償用感熱素子は、前記樹脂フィルムの同一平面上に配置されていることを特徴とする。   According to a fourth aspect of the present invention, there is provided the non-contact temperature sensor according to the second or third aspect, wherein the infrared detecting thermal element and the temperature compensating thermal element are the same as the resin film. It is arranged on a plane.

以下、本発明に係わる非接触温度センサの実施の形態について、図面を参照して説明する。図1は、本発明の非接触温度センサの一実施形態を示す分解斜視図、図2は、その非接触温度センサを加熱定着ローラに実装した例を示す斜視図、図3は、図1または図2の非接触温度センサのX−Y断面図である。   Embodiments of a non-contact temperature sensor according to the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing an embodiment of the non-contact temperature sensor of the present invention, FIG. 2 is a perspective view showing an example in which the non-contact temperature sensor is mounted on a heat fixing roller, and FIG. It is XY sectional drawing of the non-contact temperature sensor of FIG.

図1において、非接触温度センサ20は、断面形状が長方形の導光部からなる保持体21と、感熱素子が設けられた樹脂フィルム23と、蓋部材29とで構成されている。保持体21は、保持体21の一端が赤外線の入射する開口部21aであり、その他端が開口部21bであり、その内部は赤外線を導く導光部となっている。開口部21bは、樹脂フィルム23で覆われて蓋部材29で閉塞されている。樹脂フィルム23の裏面(赤外線入射面とは反対の面)には、赤外線検知用感熱素子25が設けられている。樹脂フィルム23と蓋部材29との間には、図3に示したように、空間部30が形成されている。保持体21には、非接触温度センサ20を被検知体近傍に近接させて実装するために取付穴22aを有する取付耳部22が設けられている。感熱素子25〜27は、薄膜サーミスタを用いるが、それに限定するものではない。   In FIG. 1, the non-contact temperature sensor 20 includes a holding body 21 formed of a light guide portion having a rectangular cross section, a resin film 23 provided with a heat sensitive element, and a lid member 29. The holding body 21 has one end of the holding body 21 that is an opening 21a through which infrared rays are incident and the other end that is an opening 21b. The inside of the holding body 21 is a light guide that guides infrared rays. The opening 21 b is covered with the resin film 23 and closed with a lid member 29. On the back surface of the resin film 23 (the surface opposite to the infrared incident surface), an infrared detecting thermal element 25 is provided. As shown in FIG. 3, a space 30 is formed between the resin film 23 and the lid member 29. The holding body 21 is provided with mounting ears 22 having mounting holes 22a in order to mount the non-contact temperature sensor 20 close to the detected body. The thermosensitive elements 25 to 27 use thin film thermistors, but are not limited thereto.

保持体21は、その材質がアルミニウム等の熱伝導率の大きい、熱放射率の小さい金属からなり、その内面は、赤外線を反射する反射面である。この反射面は、必要に応じて研磨して赤外線の反射率を高める構造であってもよいし、保持体21自体を樹脂で形成して、その内面に積極的に赤外線を反射させる金属層による反射面としてもよい。さらに、導光部の内面全体または少なくとも一部分に、赤外線を吸収する赤外線吸収膜を設けてもよい。赤外線吸収膜を設けることにより、定着装置の周辺に飛散しているトナーが保持体21の内面に付着したとしてもトナーの熱の放射率が1に近い値であり、赤外線センサの出力信号には殆ど影響を与えない。   The holding body 21 is made of a metal having a high thermal conductivity and a low thermal emissivity, such as aluminum, and its inner surface is a reflecting surface that reflects infrared rays. The reflecting surface may be polished to increase the infrared reflectance as necessary, or the holding body 21 itself is formed of a resin, and a metal layer that actively reflects infrared rays on the inner surface thereof. It may be a reflective surface. Furthermore, you may provide the infrared rays absorption film which absorbs infrared rays in the whole inner surface or at least one part of a light guide part. By providing the infrared absorption film, even if the toner scattered around the fixing device adheres to the inner surface of the holding body 21, the heat emissivity of the toner is close to 1, and the output signal of the infrared sensor is Has little effect.

また、上記赤外線吸収膜は、プラスチック、ゴム等を導光部の内面または/および外面に塗装等の方法によって形成される。例えば、これらの材料は、輻射率が0.94以上の黒体吸収膜が好ましい。この他の材質としては、保持体21の内面の少なくとも一部に、陽極酸化処理やアルマイト処理したとしても赤外線吸収膜と同等の効果が得られる。   The infrared absorbing film is formed by a method such as coating plastic, rubber or the like on the inner surface or / and outer surface of the light guide. For example, these materials are preferably black body absorbing films having an emissivity of 0.94 or more. As other materials, even if at least a part of the inner surface of the holding body 21 is anodized or anodized, the same effect as the infrared absorption film can be obtained.

さらに、この保持体21の開口部21aの形状は、被検知体の大きさや形状、温度センサとの距離等の諸条件により適切に選択される。例えば、加熱定着ローラ表面温度を計測する場合、加熱定着ローラが横長形状の発熱体であるので、保持体21の開口部21aは、そのローラの軸方向に沿って広がった横長形状または楕円形状にする。このような形状とすることによって、保持体21の集熱効果が良好となり、検出感度、熱応答性を高めることができる。   Furthermore, the shape of the opening 21a of the holding body 21 is appropriately selected according to various conditions such as the size and shape of the detected body and the distance from the temperature sensor. For example, when measuring the surface temperature of the heat fixing roller, since the heat fixing roller is a horizontally long heating element, the opening 21a of the holding body 21 has a horizontally long shape or an elliptical shape extending along the axial direction of the roller. To do. By setting it as such a shape, the heat collection effect of the holding body 21 becomes favorable, and detection sensitivity and thermal responsiveness can be improved.

また、被検知体から非接触温度センサをさらに離して設置した場合は、赤外線入射開口部21aも、被検知体表面からさらに離れるので、導光部内面に赤外線吸収膜を形成しておけば、被検知体以外のバックグラウンド部分から放射された熱は、導光部内に入射して内面の赤外線吸収膜で吸収されるので、樹脂フィルム23までには到達しない。従って、バックグラウンド部分からの熱放射による検知温度誤差を排除し、被検知体からの放射される熱のみを正確に検出することができる。また、前記導光部内部面に赤外線吸収膜を設ける代わりに、導光部を樹脂成形することによっても同等の効果を得ることができる。   In addition, when the non-contact temperature sensor is installed further away from the detected body, the infrared incident opening 21a is further away from the detected body surface, so if an infrared absorption film is formed on the inner surface of the light guide section, The heat radiated from the background portion other than the detection target is incident on the light guide and absorbed by the infrared absorption film on the inner surface, and thus does not reach the resin film 23. Therefore, the detection temperature error due to the heat radiation from the background portion can be eliminated, and only the heat radiated from the detected object can be accurately detected. Further, the same effect can be obtained by resin-molding the light guide part instead of providing the infrared absorbing film on the inner surface of the light guide part.

次に、樹脂フィルム23について詳細に説明すると、樹脂フィルム23は、一表面に配線パターン24が形成され、赤外線検知用感熱素子25と、近接して配置した第1および第2の温度補償用感熱素子26,27とが配線パターン24に電気的に接続されている。配線パターン24の終端には、外部引出端子28が形成されている。赤外線検知用感熱素子25は、樹脂フィルム23の略中央面に位置し、赤外線入射側と反対側の樹脂フィルム23面に配置される。第1および第2の温度補償用感熱素子26,27は、樹脂フィルム23の端部近くに形成されている。樹脂フィルム23を開口部21bに密着するように取り付け、蓋部材29を装着することにより、赤外線検知用感熱素子25は、開口部21bの略中央に配置され、第1および第2の温度補償用感熱素子26,27は、保持体21の側面に配置される。第1および第2の温度補償用感熱素子26,27は、周囲温度を検出する。なお、温度補償用感熱素子26,27は、保持体の肉厚部に配置した構造として、保持体21の温度を検知する。   Next, the resin film 23 will be described in detail. The resin film 23 has a wiring pattern 24 formed on one surface thereof, and the first and second temperature compensating heat sensitive elements arranged in close proximity to the infrared detecting thermal element 25. Elements 26 and 27 are electrically connected to the wiring pattern 24. An external lead terminal 28 is formed at the end of the wiring pattern 24. The infrared detecting thermal element 25 is located on the substantially central surface of the resin film 23 and is disposed on the surface of the resin film 23 opposite to the infrared incident side. The first and second temperature compensating thermal elements 26 and 27 are formed near the end of the resin film 23. By attaching the resin film 23 so as to be in close contact with the opening 21b and attaching the lid member 29, the infrared detecting thermal element 25 is disposed at substantially the center of the opening 21b, and the first and second temperature compensating elements are provided. The thermal elements 26 and 27 are disposed on the side surface of the holding body 21. The first and second temperature compensating thermal elements 26 and 27 detect the ambient temperature. The temperature compensating thermosensitive elements 26 and 27 detect the temperature of the holding body 21 as a structure arranged in the thick part of the holding body.

樹脂フィルム23は、テフロン(登録商標)、シリコン、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、PPS(ポリフェニレンスルフィド)等の高分子材料からなる樹脂が使用され、赤外光を吸収する材料であれば他の材質を使用してもよい。さらに、これらの樹脂にカーボンブラックまたは無機顔料(クロムイエロ、弁柄、チタンホワイト、群青の1種以上)を混合分散させて略全波長の赤外線を吸収し得るような材料を用いる。また、樹脂フィルム23の裏面またはその背後の空間部30に赤外線反射膜を設けることによって、樹脂フィルム23から放射された熱を反射させることで、一層検出感度を向上させることができる。   The resin film 23 is made of a resin made of a polymer material such as Teflon (registered trademark), silicon, polyimide, polyester, polyethylene, polycarbonate, PPS (polyphenylene sulfide), and any other material that absorbs infrared light. A material may be used. Furthermore, carbon black or an inorganic pigment (one or more of chrome yellow, petal, titanium white, ultramarine) is mixed and dispersed in these resins, and a material that can absorb infrared rays of almost all wavelengths is used. Further, by providing an infrared reflecting film on the back surface of the resin film 23 or the space 30 behind the resin film 23, the detection sensitivity can be further improved by reflecting the heat radiated from the resin film 23.

一方、本発明の非接触温度センサは、主に複射機等の定着装置に装着することを想定しており、前記非接触温度センサの外側周囲の部材類からの熱放射があるために、この熱放射によって温度検知誤差が生じ易くなる。このために、非接触温度センサの保持体や蓋部材の外表面をメッキしたり、また鏡面仕上げ、あるいは薄膜や箔等の赤外線反射材を貼着する等の方法によって赤外線が反射するような構造にし、外界の影響を最小限に留めるようにすることによって、一層の検知感度の向上を図ることができる。   On the other hand, the non-contact temperature sensor of the present invention is mainly assumed to be mounted on a fixing device such as a compounding machine, and since there is heat radiation from the outer peripheral members of the non-contact temperature sensor, This thermal radiation tends to cause a temperature detection error. For this purpose, a structure in which infrared rays are reflected by a method such as plating the outer surface of a non-contact temperature sensor holding body or lid member, mirror finishing, or attaching an infrared reflecting material such as a thin film or foil In addition, the detection sensitivity can be further improved by minimizing the influence of the outside world.

図2は、図1に示した非接触温度センサ20の実装例を示している。同図に示したように、加熱定着ローラ12の軸方向に併設されたL字状金具13に装着される。L字状金具13には、開口部15が形成され、非接触温度センサ20の開口部21aが開口部15に一致するようにL字状金具13にボルト14で固定されている。非接触温度センサ20の開口部21aは、加熱定着ローラ12の軸方向に沿って横長の開口を有している。このように非接触温度センサ20が横長方向の開口部21aを有することで、加熱定着ローラ12から放射された熱を効率よく捕捉することができる。また、開口部21aから入射した赤外線は、保持体21の内面で反射して、開口部21bの樹脂フィルム23面と赤外線検知用感熱素子25に到達する。赤外線検知用感熱素子25と温度補償用感熱素子26,27の出力は、検出回路Dに入力される。   FIG. 2 shows an example of mounting the non-contact temperature sensor 20 shown in FIG. As shown in the figure, the heat-fixing roller 12 is attached to an L-shaped metal fitting 13 provided in the axial direction. An opening 15 is formed in the L-shaped metal fitting 13, and is fixed to the L-shaped metal fitting 13 with a bolt 14 so that the opening 21 a of the non-contact temperature sensor 20 coincides with the opening 15. The opening 21 a of the non-contact temperature sensor 20 has a horizontally long opening along the axial direction of the heat fixing roller 12. As described above, the non-contact temperature sensor 20 has the horizontally long opening 21a, so that the heat radiated from the heat fixing roller 12 can be efficiently captured. Further, the infrared light incident from the opening 21 a is reflected by the inner surface of the holding body 21 and reaches the surface of the resin film 23 of the opening 21 b and the thermal element 25 for infrared detection. The outputs of the infrared detecting thermal element 25 and the temperature compensating thermal elements 26 and 27 are input to the detection circuit D.

次に、上記非接触温度センサの検出回路について、図4(a)〜(c)を参照して説明する。図4(a)において、温度補償用感熱素子27と赤外線検知用感熱素子25は、電源端子Vと接地間に直列接続され、かつ温度補償用感熱素子26と抵抗31は同様に電源端子Vと接地間に直列接続されている。温度補償用感熱素子27と赤外線検知用感熱素子25との接続点Aと、温度補償用感熱素子26と抵抗31との接続点Bは、演算増幅器32の入力端子にそれぞれ接続され、その出力は出力端子33から得られる。これら回路素子はブリッジ回路を構成している。   Next, the detection circuit of the non-contact temperature sensor will be described with reference to FIGS. In FIG. 4A, the temperature compensating thermal element 27 and the infrared detecting thermal element 25 are connected in series between the power supply terminal V and the ground, and the temperature compensating thermal element 26 and the resistor 31 are similarly connected to the power supply terminal V. Connected in series between ground. The connection point A between the temperature compensation thermal element 27 and the infrared detection thermal element 25 and the connection point B between the temperature compensation thermal element 26 and the resistor 31 are connected to the input terminal of the operational amplifier 32, and the output is Obtained from the output terminal 33. These circuit elements constitute a bridge circuit.

上記非接触温度センサを参照して説明すると、加熱定着ローラ表面から放射される赤外線は、非接触温度センサ20の開口部21aから入射して、導光部を経て樹脂フィルム23の上に達し、樹脂フィルム23に吸収されて赤外線エネルギは熱に変換され、赤外線検知用感熱素子25に伝達され、赤外線検知用感熱素子25の温度が上昇する。このとき樹脂フィルム23も開口面積に相当する部分が赤外線を受光するために赤外線エネルギが熱変換されて、樹脂フィルム23の温度も上昇して赤外線検知用感熱素子25に効果的に伝達される。赤外線検知用感熱素子25と温度補償用感熱素子26は少なくともほぼ等しい温度特性を有する感熱素子である。被検知体からの赤外線によって赤外線検知用感熱素子25の抵抗値が変化すると接続点Aの電位が変化する。同時に被検知体からの輻射熱や周囲雰囲気温度によって保持体21の温度も上昇するために保持体21の外面に載置した温度補償用感熱素子26,27の抵抗値も保持体21の温度上昇に相当する抵抗値変化を受ける。そして、温度補償用感熱素子26,27は、ほぼ等しい温度特性を有するので、接続点Aの電位は、被検知体からの赤外線による温度変化のみを検出できる。無論、図4(b)の検出回路であってもよい。   Explaining with reference to the non-contact temperature sensor, infrared rays emitted from the surface of the heat fixing roller are incident from the opening 21a of the non-contact temperature sensor 20, reach the resin film 23 through the light guide, The infrared energy is absorbed by the resin film 23 and converted to heat, and is transmitted to the infrared detecting thermal element 25, and the temperature of the infrared detecting thermal element 25 increases. At this time, since the resin film 23 also receives the infrared rays at the portion corresponding to the opening area, the infrared energy is thermally converted, and the temperature of the resin film 23 rises and is effectively transmitted to the thermal element 25 for detecting infrared rays. The infrared detecting thermal element 25 and the temperature compensating thermal element 26 are thermal elements having at least substantially equal temperature characteristics. When the resistance value of the infrared detecting thermal element 25 is changed by infrared rays from the detection object, the potential at the connection point A changes. At the same time, the temperature of the holding body 21 also rises due to the radiant heat from the body to be detected and the ambient ambient temperature, so that the resistance values of the temperature compensating thermal elements 26 and 27 placed on the outer surface of the holding body 21 also increase the temperature of the holding body 21. The corresponding resistance value change is received. Since the temperature compensating thermosensitive elements 26 and 27 have substantially the same temperature characteristics, the potential at the connection point A can detect only a temperature change due to infrared rays from the detection target. Of course, the detection circuit shown in FIG.

図4(c)の検出回路は、赤外線検知用感熱素子25と温度補償用感熱素子26が直列接続されて定電流源34に接続されている。そして定電流源34と赤外線検知用感熱素子25との接続点A、赤外線検知用感熱素子25と温度補償用感熱素子26の接続点Bは演算増幅器32の入力端子にそれぞれ接続され、その出力端子33から得られる。接続点Aの出力は、赤外線検知用感熱素子25と温度補償用感熱素子26との接続点Bの出力が加算されて出力される。従って、この定電流方式は、接続点Aの出力と、接続点Bの温度補償用感熱素子26の出力分を加減算することによって、演算増幅器32の出力側には、周囲雰囲気の影響を相殺した出力が得られ、他の回路方式に比べて回路構成が簡単にできる利点がある。   In the detection circuit of FIG. 4C, the infrared detecting thermal element 25 and the temperature compensating thermal element 26 are connected in series and connected to the constant current source 34. The connection point A between the constant current source 34 and the infrared detection thermal element 25 and the connection point B between the infrared detection thermal element 25 and the temperature compensation thermal element 26 are connected to the input terminal of the operational amplifier 32, respectively. 33. The output of the connection point A is output by adding the output of the connection point B of the infrared detecting thermal element 25 and the temperature compensating thermal element 26. Therefore, in this constant current method, the influence of the ambient atmosphere is offset on the output side of the operational amplifier 32 by adding / subtracting the output of the connection point A and the output of the temperature compensating thermal element 26 at the connection point B. There is an advantage that an output can be obtained and the circuit configuration can be simplified as compared with other circuit systems.

図5は、加熱定着ローラを例とした実際の温度制御を示しており、この被検知体から放射される熱やセンサ周辺の対流によって、保持体21の温度が変動するために、図4の検出回路の接続点Aの電位は、保持体21の温度変動に比例して、図5の曲線aに示すように、時間とともに制御出力(制御温度)が変化して正確な温度コントロールができない場合がある。本発明では、第2の温度補償用感熱素子26を第1の温度補償用感熱素子27に近接して配置し、センサ周辺の温度が上昇すると、保持体21の表面温度も上昇していくために、第2の温度補償用感熱素子26と抵抗31から構成されるブリッジ回路の出力、即ち、接続点Bの電位は、図5の曲線bのように時間とともに上昇していく。このために制御温度が曲線aのように変動する原因となる。本発明では、周囲雰囲気の変化を第2の温度補償用感熱素子26によって検知し、その出力を第1の温度補償用感熱素子27と赤外線検知用感熱素子25からなる出力に加算することによって、周囲雰囲気の影響を相殺して、図5の曲線cに示すように、被検知体の赤外線出力を正確に検出することができる。   FIG. 5 shows actual temperature control using a heat fixing roller as an example. Since the temperature of the holding body 21 fluctuates due to heat radiated from the detected object and convection around the sensor, FIG. When the potential at the connection point A of the detection circuit is proportional to the temperature fluctuation of the holding body 21 and the control output (control temperature) changes with time as shown by the curve a in FIG. There is. In the present invention, since the second temperature compensating thermosensitive element 26 is arranged in the vicinity of the first temperature compensating thermosensitive element 27 and the temperature around the sensor rises, the surface temperature of the holding body 21 also rises. In addition, the output of the bridge circuit composed of the second temperature compensating thermosensitive element 26 and the resistor 31, that is, the potential at the connection point B rises with time as shown by the curve b in FIG. This causes the control temperature to fluctuate as shown by curve a. In the present invention, a change in the ambient atmosphere is detected by the second temperature compensation thermal element 26, and the output is added to the output composed of the first temperature compensation thermal element 27 and the infrared detection thermal element 25. By canceling the influence of the surrounding atmosphere, the infrared output of the detection target can be accurately detected as shown by the curve c in FIG.

次に、非接触温度センサ用の検出回路の具体例について、図6〜図8の検出回路を参照して説明する。図6において、温度補償用感熱素子27と赤外線検知用感熱素子25が電源端子Vと接地間に直列接続され、かつ抵抗R1、可変抵抗R2、抵抗R3が直列接続されて基準電圧源回路37を構成し、同様な構成で温度補償用感熱素子26と抵抗31が電源端子Vと接地間に直列接続され、かつ基準電圧源回路38が抵抗R1、可変抵抗R2、抵抗R3が直列接続されて構成されている。温度補償用感熱素子26,27は、近接して配置されている。   Next, a specific example of the detection circuit for the non-contact temperature sensor will be described with reference to the detection circuits of FIGS. In FIG. 6, a temperature compensation thermal element 27 and an infrared detection thermal element 25 are connected in series between a power supply terminal V and the ground, and a resistor R1, a variable resistor R2, and a resistor R3 are connected in series to form a reference voltage source circuit 37. The temperature compensation thermosensitive element 26 and the resistor 31 are connected in series between the power supply terminal V and the ground, and the reference voltage source circuit 38 is connected in series with the resistor R1, the variable resistor R2, and the resistor R3. Has been. The temperature compensating thermosensitive elements 26 and 27 are arranged close to each other.

反転増幅器A1は、その反転入力端子と接続点A間に抵抗R4が接続され、反転入力端子と出力端子間に抵抗R6が接続され、可変抵抗R2(非反転入力端子)と非反転端子間に抵抗R4が接続され、その非反転端子と接地間に抵抗R5が接続されている。反転増幅器A1の出力端子は、抵抗R7を介して演算増幅器A3の非反転入力端子に接続されている。そして、反転増幅器A2は、その反転入力端子と接続点B間に抵抗R4が接続され、反転入力端子と出力端子間に抵抗R6が接続され、可変抵抗R2とその非反転入力端子間に抵抗R4が接続され、その非反転入力端子と接地間に抵抗R5が接続されている。抵抗R5とR6は同一抵抗値のものを用いる。反転増幅器A2の出力端子は、抵抗R9を介して演算増幅器A3の反転入力端子に接続されている。演算増幅器A3は、その反転入力端子と出力端子間に抵抗R10が接続され、非反転入力端子と接地間に抵抗R8が接続されている。演算増幅器A3によって、出力点PAとPBとの出力を加算することで、その出力端子PCから周囲の温度の影響を相殺した加熱定着ローラ12の表面温度ΔTの出力が得られる。   In the inverting amplifier A1, a resistor R4 is connected between the inverting input terminal and the connection point A, a resistor R6 is connected between the inverting input terminal and the output terminal, and between the variable resistor R2 (non-inverting input terminal) and the non-inverting terminal. A resistor R4 is connected, and a resistor R5 is connected between the non-inverting terminal and the ground. The output terminal of the inverting amplifier A1 is connected to the non-inverting input terminal of the operational amplifier A3 via the resistor R7. In the inverting amplifier A2, a resistor R4 is connected between the inverting input terminal and the connection point B, a resistor R6 is connected between the inverting input terminal and the output terminal, and a resistor R4 is connected between the variable resistor R2 and the non-inverting input terminal. And a resistor R5 is connected between the non-inverting input terminal and the ground. Resistors R5 and R6 have the same resistance value. The output terminal of the inverting amplifier A2 is connected to the inverting input terminal of the operational amplifier A3 via the resistor R9. The operational amplifier A3 has a resistor R10 connected between the inverting input terminal and the output terminal, and a resistor R8 connected between the non-inverting input terminal and the ground. By adding the outputs of the output points PA and PB by the operational amplifier A3, an output of the surface temperature ΔT of the heat-fixing roller 12 that cancels out the influence of the ambient temperature can be obtained from the output terminal PC.

上記の出力信号ΔTは、図7に示した演算増幅器A4を付加して比較演算することによって、制御出力信号を取り出すことができる。この制御出力信号を定着装置の温度制御に利用する。図7において、基準電圧源39に接続された抵抗R12,R13と可変抵抗VRとの直列回路からなる温度設定回路のE点を演算増幅器A4の非反転入力端子に接続し、演算増幅器A3の出力端子を抵抗を介して反転入力端子に接続する。出力信号ΔTを演算増幅器A4の反転入力端子に入力し、所望の温度に設定するために温度設定回路のVRを調整して、E点の電位と出力信号ΔTとを比較演算し、その出力信号によって、ソリッド・ステート・リレーS1を制御することで任意の設定温度での制御信号を取り出すことができる。   A control output signal can be extracted from the output signal ΔT by performing a comparison operation by adding the operational amplifier A4 shown in FIG. This control output signal is used for temperature control of the fixing device. In FIG. 7, point E of the temperature setting circuit composed of a series circuit of resistors R12, R13 and variable resistor VR connected to the reference voltage source 39 is connected to the non-inverting input terminal of the operational amplifier A4, and the output of the operational amplifier A3. Connect the terminal to the inverting input terminal through a resistor. The output signal ΔT is input to the inverting input terminal of the operational amplifier A4, the VR of the temperature setting circuit is adjusted to set the desired temperature, the potential at the point E is compared with the output signal ΔT, and the output signal is output. Thus, a control signal at an arbitrary set temperature can be taken out by controlling the solid state relay S1.

無論、図8に示したように、マイクロコンピュータを用いたデジタル方式の温度制御回路で被検知体の表面温度を検出することもできる。図8において、定電流源40に接続された赤外線検知用感熱素子25と温度補償用感熱素子26の直列回路のC点とD点の出力電圧(ΔT′+Δt)とΔtを抵抗R1,R2を介して、A/D変換器46,47にそれぞれ入力して、デジタル化した(ΔT′+Δt)とΔtを得る。A/D変換器47からのデジタル化された出力Δtは温度補償出力分となる。このΔT′とΔtの関係をマイクロコンピュータCPUに入力して、減算手段48によって、ΔT′を算出し、条件判定手段49に入力する。条件判定手段49では、図8に示すように、ΔT′と設定温度Taとの関係が予め記憶されたデータテーブル50を参照して判断し、「1」,「0」を判断して、ソリッド・ステート・リレーS1を制御する。「1」の場合は、ヒータに通電し、「0」の場合は、ヒータへの通電を遮断する。このような制御によって、加熱定着ローラの表面温度を所定の温度に設定する。   Of course, as shown in FIG. 8, the surface temperature of the detected object can also be detected by a digital temperature control circuit using a microcomputer. In FIG. 8, the output voltage (ΔT ′ + Δt) and Δt at points C and D of the series circuit of the infrared detecting thermal element 25 and the temperature compensating thermal element 26 connected to the constant current source 40 are represented by resistors R1 and R2. Are input to the A / D converters 46 and 47, respectively, and digitized (ΔT ′ + Δt) and Δt are obtained. The digitized output Δt from the A / D converter 47 becomes the temperature compensation output. The relationship between ΔT ′ and Δt is input to the microcomputer CPU, ΔT ′ is calculated by the subtracting means 48 and input to the condition determining means 49. As shown in FIG. 8, the condition determining means 49 determines the relationship between ΔT ′ and the set temperature Ta with reference to a pre-stored data table 50, determines “1”, “0”, and solids Control the state relay S1. In the case of “1”, the heater is energized. In the case of “0”, the energization to the heater is cut off. By such control, the surface temperature of the heat fixing roller is set to a predetermined temperature.

また、図8の温度検出回路は、図4(c)の検出回路を用いたが、図4(a),(b)の検出回路であってもよい。図4(a)の場合、温度補償された出力が得られるので、この出力をA/D変換器を介してマイクロコンピュ−タCPUに入力して、データテーブル50により、表面温度を検出する。また、図4(b)では、図8のマイクロコンピュ−タCPUを用いた温度検出回路と同様な処理を行うことで、被検知体の表面温度を検出することができる。   Further, the temperature detection circuit of FIG. 8 uses the detection circuit of FIG. 4C, but may be the detection circuit of FIGS. 4A and 4B. In the case of FIG. 4A, a temperature compensated output is obtained, and this output is input to the microcomputer CPU via the A / D converter, and the surface temperature is detected by the data table 50. In FIG. 4B, the surface temperature of the detection object can be detected by performing the same process as the temperature detection circuit using the microcomputer CPU of FIG.

因みに、本発明の非接触温度センサの動作原理について、図9を参照して説明する。上記演算増幅器A3の出力電圧は、加熱定着ローラ12の表面温度ΔTを表しており、その動作原理について説明する。保持体21の温度(ケース温度)t1 は、t1 =Δf(T)+Δf(t)と表される。ただし、Δf(T)は、加熱定着ローラ12による温度の変化を示し、Δf(t)は、周囲温度の変化を示している。 Incidentally, the principle of operation of the non-contact temperature sensor of the present invention will be described with reference to FIG. The output voltage of the operational amplifier A3 represents the surface temperature ΔT of the heat fixing roller 12, and the operation principle will be described. The temperature (case temperature) t 1 of the holding body 21 is expressed as t 1 = Δf (T) + Δf (t). However, Δf (T) indicates a change in temperature due to the heat-fixing roller 12, and Δf (t) indicates a change in ambient temperature.

赤外線検知用感熱素子25の周囲温度t1 ′は、略ケース温度t1 に等しいので、t1 ′=t1 +aと表される。aはケース温度t1 以外の因子である。従って、加熱定着ローラ12からの熱放射による温度変化を赤外線検知用感熱素子25で検出し、その温度変化をΔTとすると、ΔTは、f(IR)=ΔTの関数で表される。また、赤外線検知用感熱素子25は、周囲温度t1 ′の影響を受ける。基準電圧源回路37,38の基準電圧を、それぞれ基準電圧の抵抗成分の関係で表すと、ΔR≒ΔR′+bの関係がある。温度補償用感熱素子26,27は、熱的に結合されており、f(Ref1)=f(Ref2)=t1 (=t1 ′−a)の関係がある。 Since the ambient temperature t 1 ′ of the infrared detecting thermal element 25 is substantially equal to the case temperature t 1 , it is expressed as t 1 ′ = t 1 + a. a is a factor other than the case temperature t 1 . Therefore, if a temperature change due to heat radiation from the heat fixing roller 12 is detected by the infrared detecting thermal element 25 and the temperature change is ΔT, ΔT is expressed as a function of f (IR) = ΔT. The infrared detecting thermal element 25 is influenced by the ambient temperature t 1 ′. When the reference voltages of the reference voltage source circuits 37 and 38 are represented by the relationship of the resistance components of the reference voltage, there is a relationship of ΔR≈ΔR ′ + b. The temperature compensating thermosensitive elements 26 and 27 are thermally coupled, and have a relationship of f (Ref1) = f (Ref2) = t 1 (= t 1 ′ −a).

反転増幅器A1の出力を温度としてとらえると、その出力端子の出力は、PA=ΔT+t1 ′と表される。同様に反転増幅器A2の出力端の出力は、PB=t1 と表される。従って、図6の検出回路の演算増幅器A3の出力端は、PC=ΔT+a≒ΔTと表される。このように本発明では、本実施形態の非接触温度センサを用いることによって、複雑な関数を使った演算処理を行わなくとも、温度を検出することができる。 When the output of the inverting amplifier A1 is regarded as a temperature, the output of the output terminal is expressed as PA = ΔT + t 1 ′. Similarly, the output at the output terminal of the inverting amplifier A2 is expressed as PB = t 1 . Therefore, the output terminal of the operational amplifier A3 of the detection circuit of FIG. 6 is expressed as PC = ΔT + a≈ΔT. As described above, in the present invention, by using the non-contact temperature sensor of the present embodiment, the temperature can be detected without performing a calculation process using a complicated function.

次に、図1の非接触温度センサの他の実施形態について、図10を参照して説明する。樹脂フィルム23の装着構造は、図1の実施形態に限定することなく、同図(a)〜(c)に示した形態であってもよい。同図(a)は、温度補償用感熱素子26,27が保持体の両外面にそれぞれ配置され、同図(b)は、温度補償用感熱素子26,27が保持体の一方の外面に配置されている。また、同図(c)では赤外線検知用感熱素子25が収納された空間部の背後に温度補償用感熱素子26,27が配置されている。さらに、感熱素子を設けた樹脂フィルム23は、一方を開口し他端を塞いだ導光部の保持体の後部にスリットを形成して、このスリットに樹脂フィルム23を挿入して、保持体内の開口部から離れた位置に感熱部を形成してもよい。   Next, another embodiment of the non-contact temperature sensor of FIG. 1 will be described with reference to FIG. The mounting structure of the resin film 23 is not limited to the embodiment of FIG. 1, and may be the form shown in FIGS. In FIG. 6A, the temperature compensating thermal elements 26 and 27 are arranged on both outer surfaces of the holding body, respectively, and in FIG. 5B, the temperature compensating thermal element 26 and 27 are arranged on one outer surface of the holding body. Has been. Further, in FIG. 2C, temperature compensating heat sensitive elements 26 and 27 are arranged behind the space where the infrared detecting heat sensitive element 25 is accommodated. Furthermore, the resin film 23 provided with the thermosensitive element is formed with a slit in the rear portion of the holder of the light guide unit that is open at one end and closed at the other end, and the resin film 23 is inserted into the slit to You may form a heat sensitive part in the position away from the opening part.

また、非接触温度センサの導光部の保持体をテーパ状とし、被検知体から導光部内に入射した赤外線を感熱素子部に集光するようにして検出感度を向上させてもよい(図示なし)。   Further, the detection sensitivity may be improved by making the holder of the light guide part of the non-contact temperature sensor into a tapered shape and condensing the infrared rays incident from the detected object into the light guide part on the heat sensitive element part (illustration shown). None).

なお、第1と第2の温度補償用感熱素子26,27の配置位置は、前記両感熱素子の温度がほぼ等しい温度となるような保持体上の位置であればよく、本実施形態に記載したように、両温度補償用感熱素子を必ずしも互いに近接して配置する必要はない。   The first and second temperature compensating thermosensitive elements 26 and 27 may be arranged at positions on the holding body such that the temperatures of the two thermosensitive elements are substantially equal to each other, and are described in this embodiment. As described above, it is not always necessary to dispose the two temperature compensating thermosensitive elements close to each other.

次に、本発明の非接触温度センサの他の実施形態について、図11を参照して説明する。同図(a)はその分解斜視図、同図(b)は断面図、同図(c)は斜視図である。図11の非接触温度センサは、被検知体の温度を近接して非接触で検出する温度センサである。非接触温度センサ39は、開口部41が形成された板状の保持体40と、赤外線検知用感熱素子25と第1および第2の温度補償用感熱素子26,27を電気的に接続した配線パターンが形成された樹脂フィルム23と、蓋部材42とから構成されている。蓋部材42には、赤外線検知用感熱素子25の背後に空間を設けるための空間部43と、温度補償用感熱素子26,27の背に空間を設けるための凹部44が形成され、保持体40と蓋部材42とによって樹脂フィルム23を固定保持すると、蓋部材42に形成された空間部43には、赤外線検知用感熱素子25が収納され、凹部44には、温度補償用感熱素子26,27が収納される。   Next, another embodiment of the non-contact temperature sensor of the present invention will be described with reference to FIG. 2A is an exploded perspective view, FIG. 2B is a cross-sectional view, and FIG. 2C is a perspective view. The non-contact temperature sensor of FIG. 11 is a temperature sensor that detects the temperature of the detected object in a non-contact manner. The non-contact temperature sensor 39 is a wiring in which the plate-like holding body 40 in which the opening 41 is formed, the infrared detecting thermal element 25 and the first and second temperature compensating thermal elements 26 and 27 are electrically connected. It is composed of a resin film 23 on which a pattern is formed and a lid member 42. The lid member 42 is formed with a space 43 for providing a space behind the infrared detecting thermal element 25 and a recess 44 for providing a space behind the temperature compensating thermal elements 26 and 27. When the resin film 23 is fixed and held by the lid member 42, the infrared detecting thermal element 25 is accommodated in the space 43 formed in the lid member 42, and the temperature compensating thermal elements 26, 27 are stored in the recess 44. Is stored.

樹脂フィルム23は、保持体40の裏面(赤外線の入射面と反対面)に、開口部41を覆うように配置される。赤外線は、保持体40に形成された開口部41から入射し、開口部41内に露呈する樹脂フィルムに照射される。樹脂フィルム23は、先に説明したように、ポリエステルやポリイミド樹脂等の赤外線を吸収する材料を使用するか、あるいはこれらの樹脂にカーボンブラックまたは無機顔料を分散させて略全波長の赤外線を吸収し得るような材料が用いられる。樹脂フィルム23上には、赤外線検知用感熱素子25と第1および第2の温度補償用感熱素子26,27が、赤外線が入射する面と反対面に形成された配線パターンに接着固定されている。赤外線検知用感熱素子25は、保持体40の開口部41の略中央部に配置され、第1および第2の温度補償用感熱素子26,27は、保持体40に蓋部材42を取り付けた際に、保持体40の表面に樹脂フィルム23が密着し、凹部44に収納されるように取り付けられる。これらの感熱素子は、空間内に閉塞されるように収納されている。第1および第2の温度補償用感熱素子26,27は、蓋部材42を含む保持体40の温度を検知するように配置される。   The resin film 23 is disposed on the back surface (the surface opposite to the infrared incident surface) of the holding body 40 so as to cover the opening 41. Infrared rays enter through the opening 41 formed in the holding body 40 and are applied to the resin film exposed in the opening 41. As described above, the resin film 23 uses a material that absorbs infrared rays, such as polyester and polyimide resin, or absorbs infrared rays of almost all wavelengths by dispersing carbon black or an inorganic pigment in these resins. The resulting material is used. On the resin film 23, the infrared detecting thermal element 25 and the first and second temperature compensating thermal elements 26 and 27 are bonded and fixed to a wiring pattern formed on the surface opposite to the surface on which the infrared rays are incident. . The infrared detecting thermal element 25 is disposed at a substantially central portion of the opening 41 of the holding body 40, and the first and second temperature compensating thermal elements 26 and 27 are provided when the lid member 42 is attached to the holding body 40. In addition, the resin film 23 is attached to the surface of the holding body 40 so as to be accommodated in the recess 44. These thermosensitive elements are accommodated so as to be closed in the space. The first and second temperature compensating thermal elements 26 and 27 are arranged to detect the temperature of the holding body 40 including the lid member 42.

さらに、第1および第2の温度補償用感熱素子26,27は、同一場所の周囲雰囲気温度が検知できるようになるべく近接して配置され、配線パターンの端部には、外部引出端子28が形成されている。これらの感熱素子としては、薄膜サーミスタが使用され、樹脂フィルム23上に形成された配線パターンに電気的に接続される。なお、感熱素子は、薄膜サーミスタに限定されるものではなく、他の半導体温度センサであってもよい。   Further, the first and second temperature compensating thermosensitive elements 26 and 27 are arranged as close as possible so that the ambient ambient temperature in the same place can be detected, and an external lead terminal 28 is formed at the end of the wiring pattern. Has been. As these thermal elements, a thin film thermistor is used, and is electrically connected to a wiring pattern formed on the resin film 23. The thermal element is not limited to a thin film thermistor, and may be another semiconductor temperature sensor.

また、本実施形態では、温度補償用感熱素子は樹脂フィルム上に赤外線検知用感熱素子とともに配置する構造について述べたが、前記温度補償用感熱素子は必ずしも同一の樹脂フィルム上に載置する必要はなく、保持体の温度を検知できるのであれば単独で保持体表面あるいは保持体内部に配置してもよい。   In the present embodiment, the temperature compensation thermal element is described as being arranged together with the infrared detection thermal element on the resin film. However, the temperature compensation thermal element does not necessarily have to be placed on the same resin film. Alternatively, as long as the temperature of the holding body can be detected, it may be arranged alone on the holding body surface or inside the holding body.

保持体40の材質は、アルミニウム等の熱伝導率が大きく、熱放射率の小さい金属から構成されている。また、保持体40を金属で形成する代わりに、保持体40を樹脂で形成して、その表面に金属層を形成した構造の保持体であってもよい。この保持体40の開口部41の形状は、被検知体の大きさや形状、センサとの距離等の条件によって適切に選択される。例えば、複写機等の熱定着ローラの表面温度を計測する場合、保持体の開口部41は、ローラの軸方向に広がる横長形状または楕円形状にすることによって、検知感度、熱応答性を高めることができる。また、ローラ径が小さい場合には、開口部41の視野角を小さくするために、ローラ軸に垂直な開口部の巾を小さくし、軸方向の開口部の長さを長くする。   The material of the holder 40 is made of a metal having a high thermal conductivity such as aluminum and a low thermal emissivity. Further, instead of forming the holding body 40 from a metal, a holding body having a structure in which the holding body 40 is formed from a resin and a metal layer is formed on the surface thereof may be used. The shape of the opening 41 of the holding body 40 is appropriately selected depending on conditions such as the size and shape of the detection object, the distance from the sensor, and the like. For example, when measuring the surface temperature of a heat fixing roller of a copying machine or the like, the opening 41 of the holding body has a horizontally long shape or an elliptical shape that extends in the axial direction of the roller, thereby improving detection sensitivity and thermal response. Can do. When the roller diameter is small, in order to reduce the viewing angle of the opening 41, the width of the opening perpendicular to the roller axis is reduced and the length of the opening in the axial direction is increased.

図11の非接触温度センサの検知出力は、被検知体に近接して配置されるため、上記実施形態の導光部を有する保持体からなる温度センサと略同等であるが、設置条件によっては10〜15%程度低下する場合があるが、十分使用できるレベルである。この温度センサの検出感度は、被検知体との距離に依存するために、本発明の図1の非接触温度センサを設置するための十分なスペースが無い場合、図11の非接触温度センサを被検知体に接近して設置することによって被検知体の温度を正確に検出することができる。   Since the detection output of the non-contact temperature sensor in FIG. 11 is arranged close to the detection target, it is substantially the same as the temperature sensor including the holding body having the light guide unit of the above embodiment, but depending on the installation conditions Although it may decrease by about 10 to 15%, it is a level that can be used sufficiently. Since the detection sensitivity of this temperature sensor depends on the distance to the object to be detected, when there is not enough space for installing the non-contact temperature sensor of FIG. 1 of the present invention, the non-contact temperature sensor of FIG. The temperature of the detected object can be accurately detected by installing it close to the detected object.

図12は、本発明の他の実施形態の非接触温度センサを示している。図11に示した非接触温度センサに樹脂成形した楕円柱状の導光部45を付加した構造の非接触温度センサ39である。本実施例の非接触温度センサ39は、図11で示した開口部41に樹脂で構成した導光部45を取り付けること以外は、図11の構成と同じである。図12の非接触温度センサは、導光部45の開口部41aから被検知体以外の部分から入射してくる赤外線の影響を無視できるために、被検知体の温度変化のみを正確に検知することが可能になる。   FIG. 12 shows a non-contact temperature sensor according to another embodiment of the present invention. It is the non-contact temperature sensor 39 of the structure which added the elliptical column-shaped light guide part 45 resin-molded to the non-contact temperature sensor shown in FIG. The non-contact temperature sensor 39 of the present embodiment is the same as the configuration of FIG. 11 except that a light guide portion 45 made of resin is attached to the opening 41 shown in FIG. The non-contact temperature sensor in FIG. 12 can accurately detect only the temperature change of the detected object because the influence of infrared rays entering from the opening 41a of the light guide unit 45 from the part other than the detected object can be ignored. It becomes possible.

さらに、蓋部材42の形状は、図11に限定することなく、スライド式であってもよい。図1の非接触温度センサであっても同様である。なお、上記実施形態において、外部引出端子は、公知の手法によってコードを接続して、検出回路と接続すればよい。   Furthermore, the shape of the lid member 42 is not limited to that shown in FIG. The same applies to the non-contact temperature sensor of FIG. In the above embodiment, the external lead terminal may be connected to the detection circuit by connecting a cord by a known method.

無論、本実施形態は、加熱定着ローラの温度検知について述べたが、これに限定されるものではなく、非接触で温度検知を行う用途に巾広く利用できる。   Of course, in the present embodiment, the temperature detection of the heat fixing roller has been described. However, the present invention is not limited to this, and can be widely used for non-contact temperature detection.

本発明の非接触温度センサの一実施形態を示した分解斜視図である。It is the disassembled perspective view which showed one Embodiment of the non-contact temperature sensor of this invention. 本発明の非接触温度センサを加熱定着ローラに実装した斜視図である。It is the perspective view which mounted the non-contact temperature sensor of the present invention on the heat fixing roller. 図2の非接触温度センサのX−Y線に沿った断面図である。It is sectional drawing along the XY line of the non-contact temperature sensor of FIG. (a)〜(c)は、非接触温度センサ用検出回路の回路図である。(A)-(c) is a circuit diagram of the detection circuit for non-contact temperature sensors. 本発明による非接触温度センサによる温度制御を説明するための図である。It is a figure for demonstrating the temperature control by the non-contact temperature sensor by this invention. 非接触温度センサ用検出回路の他の実施例を示す回路図である。It is a circuit diagram which shows the other Example of the detection circuit for non-contact temperature sensors. 非接触温度センサ用検出回路の他の実施例を示す回路図である。It is a circuit diagram which shows the other Example of the detection circuit for non-contact temperature sensors. 非接触温度センサ用検出回路の他の実施例を示す回路図である。It is a circuit diagram which shows the other Example of the detection circuit for non-contact temperature sensors. 本発明の非接触温度センサの動作を説明するための図である。It is a figure for demonstrating operation | movement of the non-contact temperature sensor of this invention. 本発明の非接触温度センサの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the non-contact temperature sensor of this invention. 本発明の非接触温度センサの他の実施形態を示す図である。It is a figure which shows other embodiment of the non-contact temperature sensor of this invention. 本発明の非接触温度センサの他の実施形態を示す図である。It is a figure which shows other embodiment of the non-contact temperature sensor of this invention. 従来の非接触温度センサの一例を示す断面図である。It is sectional drawing which shows an example of the conventional non-contact temperature sensor. 従来の非接触温度センサの検出回路を示す回路図である。It is a circuit diagram which shows the detection circuit of the conventional non-contact temperature sensor.

符号の説明Explanation of symbols

21 保持体
21a,21b 開口部
22 取付耳部
23 樹脂フィルム
24 配線パターン
25 赤外線検知用感熱素子
26,27 温度補償用感熱素子
28 外部引出端子
29 蓋部材
40 保持体
41,41a 開口部
42 蓋部材
43 空間部
44 凹部
45 導光部
A1,A2 反転増幅器
A3,A4 演算増幅器
D 検出回路
CPU マイクロコンピュータ
21 保持体
21a,21b 開口部
22 取付耳部
23 樹脂フィルム
24 配線パターン
25 赤外線検知用感熱素子
26,27 温度補償用感熱素子
28 外部引出端子
29 蓋部材
40 保持体
41,41a 開口部
42 蓋部材
43 空間部
44 凹部
45 導光部
A1,A2 反転増幅器
A3,A4 演算増幅器
D 検出回路
CPU マイクロコンピュータ
DESCRIPTION OF SYMBOLS 21 Holding body 21a, 21b Opening part 22 Mounting ear part 23 Resin film 24 Wiring pattern 25 Infrared detection thermal element 26, 27 Temperature compensation thermal element 28 External extraction terminal 29 Lid member 40 Holding body 41, 41a Opening part 42 Lid member Reference Signs List 43 Space 44 Recess 45 Light Guide A1, A2 Inverting Amplifier A3, A4 Operational Amplifier D Detection Circuit CPU Microcomputer 21 Holding Body 21a, 21b Opening 22 Mounting Ear 23 Resin Film 24 Wiring Pattern 25 Infrared Detection Thermal Element 26 , 27 Temperature-sensitive thermal element 28 External lead terminal 29 Lid member 40 Holder 41, 41a Opening 42 Lid member 43 Space 44 Recess 45 Light guide A1, A2 Inverting amplifier A3, A4 Operational amplifier D Detection circuit CPU Microcomputer

Claims (4)

開口部から入射した赤外線を導く導光部を有する保持体と、該保持体の前記導光部の他端開口部に配置した樹脂フィルムと、該樹脂フィルムの背後に空間を設けるための空間部が形成され前記保持体に取り付けられる蓋部材と、前記樹脂フィルムの前記空間部側に配置され、前記開口部から入射する赤外線を検知する赤外線検知用感熱素子と、前記空間部の空間内以外の前記保持体の表面または内部に配置され前記保持体の温度を検知する温度補償用感熱素子とからなることを特徴とする非接触温度センサ。   A holding body having a light guide for guiding infrared light incident from the opening, a resin film disposed in the other end opening of the light guide of the holding body, and a space for providing a space behind the resin film A lid member that is formed and attached to the holding body, is arranged on the space part side of the resin film, and is an infrared detection thermal element that detects infrared rays incident from the opening, and other than in the space of the space part A non-contact temperature sensor comprising a temperature-compensating thermal element that is disposed on or inside the holding body and detects the temperature of the holding body. 赤外線入射開口部を有する保持体と、該保持体の前記開口部の裏側に配置した樹脂フィルムと、該樹脂フィルムの背後に空間を設けるための空間部が形成され前記保持体に取り付けられる蓋部材と、前記樹脂フィルムの前記空間部側に配置され、前記開口部から入射する赤外線を検知する赤外線検知用感熱素子と、前記保持体の表面に配置され前記保持体の温度を検知する温度補償用感熱素子とからなり、前記蓋部材には、前記温度補償用感熱素子の背後に空間を設けるための凹部がさらに形成されており、前記赤外線検知用感熱素子および前記温度補償用感熱素子は、それぞれ、前記空間部の空間内および前記凹部の空間内に閉塞されるように収納されていることを特徴とする非接触温度センサ。   A holding member having an infrared incident opening, a resin film disposed on the back side of the opening of the holding body, and a lid member formed with a space for providing a space behind the resin film and attached to the holding body And an infrared detecting thermal element that is disposed on the space portion side of the resin film and detects infrared rays incident from the opening, and a temperature compensation element that is disposed on the surface of the holding body and detects the temperature of the holding body. The lid member is further formed with a recess for providing a space behind the temperature compensating thermal element, the infrared detecting thermal element and the temperature compensating thermal element are respectively The non-contact temperature sensor is housed so as to be closed in the space of the space and in the space of the recess. 請求項2記載の非接触温度センサにおいて、
前記凹部の空間の大きさは、前記空間部の空間の大きさより小さくなっていることを特徴とする非接触温度センサ。
The non-contact temperature sensor according to claim 2,
The non-contact temperature sensor, wherein the size of the space of the recess is smaller than the size of the space of the space.
請求項2または3記載の非接触温度センサにおいて、
前記赤外線検知用感熱素子および前記温度補償用感熱素子は、前記樹脂フィルムの同一平面上に配置されていることを特徴とする非接触温度センサ。
The non-contact temperature sensor according to claim 2 or 3,
The non-contact temperature sensor, wherein the infrared detecting thermal element and the temperature compensating thermal element are arranged on the same plane of the resin film.
JP2007328385A 1997-09-29 2007-12-20 Non-contact temperature sensor Expired - Lifetime JP4415045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007328385A JP4415045B2 (en) 1997-09-29 2007-12-20 Non-contact temperature sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26422197 1997-09-29
JP33409697 1997-12-04
JP2007328385A JP4415045B2 (en) 1997-09-29 2007-12-20 Non-contact temperature sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10275262A Division JPH11223555A (en) 1997-09-29 1998-09-29 Non-contacting temperature sensor and detection circuit therefor

Publications (2)

Publication Number Publication Date
JP2008111849A true JP2008111849A (en) 2008-05-15
JP4415045B2 JP4415045B2 (en) 2010-02-17

Family

ID=39444409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328385A Expired - Lifetime JP4415045B2 (en) 1997-09-29 2007-12-20 Non-contact temperature sensor

Country Status (1)

Country Link
JP (1) JP4415045B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014707A1 (en) 2011-07-26 2013-01-31 株式会社芝浦電子 Infrared temperature sensor and fixing device using same
JP2015172537A (en) * 2014-03-12 2015-10-01 Semitec株式会社 Infrared ray temperature sensor, device using infrared ray temperature sensor, and method for manufacturing infrared ray temperature sensor
WO2016152220A1 (en) * 2015-03-25 2016-09-29 Semitec株式会社 Infrared temperature sensor, circuit board, and device using infrared temperature sensor
WO2016152221A1 (en) * 2015-03-25 2016-09-29 Semitec株式会社 Infrared temperature sensor and device using infrared temperature sensor
JP2016191652A (en) * 2015-03-31 2016-11-10 京セラドキュメントソリューションズ株式会社 Electronic equipment, control method of electronic equipment, and control program
KR20180090266A (en) 2015-12-07 2018-08-10 미쓰비시 마테리알 가부시키가이샤 Abnormal temperature detection circuit
WO2019053759A1 (en) * 2017-09-12 2019-03-21 株式会社芝浦電子 Infrared temperature sensor
JP7324425B2 (en) 2020-02-25 2023-08-10 三菱マテリアル株式会社 Abnormal temperature detection circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708217B2 (en) * 2011-05-10 2015-04-30 Tdk株式会社 Non-contact temperature sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014707A1 (en) 2011-07-26 2013-01-31 株式会社芝浦電子 Infrared temperature sensor and fixing device using same
US9176443B2 (en) 2011-07-26 2015-11-03 Shibaura Electronics Co., Ltd. Infrared temperature sensor and fixing device using the same
JP2015172537A (en) * 2014-03-12 2015-10-01 Semitec株式会社 Infrared ray temperature sensor, device using infrared ray temperature sensor, and method for manufacturing infrared ray temperature sensor
JP6076549B1 (en) * 2015-03-25 2017-02-08 Semitec株式会社 Infrared temperature sensor, circuit board, and apparatus using infrared temperature sensor
WO2016152221A1 (en) * 2015-03-25 2016-09-29 Semitec株式会社 Infrared temperature sensor and device using infrared temperature sensor
WO2016152220A1 (en) * 2015-03-25 2016-09-29 Semitec株式会社 Infrared temperature sensor, circuit board, and device using infrared temperature sensor
JPWO2016152221A1 (en) * 2015-03-25 2017-04-27 Semitec株式会社 Infrared temperature sensor and apparatus using infrared temperature sensor
KR20170129755A (en) * 2015-03-25 2017-11-27 세미텍 가부시키가이샤 Device using infrared temperature sensor, circuit board and infrared temperature sensor
CN107407602A (en) * 2015-03-25 2017-11-28 世美特株式会社 Infrared temperature sensor, circuit substrate and the device using infrared temperature sensor
KR102610063B1 (en) * 2015-03-25 2023-12-05 세미텍 가부시키가이샤 Infrared temperature sensor, circuit board, and device using the sensor
JP2016191652A (en) * 2015-03-31 2016-11-10 京セラドキュメントソリューションズ株式会社 Electronic equipment, control method of electronic equipment, and control program
KR20180090266A (en) 2015-12-07 2018-08-10 미쓰비시 마테리알 가부시키가이샤 Abnormal temperature detection circuit
WO2019053759A1 (en) * 2017-09-12 2019-03-21 株式会社芝浦電子 Infrared temperature sensor
JPWO2019053759A1 (en) * 2017-09-12 2019-11-07 株式会社芝浦電子 Infrared temperature sensor
JP7324425B2 (en) 2020-02-25 2023-08-10 三菱マテリアル株式会社 Abnormal temperature detection circuit

Also Published As

Publication number Publication date
JP4415045B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4415045B2 (en) Non-contact temperature sensor
JP5054523B2 (en) Sensor
US6367972B1 (en) Non-contact temperature sensor with temperature compensating heat sensitive elements on plastic film
JPH11223555A (en) Non-contacting temperature sensor and detection circuit therefor
JP3327668B2 (en) Infrared detector
WO2011083593A1 (en) Non-contact temperature sensor
JP4628540B2 (en) Infrared temperature sensor
US7778557B2 (en) Fixing apparatus and image forming apparatus
JP2004045330A (en) Noncontact temperature detector
US9176443B2 (en) Infrared temperature sensor and fixing device using the same
JP2007086208A (en) Fixing device and image forming apparatus
US7433619B2 (en) Heat fixing device capable of preventing deterioration of a temperature sensor and an image forming apparatus
EP3421952A1 (en) Infrared sensor device
JPH09264792A (en) Non-contact temperature sensor
JP2003005574A (en) Fixing device and image forming device
JP3316862B2 (en) Temperature sensor unit
JP2004205417A (en) Non-contact temperature sensor
JP3890245B2 (en) Temperature detection device
JP2005201731A (en) Temperature detection device and thermal fixing device
JP4389685B2 (en) Heating device
US6408651B1 (en) Method of manufacturing optical fibers using thermopiles to measure fiber energy
US10024722B2 (en) Temperature detection device for a vehicle heater
JP5754223B2 (en) Fixing device
JPS5952271A (en) Temperature controller for heat roller
JP2004028622A (en) Temperature detection device and image forming device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term